1
|
Rega M, Andriani L, Poeta A, Casadio C, Diegoli G, Bonardi S, Conter M, Bacci C. Transmission of β-lactamases in the pork food chain: A public health concern. One Health 2023; 17:100632. [PMID: 38024261 PMCID: PMC10665163 DOI: 10.1016/j.onehlt.2023.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
Antimicrobial resistance (AMR) is a risk for public health that requires management in a One Health perspective, including humans, animals, and the environment. The food production chain has been identified as a possible route of transmission of AMR bacteria to humans. The most critical issue regards resistance to the Critically Important Antimicrobials (CIAs), such as β-lactams antibiotics. Here, pigs were analysed along the entire food producing chain, including feces, carcasses and pork products (fresh meat, fermented and seasoned products) ensuring treaciability of all samples. Escherichia coli were isolated and their ability to produce ESBL and AmpC β-lactamases was evaluated both phenotypically and genotypically. Strains with the same AMR profile from feces, carcasses, and meat products were selected for phylogenetic and comparative genomic analyses to evaluate the possible "farm-to-fork" transmission of β-lactams resistant bacteria. Results showed that the percentage of ESBL strains in fecal E. coli was approximately 7% and increased slightly in the pork food chain: the 10% of ESBL E. coli isolated from carcasses and the 12.5% of isolates from fresh meat products. AmpC E. coli were found only in feces, carcasses, and fresh meat with a low prevalence. Results showed that of the 243 pigs followed along the entire food chain genetic similarities in E. coli isolated from farm-to-fork were found in only one pig (feces, carcasses and fresh meat). Frequent similarities were shown in resistant E. coli isolates from carcasses and fresh meat or fermented product (three pork food chain). Moreover, in one case, bacteria isolated from fresh meat and fermented product were genotypically similar. Concluding, direct transmission of β-lactams resistance from farm-to-fork is possible but not frequent. Further studies are needed to improve risk communication to consumers and access to clear and reliable information and health concerns on food.
Collapse
Affiliation(s)
- Martina Rega
- Food Hygiene and Inspection Unit, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - Laura Andriani
- Food Hygiene and Inspection Unit, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - Antonio Poeta
- Azienda Unità Sanitaria Locale (AUSL) sede Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Chiara Casadio
- Azienda Unità Sanitaria Locale (AUSL) sede Modena, Via S. Giovanni del cantone, 23 41121 Modena, Italy
| | - Giuseppe Diegoli
- Emilia-Romagna Region, Collective Prevention and Public Health Service, viale Aldo Moro 21, 40127 Bologna, Italy
| | - Silvia Bonardi
- Food Hygiene and Inspection Unit, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - Mauro Conter
- Food Hygiene and Inspection Unit, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| | - Cristina Bacci
- Food Hygiene and Inspection Unit, Veterinary Science Department, University of Parma, Strada del Taglio, 10, 43126 Parma, Italy
| |
Collapse
|
2
|
Yasmeen N, Aslam B, Fang LX, Baloch Z, Liu Y. Occurrence of extended- spectrum β-lactamase harboring K. pneumoniae in various sources: a one health perspective. Front Cell Infect Microbiol 2023; 13:1103319. [PMID: 37287469 PMCID: PMC10242356 DOI: 10.3389/fcimb.2023.1103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
This study was designed to investigate the occurrence and dissemination of extended-spectrum β-lactamase (ESBL) harboring Klebsiella pneumoniae in various ecological niches under the one health approach. A total of 793 samples were collected from animals, humans, and the environment. The findings of the study revealed the occurrence of K. pneumoniae as follows: animals (11.6%), humans (8.4%), and associated environments (7.0%), respectively. A high occurrence rate of ESBL genes was found in animals compared to human and environmental isolates. A total of 18 distinct sequence types (STs) and 12 clonal complexes of K. pneumoniae were observed. Overall, six STs of K. pneumoniae were identified in commercial chickens, and three were found in rural poultry. The majority of K. pneumoniae STs found in this study were positive for blaSHV, while the positivity of other ESBL-encoding genes combinations was different in different STs. The high occurrence rate of ESBL-harboring K. pneumoniae found in animals as compared to other sources is alarming and has the potential to be disseminated to the associated environment and community.
Collapse
Affiliation(s)
- Nafeesa Yasmeen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bilal Aslam
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Liang-xing Fang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yahong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Li T, Wang Z, Guo J, de la Fuente-Nunez C, Wang J, Han B, Tao H, Liu J, Wang X. Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160461. [PMID: 36435256 PMCID: PMC11537282 DOI: 10.1016/j.scitotenv.2022.160461] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The spread of bacterial drug resistance has posed a severe threat to public health globally. Here, we cover bacterial resistance to current antibacterial drugs, including traditional herbal medicines, conventional antibiotics, and antimicrobial peptides. We summarize the influence of bacterial drug resistance on global health and its economic burden while highlighting the resistance mechanisms developed by bacteria. Based on the One Health concept, we propose 4A strategies to combat bacterial resistance, including prudent Application of antibacterial agents, Administration, Assays, and Alternatives to antibiotics. Finally, we identify several opportunities and unsolved questions warranting future exploration for combating bacterial resistance, such as predicting genetic bacterial resistance through the use of more effective techniques, surveying both genetic determinants of bacterial resistance and the transmission dynamics of antibiotic resistance genes (ARGs).
Collapse
Affiliation(s)
- Ting Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing 100071, PR China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Bing Han
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Hui Tao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jie Liu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
4
|
Paulitsch-Fuchs AH, Melchior N, Haitzmann T, Fingerhut T, Feierl G, Baumert R, Kittinger C, Zarfel G. Analysis of Extended Spectrum Beta Lactamase (ESBL) Genes of Non-Invasive ESBL Enterobacterales in Southeast Austria in 2017. Antibiotics (Basel) 2022; 12:antibiotics12010001. [PMID: 36671202 PMCID: PMC9854808 DOI: 10.3390/antibiotics12010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Extended spectrum beta lactamases producing Enterobacteriaceae are a major player in the antibiotic resistance challenge. In general, the situation regarding antibiotic resistance in Austria is very good compared to many other countries. Perhaps this is why there is a lack of data on the distribution of ESBL genes in the clinical setting. The aim of this study was to collect data on ESBL genes from a larger sample of human non-invasive clinical isolates from one region in Austria. In total, 468 isolates from different sample materials isolated at the Medical University of Graz from 2017 were examined. The most frequent organisms were Escherichia coli and Klebsiella pneumoniae. Among the enzymes produced, CTX-M-15 was clearly dominant, exotic ESBLs were only represented by three Proteus mirabilis isolates harboring genes for VEB-6 and one P. mirabilis for CTX-M-2, respectively. Compared to other countries, the results are in line with the expectations. The data help to better classify the many studies from the non-clinical field in Austria and to shift the focus slightly away from the exotic results and sample sites.
Collapse
Affiliation(s)
- Astrid H. Paulitsch-Fuchs
- Biomedical Science, School of Health Sciences and Social Work, Carinthia University of Applied Sciences, St. Veiterstraße 47, 9020 Klagenfurt, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Nadine Melchior
- Biomedical Science, School of Health Sciences and Social Work, Carinthia University of Applied Sciences, St. Veiterstraße 47, 9020 Klagenfurt, Austria
| | - Theresa Haitzmann
- Biomedical Science, School of Health Sciences and Social Work, Carinthia University of Applied Sciences, St. Veiterstraße 47, 9020 Klagenfurt, Austria
| | - Theres Fingerhut
- Biomedical Science, School of Health Sciences and Social Work, Carinthia University of Applied Sciences, St. Veiterstraße 47, 9020 Klagenfurt, Austria
| | - Gebhard Feierl
- Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Rita Baumert
- Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Clemens Kittinger
- Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Gernot Zarfel
- Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- Correspondence:
| |
Collapse
|
5
|
Rabaan AA, Eljaaly K, Alhumaid S, Albayat H, Al-Adsani W, Sabour AA, Alshiekheid MA, Al-Jishi JM, Khamis F, Alwarthan S, Alhajri M, Alfaraj AH, Tombuloglu H, Garout M, Alabdullah DM, Mohammed EAE, Yami FSA, Almuhtaresh HA, Livias KA, Mutair AA, Almushrif SA, Abusalah MAHA, Ahmed N. An Overview on Phenotypic and Genotypic Characterisation of Carbapenem-Resistant Enterobacterales. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1675. [PMID: 36422214 PMCID: PMC9696003 DOI: 10.3390/medicina58111675] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 08/26/2023]
Abstract
Improper use of antimicrobials has resulted in the emergence of antimicrobial resistance (AMR), including multi-drug resistance (MDR) among bacteria. Recently, a sudden increase in Carbapenem-resistant Enterobacterales (CRE) has been observed. This presents a substantial challenge in the treatment of CRE-infected individuals. Bacterial plasmids include the genes for carbapenem resistance, which can also spread to other bacteria to make them resistant. The incidence of CRE is rising significantly despite the efforts of health authorities, clinicians, and scientists. Many genotypic and phenotypic techniques are available to identify CRE. However, effective identification requires the integration of two or more methods. Whole genome sequencing (WGS), an advanced molecular approach, helps identify new strains of CRE and screening of the patient population; however, WGS is challenging to apply in clinical settings due to the complexity and high expense involved with this technique. The current review highlights the molecular mechanism of development of Carbapenem resistance, the epidemiology of CRE infections, spread of CRE, treatment options, and the phenotypic/genotypic characterisation of CRE. The potential of microorganisms to acquire resistance against Carbapenems remains high, which can lead to even more susceptible drugs such as colistin and polymyxins. Hence, the current study recommends running the antibiotic stewardship programs at an institutional level to control the use of antibiotics and to reduce the spread of CRE worldwide.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Khalid Eljaaly
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacy Practice and Science Department, College of Pharmacy, University of Arizona, Tucson, AZ 85716, USA
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Wasl Al-Adsani
- Department of Medicine, Infectious Diseases Hospital, Kuwait City 63537, Kuwait
- Department of Infectious Diseases, Hampton Veterans Administration Medical Center, Hampton, VA 23667, USA
| | - Amal A. Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha A. Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jumana M. Al-Jishi
- Internal Medicine Department, Qatif Central Hospital, Qatif 635342, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Ammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Ammam 34212, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Duaa M. Alabdullah
- Molecular Diagnostic Laboratory, Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Elmoeiz Ali Elnagi Mohammed
- Department of Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia
| | - Fatimah S. Al Yami
- Department of Medical Laboratory, King Fahad Military Medical Complex, Dhahran 34313, Saudi Arabia
| | - Haifa A. Almuhtaresh
- Department of Clinical Laboratories Services, Dammam Medical Complex, Dammam Health Network, Dammam 5343, Saudi Arabia
| | - Kovy Arteaga Livias
- Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima 15001, Peru
- Facultad de Medicina, Universidad Nacional Hermilio Valdizán, Huánuco 10000, Peru
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Shawqi A. Almushrif
- Department of Microbiology and Hematology Laboratory, Dammam Comprehensive Screening Centre, Dammam 31433, Saudi Arabia
| | | | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
6
|
Savin M, Bierbaum G, Mutters NT, Schmithausen RM, Kreyenschmidt J, García-Meniño I, Schmoger S, Käsbohrer A, Hammerl JA. Genetic Characterization of Carbapenem-Resistant Klebsiella spp. from Municipal and Slaughterhouse Wastewater. Antibiotics (Basel) 2022; 11:antibiotics11040435. [PMID: 35453187 PMCID: PMC9027467 DOI: 10.3390/antibiotics11040435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Currently, human and veterinary medicine are threatened worldwide by an increasing resistance to carbapenems, particularly present in opportunistic Enterobacterales pathogens (e.g., Klebsiella spp.). However, there is a lack of comprehensive and comparable data on their occurrence in wastewater, as well as on the phenotypic and genotypic characteristics for various countries including Germany. Thus, this study aims to characterize carbapenem-resistant Klebsiella spp. isolated from municipal wastewater treatment plants (mWWTPs) and their receiving water bodies, as well as from wastewater and process waters from poultry and pig slaughterhouses. After isolation using selective media and determination of carbapenem (i.e., ertapenem) resistance using broth microdilution to apply epidemiological breakpoints, the selected isolates (n = 30) were subjected to WGS. The vast majority of the isolates (80.0%) originated from the mWWTPs and their receiving water bodies. In addition to ertapenem, Klebsiella spp. isolates exhibited resistance to meropenem (40.0%) and imipenem (16.7%), as well as to piperacillin-tazobactam (50.0%) and ceftolozan-tazobactam (50.0%). A high diversity of antibiotic-resistance genes (n = 68), in particular those encoding β-lactamases, was revealed. However, with the exception of blaGES-5-like, no acquired carbapenemase-resistance genes were detected. Virulence factors such as siderophores (e.g., enterobactin) and fimbriae type 1 were present in almost all isolates. A wide genetic diversity was indicated by assigning 66.7% of the isolates to 12 different sequence types (STs), including clinically relevant ones (e.g., ST16, ST252, ST219, ST268, ST307, ST789, ST873, and ST2459). Our study provides information on the occurrence of carbapenem-resistant, ESBL-producing Klebsiella spp., which is of clinical importance in wastewater and surface water in Germany. These findings indicate their possible dissemination in the environment and the potential risk of colonization and/or infection of humans, livestock and wildlife associated with exposure to contaminated water sources.
Collapse
Affiliation(s)
- Mykhailo Savin
- Institute for Hygiene and Public Health, University Hospital Bonn, 53127 Bonn, Germany;
- Institute of Animal Sciences, University of Bonn, 53115 Bonn, Germany;
- Correspondence: (M.S.); (J.A.H.)
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, 53115 Bonn, Germany;
| | - Nico T. Mutters
- Institute for Hygiene and Public Health, University Hospital Bonn, 53127 Bonn, Germany;
| | - Ricarda Maria Schmithausen
- Department of Hygiene and Environmental Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Judith Kreyenschmidt
- Institute of Animal Sciences, University of Bonn, 53115 Bonn, Germany;
- Department of Fresh Produce Logistics, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Isidro García-Meniño
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (I.G.-M.); (S.S.); (A.K.)
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain
| | - Silvia Schmoger
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (I.G.-M.); (S.S.); (A.K.)
| | - Annemarie Käsbohrer
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (I.G.-M.); (S.S.); (A.K.)
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine, AT-1210 Vienna, Austria
| | - Jens Andre Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (I.G.-M.); (S.S.); (A.K.)
- Correspondence: (M.S.); (J.A.H.)
| |
Collapse
|
7
|
Galler H, Luxner J, Petternel C, Reinthaler FF, Habib J, Haas D, Kittinger C, Pless P, Feierl G, Zarfel G. Multiresistant Bacteria Isolated from Intestinal Faeces of Farm Animals in Austria. Antibiotics (Basel) 2021; 10:antibiotics10040466. [PMID: 33923903 PMCID: PMC8073873 DOI: 10.3390/antibiotics10040466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
In recent years, antibiotic-resistant bacteria with an impact on human health, such as extended spectrum β-lactamase (ESBL)-containing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE), have become more common in food. This is due to the use of antibiotics in animal husbandry, which leads to the promotion of antibiotic resistance and thus also makes food a source of such resistant bacteria. Most studies dealing with this issue usually focus on the animals or processed food products to examine the antibiotic resistant bacteria. This study investigated the intestine as another main habitat besides the skin for multiresistant bacteria. For this purpose, faeces samples were taken directly from the intestines of swine (n = 71) and broiler (n = 100) during the slaughter process and analysed. All samples were from animals fed in Austria and slaughtered in Austrian slaughterhouses for food production. The samples were examined for the presence of ESBL-producing Enterobacteriaceae, MRSA, MRCoNS and VRE. The resistance genes of the isolated bacteria were detected and sequenced by PCR. Phenotypic ESBL-producing Escherichia coli could be isolated in 10% of broiler casings (10 out of 100) and 43.6% of swine casings (31 out of 71). In line with previous studies, the results of this study showed that CTX-M-1 was the dominant ESBL produced by E. coli from swine (n = 25, 83.3%) and SHV-12 from broilers (n = 13, 81.3%). Overall, the frequency of positive samples with multidrug-resistant bacteria was lower than in most comparable studies focusing on meat products.
Collapse
Affiliation(s)
- Herbert Galler
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
- Correspondence: ; Tel.: +43-316-385-73619; Fax: +43-316-385-79637
| | - Josefa Luxner
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
| | - Christian Petternel
- Institute of Laboratory Diagnostics and Microbiology, Klinikum-Klagenfurt am Wörthersee, Feschnigstraße 11, 9020 Klagenfurt, Austria;
| | - Franz F. Reinthaler
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
| | - Juliana Habib
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
| | - Doris Haas
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
| | - Clemens Kittinger
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
| | - Peter Pless
- Animal Health Service of the Department of Veterinary Administration, Styrian Government, Friedrichgasse 9, 8010 Graz, Austria;
| | - Gebhard Feierl
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
| | - Gernot Zarfel
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
| |
Collapse
|
8
|
Prevalence of ESβL, AmpC and Colistin-Resistant E. coli in Meat: A Comparison between Pork and Wild Boar. Microorganisms 2021; 9:microorganisms9020214. [PMID: 33494307 PMCID: PMC7912124 DOI: 10.3390/microorganisms9020214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 12/13/2022] Open
Abstract
A global increase in Escherichia coli (E. coli) resistant to cephalosporins (extended-spectrum β-lactamases (ESβLs) and AmpC β-lactamases) has been recorded in the last 20 years. Similarly, several studies have reported the spread of colistin resistance in Enterobacteriaceae isolated from food and the environment. The aim of the present study was to evaluate the prevalence of ESβL, AmpC and colistin-resistant E. coli isolated from pork and wild boar meat products in the Emilia Romagna region (North Italy). The isolates were analysed phenotypically (considering both resistant and intermediate profiles) and genotypically. The prevalence of genotypically confirmed ESβL and AmpC E. coli was higher in pork meat products (ESβL = 11.1% vs. AmpC = 0.3%) compared to wild boar meat (ESβL = 6.5% vs. AmpC = 0%). Intermediate profiles for cefotaxime (CTX) and ceftazidime (CAZ) were genotypically confirmed as ESβL in pork meat isolates but not for wild boar. Four E. coli from wild boar meat were resistant to colistin but did not harbour the mcr-1 gene. E. coli isolated from wild boar meat seem to show aspecific antimicrobial resistance mechanisms for cephalosporins and colistin. The prevalence of resistant isolates found in wild boar is less alarming than in pork from farmed domestic pigs. However, the potential risk to consumers of these meat products will require further investigations.
Collapse
|
9
|
Thomas C, Martin A, Sachsenröder J, Bandick N. Effects of modified atmosphere packaging on an extended-spectrum beta-lactamase-producing Escherichia coli, the microflora, and shelf life of chicken meat. Poult Sci 2020; 99:7004-7014. [PMID: 33248617 PMCID: PMC7704958 DOI: 10.1016/j.psj.2020.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/21/2022] Open
Abstract
The effects of modified atmosphere packaging on an extended-spectrum beta-lactamase-producing Escherichia coli strain and product quality characteristics of skinless chicken meat were determined. The samples were packed separately in air, 100% N2, and prefabricated gas mixtures with 75% O2 + 25% CO2 and 70% CO2 + 15% O2 + 15% N2 and incubated at 3°C for 7 d. To investigate the influence of the headspace ratio, samples were packed in identical trays to 600 g and 120 g. After 0, 2, 5, and 7 d of incubation, the samples were analyzed microbiologically and photometrically, and pH was measured. The results show that the development of the microorganisms depends on the atmosphere, with the 70% CO2 + 15% O2 + 15% N2 atmosphere having the highest development-inhibiting effect. This effect is increased with increased headspace. No significant effects on the pH and color of the samples were observed.
Collapse
Affiliation(s)
- Christian Thomas
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Annett Martin
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Jana Sachsenröder
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Niels Bandick
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany.
| |
Collapse
|
10
|
Iwu CD, du Plessis EM, Korsten L, Nontongana N, Okoh AI. Antibiogram Signatures of Some Enterobacteria Recovered from Irrigation Water and Agricultural Soil in two District Municipalities of South Africa. Microorganisms 2020; 8:microorganisms8081206. [PMID: 32784678 PMCID: PMC7463487 DOI: 10.3390/microorganisms8081206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
This study was undertaken to evaluate the antibiogram fingerprints of some Enterobacteria recovered from irrigation water and agricultural soil in two District Municipalities of the Eastern Cape Province, South Africa using standard culture-based and molecular methods. The prevalent resistance patterns in the isolates follow the order: Salmonella enterica serovar Typhimurium [tetracycline (92.3%), ampicillin (69.2%)]; Enterobacter cloacae [amoxicillin/clavulanic acid (77.6%), ampicillin (84.5%), cefuroxime (81.0%), nitrofurantoin (81%), and tetracycline (80.3%)]; Klebsiella pneumoniae [amoxicillin/clavulanic acid (80.6%), ampicillin (88.9%), and cefuroxime (61.1%)]; and Klebsiella oxytoca [chloramphenicol (52.4%), amoxicillin/clavulanic acid (61.9%), ampicillin (61.9%), and nitrofurantoin (61.9%)]. Antibiotic resistance genes detected include tetC (86%), sulII (86%), and blaAmpC (29%) in Salmonella enterica serovar Typhimurium., tetA (23%), tetB (23%), tetC (12%), sulI (54%), sulII (54%), catII (71%), blaAmpC (86%), blaTEM (43%), and blaPER (17%) in Enterobacter cloacae., tetA (20%), tetC (20%), tetD (10%), sulI (9%), sulII (18%), FOX (11%) and CIT (11%)-type plasmid-mediated AmpC, blaTEM (11%), and blaSHV (5%) in Klebsiella pneumoniae and blaAmpC (18%) in Klebsiella oxytoca. Our findings document the occurrence of some antibiotic-resistant Enterobacteria in irrigation water and agricultural soil in Amathole and Chris Hani District Municipalities, Eastern Cape Province of South Africa, thus serving as a potential threat to food safety.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (N.N.); (A.I.O.)
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
- Correspondence:
| | - Erika M du Plessis
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (E.M.d.P.); (L.K.)
| | - Lise Korsten
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (E.M.d.P.); (L.K.)
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (N.N.); (A.I.O.)
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (N.N.); (A.I.O.)
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
11
|
Sabença C, de Sousa T, Oliveira S, Viala D, Théron L, Chambon C, Hébraud M, Beyrouthy R, Bonnet R, Caniça M, Poeta P, Igrejas G. Next-Generation Sequencing and MALDI Mass Spectrometry in the Study of Multiresistant Processed Meat Vancomycin-Resistant Enterococci (VRE). BIOLOGY 2020; 9:biology9050089. [PMID: 32349310 PMCID: PMC7284646 DOI: 10.3390/biology9050089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022]
Abstract
Vancomycin-resistant enterococci (VRE), due to their intrinsic resistance to various commonly used antibiotics and their malleable genome, make the treatment of infections caused by these bacteria less effective. The aims of this work were to characterize isolates of Enterococcus spp. that originated from processed meat, through phenotypic and genotypic techniques, as well as to detect putative antibiotic resistance biomarkers. The 19 VRE identified had high resistance to teicoplanin (89%), tetracycline (94%), and erythromycin (84%) and a low resistance to kanamycin (11%), gentamicin (11%), and streptomycin (5%). Based on a Next-Generation Sequencing NGS technique, most isolates were vanA-positive. The most prevalent resistance genes detected were erm(B) and aac(6')-Ii, conferring resistance to the classes of macrolides and aminoglycosides, respectively. MALDI-TOF mass spectrometry (MS) analysis detected an exclusive peak of the Enterococcus genus at m/z (mass-to-charge-ratio) 4428 ± 3, and a peak at m/z 6048 ± 1 allowed us to distinguish Enterococcus faecium from the other species. Several statistically significant protein masses associated with resistance were detected, such as peaks at m/z 6358.27 and m/z 13237.3 in ciprofloxacin resistance isolates. These results reinforce the relevance of the combined and complementary NGS and MALDI-TOF MS techniques for bacterial characterization.
Collapse
Affiliation(s)
- Carolina Sabença
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.S.); (T.d.S.); (S.O.)
- Department of Animal and Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2829-516 Lisbon, Caparica, Portugal
| | - Telma de Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.S.); (T.d.S.); (S.O.)
- Department of Animal and Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2829-516 Lisbon, Caparica, Portugal
| | - Soraia Oliveira
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.S.); (T.d.S.); (S.O.)
- Department of Animal and Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2829-516 Lisbon, Caparica, Portugal
| | - Didier Viala
- INRAE, Plateforme d’Exploration du Métabolisme, composante protéomique (PFEMcp), 63122 Saint-Genès Champanelle, France; (D.V.); (C.C.); (M.H.)
| | - Laetitia Théron
- INRAE, UR0370 Qualité des Produits Animaux (QuaPA), 63122 Saint-Genès Champanelle, France;
| | - Christophe Chambon
- INRAE, Plateforme d’Exploration du Métabolisme, composante protéomique (PFEMcp), 63122 Saint-Genès Champanelle, France; (D.V.); (C.C.); (M.H.)
- INRAE, UR0370 Qualité des Produits Animaux (QuaPA), 63122 Saint-Genès Champanelle, France;
| | - Michel Hébraud
- INRAE, Plateforme d’Exploration du Métabolisme, composante protéomique (PFEMcp), 63122 Saint-Genès Champanelle, France; (D.V.); (C.C.); (M.H.)
- INRAE, UMR0454 Microbiologie Environnement Digestif Santé (MEDiS), Université Clermont Auvergne, 63122 Saint-Genès Champanelle, France
| | - Racha Beyrouthy
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire, 63003 Clermont-Ferrand, France; (R.B.); (R.B.)
- UMR1071 INSERM, USC1382 INRAE Microbiologie Intestin Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Richard Bonnet
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire, 63003 Clermont-Ferrand, France; (R.B.); (R.B.)
- UMR1071 INSERM, USC1382 INRAE Microbiologie Intestin Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal;
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Patrícia Poeta
- Department of Animal and Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2829-516 Lisbon, Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.S.); (T.d.S.); (S.O.)
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2829-516 Lisbon, Caparica, Portugal
- Correspondence: ; Tel.: +351-259-350-930
| |
Collapse
|
12
|
Multidrug-Resistant Bacteria from Raw Meat of Buffalo and Chicken, Nepal. Vet Med Int 2019; 2019:7960268. [PMID: 31186828 PMCID: PMC6521380 DOI: 10.1155/2019/7960268] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/10/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance is a major global issue for human and animals. Increased use of antimicrobials in livestock and poultry has become one of the causes of antimicrobial resistance development in microorganisms. The aim of the study was to characterize antimicrobial resistant bacteria from raw buffalo and chicken meat in standard in vitro condition. A total of 140 raw meat samples were collected from different retail shops of Bhaktapur Metropolitan City, Nepal. Among them, 70 were raw buffalo meat and 70 were raw chicken meat samples. Bacterial growth, identification, and antimicrobial susceptibility test were performed according to Clinical & Laboratory Standards Institute (CLSI) guidelines. Out of 140 samples, bacterial growth was seen in 67 raw buffalo meat and 59 raw chicken meat samples, i.e., bacterial growth was observed in 90.0% of the samples. A total of 161 bacterial isolates were detected. Escherichia coli (35.4%) and Klebsiella spp. (30.4%) were found to be the most prevalent bacteria followed by Citrobacter spp. (11.8%), Staphylococcus aureus (9.3%), Salmonella spp. (7.4%), and Proteus spp. (5.5%). Chicken meat isolates showed higher antimicrobial resistance rates in comparison to buffalo meat isolates, particularly against antimicrobials like Amoxicillin, Tetracycline, Cotrimoxazole and Nalidixic acid, p value<0.05 when compared between buffalo and chicken meat. Overall, 32.7% Multidrug-Resistant (MDR) isolates were found, in which 50.0% MDR isolates were found from chicken raw meat and 21.9% were found from buffalo raw meat. MDR isolates of Escherichia coli, Proteus spp. and Staphylococcus aureus constituted 52.5%, 77.7% and 40.0%, respectively, of both buffalo and chicken raw meat. This study indicates antimicrobials resistant bacteria existing at an alarming rate, higher in chicken meat than in buffalo meat.
Collapse
|
13
|
Hayati M, Indrawati A, Mayasari NLPI, Istiyaningsih I, Atikah N. Molecular detection of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates of chicken origin from East Java, Indonesia. Vet World 2019; 12:578-583. [PMID: 31190714 PMCID: PMC6515830 DOI: 10.14202/vetworld.2019.578-583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background and Aim: Klebsiella pneumoniae is one of the respiratory disease agents in human and chicken. This bacterium is treated by antibiotic, but this treatment may trigger antibiotic resistance. Resistance gene in K. pneumoniae may be transferred to other bacteria. One of the known resistance genes is extended-spectrum β-lactamase (ESBL). This research aimed to study K. pneumoniae isolated from chicken farms in East Java, Indonesia, by observing the antibiotic resistance pattern and detect the presence of ESBL coding gene within the isolates. Materials and Methods: A total of 11 K. pneumoniae isolates were collected from 141 chicken cloacal swabs from two regencies in East Java. All isolates were identified using the polymerase chain reaction method. Antimicrobial susceptibility was determined by agar dilution method on identified isolates, which then processed for molecular characterization to detect ESBL coding gene within the K. pneumoniae isolates found. Results: The result of antibiotic sensitivity test in 11 isolates showed highest antibiotic resistance level toward ampicillin, amoxicillin, and oxytetracycline (100%, 100%, and 90.9%) and still sensitive to gentamicin. Resistance against colistin, doxycycline, ciprofloxacin, and enrofloxacin is varied by 90.9%, 54.5%, 27.3%, and 18.2%, respectively. All isolates of K. pneumoniae were classified as multidrug resistance (MDR) bacteria. Resistance gene analysis revealed the isolates harbored as blaSHV (9.1%), blaTEM (100%), and blaCTX-M (90.9%). Conclusion: All the bacterial isolates were classified as MDR bacteria and harbored two of the transmissible ESBL genes. The presence of antibiotic resistance genes in bacteria has the potential to spread its resistance properties.
Collapse
Affiliation(s)
- Meutia Hayati
- Division of Medical Microbiology, Faculty of Veterinary Medicine, Bogor Agricultural University-West Java, Indonesia.,Division of Bacteriology, National Veterinary Drug Assay Laboratory, Gunungsindur Bogor-West Java, Indonesia
| | - Agustin Indrawati
- Division of Medical Microbiology, Faculty of Veterinary Medicine, Bogor Agricultural University-West Java, Indonesia
| | - Ni Luh Putu Ika Mayasari
- Division of Medical Microbiology, Faculty of Veterinary Medicine, Bogor Agricultural University-West Java, Indonesia
| | - Istiyaningsih Istiyaningsih
- Division of Bacteriology, National Veterinary Drug Assay Laboratory, Gunungsindur Bogor-West Java, Indonesia
| | - Neneng Atikah
- Division of Bacteriology, National Veterinary Drug Assay Laboratory, Gunungsindur Bogor-West Java, Indonesia
| |
Collapse
|
14
|
Ye Q, Wu Q, Zhang S, Zhang J, Yang G, Wang J, Xue L, Chen M. Characterization of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae From Retail Food in China. Front Microbiol 2018; 9:1709. [PMID: 30135680 PMCID: PMC6092486 DOI: 10.3389/fmicb.2018.01709] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/09/2018] [Indexed: 01/21/2023] Open
Abstract
In this study, we characterized the β-lactamase genes and phenotypic resistance of cephalosporin-resistant Enterobacteriaceae isolated from retail foods in China. Of 1,024 Enterobacteriaceae isolates recovered from raw meat products, aquatic products, raw vegetables, retail-level ready-to-eat (RTE) foods, frozen foods, and mushrooms from 2011 to 2014, 164 (16.0%) showed cefotaxime (CTX) and/or ceftazidime (CAZ) cephalosporin resistance, and 96 (9.4%) showed the extended-spectrum β-lactamase (ESBL) phenotype. More than 30% isolates were resistant to all antimicrobial agents except carbapenems (MEM 3.1% and IPM 5.2%), cefoxitin (FOX 6.3%), and amoxicillin/clavulanic acid (AMC 26%), and 94.8% of the strains were resistant to up to seven antibiotics. Polymerase chain reaction analysis showed that blaTEM (81.9%) was the most common gene, followed by blaCTX-M (68.1%) and blaSHV (38.9%). Moreover, 16.8% (72/429) of food samples contained ESBL-positive Enterobacteriaceae, with the following patterns: 32.9% (23/70) in frozen foods, 27.2% (5/29) in mushrooms, 17.6% (24/131) in raw meats, 13.3% (4/30) in fresh vegetables, 11.1% (8/72) in RTE foods, and 9.3% (9/97) in aquatic products. In addition, 24 of 217 foods collected in South China (11.1%), 25 of 131 foods collected in North of the Yangtze River region (19.1%), and 23 of 81 foods collected in South of the Yangtze River region (28.4%) were positive for ESBL- Enterobacteriaceae. Conjugation experiments demonstrated that the 22 of 72 isolates were transconjugants that had received the β-lactamase gene and were resistant to β-lactam antibiotics as well as some non-β-lactam antibiotics. These findings demonstrated that retail foods may be reservoirs for the dissemination of β-lactam antibiotics and that resistance genes could be transmitted to humans through the food chain; and the predominant ESBL-producing Enterobacteriaceae in China was isolated from in frozen chicken-meat, followed by frozen pork, cold noodles in sauce, cucumber, raw chicken meat, frozen pasta, brine-soaked chicken and tomato.
Collapse
Affiliation(s)
- Qinghua Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shuhong Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Guangzhu Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Juan Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,College of Food Science, South China Agricultural University, Guangzhou, China
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
15
|
Multiresistant Bacteria Isolated from Activated Sludge in Austria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018. [PMID: 29522474 PMCID: PMC5877024 DOI: 10.3390/ijerph15030479] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wastewater contains different kinds of contaminants, including antibiotics and bacterial isolates with human-generated antibiotic resistances. In industrialized countries most of the wastewater is processed in wastewater treatment plants which do not only include commercial wastewater, but also wastewater from hospitals. Three multiresistant pathogens—extended spectrum β-lactamase (ESBL)-harbouring Enterobacteriaceae (Gram negative bacilli), methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococci (VRE)—were chosen for screening in a state of the art wastewater treatment plant in Austria. Over an investigation period of six months all three multiresistant pathogens could be isolated from activated sludge. ESBL was the most common resistance mechanism, which was found in different species of Enterobacteriaceae, and in one Aeromonas spp. Sequencing of ESBL genes revealed the dominance of genes encoding members of CTX-M β-lactamases family and a gene encoding for PER-1 ESBL was detected for the first time in Austria. MRSA and VRE could be isolated sporadically, including one EMRSA-15 isolate. Whereas ESBL is well documented as a surface water contaminant, reports of MRSA and VRE are rare. The results of this study show that these three multiresistant phenotypes were present in activated sludge, as well as species and genes which were not reported before in the region. The ESBL-harbouring Gram negative bacilli were most common.
Collapse
|
16
|
Zarfel G, Lipp M, Gürtl E, Folli B, Baumert R, Kittinger C. Troubled water under the bridge: Screening of River Mur water reveals dominance of CTX-M harboring Escherichia coli and for the first time an environmental VIM-1 producer in Austria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:399-405. [PMID: 28351808 DOI: 10.1016/j.scitotenv.2017.03.138] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
Antibiotic resistant bacteria (ARB) in the aquatic environment are reported from all over the world and their presence in the environment has become quite common. The current most prominent example is the presence of beta-lactamases harboring Enterobacteriaceae. The aim of this study was to investigate the presence and diversity (on the genetic and phenotypic levels) of extended spectrum beta-lactamases (ESBL) and carbapenemases harboring Enterobacteriaceae from the River Mur in the center of Graz, Austria's second largest city. Thus over a period of four months water samples were taken, filtrated and screened for these bacteria. All samples revealed ESBL harboring Enterobacteriaceae, of which all with only one exception were Escherichia coli. Dominant ESBL gene family was CTX-M, represented by subgroups CTX-M-1 group, CTX-M-2 group and CTX-M-9 group. Surprisingly co-resistances to non-beta-lactam antibiotics were low, only resistance to trimethoprim was detected in 50% of all (70) isolates. One Klebsiella oxytoca with GES-1 was isolated. To date, GES ESBL has never been reported from Austria before and only rarely from other European countries. Screening for carbapenemase harboring Enterobacteriaceae revealed one Enterobacter cloacae with the gene for VIM-1. Members sharing the same multi-locus-sequence-type (MLST) as well as members of the same rep PCR clusters occurred at different sampling time points. ESBL-harboring Enterobacteriaceae are common in Austrian river water, is dominated by Escherichia coli and CTX-M enzymes. Furthermore, some of the isolates could be linked to different origins.
Collapse
Affiliation(s)
- Gernot Zarfel
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Michaela Lipp
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Elena Gürtl
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Bettina Folli
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Rita Baumert
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Clemens Kittinger
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria.
| |
Collapse
|
17
|
Antimicrobial susceptibility and genetic characterization of Escherichia coli recovered from frozen game meat. Food Microbiol 2017; 63:164-169. [DOI: 10.1016/j.fm.2016.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/04/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022]
|
18
|
Ou Q, Peng Y, Lin D, Bai C, Zhang T, Lin J, Ye X, Yao Z. A Meta-Analysis of the Global Prevalence Rates of Staphylococcus aureus and Methicillin-Resistant S. aureus Contamination of Different Raw Meat Products. J Food Prot 2017; 80:763-774. [PMID: 28358261 DOI: 10.4315/0362-028x.jfp-16-355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/12/2016] [Indexed: 01/29/2023]
Abstract
Previous research has indicated that raw meats are frequently contaminated with Staphylococcus aureus, but data regarding the pooled prevalence rates of S. aureus and methicillin-resistant S. aureus (MRSA) contamination in different types of raw meat products (beef, chicken, and pork) and across different periods, regions, and purchase locations remain inconsistent. We systematically searched the PubMed, EMBASE, Ovid, Web of Science, and HighWire databases to identify studies published up to June 2016. The STROBE guidelines were used to assess the quality of the 39 studies included in this meta-analysis. We observed no significant differences in the pooled prevalence rates of S. aureus and MRSA contamination identified in various raw meat products, with overall pooled prevalence rates of 29.2% (95% confidence interval [CI], 22.8 to 35.9%) and 3.2% (95% CI, 1.8 to 4.9%) identified for the two contaminants, respectively. In the subgroup analyses, the prevalence of S. aureus contamination in chicken products was highest in Asian studies and significantly decreased over time worldwide. In European studies, the prevalence rates of S. aureus contamination in chicken and pork products were lower than those reported on other continents. The pooled prevalence rates of S. aureus contamination in chicken and pork products and MRSA contamination in beef and pork products were significantly higher in samples collected from retail sources than in samples collected from slaughterhouses and processing plants. These results highlight the need for good hygiene during transportation to and manipulation at retail outlets to reduce the risk of transmission of S. aureus and MRSA from meat products to humans.
Collapse
Affiliation(s)
- Qianting Ou
- Department of Epidemiology and Health Statistics, Public Health School, Guangdong Pharmaceutical University, Guangzhou 510310, People's Republic of China; and
| | - Yang Peng
- Centre for Chronic Diseases, University of Queensland, Brisbane, Queensland, Australia
| | - Dongxin Lin
- Department of Epidemiology and Health Statistics, Public Health School, Guangdong Pharmaceutical University, Guangzhou 510310, People's Republic of China; and
| | - Chan Bai
- Department of Epidemiology and Health Statistics, Public Health School, Guangdong Pharmaceutical University, Guangzhou 510310, People's Republic of China; and
| | - Ting Zhang
- Department of Epidemiology and Health Statistics, Public Health School, Guangdong Pharmaceutical University, Guangzhou 510310, People's Republic of China; and
| | - Jialing Lin
- Department of Epidemiology and Health Statistics, Public Health School, Guangdong Pharmaceutical University, Guangzhou 510310, People's Republic of China; and
| | - Xiaohua Ye
- Department of Epidemiology and Health Statistics, Public Health School, Guangdong Pharmaceutical University, Guangzhou 510310, People's Republic of China; and
| | - Zhenjiang Yao
- Department of Epidemiology and Health Statistics, Public Health School, Guangdong Pharmaceutical University, Guangzhou 510310, People's Republic of China; and
| |
Collapse
|
19
|
Yamamoto S, Asakura H, Igimi S. Recent Trends for the Prevalence and Transmission Risk of Extended Spectrum β-Lactamases (ESBL) Producing Bacteria in Foods. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2017; 58:1-11. [PMID: 28260727 DOI: 10.3358/shokueishi.58.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Osman K, Badr J, Al-Maary KS, Moussa IMI, Hessain AM, Girah ZMSA, Abo-Shama UH, Orabi A, Saad A. Prevalence of the Antibiotic Resistance Genes in Coagulase-Positive-and Negative- Staphylococcus in Chicken Meat Retailed to Consumers. Front Microbiol 2016; 7:1846. [PMID: 27920760 PMCID: PMC5118462 DOI: 10.3389/fmicb.2016.01846] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/03/2016] [Indexed: 11/29/2022] Open
Abstract
The use of antibiotics in farm management (growing crops and raising animals) has become a major area of concern. Its implications is the consequent emergence of antibiotic resistant bacteria (ARB) and accordingly their access into the human food chain with passage of antibiotic resistance genes (ARG) to the normal human intestinal microbiota and hence to other pathogenic bacteria causative human disease. Therefore, we pursued in this study to unravel the frequency and the quinolone resistance determining region, mecA and cfr genes of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-resistant coagulase-negative staphylococci (MRCNS) and methicillin-susceptible coagulase-negative staphylococci (MSCNS) isolated from the retail trade of ready-to-eat raw chicken meat samples collected during 1 year and sold across the Great Cairo area. The 50 Staphylococcus isolated from retail raw chicken meat were analyzed for their antibiotic resistance phenotypic profile on 12 antibiotics (penicillin, oxacillin, methicillin, ampicillin-sulbactam, erythromycin, tetracycline, clindamycin, gentamicin, ciprofloxacin, chloramphenicol, sulfamethoxazole-trimethoprim, and vancomycin) and their endorsement of the quinolone resistance determining region, mecA and cfr genes. The isolation results revealed 50 isolates, CPS (14) and CNS (36), representing ten species (S. aureus, S. hyicus, S. epidermedius, S. lugdunensis, S. haemolyticus, S. hominus, S. schleiferi, S. cohnii, S. intermedius, and S. lentus). Twenty seven isolates were methicillin-resistant. Out of the characterized 50 staphylococcal isolates, three were MRSA but only 2/3 carried the mecA gene. The ARG that bestows resistance to quinolones, β-lactams, macrolides, lincosamides, and streptogramin B [MLS(B)] in MRSA and MR-CNS were perceived. According to the available literature, the present investigation was a unique endeavor into the identification of the quinolone-resistance-determining-regions, the identification of MRSA and MR-CNS from retail chicken meat in Egypt. In addition, these isolates might indicate the promulgation of methicillin, oxacillin and vancomycin resistance in the community and imply food safety hazards.
Collapse
Affiliation(s)
- Kamelia Osman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University Giza, Egypt
| | - Jihan Badr
- Department of Poultry Diseases, Animal Health Research Institute Giza, Egypt
| | - Khalid S Al-Maary
- Department of Botany and Microbiology, College of Science, King Saud University Riyadh, Saudi Arabia
| | - Ihab M I Moussa
- Department of Botany and Microbiology, College of Science, King Saud University Riyadh, Saudi Arabia
| | - Ashgan M Hessain
- Department of Health Science, College of Applied Studies and Community Service, King Saud University Riyadh, Saudi Arabia
| | | | - Usama H Abo-Shama
- Department of Microbiology, Faculty of Veterinary Medicine, Sohag University Sohag, Egypt
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University Giza, Egypt
| | - Aalaa Saad
- Department of Poultry Diseases, Animal Health Research Institute Giza, Egypt
| |
Collapse
|
21
|
Li L, Ye L, Yu L, Zhou C, Meng H. Characterization of Extended Spectrum Β-Lactamase ProducingEnterobacteriaand Methicillin-ResistantStaphylococcus aureusIsolated from Raw Pork and Cooked Pork Products in South China. J Food Sci 2016; 81:M1773-7. [DOI: 10.1111/1750-3841.13346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/13/2016] [Accepted: 04/27/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Lili Li
- College of Light Industry and Food Sciences; South China Univ. of Technology; Guangzhou 510640 Guangdong People's Republic of China
| | - Lei Ye
- China and Research Inst. of Food Safety and Nutrition; Jinan Univ; Guangzhou 510632 Guangdong People's Republic of China
| | - Li Yu
- College of Light Industry and Food Sciences; South China Univ. of Technology; Guangzhou 510640 Guangdong People's Republic of China
| | - Chenqing Zhou
- College of Light Industry and Food Sciences; South China Univ. of Technology; Guangzhou 510640 Guangdong People's Republic of China
| | - Hecheng Meng
- College of Light Industry and Food Sciences; South China Univ. of Technology; Guangzhou 510640 Guangdong People's Republic of China
| |
Collapse
|
22
|
Tekiner İH, Özpınar H. Occurrence and characteristics of extended spectrum beta-lactamases-producing Enterobacteriaceae from foods of animal origin. Braz J Microbiol 2016; 47:444-51. [PMID: 26991276 PMCID: PMC4874675 DOI: 10.1016/j.bjm.2015.11.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023] Open
Abstract
Presence of extended spectrum beta-lactamases (ESBL) in bacteria is a growing health concern of global significance. The local, regional, national, and international epidemiological studies for extended spectrum beta-lactamases-producing Enterobacteriaceae and their encoding genes in foods are still incomplete. The objective of this study was to determine the occurrence of extended spectrum beta-lactamases-producing Enterobacteriaceae and the characteristics of their encoding genes from a total of 250 samples of various foods of animal-origin (100 raw chicken meat, 100 raw cow milk, and 50 raw cow milk cheese) sold in Turkey. Overall, 55 isolates were positive as extended spectrum beta-lactamases-producing Enterobacteriaceae. The most prevalent extended spectrum beta-lactamases-producing strain were identified as Escherichia coli (80%), followed by Enterobacter cloacae (9.1%), Citrobacter braakii (5.5%), Klebsiella pneumoniae (3.6%), and Citrobacter werkmanii (1.8%) by Vitek® MS. The simultaneous production of extended spectrum beta-lactamases and AmpC was detected in five isolates (9.1%) in E. coli (80%) and E. cloacae (20%). The frequency rates of blaTEM, blaCTX-M, and blaSHV were 96.4%, 53.7%, and 34.5%, respectively. The co-existence of bla-genes was observed in 82% of extended spectrum beta-lactamases producers with a distribution of blaTEM & blaCTX-M (52.7%), blaTEM & blaSHV (20%), blaTEM & blaCTX-M & blaSHV (12.7%), and blaSHV & blaCTX-M (1.8%). The most prevalent variant of blaCTX-M clusters was defined as blaCTX-M-1 (97.2%), followed by blaCTX-M-8 (2.8%). In summary, the analysed foods were found to be posing a health risk for Turkish consumers due to contamination by Enterobacteriaceae with a diversity of extended spectrum beta-lactamases encoding genes.
Collapse
Affiliation(s)
- İsmail Hakkı Tekiner
- Department of Food Engineering, Istanbul Aydın University, Florya Campus, Sefaköy, Küçükçekmece, Istanbul, Turkey.
| | - Haydar Özpınar
- Department of Food Engineering, Istanbul Aydın University, Florya Campus, Sefaköy, Küçükçekmece, Istanbul, Turkey
| |
Collapse
|
23
|
Bortolaia V, Espinosa-Gongora C, Guardabassi L. Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat. Clin Microbiol Infect 2015; 22:130-140. [PMID: 26706616 DOI: 10.1016/j.cmi.2015.12.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 10/24/2022]
Abstract
Enterococci and staphylococci are frequent contaminants on poultry meat. Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are also well-known aetiological agents of a wide variety of infections resulting in major healthcare costs. This review provides an overview of the human health risks associated with the occurrence of these opportunistic human pathogens on poultry meat with particular focus on the risk of food-borne transmission of antimicrobial resistance. In the absence of conclusive evidence of transmission, this risk was inferred using data from scientific articles and national reports on prevalence, bacterial load, antimicrobial resistance and clonal distribution of these three species on poultry meat. The risks associated with ingestion of antimicrobial-resistant enterococci of poultry origin comprise horizontal transfer of resistance genes and transmission of multidrug-resistant E. faecalis lineages such as sequence type ST16. Enterococcus faecium lineages occurring in poultry meat products are distantly related to those causing hospital-acquired infections but may act as donors of quinupristin/dalfopristin resistance and other resistance determinants of clinical interest to the human gut microbiota. Ingestion of poultry meat contaminated with S. aureus may lead to food poisoning. However, antimicrobial resistance in the toxin-producing strains does not have clinical implications because food poisoning is not managed by antimicrobial therapy. Recently methicillin-resistant S. aureus of livestock origin has been reported on poultry meat. In theory handling or ingestion of contaminated meat is a potential risk factor for colonization by methicillin-resistant S. aureus. However, this risk is presently regarded as negligible by public health authorities.
Collapse
Affiliation(s)
- V Bortolaia
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - C Espinosa-Gongora
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - L Guardabassi
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark; Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St Kitts, West Indies.
| |
Collapse
|
24
|
Nagy B, Szmolka A, Smole Možina S, Kovač J, Strauss A, Schlager S, Beutlich J, Appel B, Lušicky M, Aprikian P, Pászti J, Tóth I, Kugler R, Wagner M. Virulence and antimicrobial resistance determinants of verotoxigenic Escherichia coli (VTEC) and of multidrug-resistant E. coli from foods of animal origin illegally imported to the EU by flight passengers. Int J Food Microbiol 2015; 209:52-9. [PMID: 26148965 DOI: 10.1016/j.ijfoodmicro.2015.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 12/17/2022]
Abstract
The aim of this study was to reveal phenotype/genotype characteristics of verotoxigenic Escherichia coli (VTEC) and multidrug resistant E. coli in food products of animal origin confiscated as illegal import at Austrian, German and Slovenian airports. VTEC isolates were obtained by using ISO guidelines 16654:2001 for O157 VTEC or ISO/ TS13136:2012 for non-O157 VTEC, with additional use of the RIDASCREEN® Verotoxin immunoassay. The testing of 1526 samples resulted in 15 VTEC isolates (1.0%) primarily isolated from hard cheese from Turkey and Balkan countries. Genotyping for virulence by using a miniaturized microarray identified a wide range of virulence determinants. One VTEC isolate (O26:H46) possessing intimin (eae) and all other essential genes of Locus of Enterocyte Effacement (LEE) was designated as enterohemorrhagic E. coli (EHEC). None of the other VTEC strains belonged to serogroups O157, O145, O111, O104 or O103. VTEC strains harbored either stx(1) (variants stx1(a) or stx(1c)) or st(x2) (variants stx(2a), stx(2b), stx(2a/d) or stx(2c/d)) genes. Pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) demonstrated high genetic diversity and identified three new sequence types (STs): 4505, 4506 and 4507. Food samples collected from the Vienna airport were also tested for E. coli quantities using the ISO 16649:2001, and for detection of multidrug resistant phenotypes and genotypes. The resulting 113 commensal E. coli isolates were first tested in a pre-screening against 6 selected antimicrobials to demonstrate multidrug resistance. The resulting 14 multidrug resistant (MDR) E. coli isolates, representing 0.9% of the samples, were subjected to further resistance phenotyping and to microarray analyses targeting genetic markers of antimicrobial resistance and virulence. Genotyping revealed various combinations of resistance determinants as well as the presence of class 1, class 2 integrons. The isolates harbored 6 to 11 antibiotic resistance genes as well as 1 to 14 virulence genes. In this panel of 14 MDR E. coli two strains proved to carry CTX-M type ESBLs, and one single isolate was identified as enteropathogenic E. coli (EPEC). In general, isolates carrying a high number of resistance determinants had lower number of virulence genes and vice versa. In conclusion, this first pilot study on the prevalence of VTEC and of MDR/ESBL E. coli in illegally imported food products of animal origin suggests that these strains could represent reservoirs for dissemination of potentially new types of pathogenic and MDR E. coli in Europe.
Collapse
Affiliation(s)
- B Nagy
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | - A Szmolka
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - S Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - J Kovač
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - A Strauss
- University of Veterinary Medicine Vienna, Institute for Milk Hygiene, Milk Technology and Food Science, Vienna, Austria
| | - S Schlager
- AGES, Institute for Medical Microbiology and Hygiene, Graz, Austria
| | - J Beutlich
- Federal Institute for Risk Assessment, Berlin, Germany
| | - B Appel
- Federal Institute for Risk Assessment, Berlin, Germany
| | - M Lušicky
- National Laboratory of Health, Environment and Food, Center for Microbiologic Analysis of Food, Water and other Environmental Samples Maribor, Slovenia
| | | | - J Pászti
- National Center for Epidemiology, Budapest, Hungary
| | - I Tóth
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - R Kugler
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - M Wagner
- University of Veterinary Medicine Vienna, Institute for Milk Hygiene, Milk Technology and Food Science, Vienna, Austria
| |
Collapse
|