1
|
Gędas A, Schmidt H, Weiss A. Identification and evaluation of Escherichia coli strain ATCC 8739 as a surrogate for thermal inactivation of enterohemorrhagic Escherichia coli in fruit nectars: Impact of applied techniques on the decimal reduction time. Food Microbiol 2024; 122:104544. [PMID: 38839230 DOI: 10.1016/j.fm.2024.104544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 06/07/2024]
Abstract
The objective of this study was to identify a suitable surrogate for E. coli O157:H7 strain 19685/91 and O113:H21 strain TS18/08, by assessing their thermal resistance at temperatures of 60 °C, 65 °C, and 72 °C in strawberry nectar. The influence of the matrix and the research methodology on the decimal reduction time (D-value) was investigated. Thermal kinetics and safety assessment demonstrated that E. coli ATCC 8739 is a suitable surrogate. The study demonstrated that the presence of fruit particles in the nectar increased thermal resistance of the tested strains. Variations in D-values were observed depending on the research method employed, with D-values in glass capillaries were up to 6.6 times lower compared to larger sample volumes. Encapsulation of E. coli ATCC 8739 exhibited high efficiency of 90.25 ± 0.26% and maintained stable viable counts after 26 days of storage in strawberry nectar at 4 °C. There were no significant differences in thermal resistance between surrogates directly inoculated into strawberry nectar and those encapsulated in alginate beads. Additionally, the encapsulated strains did not migrate outside the beads. Therefore, encapsulated E. coli ATCC 8739 in alginate beads can be effectively utilized in industrial settings to validate thermal treatments as a reliable and safe method.
Collapse
Affiliation(s)
- Astrid Gędas
- Food Microbiology, Hamburg School of Food Science, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany; Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Agnes Weiss
- Food Microbiology, Hamburg School of Food Science, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany.
| |
Collapse
|
2
|
Thi Mac TH, Phuong Nguyen TD, Dang MN, Quyen Ta TT, Spagnoli P, Uyttendaele M, Jacxsens L. Towards a risk-based food safety management system in the fresh produce supply chain in Da Nang, Viet Nam. Heliyon 2024; 10:e32701. [PMID: 38975236 PMCID: PMC11225736 DOI: 10.1016/j.heliyon.2024.e32701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Food safety has emerged as a paramount concern for both Vietnamese consumers and the government. However, limited data are available on food safety management systems in Viet Nam. This study identified significant gaps in good agricultural and hygienic practices along the fresh produce chain (farmers and traditional wholesalers/market sellers) in the region of Da Nang, Viet Nam. This was achieved through a survey on good agricultural and hygienic practices for farmers (n = 100) and sellers (n = 100), which researchers further supplemented by microbiological analysis for E. coli, Salmonella spp., and Listeria monocytogenes on leafy greens, water in contact with produce and contact surfaces (hands). The results indicated that 86.0 % of farmers and 54.0 % of sellers received food safety training in the last 3 years; and women dominated both vegetable cultivation but also trading. Farm-level deficiencies included inadequate handwashing practices, lack of documentation for manure application schedules, improper washing and drying of harvest tools, failure to keep containers elevated off the ground, improper storage of vegetables, and inadequate covering of containers, with respectively 34.0 %, 30.3 %, 12.1 %, 41.7 % and 7.9 % of farmers executing the practice as prescribed by the WHO/FAO '5 keys of growing safer fruits and vegetables'. As for sellers, the most dominant gaps (<50.0 % compliance) were the way of handwashing and the practice of keeping containers elevated off the ground before, during, and after harvesting. The microbiological analysis confirmed that, in a total of 36 fresh produce samples including mustard greens, cucumber, lettuce, and crown daisy, the number of samples positive for E. coli, Salmonella spp., and L. monocytogenes were 12, 2, and 10 respectively. Samples of hands and the irrigation water showed high contamination with E. coli. Based on identified gaps, risk communication tools were developed and distributed amongst farmers, sellers, and Da Nang food safety management authority (governmental organisation performing inspections in the traditional food markets). As intervention, two farmers and two sellers were trained in safe agricultural practices for the cultivation of fresh vegetables (managerial intervention) and instructed to use tap water as irrigation water instead of uncontrolled surface water (technological intervention). A post-assessment was conducted, including redoing the survey on good practices and microbiological analysis. The outcome of these interventions showed positive results in terms of good agricultural and hygienic practices resulting in improved hygiene levels and safety of the fresh produce. The findings from this research have the potential to provide a model for the development of a science-based risk management strategy in alternative food chains or geographic areas in emerging countries.
Collapse
Affiliation(s)
- Thanh Ha Thi Mac
- Department of Food Technology, Faculty of Chemical Engineering, University of Science and Technology, The University of Da Nang, Da Nang City, 550000, Viet Nam
| | - Thi Dong Phuong Nguyen
- Department of Food Technology, Faculty of Chemical Engineering, University of Science and Technology, The University of Da Nang, Da Nang City, 550000, Viet Nam
| | - Minh Nhat Dang
- Department of Food Technology, Faculty of Chemical Engineering, University of Science and Technology, The University of Da Nang, Da Nang City, 550000, Viet Nam
| | - Thi To Quyen Ta
- Department of Food Technology, Faculty of Chemical Engineering, University of Science and Technology, The University of Da Nang, Da Nang City, 550000, Viet Nam
| | - Pauline Spagnoli
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Mieke Uyttendaele
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Liesbeth Jacxsens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
3
|
Mafizur RM, Sangjin L, Chul PY. Prevalence of Salmonella spp. and Escherichia coli in the feces of free-roaming wildlife throughout South Korea. PLoS One 2024; 19:e0281006. [PMID: 38358989 PMCID: PMC10868816 DOI: 10.1371/journal.pone.0281006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/08/2023] [Indexed: 02/17/2024] Open
Abstract
Wildlife can carry pathogenic organisms, including viruses, bacteria, parasites, and fungi, which can spread to humans and cause mild to serious illnesses and even death. Spreading through animal feces, these pathogens significantly contributes to the global burden of human diseases. Therefore, the present study investigated the prevalence of zoonotic bacterial pathogens, such as Salmonella spp., Escherichia coli, and Shiga toxin-producing E. coli (STEC), in animal feces. Between September 2015 and August 2017, 699 wildlife fecal samples were collected from various agricultural production regions and mountainous areas in South Korea. Fecal samples were collected from wild mammals (85.26%, 596/699) and birds (14.73%, 103/699). Salmonella spp. and E. coli were present in 3% (21/699) and 45.63% (319/699) of the samples, respectively. Moreover, virulence genes stx1 and both stx1 and stx2 were detected in 13.30% (93/699) and 0.72% (5/699) of the samples, respectively. The 21 Salmonella spp. were detected in badgers (n = 5), leopard cats (n = 7), wild boars (n = 2), and magpies (n = 7); STEC was detected in roe deer, water deer, mice, and wild boars. Through phylogenetic and gene-network analyses, the Salmonella spp. isolates (n = 21 laboratory isolates, at least one isolate from each Salmonella-positive animal fecal sample, and n = 6 widely prevalent reference Salmonella serovars) were grouped into two major lineages: S. enterica subsp. enterica and S. enterica subsp. diarizonae. Similarly, 93 E. coli isolates belonged to stx1, including three major lineages (groups 1-3), and stx1 and stx2 detected groups. To the best of our knowledge, this is the first report of a wild leopard cat serving as a reservoir for Salmonella spp. in South Korea. The research findings can help manage the potential risk of wildlife contamination and improve precautionary measures to protect public health.
Collapse
Affiliation(s)
- Rahman M. Mafizur
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh
| | - Lim Sangjin
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Park Y. Chul
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
4
|
Koutsoumanis K, Ordóñez AA, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Banach J, Ottoson J, Zhou B, da Silva Felício MT, Jacxsens L, Martins JL, Messens W, Allende A. Microbiological hazards associated with the use of water in the post-harvest handling and processing operations of fresh and frozen fruits, vegetables and herbs (ffFVHs). Part 1 (outbreak data analysis, literature review and stakeholder questionnaire). EFSA J 2023; 21:e08332. [PMID: 37928944 PMCID: PMC10623241 DOI: 10.2903/j.efsa.2023.8332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
The contamination of water used in post-harvest handling and processing operations of fresh and frozen fruit, vegetables and herbs (ffFVHs) is a global concern. The most relevant microbial hazards associated with this water are: Listeria monocytogenes, Salmonella spp., human pathogenic Escherichia coli and enteric viruses, which have been linked to multiple outbreaks associated with ffFVHs in the European Union (EU). Contamination (i.e. the accumulation of microbiological hazards) of the process water during post-harvest handling and processing operations is affected by several factors including: the type and contamination of the FVHs being processed, duration of the operation and transfer of microorganisms from the product to the water and vice versa, etc. For food business operators (FBOp), it is important to maintain the microbiological quality of the process water to assure the safety of ffFVHs. Good manufacturing practices (GMP) and good hygienic practices (GHP) related to a water management plan and the implementation of a water management system are critical to maintain the microbiological quality of the process water. Identified hygienic practices include technical maintenance of infrastructure, training of staff and cooling of post-harvest process water. Intervention strategies (e.g. use of water disinfection treatments and water replenishment) have been suggested to maintain the microbiological quality of process water. Chlorine-based disinfectants and peroxyacetic acid have been reported as common water disinfection treatments. However, given current practices in the EU, evidence of their efficacy under industrial conditions is only available for chlorine-based disinfectants. The use of water disinfection treatments must be undertaken following an appropriate water management strategy including validation, operational monitoring and verification. During operational monitoring, real-time information on process parameters related to the process and product, as well as the water and water disinfection treatment(s) are necessary. More specific guidance for FBOp on the validation, operational monitoring and verification is needed.
Collapse
|
5
|
Janecko N, Zamudio R, Palau R, Bloomfield SJ, Mather AE. Repeated cross-sectional study identifies differing risk factors associated with microbial contamination in common food products in the United Kingdom. Food Microbiol 2023; 111:104196. [PMID: 36681400 DOI: 10.1016/j.fm.2022.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/01/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022]
Abstract
All foods carry microbes, many of which are harmless, but foods can also carry pathogens and/or microbial indicators of contamination. Limited information exists on the co-occurrence of microbes of food safety concern and the factors associated with their presence. Here, a population-based repeated cross-sectional design was used to determine the prevalence and co-occurrence of Escherichia coli, Klebsiella spp., Salmonella spp. and Vibrio spp. in key food commodities - chicken, pork, prawns, salmon and leafy greens. Prevalence in 1,369 food samples for these four target bacterial genera/species varied, while 25.6% of all samples had at least two of the target bacteria and eight different combinations of bacteria were observed as co-occurrence profiles in raw prawns. Imported frozen chicken was 6.4 times more likely to contain Salmonella than domestic chicken, and imported salmon was 5.5 times more likely to be contaminated with E. coli. Seasonality was significantly associated with E. coli and Klebsiella spp. contamination in leafy greens, with higher detection in summer and autumn. Moreover, the odds of Klebsiella spp. contamination were higher in summer in chicken and pork samples. These results provide insight on the bacterial species present on foods at retail, and identify factors associated with the presence of individual bacteria, which are highly relevant for food safety risk assessments and the design of surveillance programmes.
Collapse
Affiliation(s)
- Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Roxana Zamudio
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Raphaëlle Palau
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Samuel J Bloomfield
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom; University of East Anglia, Norwich NR4 7TJ, United Kingdom.
| |
Collapse
|
6
|
Nutrient Density and Microbial Safety of Open-Air-Dried Beef Meat and Its Biochemical and Organ Histopathology Effects in Albino Rats: A Promising Ingredient for Complementary Food Formulation. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:2202312. [PMID: 36864927 PMCID: PMC9974284 DOI: 10.1155/2023/2202312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/16/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Introduction Dried beef meat is a major source of essential fatty acids, minerals, and vitamins that are digestible and absorbable, thus could be a potential source of nutrients in complementary food formulations. Composition, microbial safety, and organ function tests were analyzed, and histopathological effect of air-dried beef meat powder was determined in rat model. Methods Three groups of diets were given for the three groups of animals: (1) standard rat diet, (2) meat powder+standard rat diet (1 : 1 formulation), and (3) dried meat powder. A total of 36 Wistar albino rats (18 males and 18 females) of 4-8 weeks old were used and randomly assigned to the experiments. After acclimatization for one week, the experimental rats were followed for 30 days. Microbial analysis, nutrient composition, organ histopathology (liver and kidney), and organ function tests were conducted from serum samples taken from the animals. Results Protein, fat, fiber, ash, utilizable carbohydrate, and energy contents of meat powder on a dry weight basis were 76.12 ± 3.68, 8.19 ± 2.01, 0.56 ± 0.38, 6.45 ± 1.21, 2.79 ± 0.38 g/100 g, and 389.30 ± 3.25 kcal/100 g, respectively. Meat powder could be also a potential source of minerals such as potassium (766.16 ± 77.26 mg/100 g), phosphorus (150.35 ± 16.26 mg/100 g), calcium (18.15 ± 7.80 mg/100 g), zinc (3.82 ± 0.10 mg/100 g), and sodium (123.76 ± 32.71 mg/100 g). Food intakes were lower in MP group compared to the others. According to organ histopathology results, animals fed with the diet have shown normal values, except rise in alkaline phosphatase (ALP) and creatine kinase (CK) in groups fed with meat powder. The results of organ function tests were all within the acceptable ranges and comparable with their counterpart control groups. However, some of the microbial contents of the meat powder were not within the recommended level. Conclusion Dried meat powder has a higher amount of nutrients, which would be a potential recipe in complementary food preparation that can support to reduce child malnutrition. However, further studies need to be conducted on the sensory acceptability of formulated complementary foods containing dried meat powder; also, clinical trials are aimed at observing the effect of dried meat powder on child linear growth.
Collapse
|
7
|
Piveteau P, Druilhe C, Aissani L. What on earth? The impact of digestates and composts from farm effluent management on fluxes of foodborne pathogens in agricultural lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156693. [PMID: 35700775 DOI: 10.1016/j.scitotenv.2022.156693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The recycling of biomass is the cornerstone of sustainable development in the bioeconomy. In this context, digestates and composts from processed agricultural residues and biomasses are returned to the soil. Whether or not the presence of pathogenic microorganisms in these processed biomasses is a threat to the sustainability of the current on-farm practices is still the subject of debate. In this review, we describe the microbial pathogens that may be present in digestates and composts. We then provide an overview of the current European regulation designed to mitigate health hazards linked to the use of organic fertilisers and soil improvers produced from farm biomasses and residues. Finally, we discuss the many factors that underlie the fate of microbial pathogens in the field. We argue that incorporating land characteristics in the management of safety issues connected with the spreading of organic fertilisers and soil improvers can improve the sustainability of biomass recycling.
Collapse
|
8
|
Toro M, Weller D, Ramos R, Diaz L, Alvarez FP, Reyes-Jara A, Moreno-Switt AI, Meng J, Adell AD. Environmental and anthropogenic factors associated with the likelihood of detecting Salmonella in agricultural watersheds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119298. [PMID: 35430308 DOI: 10.1016/j.envpol.2022.119298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 05/18/2023]
Abstract
Surface water is one of the primary sources of irrigation water for produce production; therefore, its contamination by foodborne pathogens, such as Salmonella, may substantially impact public health. In this study, we determined the presence of Salmonella in surface water and characterized the relationship between Salmonella detection and environmental and anthropogenic factors. From April 2019 to February 2020, 120 samples from 30 sites were collected monthly in four watersheds located in two different central Chile agricultural regions (N = 1080). Water samples from rivers, canals, streams, and ponds linked to each watershed were obtained. Surface water (10 L) was filtrated in situ, and samples were analyzed for the presence of Salmonella. Salmonella was detected every month in all watersheds, with a mean detection percentage of 28% (0%-90%) across sampling sites, regardless of the season. Overall, similar detection percentages were observed for both regions: 29.1% for Metropolitan and 27.0% for Maule. Salmonella was most often detected in summer (39.8% of all summer samples tested positive) and least often in winter (14.4% of winter samples). Random forest analysis showed that season, water source, and month, followed by latitude and river, were the most influential factors associated with Salmonella detection. The influences of water pH and temperature (categorized as environmental factors) and factors associated with human activity (categorized as anthropogenic factors) registered at the sampling site were weakly or not associated with Salmonella detection. In conclusion, Salmonella was detected in surface water potentially used for irrigation, and its presence was linked to season and water source factors. Interventions are necessary to prevent contamination of produce, such as water treatment before irrigation.
Collapse
Affiliation(s)
- Magaly Toro
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de Los Alimentos, Universidad de Chile, Chile
| | - Daniel Weller
- Department of Environmental and Forest Biology, State University of New York College of Environmental Sciences and Forestry, Syracuse, NY, USA
| | - Romina Ramos
- Escuela de Medicina Veterinaria, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Leonela Diaz
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de Los Alimentos, Universidad de Chile, Chile
| | - Francisca P Alvarez
- Escuela de Medicina Veterinaria, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Angelica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de Los Alimentos, Universidad de Chile, Chile
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Jianghong Meng
- Joint Institute for Nutrition and Food Safety/Center for Food Safety & Security Systems, And Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Aiko D Adell
- Escuela de Medicina Veterinaria, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile.
| |
Collapse
|
9
|
Alegbeleye O, Sant’Ana AS. Growth potential of
Salmonella enterica
in thirty‐four different RTE vegetable salads during shelf‐life. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Rua Monteiro Lobato, 80. CEP: 13083‐862 Campinas Brazil
| | - Anderson S. Sant’Ana
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Rua Monteiro Lobato, 80. CEP: 13083‐862 Campinas Brazil
| |
Collapse
|
10
|
Freche E, Gieng J, Pignotti G, Ibrahim SA, Feng X. Applications of Lemon or Cinnamon Essential Oils in Strawberry Fruit Preservation: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elise Freche
- Department of Nutrition Food Science and Packaging San Jose State University San Jose CA 95192 USA
| | - John Gieng
- Department of Nutrition Food Science and Packaging San Jose State University San Jose CA 95192 USA
| | - Giselle Pignotti
- Department of Nutrition Food Science and Packaging San Jose State University San Jose CA 95192 USA
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory Food and Nutritional Sciences Program North Carolina Agricultural and Technical State University Greensboro NC 27411 USA
| | - Xi Feng
- Department of Nutrition Food Science and Packaging San Jose State University San Jose CA 95192 USA
| |
Collapse
|
11
|
Silva MBRD, Maffei DF, Moreira DA, Dias M, Mendes MA, Franco BDGDM. Agricultural practices in Brazilian organic farms and microbiological characteristics of samples collected along the production chain. J Appl Microbiol 2022; 132:1185-1196. [PMID: 34365710 DOI: 10.1111/jam.15247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
AIMS To gather data on agricultural practices in organic farms in Sao Paulo, Brazil, and evaluate their relationship with the microbiological characteristics of samples collected along the production chain. METHODS AND RESULTS Practices data were based on field observations and interviews with farmers in 10 selected organic lettuce producing farms. Counts of Enterobacteriaceae and surveys for Salmonella were performed in samples of lettuce (before and after washing), fertilizers, irrigation and washing water, all collected in the same farm. Water samples were also tested for total coliforms and generic Escherichia coli. Isolated Enterobacteriaceae were identified by MALDI-TOF MS. Contamination of lettuce was influenced by some agricultural practices: chicken manure-based fertilization resulted in higher Enterobacteriaceae counts in lettuce when compared to other types of manure, whereas pre-washed lettuces presented lower microbial counts than non-pre-washed samples. Salmonella was detected in one lettuce sample by qPCR. Escherichia coli was detected in all irrigation water samples. All sample types contained Enterobacteriaceae species commonly reported as opportunistic human pathogens. CONCLUSIONS The data highlight the need for improvement in the good agricultural practices in the studied farms. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides information on agricultural practices and microbiological characteristics of organic lettuce, contributing to the development of more accurate risk assessments.
Collapse
Affiliation(s)
- Marcelo Belchior Rosendo da Silva
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniele Fernanda Maffei
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
- Department of Agri-food Industry, Food and Nutrition, ‟Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| | - Debora Andrade Moreira
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Meriellen Dias
- Dempster MS Lab, Department of Chemical Engineering, Polytechnic School of University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Anita Mendes
- Dempster MS Lab, Department of Chemical Engineering, Polytechnic School of University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Bernadette Dora Gombossy de Melo Franco
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
12
|
New standards at European Union level on water reuse for agricultural irrigation: Are the Spanish wastewater treatment plants ready to produce and distribute reclaimed water within the minimum quality requirements? Int J Food Microbiol 2021; 356:109352. [PMID: 34385095 DOI: 10.1016/j.ijfoodmicro.2021.109352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022]
Abstract
The new European regulation on minimum quality requirements (MQR) for water reuse (EU, 2020/741) was launched in May 2020 and describes the directives for the use of reclaimed water for agricultural irrigation. This Regulation will be directly applicable in all Member States from 26 June 2023. Since its publication in 2020, concerns have raised about potential non-compliance situations in water reuse systems. The present study represents a case study where three different water reuse systems have been monitored to establish their compliance with the MQR. Each water reuse system includes a wastewater treatment plant (WWTP), a distribution/storage system and an end-user point, where water is used for irrigation of leafy greens. The selected water reuse systems allowed us to compare the efficacy of water treatments implemented in two WWTPs as well as the impact of three different irrigation systems (drip, furrow and overhead irrigation). The presence and concentration of indicator microorganisms (Escherichia coli and C. perfringens spores) as well as pathogenic bacteria (Shiga toxin-producing, E. coli (STEC), E. coli O157:H7, and Salmonella spp.) were monitored in different sampling points (influent and effluent of the WWTPs, water reservoirs located at the distribution system and the end-user point at the irrigation system as well as in the leafy greens during their growing cycle. Average levels of E. coli (0.73 ± 1.20 log cfu E. coli/100 mL) obtained at the point where the WWTP operator delivers reclaimed water to the next actor in the chain, defined in the European regulation as the 'point of compliance', were within the established MQR (<1 log cfu/100 mL) (EU, 2020/741). On the other hand, average levels of E. coli at the end-user point (1.0 ± 1.2 log cfu/100 mL) were below the recommended threshold (2 log cfu E. coli/100 mL) for irrigation water based on the guidance document on microbiological risks in fresh fruits and vegetables at primary production (EC, 2017/C_163/01). However, several outlier points were observed among the samples taken at the irrigation point, which were linked to a specific cross-contamination event within the distribution/storage system. Regarding pathogenic bacteria, water samples from the influent of the WWTPs showed a 100% prevalence, while only 5% of the effluent samples were positive for any of the monitored pathogenic bacteria. Obtained results indicate that reclaimed water produced in the selected water reuse system is suitable to be used as irrigation water. However, efforts are necessary not only in the establishment of advance disinfection treatments but also in the maintenance of the distribution/storage systems.
Collapse
|
13
|
Weller DL, Love TMT, Wiedmann M. Interpretability Versus Accuracy: A Comparison of Machine Learning Models Built Using Different Algorithms, Performance Measures, and Features to Predict E. coli Levels in Agricultural Water. Front Artif Intell 2021; 4:628441. [PMID: 34056577 PMCID: PMC8160515 DOI: 10.3389/frai.2021.628441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/12/2021] [Indexed: 02/02/2023] Open
Abstract
Since E. coli is considered a fecal indicator in surface water, government water quality standards and industry guidance often rely on E. coli monitoring to identify when there is an increased risk of pathogen contamination of water used for produce production (e.g., for irrigation). However, studies have indicated that E. coli testing can present an economic burden to growers and that time lags between sampling and obtaining results may reduce the utility of these data. Models that predict E. coli levels in agricultural water may provide a mechanism for overcoming these obstacles. Thus, this proof-of-concept study uses previously published datasets to train, test, and compare E. coli predictive models using multiple algorithms and performance measures. Since the collection of different feature data carries specific costs for growers, predictive performance was compared for models built using different feature types [geospatial, water quality, stream traits, and/or weather features]. Model performance was assessed against baseline regression models. Model performance varied considerably with root-mean-squared errors and Kendall's Tau ranging between 0.37 and 1.03, and 0.07 and 0.55, respectively. Overall, models that included turbidity, rain, and temperature outperformed all other models regardless of the algorithm used. Turbidity and weather factors were also found to drive model accuracy even when other feature types were included in the model. These findings confirm previous conclusions that machine learning models may be useful for predicting when, where, and at what level E. coli (and associated hazards) are likely to be present in preharvest agricultural water sources. This study also identifies specific algorithm-predictor combinations that should be the foci of future efforts to develop deployable models (i.e., models that can be used to guide on-farm decision-making and risk mitigation). When deploying E. coli predictive models in the field, it is important to note that past research indicates an inconsistent relationship between E. coli levels and foodborne pathogen presence. Thus, models that predict E. coli levels in agricultural water may be useful for assessing fecal contamination status and ensuring compliance with regulations but should not be used to assess the risk that specific pathogens of concern (e.g., Salmonella, Listeria) are present.
Collapse
Affiliation(s)
- Daniel L. Weller
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
- Department of Food Science, Cornell University, Ithaca, NY, United States
- Current Affiliation, Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Tanzy M. T. Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Yeargin TA, Fraser AM, Gibson KE. Characterization of risk management practices among strawberry growers in the southeastern United States and the factors associated with implementation. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Zhao X, da Silva MBR, Van der Linden I, Franco BDGM, Uyttendaele M. Behavior of the Biological Control Agent Bacillus thuringiensis subsp. aizawai ABTS-1857 and Salmonella enterica on Spinach Plants and Cut Leaves. Front Microbiol 2021; 12:626029. [PMID: 33613492 PMCID: PMC7886684 DOI: 10.3389/fmicb.2021.626029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Fresh produce has been identified as an important vehicle for the transmission of foodborne pathogens. This study evaluated the behavior of vegetative cells and spores of Bacillus thuringiensis, one of the main biological control agents (BCAs) used in the world, and Salmonella enterica on spinach plants (pre-harvest) and spinach cut leaves (post-harvest) at 12°C, experimentally inoculated as single or co-cultures. The results evidenced that spray-inoculated commercial BCA containing Bacillus thuringiensis subsp. aizawai ABTS-1857 (BTa ABTS-1857) spores persisted well on spinach leaves in both pre- and post-harvest simulations. However, when BTa ABTS-1857 vegetative cells were spray-inoculated, more than 2 log reductions in the counts of B. thuringiensis were observed during 20 days pre- and 5 days post-harvest simulations, respectively. The counts of S. Montevideo on the spinach cut leaves during post-harvest storage at 12°C for 5 days remained unchanged, whereas 1 log reduction was noted during pre-harvest. Moreover, during pre-harvest simulation, when co-inoculated with BTa ABTS-1857 vegetative cells or spores, additional 0.5 or 1.0 log reductions were detected on the counts of S. Montevideo in the spinach leaves on the 10th day. These results were obtained under laboratory conditions, and further findings in longitudinal studies from farm (in the agricultural field) to retail (end of shelf life) will contribute to understanding of the role of B. thuringiensis as a BCA on growth/survival of Salmonella spp. in fresh produce.
Collapse
Affiliation(s)
- Xingchen Zhao
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marcelo Belchior Rosendo da Silva
- FoRC - Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Inge Van der Linden
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bernadette D G M Franco
- FoRC - Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mieke Uyttendaele
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Importance of the Farm Environment and Wildlife for Transmission of Campylobacter jejuni in A Pasture-Based Dairy Herd. Microorganisms 2020; 8:microorganisms8121877. [PMID: 33260888 PMCID: PMC7761079 DOI: 10.3390/microorganisms8121877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/14/2023] Open
Abstract
Cattle are an established reservoir of the foodborne bacterial pathogen Campylobacter jejuni. Our six-month study aimed to evaluate sources and pathways governing long-term presence of C. jejuni in a pasture-based dairy herd. C. jejuni was detected in all sample types (soil, pasture, stock drinking water, bird, rodents and cow faeces). It was persistently detected from cow (54%; 49/90 samples) and bird (36%; 77/211) faeces. Genetic comparison of 252 C. jejuni isolates identified 30 Multi-Locus Sequence Types (ST). ST-61 and ST-42 were persistent in the herd and accounted for 43% of the cow isolates. They were also detected on pasture collected from fields both recently and not recently grazed, indicating that grazed pasture is an important pathway and reservoir for horizontal transmission among cows. ST-61 accounted for 9% of the bird isolates and was detected at four of the six sampling events, suggesting that bird populations might contribute to the cycling of ruminant-adapted genotypes on-farm. Overall, the results indicated that management of grazed pasture and supplementary feed contaminated by bird droppings could be targeted to effectively reduce transmission of C. jejuni to dairy herds, the farm environment and ultimately to humans.
Collapse
|
17
|
Weller DL, Love TMT, Belias A, Wiedmann M. Predictive Models May Complement or Provide an Alternative to Existing Strategies for Assessing the Enteric Pathogen Contamination Status of Northeastern Streams Used to Provide Water for Produce Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020; 4. [PMID: 33791594 PMCID: PMC8009603 DOI: 10.3389/fsufs.2020.561517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
While the Food Safety Modernization Act established standards for the use of surface water for produce production, water quality is known to vary over space and time. Targeted approaches for identifying hazards in water that account for this variation may improve growers’ ability to address pre-harvest food safety risks. Models that utilize publicly-available data (e.g., land-use, real-time weather) may be useful for developing these approaches. The objective of this study was to use pre-existing datasets collected in 2017 (N = 181 samples) and 2018 (N = 191 samples) to train and test models that predict the likelihood of detecting Salmonella and pathogenic E. coli markers (eaeA, stx) in agricultural water. Four types of features were used to train the models: microbial, physicochemical, spatial and weather. “Full models” were built using all four features types, while “nested models” were built using between one and three types. Twenty learners were used to develop separate full models for each pathogen. Separately, to assess information gain associated with using different feature types, six learners were randomly selected and used to develop nine, nested models each. Performance measures for each model were then calculated and compared against baseline models where E. coli concentration was the sole covariate. In the methods, we outline the advantages and disadvantages of each learner. Overall, full models built using ensemble (e.g., Node Harvest) and “black-box” (e.g., SVMs) learners out-performed full models built using more interpretable learners (e.g., tree- and rule-based learners) for both outcomes. However, nested eaeA-stx models built using interpretable learners and microbial data performed almost as well as these full models. While none of the nested Salmonella models performed as well as the full models, nested models built using spatial data consistently out-performed models that excluded spatial data. These findings demonstrate that machine learning approaches can be used to predict when and where pathogens are likely to be present in agricultural water. This study serves as a proof-of-concept that can be built upon once larger datasets become available and provides guidance on the learner-data combinations that should be the foci of future efforts (e.g., tree-based microbial models for pathogenic E. coli).
Collapse
Affiliation(s)
- Daniel L Weller
- Department of Food Science, Cornell University, Ithaca, NY, United States.,Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Tanzy M T Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Belias
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
18
|
Holmes A, Pritchard L, Hedley P, Morris J, McAteer SP, Gally DL, Holden NJ. A high-throughput genomic screen identifies a role for the plasmid-borne type II secretion system of Escherichia coli O157:H7 (Sakai) in plant-microbe interactions. Genomics 2020; 112:4242-4253. [PMID: 32663607 DOI: 10.1016/j.ygeno.2020.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 01/16/2023]
Abstract
Shiga-toxigenic Escherichia coli (STEC) is often transmitted into food via fresh produce plants, where it can cause disease. To identify early interaction factors for STEC on spinach, a high-throughput positive-selection system was used. A bacterial artificial chromosome (BAC) clone library for isolate Sakai was screened in four successive rounds of short-term (2 h) interaction with spinach roots, and enriched loci identified by microarray. A Bayesian hierarchical model produced 115 CDS credible candidates, comprising seven contiguous genomic regions. Of the two candidate regions selected for functional assessment, the pO157 plasmid-encoded type two secretion system (T2SS) promoted interactions, while a chaperone-usher fimbrial gene cluster (loc6) did not. The T2SS promoted bacterial binding to spinach and appeared to involve the EtpD secretin protein. Furthermore, the T2SS genes, etpD and etpC, were expressed at a plant-relevant temperature of 18 °C, and etpD was expressed in planta by E. coli Sakai on spinach plants.
Collapse
Affiliation(s)
- Ashleigh Holmes
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Leighton Pritchard
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, UK.; Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Peter Hedley
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Jenny Morris
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Sean P McAteer
- The Roslin Institute, Division of Infection and Immunity, University of Edinburgh, R(D)SVS, The Roslin Institute Building, Easter Bush, EH25 9RG, UK
| | - David L Gally
- The Roslin Institute, Division of Infection and Immunity, University of Edinburgh, R(D)SVS, The Roslin Institute Building, Easter Bush, EH25 9RG, UK
| | - Nicola J Holden
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, UK.; SRUC, Northern Faculty, Aberdeen, AB21 9YA, UK..
| |
Collapse
|
19
|
Eissenberger K, Drissner D, Walsh F, Weiss A, Schmidt H. Plant variety and soil type influence Escherichia coli O104:H4 strain C227/11ϕcu adherence to and internalization into the roots of lettuce plants. Food Microbiol 2020; 86:103316. [PMID: 31703882 DOI: 10.1016/j.fm.2019.103316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/19/2019] [Accepted: 08/31/2019] [Indexed: 12/17/2022]
Abstract
Human disease outbreaks caused by pathogenic Escherichia coli are increasingly associated with the consumption of contaminated fresh produce. Internalization of enteroaggregative/enterohemorrhagic E. coli (EAEC/EHEC) strains into plant tissues may present a serious threat to public health. In the current study, the ability of the fluorescing Shiga toxin-negative E. coli O104:H4 strain C227/11ϕcu/pKEC2 to adhere to and to internalize into the roots of Lactuca sativa and Valerianella locusta grown in diluvial sand (DS) and alluvial loam (AL) was investigated. In parallel, the soil microbiota was analyzed by partial 16S rRNA gene sequencing. The experiments were performed in a safety level 3 greenhouse to simulate agricultural practice. The adherence of C227/11ϕcu/pKEC2 to the roots of both plant varieties was increased by at least a factor three after incubation in DS compared to AL. Compared to V. locusta, internalization into the roots of L. sativa was increased 12-fold in DS and 108-fold in AL. This demonstrates that the plant variety had an impact on the internalization ability, whereas for a given plant variety the soil type also affected bacterial internalization. In addition, microbiota analysis detected the inoculated strain and showed large differences in the bacterial composition between the soil types.
Collapse
Affiliation(s)
- Kristina Eissenberger
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, University of Hohenheim, Stuttgart, Germany
| | - David Drissner
- Microbiology of Plant Foods, Agroscope, Waedenswil, Switzerland; Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland; Department of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| | - Fiona Walsh
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Agnes Weiss
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, University of Hohenheim, Stuttgart, Germany
| | - Herbert Schmidt
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
20
|
Ortiz-Solà J, Viñas I, Colás-Medà P, Anguera M, Abadias M. Occurrence of selected viral and bacterial pathogens and microbiological quality of fresh and frozen strawberries sold in Spain. Int J Food Microbiol 2020; 314:108392. [PMID: 31698282 DOI: 10.1016/j.ijfoodmicro.2019.108392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/19/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023]
Abstract
Strawberry production and exports have been increasing in Spain in recent decades. However, little information is available about their microbiological quality. Due to the growing concern about the microbial safety of these fruits, the objective of this investigation was to study the microbiological quality and the prevalence of the main foodborne pathogens on strawberries sold in Spain. Fresh (n = 152) and frozen (n = 31) samples were obtained from marketplaces and fields in 2017 and 2018. The samples were assayed for total aerobic mesophilic microorganisms (TAM), moulds and yeasts (M&Y), total coliforms (TC), Escherichia coli, Salmonella spp., Listeria monocytogenes as well as Norovirus (NoV) GI and GII. The microbiological counts ranged from <1.70 (detection limit, dl) - 5.89 log10 CFU/g (mean 3.78 log10 CFU/g) for TAM; 2.10-5.86 log10 CFU/g (mean 3.80 log10 CFU/g) for M&Y; and <0.70 (dl) - 4.91 log10 CFU/g (mean 2.15 log10 CFU/g) for TC in fresh strawberries. In frozen strawberries, the counts were <1.70 (dl) - 3.66 log10 CFU/g (mean 2.30 log10 CFU/g) for TAM; <1.70 (dl) - 2.76 log10 CFU/g (mean 1.82 log10 CFU/g) for M&Y; and <0.70(dl) - 1.74 log10 CFU/g (mean 0.77 log10 CFU/g) for TC. All the samples in this study tested negative for Salmonella spp., L. monocytogenes. E. coli and NoV GI and GII genome. A global overview of all the data was executed using Principal Component Analysis (PCA), and the results showed that the scores and loadings according to principal components 1 (PC1) and 2 (PC2) accounted for 75.9% of the total variance, allowing a distinction between fresh and frozen samples. The presence of moulds was significantly higher in the supermarket samples whereas the presence of total coliforms was significantly higher in the field samples (p < 0.05). Although pathogenic microorganisms were not found, preventative measures and prerequisites in the strawberry production chain must be considered in order to avoid possible foodborne diseases related to the microbiological quality of the fruit.
Collapse
Affiliation(s)
- J Ortiz-Solà
- Universitat de Lleida, Departamento de Ciencia y Tecnología de Alimentos, XaRTA-Postharvest, Centro Agrotecnio, Rovira Roure 191, 25198 Lleida, Spain
| | - I Viñas
- Universitat de Lleida, Departamento de Ciencia y Tecnología de Alimentos, XaRTA-Postharvest, Centro Agrotecnio, Rovira Roure 191, 25198 Lleida, Spain.
| | - P Colás-Medà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Spain
| | - M Anguera
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Spain
| | - M Abadias
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Spain.
| |
Collapse
|
21
|
López-Gálvez F, Gil MI, Andújar S, Allende A. Suitability of centrifuge water for detecting the presence of Escherichia coli versus finished fresh-cut lettuce testing. Food Microbiol 2019; 84:103271. [PMID: 31421780 DOI: 10.1016/j.fm.2019.103271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 11/21/2022]
Abstract
Fresh produce causes most foodborne outbreaks in the USA, and it is also considered a hazardous food product in other areas of the world such as Europe. The outbreaks attributed to fresh produce increase the focus of producers on hygiene to minimize exposure to food hazards. The fresh produce industry has the urgent need to detect if there are production lots contaminated with pathogenic microorganisms before distribution. Although the industry is mostly using end-product testing for the detection of target microorganisms, previous studies have evaluated the suitability of different sampling points within the production line of a fresh-cut processing plant. In the present study, the centrifuge effluent water was assessed as an alternative sampling point to end-product testing. E. coli was selected as an index microorganism of the presence of pathogens. The presence of E. coli was assessed in centrifuge effluent water, and fresh-cut lettuce from a commercial fresh-cut produce processing line (n = 95). The rate of false positives and negatives, as well as the specificity, sensitivity, and efficiency of the alternative method were calculated. The mean population of E. coli in positive water samples was 0.86 log cfu/100 mL, while the mean population of E. coli in positive fresh-cut lettuce samples was 0.23 log cfu/g. The proportion of positive samples in centrifuge effluent water and lettuce was similar (≈20%), and most of the results in both matrices were coincident (81.1%). However, the alternative method was not reliable due to its low sensitivity, as only 47.6% of the lettuce samples positive for E. coli could be matched with positive water samples.
Collapse
Affiliation(s)
- Francisco López-Gálvez
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain.
| | - Maria Isabel Gil
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Silvia Andújar
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| |
Collapse
|
22
|
Sheng L, Shen X, Benedict C, Su Y, Tsai HC, Schacht E, Kruger CE, Drennan M, Zhu MJ. Microbial Safety of Dairy Manure Fertilizer Application in Raspberry Production. Front Microbiol 2019; 10:2276. [PMID: 31632379 PMCID: PMC6783879 DOI: 10.3389/fmicb.2019.02276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
Dairy manure, a by-product in the dairy industry, is also a potential source of nutrients for crops. However, improper application of biological soil amendments of animal origin can be a source of contamination with enteric foodborne pathogens. A 2-year field study was conducted to evaluate impacts of dairy manure fertilizer application on the microbial safety of red raspberry (Rubus idaeus L) production. Fertilizers, including a standard synthetic fertilizer (CON), straight lagoon raw manure (SL), anaerobically digested liquid effluent (DLE), compost (COM) and dairy manure-derived refined fertilizers including ammonium sulfate (AS) and phosphorous solid (PS), were randomly applied in quadruplicate to raspberry plots. Soil, fertilizer, foliar, and raspberry fruit samples were collected during the cropping season for the quantification of indicator microorganisms (total coliform and generic Escherichia coli) and detection of important foodborne pathogens (Shiga toxin-producing E. coli (STEC), Salmonella, and Listeria monocytogenes). Counts of total coliforms in soil were stable over the 2017 cropping season and were not impacted by fertilizer application. In 2018, total coliforms increased with season and soils treated with COM had a significantly higher coliform number than those treated with CON. Both total coliform and generic E. coli in raspberry fruit samples were below the detectable level (3 most probable number/g) regardless of fertilizer types. In both years, no STEC or L. monocytogenes was detected from any of the collected samples regardless of fertilizer treatments. However, Salmonella were detected in some of the fertilizers, including PS (2017), DLE (2018), and SL (2018), which were transferred to soil samples taken directly after application of these fertilizers. Salmonella were not detected in soil samples 2 or 4 months post fertilizer application, foliar, or raspberry fruit samples regardless of fertilizer applications. In summary, one-time application of raw dairy manure or dairy manure-derived fertilizers more than 4 months prior to harvest has no major impact on food safety of red raspberry (6 ft. tall) production in Lynden sandy loam under good agricultural practices.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Chris Benedict
- Whatcom County Extension, Washington State University, Bellingham, WA, United States
| | - Yuan Su
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Hsieh-Chin Tsai
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Elizabeth Schacht
- Whatcom County Extension, Washington State University, Bellingham, WA, United States
| | - Chad E. Kruger
- Center for Sustaining Agriculture and Natural Resources, Washington State University, Pullman, WA, United States
| | - Margaret Drennan
- Natural Resources Assessment Section, Washington State Department of Agriculture, Olympia, WA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States
| |
Collapse
|
23
|
Weller DL, Kovac J, Kent DJ, Roof S, Tokman JI, Mudrak E, Wiedmann M. A Conceptual Framework for Developing Recommendations for No-Harvest Buffers around In-Field Feces. J Food Prot 2019; 82:1052-1060. [PMID: 31124716 DOI: 10.4315/0362-028x.jfp-18-414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/06/2019] [Indexed: 11/11/2022]
Abstract
HIGHLIGHTS
Collapse
Affiliation(s)
- Daniel L Weller
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, New York 14853, USA
| | - Jasna Kovac
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, New York 14853, USA.,Present address: Department of Food Science, The Pennsylvania State University, State College, PA 16802, USA
| | - David J Kent
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, New York 14853, USA
| | - Sherry Roof
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, New York 14853, USA
| | - Jeffrey I Tokman
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, New York 14853, USA
| | - Erika Mudrak
- Statistical Consulting Unit, Cornell University, Ithaca, New York 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
24
|
Söderqvist K, Rosberg AK, Boqvist S, Alsanius B, Mogren L, Vågsholm I. Season and Species: Two Possible Hurdles for Reducing the Food Safety Risk of Escherichia coli O157 Contamination of Leafy Vegetables. J Food Prot 2019; 82:247-255. [PMID: 30681384 DOI: 10.4315/0362-028x.jfp-18-292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The food safety risk of Shiga toxin-producing Escherichia coli (STEC) infection per serving of leafy vegetables was investigated using a quantitative microbial risk assessment (QMRA) approach. The estimated level of E. coli O157 contamination was based on observed numbers of Enterobacteriaceae and E. coli on leafy vegetables grown and processed in southern Sweden from 2014 to 2016. Samples were collected before harvest, after washing, and at the end of shelf life. The observed counts were combined with data on the ratio of E. coli to E. coli O157 taken from earlier studies to estimate the probability of illness. The risks of STEC infection associated with species, either spinach ( Spinacia oleracea) or rocket ( Diplotaxis tenuifolia), growing season (spring or autumn), and washing (washed or not washed) were then evaluated. The results indicated that leafy vegetable species and growing season could be possible hurdles for reducing the food safety risk of STEC infection. At harvest, the probability of infection was 87% lower when consuming rocket compared with spinach and 90% lower when consuming leafy vegetables grown in spring compared with autumn. These relative risk reductions remained consistent even with other serving sizes and dose-response models. The lowest risk of STEC infection was associated with leafy vegetables early in the production chain, i.e., before harvest, while the risk increased during storage and processing. Consequently, the highest risk was observed when leafy vegetables were consumed at the end of shelf life. Washing had no effect on the food safety risk of STEC infection in this study. To improve the quality of QMRA, there is a need for additional data on the relationship between indicator organisms that can be easily enumerated (e.g., E. coli and Enterobacteriaceae) and E. coli strains that can cause STEC infection (e.g., E. coli O157) but are difficult to identify in food samples such as leafy vegetables.
Collapse
Affiliation(s)
- Karin Söderqvist
- 1 Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7036, SE-750 07 Uppsala, Sweden (ORCID: http://orcid.org/0000-0002-1249-1949 [K.S.])
| | - Anna Karin Rosberg
- 2 Department of Biosystems and Technology, Microbial Horticulture Unit, P.O. Box 103, SE-230 53 Alnarp, Sweden
| | - Sofia Boqvist
- 1 Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7036, SE-750 07 Uppsala, Sweden (ORCID: http://orcid.org/0000-0002-1249-1949 [K.S.])
| | - Beatrix Alsanius
- 2 Department of Biosystems and Technology, Microbial Horticulture Unit, P.O. Box 103, SE-230 53 Alnarp, Sweden
| | - Lars Mogren
- 2 Department of Biosystems and Technology, Microbial Horticulture Unit, P.O. Box 103, SE-230 53 Alnarp, Sweden
| | - Ivar Vågsholm
- 1 Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7036, SE-750 07 Uppsala, Sweden (ORCID: http://orcid.org/0000-0002-1249-1949 [K.S.])
| |
Collapse
|
25
|
Falcó I, Verdeguer M, Aznar R, Sánchez G, Randazzo W. Sanitizing food contact surfaces by the use of essential oils. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Liu Z, Lao J, Zhang Y, Liu Y, Zhang J, Wang H, Jiang B. Association between floods and typhoid fever in Yongzhou, China: Effects and vulnerable groups. ENVIRONMENTAL RESEARCH 2018; 167:718-724. [PMID: 30241731 DOI: 10.1016/j.envres.2018.08.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Little information about the effects of floods on typhoid fever is available in previous studies. This study aimed to examine the relationships between floods and typhoid fever and to identify the vulnerable groups in Yongzhou, China. METHODS Weekly typhoid fever data, flood data and meteorological data during the flood season (April to September) from 2005 to 2012 were collected for this study. A Poisson generalized linear model combined with a distributed lag non-linear model was conducted to quantify the lagged and cumulative effects of floods on typhoid fever, considering the confounding effects of long-term trend, seasonality, and meteorological variables. The model was also used to calculate risk ratios of floods for weekly typhoid fever cases among various subpopulations. RESULTS After adjusting for long-term trend, seasonality, and meteorological variables, floods were associated with an increased number of typhoid fever cases with a risk ratio of 1.46 (95% CI: 1.10-1.92) at 1-week lag and a cumulative risk ratio of 1.76 (95% CI: 1.21-2.57) at lag 0-1 weeks. Males, people aged 0-4 years old, people aged 15-64 years old, farmers, and children appeared to be more vulnerable than the others. CONCLUSIONS Our study indicates that floods could significantly increase the risks of typhoid fever with lag effects of 1 week in the study areas. Precautionary measures should be taken with a focus on the identified vulnerable groups in order to control the transmission of typhoid fever associated with floods.
Collapse
Affiliation(s)
- Zhidong Liu
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, Shandong Province, People's Republic of China; Shandong University Climate Change and Health Center, Jinan, Shandong Province, People's Republic of China
| | - Jiahui Lao
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, Shandong Province, People's Republic of China; Shandong University Climate Change and Health Center, Jinan, Shandong Province, People's Republic of China
| | - Ying Zhang
- School of Public Health, China Studies Centre, The University of Sydney, New South Wales, Australia
| | - Yanyu Liu
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, Shandong Province, People's Republic of China; Shandong University Climate Change and Health Center, Jinan, Shandong Province, People's Republic of China
| | - Jing Zhang
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, Shandong Province, People's Republic of China; Shandong University Climate Change and Health Center, Jinan, Shandong Province, People's Republic of China
| | - Hui Wang
- Department of Medical Administration, Second Hospital of Shandong University, No. 247 BeiYuan Road, 250033 Jinan, Shandong Province, People's Republic of China.
| | - Baofa Jiang
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, Shandong Province, People's Republic of China; Shandong University Climate Change and Health Center, Jinan, Shandong Province, People's Republic of China.
| |
Collapse
|
27
|
Mohammadpour H, Berizi E, Hosseinzadeh S, Majlesi M, Zare M. The prevalence of Campylobacter spp. in vegetables, fruits, and fresh produce: a systematic review and meta-analysis. Gut Pathog 2018; 10:41. [PMID: 30275908 PMCID: PMC6158901 DOI: 10.1186/s13099-018-0269-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/15/2018] [Indexed: 12/19/2022] Open
Abstract
There are a number of reports indicating correlation between outbreaks of campylobacteriosis and the consumption of raw vegetables. This study is a meta-analysis on the prevalence of Campylobacter in fresh vegetables and fruits without any location limitation, which was performed through a documented review of the available resources. Relevant literature was reviewed by trained reviewers, who examined the results for the inclusion of articles in the meta-analysis. The prevalence of Campylobacter in raw vegetables, the sample source, the Campylobacter species, and the method of detection were extracted. The prevalence of Campylobacter in vegetables, fruits, and fresh produce were estimated to be 0.53%. Analysis of the various sample groups initially showed that the bean and sprouts group was the vegetable with the highest prevalence of Campylobacter (11.08%). The rate of contamination was higher when both the molecular and conventional methods were employed. The highest prevalence of Campylobacter was found in Asia (33.4%). Despite the low prevalence, consumption of raw vegetables is inherently risky because no treatment is used to inactivate the pathogens. Therefore, proper sanitation methods are recommended to treat the raw products.
Collapse
Affiliation(s)
- Hooriyeh Mohammadpour
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Enayat Berizi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731 Iran
| | - Majid Majlesi
- Department of Nutrition Sciences, School of Health and Nutrition Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Morteza Zare
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Novel sensor platform for rapid detection and quantification of coliforms on food contact surfaces. J Microbiol Methods 2018; 153:74-83. [PMID: 30240812 DOI: 10.1016/j.mimet.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/30/2023]
Abstract
In this paper, a novel sensor platform based on screen printed carbon electrode coated by graphene modified polyacrylamide gel (GR/PAAGC) was developed and implemented for sampling, detection and enumeration of coliform bacteria (coliforms) on food contact surfaces. The optimized formula of polyacrylamide (PAA) and agar-agar increased the adhesive properties of the gel, being crucial for the coliforms recovery, attached to food contact surfaces. The 6-Chloro-3-indoxyl-β-D-galactopyranoside (6-CIGP) was used as a new electrochemical reporter for β-D-galactosidase activity. The released 6,6'-Dichloro-Indigo (6-DI) was directly detected by GR/PAAGC sensor. The presence of Isopropyl-β-D-thiogalactopyranoside (IPTG) and n-Octyl-β-D-thiogalactopyranoside (OBDG) in the gel contributed to reduction of the detection time. The addition of graphene enhanced the voltammetric signal and increased the conductivity of PAA gel. The anodic and cathodic peaks of the released product were directly proportional to the concentration of coliforms. Bacterial cell concentrations ranging from 1.6log10CFU/mL to 6.6log10CFU/mL were detected. Well-shaped, sharp voltammetric curves were generated within 3 h. Redox peaks exhibited good sensitivity with detection limits (LOD) < 0.6log10CFU/mL. After series of optimization experiments, coliforms ranging from 0.6log10CFU/cm2 to 6.610CFU/cm2 on stainless steel surfaces have been detected within 30 min with a LOD of 0.1log10CFU/cm2. The developed rapid, sensitive, reproducible and specific sensor successfully applied for single detection as well as for real-time monitoring of growth of coliform bacteria on stainless steel surfaces during food processing.
Collapse
|
29
|
Intriago JC, López-Gálvez F, Allende A, Vivaldi GA, Camposeo S, Nicolás Nicolás E, Alarcón JJ, Pedrero Salcedo F. Agricultural reuse of municipal wastewater through an integral water reclamation management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 213:135-141. [PMID: 29494929 DOI: 10.1016/j.jenvman.2018.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/19/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
The DESERT-prototype, a state-of-the-art compact combination of water treatment technologies based on filtration and solar-based renewable energy, was employed to reclaim water for agricultural irrigation. Water reclaimed through the DESERT-prototype (PW) from a secondary effluent of a wastewater treatment plant, as well as conventional irrigation water (CW) and the secondary effluent (SW) itself, were employed to cultivate baby romaine lettuces in a greenhouse in Murcia (Spain), by means of drip and sprinkler irrigation methods, thus establishing six treatments. Assessments of physicochemical and microbiological quality of irrigation water, as well as agronomic and microbiological quality of crops from all treatments, showed that results associated to PW complied in all cases with relevant standards and guidelines. In contrast, results linked to SW and CW presented certain non-compliance cases of water and crop microbiological quality. These assessments lead to conclude that the DESERT-prototype is an appropriate technology for safe water reclamation oriented to agricultural production, that can be complemented by a proper irrigation method in reaching safety targets.
Collapse
Affiliation(s)
- Juan Carlo Intriago
- Sub-Department of Environmental Technology (ETE), Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB, Wageningen, The Netherlands.
| | - Francisco López-Gálvez
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Gaetano Alessandro Vivaldi
- Dipartimento di Scienze Agro-Ambientali e Territoriali, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Salvatore Camposeo
- Dipartimento di Scienze Agro-Ambientali e Territoriali, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Emilio Nicolás Nicolás
- Department of Irrigation, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Juan José Alarcón
- Department of Irrigation, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Francisco Pedrero Salcedo
- Dipartimento di Scienze Agro-Ambientali e Territoriali, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy; Department of Irrigation, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
30
|
Gölz G, Kittler S, Malakauskas M, Alter T. Survival of Campylobacter in the Food Chain and the Environment. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0092-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Truchado P, Hernandez N, Gil MI, Ivanek R, Allende A. Correlation between E. coli levels and the presence of foodborne pathogens in surface irrigation water: Establishment of a sampling program. WATER RESEARCH 2018; 128:226-233. [PMID: 29107907 DOI: 10.1016/j.watres.2017.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
To establish the association between microbial indicators and the presence of foodborne pathogens in irrigation water, Escherichia coli was enumerated using two quantification methods (plate counts and PMA-qPCR) and presence/absence of pathogenic microorganisms, including five strains from the Shiga toxigenic E. coli (O157:H7, O26, O103, O111 and O145) and Salmonella spp. were evaluated. The results confirmed that surface water can be considered a microbial hazard when used for irrigation. The levels of viable E. coli were very similar to those of cultivable E. coli, except for irrigation water obtained from water reservoirs. Comparison between the E. coli counts in samples positive and negative for the presence of pathogenic bacteria for the evaluated water sources identified E. coli level of 2.35 log cfu/100 mL as a cut-off able to correctly predict positive and negative samples with 93% sensitivity and 66% specificity, respectively. Thus, for the samples with levels of E. coli under 2.35 log cfu/100 mL (e.g., 2.24 log cfu/100 mL) there was a 90% probability that the samples were not contaminated with pathogenic microorganism in locations with similar prevalence. E. coli levels in irrigation water were affected by the ambient temperature confirming that water source and climate conditions should be taken into account by growers when designing a sampling program and the frequency of the monitoring to make a better and more efficient use of their resources.
Collapse
Affiliation(s)
- Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Natalia Hernandez
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Maria I Gil
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NW, USA
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain.
| |
Collapse
|
32
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Girones R, Herman L, Koutsoumanis K, Lindqvist R, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Andersen JK, Uyttendaele M, Valero A, Da Silva Felício MT, Messens W, Nørrung B. Guidance on the requirements for the development of microbiological criteria. EFSA J 2017; 15:e05052. [PMID: 32625345 PMCID: PMC7010099 DOI: 10.2903/j.efsa.2017.5052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The European Food Safety Authority asked the Panel on Biological Hazards (BIOHAZ) to deliver a scientific opinion providing: (i) a review of the approaches used by the BIOHAZ Panel to address requests from risk managers to suggest the establishment of microbiological criteria; (ii) guidance on the required scientific evidence, data and methods/tools necessary for considering the development of microbiological criteria for pathogenic microorganisms and indicator microorganisms; (iii) recommendations on methods/tools to design microbiological criteria and (iv) guidelines for the requirements and tasks of risk assessors, compared to risk managers, in relation to microbiological criteria. This document provides guidance on approaches when: (i) a quantitative microbial risk assessment (QMRA) is available, (ii) prevalence and concentration data are available, but not a QMRA model, and (iii) neither a QMRA nor prevalence and/or concentration data are available. The role of risk assessors should be focused on assessing the impact of different microbiological criteria on public health and on product compliance. It is the task of the risk managers to: (1) formulate unambiguous questions, preferably in consultation with risk assessors, (2) decide on the establishment of a microbiological criterion, or target in primary production sectors, and to formulate the specific intended purpose for using such criteria, (3) consider the uncertainties in impact assessments on public health and on product compliance and (4) decide the point in the food chain where the microbiological criteria are intended to be applied and decide on the actions which should be taken in case of non‐compliance. It is the task of the risk assessors to support risk managers to ensure that questions are formulated in a way that a precise answer can be given, if sufficient information is available, and to ensure clear and unambiguous answers, including the assessment of uncertainties, based on available scientific evidence.
Collapse
|
33
|
Castro-Ibáñez I, Gil MI, Allende A. Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Allende A, Datta AR, Smith WA, Adonis R, MacKay A, Adell AD. Implications of new legislation (US FSMA) and guidelines (EC) on the establishment of management systems for agricultural water. Food Microbiol 2017; 75:119-125. [PMID: 30056956 DOI: 10.1016/j.fm.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 01/13/2023]
Abstract
This report summarizes key messages related to agricultural water quality as discussed by an ad hoc panel at the 1st International Symposium of Food Safety in Santiago, Chile. Participating representatives of the academia, industry and government of diverse geographical backgrounds and the audience discussed topics such as (1) implications of the US Food Safety Modernization Act (FSMA: www.fda.gov/Food/GuidanceRegulation/FSMA/ucm277706.htm) on the Agricultural Water Quality, (2) comparisons between MPN and CFU in analyzing water quality, (3) alternatives to fecal indicator bacteria (FIB) to be used as indicators to evaluate water quality, and (4) vegetative buffers as an alternative to reduce pathogen loads in agricultural surface waters. Panelists identified the following key messages for each topic discussed that are related to agricultural water quality: (1) the FSMA regulation and the new guidance document elaborated by the EC are highly relevant as they provide a definition of agricultural water and specific criteria for different water uses and circumstances; (2) FSMA supports modification from MPN to CFU; (3) Growers require more alternatives for treatment of agricultural water; (4) Vegetative buffers are a potential practical and feasible alternative for agriculture producers to reduce the pathogen and fecal pollution loads of in their agricultural waters.
Collapse
Affiliation(s)
- A Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - A R Datta
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - W A Smith
- One Health Institute, School of Veterinary Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - R Adonis
- Fundacion para el Desarrollo Fruticola (FDF), Av Pedro de Valdivia 0193 of 22, Santiago, Chile.
| | - A MacKay
- Canadian Food Inspection Agency, Food Safety Science Directorate, 1400Merivale, Ottawa, Ontario, K1A 0Y9, Canada
| | - A D Adell
- Escuela de Medicina Veterinaria, Facultad de Ecologia y Recursos Naturales, Universidad Andres Bello, Republica 440, 8370251 Santiago, Chile.
| |
Collapse
|
35
|
Decol LT, Casarin LS, Hessel CT, Batista ACF, Allende A, Tondo EC. Microbial quality of irrigation water used in leafy green production in Southern Brazil and its relationship with produce safety. Food Microbiol 2017; 65:105-113. [PMID: 28399992 DOI: 10.1016/j.fm.2017.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
Abstract
Irrigation water has been recognized as an important microbial risk factor for fruits and vegetables in many production areas, but there is still a lack of information about how the microbiological quality of different irrigation water sources and climatic conditions influence the safety of vegetables produced in Brazil. This study evaluated the distribution of generic E. coli and the prevalence of E. coli O157:H7 in two different water sources (ponds and streams bordering farmlands and urban areas) used for irrigation and on commercially produced lettuces in Southern Brazil. We also evaluated the effect of agricultural factors and meteorological conditions in the potential contamination of water and produce samples. A longitudinal study was conducted on four farms during a year (July 2014 to August 2015). The results showed generic E. coli prevalence of 84.8% and 38.3% in irrigation water samples and on lettuces, respectively, indicating irrigation water as an important source of contamination of lettuces. No significant differences were detected in the counts of E. coli between the two different surface water sources. The climatic conditions, particularly rainfall and environmental temperature, have influenced the high concentration of E. coli. The highest loads of E. coli in irrigation water and on lettuces were found during the warmest time of the year. E. coli O157:H7 was detected by qualitative polymerase chain reaction (qPCR) in 13 water samples but only 4 were confirmed by isolation in culture media.
Collapse
Affiliation(s)
- Luana Tombini Decol
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Av. Bento Gonçalves 9.500, prédio 43212, Campos do Vale, Agronomia, CEP: 91501-970, Porto Alegre, RS, Brazil
| | - Letícia Sopeña Casarin
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Av. Bento Gonçalves 9.500, prédio 43212, Campos do Vale, Agronomia, CEP: 91501-970, Porto Alegre, RS, Brazil
| | - Claudia Titze Hessel
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Av. Bento Gonçalves 9.500, prédio 43212, Campos do Vale, Agronomia, CEP: 91501-970, Porto Alegre, RS, Brazil
| | - Ana Carolina Fösch Batista
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Av. Bento Gonçalves 9.500, prédio 43212, Campos do Vale, Agronomia, CEP: 91501-970, Porto Alegre, RS, Brazil
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain.
| | - Eduardo César Tondo
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Av. Bento Gonçalves 9.500, prédio 43212, Campos do Vale, Agronomia, CEP: 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
36
|
Allende A, Barceló Culleres D, Gironés Llop R, Laval A, Robertson L, da Silva Felício MT, Gervelmeyer A, Ramos Bordajandi L, Liebana E. Request for scientific and technical assistance on proposed EU minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge. ACTA ACUST UNITED AC 2017. [DOI: 10.2903/sp.efsa.2017.en-1247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Jacxsens L, Uyttendaele M, Luning P, Allende A. Food safety management and risk assessment in the fresh produce supply chain. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/193/1/012020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Suitability of different Escherichia coli enumeration techniques to assess the microbial quality of different irrigation water sources. Food Microbiol 2016; 58:29-35. [DOI: 10.1016/j.fm.2016.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 11/21/2022]
|
39
|
López-Gálvez F, Truchado P, Sánchez G, Aznar R, Gil M, Allende A. Occurrence of enteric viruses in reclaimed and surface irrigation water: relationship with microbiological and physicochemical indicators. J Appl Microbiol 2016; 121:1180-8. [DOI: 10.1111/jam.13224] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- F. López-Gálvez
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; CEBAS-CSIC; Murcia Spain
| | - P. Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; CEBAS-CSIC; Murcia Spain
| | - G. Sánchez
- Department of Biotechnology; IATA-CSIC; Valencia Spain
- Department of Microbiology and Ecology; University of Valencia; Valencia Spain
| | - R. Aznar
- Department of Biotechnology; IATA-CSIC; Valencia Spain
- Department of Microbiology and Ecology; University of Valencia; Valencia Spain
| | - M.I. Gil
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; CEBAS-CSIC; Murcia Spain
| | - A. Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; CEBAS-CSIC; Murcia Spain
| |
Collapse
|
40
|
|