1
|
Zhang S, Shi J, Li X, Tiwari A, Gao S, Zhou X, Sun X, O'Brien JW, Coin L, Hai F, Jiang G. Wastewater-based epidemiology of Campylobacter spp.: A systematic review and meta-analysis of influent, effluent, and removal of wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166410. [PMID: 37597560 DOI: 10.1016/j.scitotenv.2023.166410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Campylobacter spp. is one of the four leading causes of diarrhoeal diseases worldwide, which are generally mild but can be fatal in children, the elderly, and immunosuppressed persons. The existing disease surveillance for Campylobacter infections is usually based on untimely clinical reports. Wastewater surveillance or wastewater-based epidemiology (WBE) has been developed for the early warning of disease outbreaks and the detection of the emerging new variants of human pathogens, especially after the global pandemic of COVID-19. However, the WBE monitoring of Campylobacter infections in communities is rare due to a few large data gaps. This study is a meta-analysis and systematic review of the prevalence of Campylobacter spp. in various wastewater samples, primarily the influent of wastewater treatment plants. The results showed that the overall prevalence of Campylobacter spp. was 53.26 % in influent wastewater and 52.97 % in all types of wastewater samples. The mean concentration in the influent was 3.31 ± 0.39 log10 gene copies or most probable number (MPN) per 100 mL. The detection method combining culture and PCR yielded the highest positive rate of 90.86 %, while RT-qPCR and qPCR were the two most frequently used quantification methods. In addition, the Campylobacter concentration in influent wastewater showed a seasonal fluctuation, with the highest concentration in the autumn at 3.46 ± 0.41 log10 gene copies or MPN per 100 mL. Based on the isolates of all positive samples, Campylobacter jejuni (62.34 %) was identified as the most prevalent species in wastewater, followed by Campylobacter coli (30.85 %) and Campylobacter lari (4.4 %). These findings provided significant data to further develop and optimize the wastewater surveillance of Campylobacter spp. infections. In addition, large data gaps were found in the decay of Campylobacter spp. in wastewater, indicating insufficient research on the persistence of Campylobacter spp. in wastewater.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jiahua Shi
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ananda Tiwari
- Department of Health Security, Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Finland
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaoyan Sun
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Lachlan Coin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Faisal Hai
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Australia.
| |
Collapse
|
2
|
Nwajuaku II, Agunwamba JC. Synergistic effects of bacterial consortium and thermal energy on treatment of sewage by waste stabilisation pond. MethodsX 2023; 11:102333. [PMID: 37663003 PMCID: PMC10470288 DOI: 10.1016/j.mex.2023.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
The low rates of biodegradation of organic pollutants in wastewater have been attributed to the daily fluctuation of temperatures, which affects microbial metabolism and activities in reactors. This work aimed to develop a method to degrade sewage pollutants using a synergistic effect of bacterial consortium and thermal energy, while a grey concrete pond served as the control. The results demonstrated that the temperature profile of ICCP showed that all through the experiment, the temperature was above 25 °C, which is a suitable temperature for mesophilic bacterial growth. A properly-stabilised effluent was achieved by the ICCP with a low biodegradation index between 0.11 and 0.14. The values of BOD (95%) and COD (74%) removal efficiencies were obtained at a 10-day retention time in ICCP, which is in accordance with standard of the United State Environmental protection Agency. Moreover, a comparison between a control and ICCP revealed that the latter emits heat energy 30% higher than the first. The temperature of 30 °C (dark) and 30.8 °C (light) produced a BOD removal > 90%. Therefore, this method could be considered to bridge the gap in daily fluctuation of temperature for enhanced biodegradation.•Designing of a thermal coated concrete pond to investigate their thermal performance during the dark and light condition•Bioremediation test for selection of mixed bacteria strain of high degradation potential used as inoculum•A detention time of 10 days under natural sunlight used for investigation for concentration balance of organic pollutant.
Collapse
Affiliation(s)
- Ijeoma I. Nwajuaku
- Department of Civil Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Jonah C. Agunwamba
- Department of Civil Engineering, Faculty of Engineering, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
3
|
Hotte H, Neveux MS, Ollivier F, Mariette N, Folcher L, Le Roux AC. Can quarantine plant-parasitic nematodes within wastes be managed by useful tools in a circular economy approach? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116184. [PMID: 36108509 DOI: 10.1016/j.jenvman.2022.116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Seen as an integral part of sustainable development, circular economy represents a model of production and consumption notably based on the limitation of both resource wastage and environmental impact. Laboratories and commercial companies working on plant pathogens, in particular quarantine species, must effectively disinfect their waste to avoid disseminating these organisms. The methods used for waste disinfection can however incur high energy costs or pose environmental and human health hazards. Here, we tested the effectiveness of five disinfection methods - chlorination, heat treatment, composting, mesophilic methanation and waste stabilization ponds - on plant-parasitic nematodes belonging to the genera Globodera and Meloidogyne. For the widely used chlorination and heat treatment methods, we showed that they can be very effective in inactivating nematodes at relatively low chlorine doses and temperatures (60 °C-3 min and 50 °C-30 min), respectively. For the three other disinfection methods tested, initially designed for waste recycling, we obtained different levels of efficiency. Composting and mesophilic methanation (based on cattle or pig slurry) both led to the complete elimination of nematodes, even for short treatment durations. However, waste stabilization ponds showed contrasting results, ranging from virtually no effect to high levels of inactivation of nematodes. Our study demonstrates that it is possible to use more environmentally friendly disinfection methods to control plant-parasitic nematodes. In particular, this finding paves the way towards the treatment of infected plant materials using composting or methanation, providing that disinfection is still reached under other (real-life) treatment conditions, especially with other kinds of waste. Both composting and methanation recycle and thus valorize infected waste; they are viable alternatives to landfilling or incineration, thereby demonstrating the usefulness of a circular economy approach.
Collapse
Affiliation(s)
- Hoël Hotte
- ANSES, Plant Health Laboratory, Nematology Unit, Domaine de la Motte Au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| | - Marie-Sophie Neveux
- FN3PT/inov3PT, INRAe-UMR IGEPP, Domaine de la Motte Au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| | - Fabrice Ollivier
- ANSES, Plant Health Laboratory, Nematology Unit, Domaine de la Motte Au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| | - Nicolas Mariette
- ANSES, Plant Health Laboratory, Nematology Unit, Domaine de la Motte Au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| | - Laurent Folcher
- ANSES, Plant Health Laboratory, Nematology Unit, Domaine de la Motte Au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| | - Anne-Claire Le Roux
- FN3PT/inov3PT, INRAe-UMR IGEPP, Domaine de la Motte Au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| |
Collapse
|
4
|
Espinosa MF, Verbyla ME, Vassalle L, Leal C, Leroy-Freitas D, Machado E, Fernandes L, Rosa-Machado AT, Calábria J, Chernicharo C, Mota Filho CR. Reduction and liquid-solid partitioning of SARS-CoV-2 and adenovirus throughout the different stages of a pilot-scale wastewater treatment plant. WATER RESEARCH 2022; 212:118069. [PMID: 35077942 PMCID: PMC8759026 DOI: 10.1016/j.watres.2022.118069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 05/04/2023]
Abstract
Investigating waterborne viruses is of great importance to minimizing risks to public health. Viruses tend to adsorb to sludge particles from wastewater processes by electrostatic and hydrophobic interactions between virus, aquatic matrix, and particle surface. Sludge is often re-used in agriculture; therefore, its evaluation is also of great interest to public health. In the present study, a pilot scale system treating real domestic wastewater from a large city in Brazil was used to evaluate the removal, the overall reduction, and liquid-solid partitioning of human adenovirus (HAdV), the novel coronavirus (SARS-CoV-2) and fecal indicators (F-specific coliphages and E. coli). The system consists of a high-rate algal pond (HRAP) post-treating the effluent of an upflow anaerobic sludge blanket (UASB) reactor. Samples were collected from the influent and effluent of each unit, as well as from the sludge of the UASB and from the microalgae biomass in the HRAP. Pathogens and indicators were quantified by quantitative polymerase chain reaction (qPCR) (for HAdV), qPCR with reverse transcription (RTqPCR) (for SARS-CoV-2), the double agar plaque assay (for coliphages), and the most probable number (MPN) method (for E. coli). The removal and overall reduction of HAdV and SARS-CoV-2 was greater than 1-log10. Almost 60% of remaining SARS-CoV-2 RNA and more than 70% of remaining HAdV DNA left the system in the sludge, demonstrating that both viruses may have affinity for solids. Coliphages showed a much lower affinity to solids, with only 3.7% leaving the system in the sludge. The system performed well in terms of the removal of organic matter and ammoniacal nitrogen, however tertiary treatment would be necessary to provide further pathogen reduction, if the effluent is to be reused in agriculture. To our knowledge, this is the first study that evaluated the reduction and partitioning of SARS-CoV-2 and HAdV through the complete cycle of a wastewater treatment system consisting of a UASB reactor followed by HRAPs.
Collapse
Affiliation(s)
| | | | - Lucas Vassalle
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Cintia Leal
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Elayne Machado
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luyara Fernandes
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Juliana Calábria
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Carlos Chernicharo
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | |
Collapse
|
5
|
Pathogens Removal in a Sustainable and Economic High-Rate Algal Pond Wastewater Treatment System. SUSTAINABILITY 2021. [DOI: 10.3390/su132313232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study evaluates the efficiency of a sustainable technology represented in an integrated pilot-scale system, which includes a facultative pond (FP), a high-rate algal pond (HRAP), and a rock filter (RF) for wastewater treatment to produce water that complies with the Egyptian standards for treated wastewater reuse. Still, limited data are available on pathogen removal through HRAP systems. Thus, in this study, the performance of the integrated system was investigated for the removal of Escherichia coli (E. coli), coliform bacteria, eukaryotic pathogens (Cryptosporidium spp., Giardia intestinalis, and helminth ova), somatic coliphages (SOMCPH), and human adenovirus (HAdV). Furthermore, physicochemical parameters were determined in order to evaluate the performance of the integrated system. The principal component analysis and non-metric multidimensional scaling analysis showed a strong significant effect of the integrated system on changing the physicochemical and microbial parameters from inlet to outlet. The mean log10 removal values for total coliform, fecal coliform, and E. coli were 5.67, 5.62, and 5.69, respectively, while 0.88 log10 and 1.65 log10 reductions were observed for HAdV and SOMCPH, respectively. The mean removal of Cryptosporidium spp. and Giardia intestinalis was 0.52 and 2.42 log10, respectively. The integrated system achieved 100% removal of helminth ova. The results demonstrated that the system was able to improve the chemical and microbial characteristics of the outlet to acceptable levels for non-food crops irrigation. Such findings together with low operation and construction costs of HRAPs should facilitate wider implementation of these nature-based systems in remote and rural communities. Overall, this study provides a novel insight into the performance of such systems to eliminate multiple microbial pathogens from wastewater.
Collapse
|
6
|
Dahl NW, Woodfield PL, Simpson BAF, Stratton HM, Lemckert CJ. Effect of turbulence, dispersion, and stratification on Escherichia coli disinfection in a subtropical maturation pond. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112470. [PMID: 33823449 DOI: 10.1016/j.jenvman.2021.112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Sunlight disinfection is important for treatment of wastewater within maturation ponds. This study analyses the movement of Escherichi coli within a slice of a maturation pond, being affected by stratification, sunlight attenuation and mixing driven by wind shear and natural convection using computational fluid dynamics (CFD). Since the exposure to ultraviolet light is most effective in the near-surface region of the pond, natural convective mixing mechanisms to transport the pathogens from the lower parts of the pond are critical for disinfection efficacy. Different turbulence models are considered for closure of the momentum conservation equations and compared with a laminar flow simulation and a completely stirred tank reactor (CSTR) model. The effect of turbulence and stratification is shown to be significant for thermal and velocity distributions, and predictions of E. coli die-off. Greater volume-averaged E. coli die-off was predicted by the computationally convenient CSTR model than the CFD turbulence and laminar models. The simulation results are compared with experimental data and show that complete vertical mixing occurs in a diurnal pattern aiding die-off in sunlight-attenuating water. Practical applications of the model can assist in management strategies for maturation ponds such as off-take locations/times and evaluating seasonal variations in sunlight disinfection.
Collapse
Affiliation(s)
- Nick W Dahl
- School of Engineering & Built Environment, Griffith University, Gold Coast, 4222, Australia.
| | - Peter L Woodfield
- School of Engineering & Built Environment, Griffith University, Gold Coast, 4222, Australia.
| | - Ben A F Simpson
- School of Science & Technology, Nottingham Trent University, UK.
| | - Helen M Stratton
- School of Engineering & Built Environment, Griffith University, Gold Coast, 4222, Australia.
| | - Charles J Lemckert
- School of Design and the Built Environment, University of Canberra, 2617, Australia.
| |
Collapse
|
7
|
Bastaraud A, Cecchi P, Handschumacher P, Altmann M, Jambou R. Urbanization and Waterborne Pathogen Emergence in Low-Income Countries: Where and How to Conduct Surveys? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020480. [PMID: 31940838 PMCID: PMC7013806 DOI: 10.3390/ijerph17020480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
Abstract
A major forthcoming sanitary issue concerns the apparition and spreading of drug-resistant microorganisms, potentially threatening millions of humans. In low-income countries, polluted urban runoff and open sewage channels are major sources of microbes. These microbes join natural microbial communities in aquatic ecosystems already impacted by various chemicals, including antibiotics. These composite microbial communities must adapt to survive in such hostile conditions, sometimes promoting the selection of antibiotic-resistant microbial strains by gene transfer. The low probability of exchanges between planktonic microorganisms within the water column may be significantly improved if their contact was facilitated by particular meeting places. This could be specifically the case within biofilms that develop on the surface of the myriads of floating macroplastics increasingly polluting urban tropical surface waters. Moreover, as uncultivable bacterial strains could be involved, analyses of the microbial communities in their whole have to be performed. This means that new-omic technologies must be routinely implemented in low- and middle-income countries to detect the appearance of resistance genes in microbial ecosystems, especially when considering the new ‘plastic context.’ We summarize the related current knowledge in this short review paper to anticipate new strategies for monitoring and surveying microbial communities.
Collapse
Affiliation(s)
- Alexandra Bastaraud
- Laboratoire d’Hygiène des Aliments et de l’Environnement, Institut Pasteur de Madagascar, BP 1274, Antananarivo 101, Madagascar;
| | - Philippe Cecchi
- MARBEC (IRD, IFREMER, UM2 and CNRS), University Montpellier, 34095 Montpellier, France;
- Centre de Recherche Océanologique (CRO), Abidjan BPV 18, Ivory Coast
| | - Pascal Handschumacher
- IRD UMR 912 SESSTIM, INSERM-IRD-Université de Marseille II, 13000 Marseille, France;
| | - Mathias Altmann
- ISPED Université Victor Segalen Bordeaux II, 146 rue Leo Saignat, 33076 Bordeaux cedex, France;
| | - Ronan Jambou
- Département de Parasitologie et des insectes vecteurs, Institut Pasteur Paris, 75015 Paris, France
- Correspondence: ; Tel.: +33-622-10-72-96
| |
Collapse
|
8
|
Rapid assessment of viral water quality using a novel recombinase polymerase amplification test for human adenovirus. Appl Microbiol Biotechnol 2019; 103:8115-8125. [PMID: 31435714 DOI: 10.1007/s00253-019-10077-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
Sensitive and rapid methods for determining viral contamination of water are critical, since illness can be caused by low numbers of viruses and bacterial indicators do not adequately predict viral loads. We developed novel rapid assays for detecting the viral water quality indicator human adenovirus (HAdV). A simple 15-min recombinase polymerase amplification step followed by a 5-min lateral flow detection is used. Species-specific assays were developed to discriminate HAdV A, B, C and F, and combined into a multiplex test (Ad-FAC). Species-specific assays enabled detection of 10-50 copies of the HAdV plasmid. Sample testing using methods optimised for wastewater analysis indicated the Ad-FAC assay showed 100% sensitivity and 100% specificity when compared with HAdV qPCR, with a detection limit as low as 50 gene copies. This is the first study to demonstrate the use of RPA for detecting enteric viruses in water samples, to assess virological water quality. The ability to rapidly detect enteric virus contamination of water could assist in more effective management of water safety and better protection of public health.
Collapse
|
9
|
Rames E, Macdonald J. The QuantiPhage assay: A novel method for the rapid colorimetric detection of coliphages using cellulose pad materials. WATER RESEARCH 2019; 149:98-110. [PMID: 30423504 DOI: 10.1016/j.watres.2018.10.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/23/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
Assessment of viral contamination is essential for monitoring the microbial quality of water and protection of public health, as human virus presence is not accurately determined using bacterial indicators. Currently, the time required for conventional viral testing means that water contaminated with human pathogens may be used (e.g. for drinking, recreation or irrigation) days before results are available. Here we report a new rapid method for coliphage enumeration, the QuantiPhage (QP) assay. The novelty of the assay is the use of cellulose absorbent pad materials to support coliphage growth and colorimetric detection, in place of agar that is used in the plaque assay. In addition to saving time associated with agar preparation and tempering, the QP assay enabled enumeration of somatic coliphages in 1.5-2 h and F+ coliphages in 2.5-3 h. The assays were highly sensitive, with a lower detection limit of 1 plaque forming unit (PFU) per mL where 1 mL sample volumes were analysed, and 1 PFU per 10 mL where 10 mL sample volumes were analysed. This is the first rapid culture assay to enable low numbers of coliphages to be reliably detected and to produce directly equivalent results to agar-based plaque assays. A novel gelatin-immobilisation method is also reported, that reduces time to prepare bacterial cells from ∼20 h to 40-60 min (depending on the assay format), and provides a ready to use form of cells, that is compatible with rapid detection and kit formats. When applied to analysis of somatic coliphages in wastewater samples and surface water samples, mean differences in results of the QP assay and the conventional plaque assay were not statistically significant (mean difference ≤ 0.15 log10 PFU/L and 0.5 PFU/10 mL respectively, P > 0.05). The QP is a valuable tool for assessing microbial water quality, which may assist in improving the management of water resources.
Collapse
Affiliation(s)
- Emily Rames
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia; School of Natural Sciences, Griffith University, Nathan, Queensland, Australia; Future Biosolutions Pty Ltd, Buddina, Queensland, Australia.
| | - Joanne Macdonald
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia; Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, USA
| |
Collapse
|
10
|
Fate of Fecal Indicators in Resource-Oriented Sanitation Systems Using Nitrifying Bio-Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15010164. [PMID: 29361680 PMCID: PMC5800263 DOI: 10.3390/ijerph15010164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 11/30/2022]
Abstract
Hygienic fecal treatment in resource-oriented sanitation (ROS) systems is an important concern. Although the addition of nitrifying microorganisms is a sustainable fecal treatment method in ROS systems, it is essential to examine the cleanliness of this method. In this study, we investigated the fate of fecal indicators in source-separated fecal samples through tracking Escherichia coli and total coliforms. The effects of adding different amounts of Nitrosomonas europaea bio-seed, along with a constant amount of Nitrobacter winogradskyi bio-seed, were studied. In intact feces samples, the pathogen population underwent an initial increase, followed by a slight decrease, and eventually became constant. Although the addition of nitrifying microorganisms initially enhanced the pathogen growth rate, it caused the reduction process to become more efficient in the long-term. In addition to a constant concentration of 10,000 cells of N. winogradskyi per 1 g feces, a minimum amount of 3000 and 7000 cells of N. europaea per 1 g feces could completely remove E. coli and total coliforms, respectively, in less than 25 days. Increasing the amount of bio-seeds added can further reduce the time required for total pathogen removal.
Collapse
|
11
|
Ecological and Public Health Implications of the Discharge of Multidrug-Resistant Bacteria and Physicochemical Contaminants from Treated Wastewater Effluents in the Eastern Cape, South Africa. WATER 2017. [DOI: 10.3390/w9080562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Dahl NW, Woodfield PL, Lemckert CJ, Stratton H, Roiko A. A practical model for sunlight disinfection of a subtropical maturation pond. WATER RESEARCH 2017; 108:151-159. [PMID: 27871746 DOI: 10.1016/j.watres.2016.10.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Maturation ponds are a type of waste stabilisation pond (WSP) designed to reduce carbon, nutrients and pathogens in the final stages of a WSP wastewater treatment system. In this study, a one-dimensional plug-flow pond model is proposed to predict temperature and E. coli concentration distributions and overall pond disinfection performance. The model accounts for the effects of vertical mixing and ultraviolet light-dependent die-off rate kinetics. Measurements of radiation, wind-speed, humidity and air temperature are recorded for model inputs and good agreement with measured vertical temperature distributions and outlet E. coli concentrations is found in an operational, subtropical maturation pond. Measurements and the model both show a diurnal pattern of stratification during daylight hours and natural convective mixing at night on days corresponding to low wind speeds, strong heat input from solar radiation and clear night skies. In the evenings, the thermal stratification is shown to collapse due to surface energy loss via longwave radiation which triggers top-down natural convective mixing. The disinfection model is found to be sensitive to the choice of die-off kinetics. The diurnal mixing pattern is found to play a vital role in the disinfection process by ensuring that pathogens are regularly transported to the near-surface layer where ultraviolet light penetration is effective. The model proposed in this paper offers clear advantages to pond designers by including geographical specific, time-varying boundary conditions and accounting for the important physical aspects of vertical mixing and sunlight inactivation processes, yet is computationally straightforward.
Collapse
Affiliation(s)
- N W Dahl
- Griffith School of Engineering, Griffith University, Gold Coast, Queensland, Australia.
| | - P L Woodfield
- Griffith School of Engineering, Griffith University, Gold Coast, Queensland, Australia.
| | - C J Lemckert
- Griffith School of Engineering, Griffith University, Gold Coast, Queensland, Australia; Smartwater Research Centre, Griffith University, Gold Coast Campus, Edmund Rice Drive, Southport, Queensland, 4215, Australia.
| | - H Stratton
- Smartwater Research Centre, Griffith University, Gold Coast Campus, Edmund Rice Drive, Southport, Queensland, 4215, Australia; School of Natural Sciences, Griffith University, Nathan Campus, 170 Kessels Road, Nathan, Queensland, 4111, Australia.
| | - A Roiko
- Smartwater Research Centre, Griffith University, Gold Coast Campus, Edmund Rice Drive, Southport, Queensland, 4215, Australia; School of Medicine, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland, 4222, Australia.
| |
Collapse
|