1
|
Acevedo JM, Kahn LG, Pierce KA, Carrasco A, Rosenberg MS, Trasande L. Temporal and geographic variability of bisphenol levels in humans: A systematic review and meta-analysis of international biomonitoring data. ENVIRONMENTAL RESEARCH 2025; 264:120341. [PMID: 39522874 DOI: 10.1016/j.envres.2024.120341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Bisphenols are endocrine-disrupting chemicals known to contribute to chronic disease across the lifespan. With increased awareness of their health effects, changes in regulation and health behaviors have contributed to reductions in urinary bisphenol A (BPA) levels in the United States, Canada, and Europe. However, global trends in bisphenols outside these regions, especially bisphenol S (BPS) exposure, have been less studied. AIM We examine trends in urinary BPA and BPS concentration in non-occupationally exposed populations, where representative data at a country level is unavailable. METHODS We systematically reviewed studies published between 2000 and 2023 that included urinary bisphenol concentrations. We examined BPA and BPS concentration changes by sampling year, controlling for region, age, and pregnancy status, with and without a quadratic term and geometric mean, via mixed-effects meta-regression models with a random intercept and sensitivity analysis. We identified heterogeneity using Cochran's Q-statistic, I2 index, and funnel plots. RESULTS The final analytic sample consisted of 164 studies. We observed positive non-linear associations between time and BPA concentration internationally (beta: 0.02 ng/mL/year2, 95% CI: [0.01, 0.03]) and in Eastern and Pacific Asia (beta: 0.03 ng/mL/year2, 95% CI: [0.02, 0.05]). We also observed non-linear associations of time with both BPA and BPS concentrations in the Middle East and South Asia (beta: 0.13 ng/mL/year2, 95% CI: [0.01, 0.25] and beta: 0.29 ng/mL/year2, 95% CI: [-0.50, -0.08], respectively). In the sensitivity analyses excluding studies with geometric or arithmetic mean values, each displayed significant shifts from the main findings with some consistent outcomes occurring internationally and/or in specific regions. Heterogeneity was high across studies, suggesting possible bias in our estimations. CONCLUSIONS Our findings provide evidence for concern about increasing population exposure to BPA and BPS. Further studies estimating attributable disease burden and costs at regional and global levels are warranted to show these chemicals' impact on population health and economies.
Collapse
Affiliation(s)
- Jonathan M Acevedo
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
| | - Linda G Kahn
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Kristyn A Pierce
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Anna Carrasco
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Wagner School of Public Service, New York University, New York, NY, USA
| |
Collapse
|
2
|
Long F, Ren Y, Ji Y, Bai X, Li H, Wang G, Yan X, Chen Y, Li J, Zhang H, Gao R, Bi F, Wu Z. The characteristics of phthalate acid esters and bisphenol A in PM 2.5 of a petrochemical city: Concentrations, compositions, and health risk assessment in Dongying. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125568. [PMID: 39710181 DOI: 10.1016/j.envpol.2024.125568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Phthalate acid esters (PAEs) and bisphenol A (BPA) are recognized as common endocrine disruptors associated with various adverse effects on human health. However, limitations in existing systematic studies, particularly in air detection, have raised concerns about potential health risks from inhalation exposure. In this study, PM2.5 samples were collected in Dongying, a petrochemical city, from October 27 to December 6, 2021. The concentrations and compositions of PAEs and BPA in PM2.5 were analyzed, and health risks associated with inhalation exposure were assessed. The hazard index (HI) and cancer risk (CR) were calculated according to EPA standard methods for both adults and children. The mean concentrations of PAEs and BPA were determined to be 1152 and 3.7 ng/m3, respectively. BPA concentrations were found to increase during heating, whereas PAE concentrations were observed to decrease slightly. Diisobutyl phthalate (DiBP), a major PAE, was reduced by approximately 20% during heating. However, 1,4-dimethylphthalazine (DMP) and bis(2-ethylhexyl) phthalate (DEHP) were observed to increase from 4.2 to 14% and from 5.9 to 11%, respectively. It is hypothesized that variations in the concentrations and compositions of airborne PAEs and BPA were influenced by district heating. An increase in the percentage of DEHP in PM2.5 was noted on polluted days, likely influenced by saturated vapor pressure. The estimated daily intake (EDI) for children was calculated to be higher than that for adults, indicating that children were exposed to significantly greater potential risks, although overall risks were observed to be low. The results of this study provide essential baseline data, such as concentration, for the management and control of emerging pollutants like endocrine disruptors in the urban atmosphere.
Collapse
Affiliation(s)
- Fangyun Long
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Yanqin Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China.
| | - Yuanyuan Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Xurong Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China; Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of Ministry of Education of China, School of Geographic Sciences, East China Normal University, Shanghai, 200142, China
| | - Xiaoyu Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Yubao Chen
- Key Lab of Geographic Information Science of Ministry of Education of China, School of Geographic Sciences, East China Normal University, Shanghai, 200142, China
| | - Junling Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Haijie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Rui Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Fang Bi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Zhenhai Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| |
Collapse
|
3
|
Salami EA, Rotimi OA. The impact of Bisphenol-A on human reproductive health. Toxicol Rep 2024; 13:101773. [PMID: 39526236 PMCID: PMC11550589 DOI: 10.1016/j.toxrep.2024.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenol-A (BPA) is a recognized endocrine-disrupting chemical used to produce several consumer goods and products. There has been widespread exposure to BPA because of increased industrial production and use of BPA-containing products. As a result of these exposures, BPA is found in several human body fluids and can cause endocrine disruption by interfering with hormone signaling pathways and epigenetic modifications. Therefore, human reproductive health and development have been adversely affected by BPA. This review aimed to consolidate existing knowledge on the impact of BPA on human reproductive health, examining its effects on both males and females. To achieve this, we systematically searched four databases for studies that associated BPA with reproductive health (male and female), after which we retrieved the important information from the selected articles. There was an association of reproductive health diseases with high BPA exposure. In males, BPA was associated with increased sperm alterations, altered reproductive hormone levels, and testicular atrophy. In females, there was an association of BPA exposure with hormonal imbalances, reduced ovarian reserve, and increased likelihood of conditions such as fibroids, polycystic ovarian syndrome, endometriosis and infertility. BPA's pervasive presence and its harmful effects on reproductive health underscore the need for global regulation and public awareness. Although substantial evidence from animal and in vitro studies supports the detrimental effects of BPA, there is a need for more human-focused research, particularly in developing countries, to confirm these findings. This review advocates for increased regulatory measures to limit BPA exposure.
Collapse
Affiliation(s)
- Esther A. Salami
- Department of Biochemistry, Covenant University, Ogun State, Nigeria
| | | |
Collapse
|
4
|
Hong Z, Xu Y, Wu J. Bisphenol A: Epigenetic effects on the male reproductive system and male offspring. Reprod Toxicol 2024; 129:108656. [PMID: 39004383 DOI: 10.1016/j.reprotox.2024.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Bisphenol A (BPA) is a commonly used organic compound. Over the past decades, many studies have examined the mechanisms of BPA toxicity, with BPA-induced alterations in epigenetic modifications receiving considerable attention. Particularly in the male reproductive system, abnormal alterations in epigenetic markers can adversely affect reproductive function. Furthermore, these changes in epigenetic markers can be transmitted to offspring through the father. Here, we review the effects of BPA exposure on various epigenetic markers in the male reproductive system, including DNA methylation, histone modifications, and noncoding RNA, as well as associated changes in the male reproductive function. We also reviewed the effects of father's exposure to BPA on offspring epigenetic modification patterns.
Collapse
Affiliation(s)
- Zhilin Hong
- The center of clinical laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, PR China.
| | - Yingpei Xu
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, PR China
| | - Jinxiang Wu
- Department of reproductive medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, PR China.
| |
Collapse
|
5
|
Ricker K, Cheng V, Hsieh CJ, Tsai FC, Osborne G, Li K, Yilmazer-Musa M, Sandy MS, Cogliano VJ, Schmitz R, Sun M. Application of the Key Characteristics of Carcinogens to Bisphenol A. Int J Toxicol 2024; 43:253-290. [PMID: 38204208 DOI: 10.1177/10915818231225161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The ten key characteristics (KCs) of carcinogens are based on characteristics of known human carcinogens and encompass many types of endpoints. We propose that an objective review of the large amount of cancer mechanistic evidence for the chemical bisphenol A (BPA) can be achieved through use of these KCs. A search on metabolic and mechanistic data relevant to the carcinogenicity of BPA was conducted and web-based software tools were used to screen and organize the results. We applied the KCs to systematically identify, organize, and summarize mechanistic information for BPA, and to bring relevant carcinogenic mechanisms into focus. For some KCs with very large data sets, we utilized reviews focused on specific endpoints. Over 3000 studies for BPA from various data streams (exposed humans, animals, in vitro and cell-free systems) were identified. Mechanistic data relevant to each of the ten KCs were identified, with receptor-mediated effects, epigenetic alterations, oxidative stress, and cell proliferation being especially data rich. Reactive and bioactive metabolites are also associated with a number of KCs. This review demonstrates how the KCs can be applied to evaluate mechanistic data, especially for data-rich chemicals. While individual entities may have different approaches for the incorporation of mechanistic data in cancer hazard identification, the KCs provide a practical framework for conducting an objective examination of the available mechanistic data without a priori assumptions on mode of action. This analysis of the mechanistic data available for BPA suggests multiple and inter-connected mechanisms through which this chemical can act.
Collapse
Affiliation(s)
- Karin Ricker
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vanessa Cheng
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Chingyi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meltem Yilmazer-Musa
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vincent J Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
6
|
Deng X, Liang S, Tang Y, Li Y, Xu R, Luo L, Wang Q, Zhang X, Liu Y. Adverse effects of bisphenol A and its analogues on male fertility: An epigenetic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123393. [PMID: 38266695 DOI: 10.1016/j.envpol.2024.123393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
In recent years, there has been growing concern about the adverse effects of endocrine disrupting chemicals (EDCs) on male fertility. Epigenetic modification is critical for male germline development, and has been suggested as a potential mechanism for impaired fertility induced by EDCs. Bisphenol A (BPA) has been recognized as a typical EDC. BPA and its analogues, which are still widely used in various consumer products, have garnered increasing attention due to their reproductive toxicity and the potential to induce epigenetic alteration. This literature review provides an overview of studies investigating the adverse effects of bisphenol exposures on epigenetic modifications and male fertility. Existing studies provide evidence that exposure to bisphenols can lead to adverse effects on male fertility, including declined semen quality, altered reproductive hormone levels, and adverse reproductive outcomes. Epigenetic patterns, including DNA methylation, histone modification, and non-coding RNA expression, can be altered by bisphenol exposures. Transgenerational effects, which influence the fertility and epigenetic patterns of unexposed generations, have also been identified. However, the magnitude and direction of certain outcomes varied across different studies. Investigations into the dynamics of histopathological and epigenetic alterations associated with bisphenol exposures during developmental stages can enhance the understanding of the epigenetic effects of bisphenols, the implication of epigenetic alteration on male fertility, and the health of successive generation.
Collapse
Affiliation(s)
- Xinyi Deng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Sihan Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuqian Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lu Luo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
8
|
Crafa A, Leanza C, Condorelli RA, La Vignera S, Calogero AE, Cannarella R. Relationship between degree of methylation of sperm long interspersed nuclear element-1 (LINE-1) gene and alteration of sperm parameters and age: a meta-regression analysis. J Assist Reprod Genet 2024; 41:87-97. [PMID: 37921972 PMCID: PMC10789695 DOI: 10.1007/s10815-023-02980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2023] Open
Abstract
INTRODUCTION The long interspersed nuclear element-1 (LINE1) gene is a retrotransposon whose methylation status appears to play a role in spermatogenesis, the outcome of assisted reproductive techniques (ART), and even in recurrent pregnancy loss (RPL). Advanced paternal age appears associated with altered sperm parameters, RPL, poor ART outcomes, and compromised offspring health. The methylation status of LINE1 has been reported to be affected by age. The latest meta-analysis on the LINE1 methylation pattern in spermatozoa found no significant differences in methylation levels between infertile patients and fertile controls. However, to the best of our knowledge, no updated meta-analysis on this topic has been published recently. Furthermore, no comprehensive meta-regression analysis was performed to investigate the association between sperm LINE1 methylation pattern and age. OBJECTIVES To provide an updated and comprehensive systematic review and meta-analysis on sperm LINE1 gene methylation degree in patients with abnormal sperm parameters compared to men with normal sperm parameters and to probe the association between sperm LINE1 methylation status and age and/or sperm concentration. METHODS This meta-analysis was registered in PROSPERO (registration n. CRD42023397056). It was performed according to the MOOSE guidelines for Meta-analyses and Systematic Reviews of Observational Studies and the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols (PRISMA-P). Only original articles evaluating LINE1 gene methylation in spermatozoa from patients with infertility or abnormalities in one or more sperm parameters compared to fertile or normozoospermic men were included. RESULTS Of 192 abstracts evaluated for eligibility, only 5 studies were included in the quantitative synthesis, involving a total of 340 patients and 150 controls. Our analysis showed no significant difference in LINE1 gene methylation degree in patients with infertility and/or abnormal sperm parameters compared to fertile controls and/or men with normal sperm parameters, although there was significant heterogeneity across studies. No significant evidence of publication bias was found, and no study was sensitive enough to alter the results. In meta-regression analysis, we found that the results were independent of both ages and sperm concentration. A sub-analysis examining patients and controls separately was also conducted and we found a trend for a positive correlation between LINE1 methylation and sperm concentration in the control group only. CONCLUSIONS The results of this systematic review and meta-analysis do not suggest a determining role of sperm LINE1 gene methylation degree in patients with infertility and/or abnormal sperm parameters. Therefore, we do not suggest including LINE1 in the genetic panel of prospective studies aimed at identifying the most representative and cost-effective genes to be analyzed in couples undergoing ART cycles.
Collapse
Affiliation(s)
- Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Claudia Leanza
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
9
|
Mishra A, Goel D, Shankar S. Bisphenol A contamination in aquatic environments: a review of sources, environmental concerns, and microbial remediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1352. [PMID: 37861868 DOI: 10.1007/s10661-023-11977-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
The production of polycarbonate, a high-performance transparent plastic, employs bisphenol A, which is a prominent endocrine-disrupting compound. Polycarbonates are frequently used in the manufacturing of food, bottles, storage containers for newborns, and beverage packaging materials. Global production of BPA in 2022 was estimated to be in the region of 10 million tonnes. About 65-70% of all bisphenol A is used to make polycarbonate plastics. Bisphenol A leaches from improperly disposed plastic items and enters the environment through wastewater from plastic-producing industries, contaminating, sediments, surface water, and ground water. The concentration BPA in industrial and domestic wastewater ranges from 16 to 1465 ng/L while in surface water it has been detected 170-3113 ng/L. Wastewater treatment can be highly effective at removing BPA, giving reductions of 91-98%. Regardless, the remaining 2-9% of BPA will continue through to the environment, with low levels of BPA commonly observed in surface water and sediment in the USA and Europe. The health effects of BPA have been the subject of prolonged public and scientific debate, with PubMed listing more than 17,000 scientific papers as of 2023. Bisphenol A poses environmental and health hazards in aquatic systems, affecting ecosystems and human health. While several studies have revealed its presence in aqueous streams, environmentally sound technologies should be explored for its removal from the contaminated environment. Concern is mostly related to its estrogen-like activity, although it can interact with other receptor systems as an endocrine-disrupting chemical. Present review article encompasses the updated information on sources, environmental concerns, and sustainable remediation techniques for bisphenol A removal from aquatic ecosystems, discussing gaps, constraints, and future research requirements.
Collapse
Affiliation(s)
- Anuradha Mishra
- Department of Applied Chemistry, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Divya Goel
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Shiv Shankar
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India.
| |
Collapse
|
10
|
Mai H, Ke J, Li M, He M, Qu Y, Jiang F, Cai S, Xu Y, Fu L, Pi L, Zhou H, Yu H, Che D, Gu X, Zhang J, Zuo L. Association of living environmental and occupational factors with semen quality in chinese men: a cross-sectional study. Sci Rep 2023; 13:15671. [PMID: 37735181 PMCID: PMC10514289 DOI: 10.1038/s41598-023-42927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023] Open
Abstract
Sperm quality can be easily influenced by living environmental and occupational factors. This study aimed to discover potential semen quality related living environmental and occupational factors, expand knowledge of risk factors for semen quality, strengthen men's awareness of protecting their own fertility and assist the clinicians to judge the patient's fertility. 465 men without obese or underweight (18.5 < BMI < 28.5 kg/m2), long-term medical history and history of drug use, were recruited between June 2020 to July 2021, they are in reproductive age (25 < age < 45 years). We have collected their semen analysis results and clinical information. Logistic regression was applied to evaluate the association of semen quality with different factors. We found that living environment close to high voltage line (283.4 × 106/ml vs 219.8 × 106/ml, Cohen d = 0.116, P = 0.030) and substation (309.1 × 106/ml vs 222.4 × 106/ml, Cohen d = 0.085, P = 0.015) will influence sperm count. Experienced decoration in the past 6 months was a significant factor to sperm count (194.2 × 106/ml vs 261.0 × 106/ml, Cohen d = 0.120, P = 0.025). Living close to chemical plant will affect semen PH (7.5 vs 7.2, Cohen d = 0.181, P = 0.001). Domicile close to a power distribution room will affect progressive sperm motility (37.0% vs 34.0%, F = 4.773, Cohen d = 0.033, P = 0.030). Using computers will affect both progressive motility sperm (36.0% vs 28.1%, t = 2.762, Cohen d = 0.033, P = 0.006) and sperm total motility (57.0% vs 41.0%, Cohen d = 0.178, P = 0.009). After adjust for potential confounding factors (age and BMI), our regression model reveals that living close to high voltage line is a risk factor for sperm concentration (Adjusted OR 4.03, 95% CI 1.15-14.18, R2 = 0.048, P = 0.030), living close to Chemical plants is a protective factor for sperm concentration (Adjusted OR 0.15, 95% CI 0.05-0.46, R2 = 0.048, P = 0.001) and total sperm count (Adjusted OR 0.36, 95% CI 0.13-0.99, R2 = 0.026, P = 0.049). Time spends on computer will affect sperm total motility (Adjusted OR 2.29, 95% CI 1.11-4.73, R2 = 0.041, P = 0.025). Sum up, our results suggested that computer using, living and working surroundings (voltage line, substation and chemical plants, transformer room), and housing decoration may association with low semen quality. Suggesting that some easily ignored factors may affect male reproductive ability. Couples trying to become pregnant should try to avoid exposure to associated risk factors. The specific mechanism of risk factors affecting male reproductive ability remains to be elucidated.
Collapse
Affiliation(s)
- Hanran Mai
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Junyi Ke
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Miaomiao Li
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Menghua He
- Department of Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yanxia Qu
- Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fan Jiang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - Simian Cai
- Department of Science, Education and Data Management, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hongyan Yu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jinxin Zhang
- Department of Medical Statistics, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
11
|
Presunto M, Mariana M, Lorigo M, Cairrao E. The Effects of Bisphenol A on Human Male Infertility: A Review of Current Epidemiological Studies. Int J Mol Sci 2023; 24:12417. [PMID: 37569791 PMCID: PMC10419136 DOI: 10.3390/ijms241512417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Endocrine disruptor chemicals (EDCs) can have a harmful effect on the human body's endocrine system and thus adversely affect the development, reproduction, neurological, cardiovascular, and immune systems and metabolism in humans and wildlife. According to the World Health Organization, EDCs are mostly man-made and found ubiquitously in our daily lives, notably in pesticides, metals, and additives or contaminants in food and personal care products. Human exposure occurs through ingestion, inhalation, and dermal contact. Bisphenol A (BPA) is a proven EDC capable of mimicking or blocking receptors and altering hormone concentrations and metabolism. Although consumed in low doses, it can stimulate cellular responses and affect the body's functions. In humans, exposure to BPA has been correlated with the onset or development of several diseases. This literature review aimed to verify the effects of BPA on human male infertility using the most recently published literature. Thus, this review allowed us to conclude that this compound seems to have harmful effects on human male fertility, causing changes in hormonal and semen characteristics. However, these conclusions lack more robust and reproducible scientific studies. Even so, and since male infertility prevalence is increasing, preventive measures must be taken to ensure male fertility.
Collapse
Affiliation(s)
- Mafalda Presunto
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (M.P.); (M.M.); (M.L.)
| | - Melissa Mariana
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (M.P.); (M.M.); (M.L.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Margarida Lorigo
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (M.P.); (M.M.); (M.L.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (M.P.); (M.M.); (M.L.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
12
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
13
|
Sharma P, Vishwakarma R, Varjani S, Gautam K, Gaur VK, Farooqui A, Sindhu R, Binod P, Awasthi MK, Chaturvedi P, Pandey A. Multi-omics approaches for remediation of bisphenol A: Toxicity, risk analysis, road blocks and research perspectives. ENVIRONMENTAL RESEARCH 2022; 215:114198. [PMID: 36063912 DOI: 10.1016/j.envres.2022.114198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/01/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In this "plastic era" with the increased use of plastic in day today's life the accumulation of its degraded products like microplastics or plastic additives such as Bisphenol A(BPA) is also increasing. BPA is an endocrine-disrupting chemical used as a plasticizing agent in clear plastic, building materials, coatings, and epoxy resin. Several enzymes including laccases and lipases have been studied for the reduction of BPA toxicity. Over the decades of encountering these toxicants, microorganisms have evolved to degrade different classes of plastic additives. Since the degradation of BPA is a long process thus meta-omics approaches have been employed to identify the active microbiota and microbial dynamics involved in the mitigation of BPA. It is also necessary to investigate the impact of processing activities on transit of BPA in food items and to limit its entrance in food world. This review summarizes a comprehensive overview on BPA sources, toxicity, bio-based mitigation approaches along with a deeper understanding of multi-omics approaches for its reduction and risk analysis. Knowledge gaps and opportunities have been comprehensively compiled that would aid the state-of-the-art information in the available literature for the researchers to further address this issue.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, 226 026, India
| | - Reena Vishwakarma
- Department of Bioengineering, Integral University, Lucknow, 226 026, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, India.
| | - Krishna Gautam
- Centre of Energy and Environmental Sustainability, Lucknow, 226 021, India
| | - Vivek K Gaur
- Centre of Energy and Environmental Sustainability, Lucknow, 226 021, India; School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, 226 026, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, 691 505, Kerala, India
| | - Parameswaran Binod
- CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A& F University, Yangling, Shaanxi Province, 712100, PR China
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ashok Pandey
- Centre of Energy and Environmental Sustainability, Lucknow, 226 021, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India
| |
Collapse
|
14
|
Manzoor MF, Tariq T, Fatima B, Sahar A, Tariq F, Munir S, Khan S, Nawaz Ranjha MMA, Sameen A, Zeng XA, Ibrahim SA. An insight into bisphenol A, food exposure and its adverse effects on health: A review. Front Nutr 2022; 9:1047827. [PMID: 36407508 PMCID: PMC9671506 DOI: 10.3389/fnut.2022.1047827] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 08/13/2023] Open
Abstract
Bisphenol A (BPA) is a synthetic chemical widely employed to synthesize epoxy resins, polymer materials, and polycarbonate plastics. BPA is abundant in the environment, i.e., in food containers, water bottles, thermal papers, toys, medical devices, etc., and is incorporated into soil/water through leaching. Being a potent endocrine disrupter, and has the potential to alter several body mechanisms. Studies confirmed its anti-androgen action and estrogen-like effects, which impart many negative health impacts, especially on the immune system, neuroendocrine process, and reproductive mechanism. Moreover, it can also induce mutagenesis and carcinogenesis, as per recent scientific research. This review focuses on BPA's presence and concentrations in different environments, food sources and the basic mechanisms of BPA-induced toxicity and health disruptions. It is a unique review of its type because it focuses on the association of cancer, hormonal disruption, immunosuppression, and infertility with BPA. These issues are widespread today, and BPA significantly contributes to their incidence because of its wide usage in daily life utensils and other accessories. The review also discusses researched-based measures to cope with the toxic chemical.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Birjees Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Farwa Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Seemal Munir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Aysha Sameen
- Department of Food Science and Technology, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
15
|
Rebuzzini P, Fabozzi G, Cimadomo D, Ubaldi FM, Rienzi L, Zuccotti M, Garagna S. Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction. Cells 2022; 11:cells11193163. [PMID: 36231124 PMCID: PMC9563050 DOI: 10.3390/cells11193163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
Environmental toxicants (ETs) are an exogenous chemical group diffused in the environment that contaminate food, water, air and soil, and through the food chain, they bioaccumulate into the organisms. In mammals, the exposure to ETs can affect both male and female fertility and their reproductive health through complex alterations that impact both gametogeneses, among other processes. In humans, direct exposure to ETs concurs to the declining of fertility, and its transmission across generations has been recently proposed. However, multi- and transgenerational inheritances of ET reprotoxicity have only been demonstrated in animals. Here, we review recent studies performed on laboratory model animals investigating the effects of ETs, such as BPA, phthalates, pesticides and persistent contaminants, on the reproductive system transmitted through generations. This includes multigenerational effects, where exposure to the compounds cannot be excluded, and transgenerational effects in unexposed animals. Additionally, we report on epigenetic mechanisms, such as DNA methylation, histone tails and noncoding RNAs, which may play a mechanistic role in a nongenetic transmission of environmental information exposure through the germline across generations.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| | - Gemma Fabozzi
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
| | - Danilo Cimadomo
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
| | | | - Laura Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Sant’Andrea 34, 61029 Urbino, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| |
Collapse
|
16
|
Brouard V, Drouault M, Elie N, Guénon I, Hanoux V, Bouraïma-Lelong H, Delalande C. Effects of bisphenol A and estradiol in adult rat testis after prepubertal and pubertal exposure. Reprod Toxicol 2022; 111:211-224. [PMID: 35700937 DOI: 10.1016/j.reprotox.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Over the past few decades, male fertility has been decreasing worldwide. Many studies attribute this outcome to endocrine disruptors exposure such as bisphenol A (BPA), which is a chemical compound used in plastics synthesis and exhibiting estrogenic activity. In order to assess how the window of exposure modulates the effects of BPA on the testis, prepubertal (15 dpp to 30 dpp) and pubertal (60 dpp to 75 dpp) male Sprague-Dawley rats were exposed to BPA (50 µg/kg bw/day), 17-β-estradiol (E2) (20 µg/kg bw/day) as a positive control, or to a combination of these compounds. For both periods of exposure, the rats were sacrificed and their testes were collected at 75 dpp. The histological analysis and the quantification of the gene expression of testis cell markers by RT-qPCR confirmed the complete spermatogenesis in all groups for both periods of exposure. However, our results suggest a deleterious effect of BPA on the blood-testis barrier in adults after pubertal exposure as BPA and BPA+E2 treatments induced a decrease in caveolin-1 and connexin-43 gene expression; which are proteins of the junctional complexes. As none of these effects were found after a prepubertal exposure, these results suggested the reversibility of BPA's effects. Caution must be taken when transposing this finding to humans and further studies are needed in this regard. However, from a regulatory perspective, this study emphasizes the importance of taking into account different periods of exposure, as they present different sensitivities to BPA exposure.
Collapse
Affiliation(s)
| | | | - Nicolas Elie
- Normandie Univ, UNICAEN, SF 4206 ICORE, CMABIO3, 14000 Caen, France
| | | | | | | | | |
Collapse
|
17
|
Chen D, Zhao X, Huang F, Guan X, Tian J, Ji M, Wen X, Shao J, Xie J, Wang J, Chen H. Pubertal Bisphenol A exposure increases adult rat serum testosterone by resetting pituitary homeostasis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118764. [PMID: 34973380 DOI: 10.1016/j.envpol.2021.118764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/07/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) is widely used by manufacturers and in consumer products. Its release in the environment may affect male reproductive function. In this study, we examined the effect of low dose (0.1 mg/kg BW), short term exposure during puberty (PD21-35) on adult rat male reproduction. The results indicated that such exposure reset growth hormone (GH) and follicular stimulating hormone (FSH) homeostasis and resulted in a significantly higher level of serum testosterone without affecting serum luteinizing hormone level. QPCR and Western blot results showed that BPA significantly up-regulated selective genes/proteins in the Leydig cell steroidogenic pathway, including steroidogenic acute regulatory protein, cytochrome P450 11A1, cytochrome P450 17A, and low-density lipoprotein receptor. RNA-Seq analysis of testicular RNAs showed that BPA significantly affected the gene profiles of multiple testicular interstitial populations without affecting germ cells. Also, GO- and KEGG-analysis suggested that IGF1-related PI3K/AKT signaling was activated, which was confirmed by the increased phosphorylation of IRS1, AKT1 and CREB. The results indicated that a low-dose, short-term BPA exposure during puberty affected the adult male rat pituitary (GH and FSH) and testis (testosterone) homeostasis.
Collapse
Affiliation(s)
- Dan Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xingyi Zhao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fu Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoju Guan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jing Tian
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Minpeng Ji
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jingjing Shao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiexia Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Haolin Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
18
|
Tarafdar A, Sirohi R, Balakumaran PA, Reshmy R, Madhavan A, Sindhu R, Binod P, Kumar Y, Kumar D, Sim SJ. The hazardous threat of Bisphenol A: Toxicity, detection and remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127097. [PMID: 34488101 DOI: 10.1016/j.jhazmat.2021.127097] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (or BPA) is a toxic endocrine disrupting chemical that is released into the environment through modern manufacturing practices. BPA can disrupt the production, function and activity of endogenous hormones causing irregularity in the hypothalamus-pituitary-gonadal glands and also the pituitary-adrenal function. BPA has immuno-suppression activity and can downregulate T cells and antioxidant genes. The genotoxicity and cytotoxicity of BPA is paramount and therefore, there is an immediate need to properly detect and remediate its influence. In this review, we discuss the toxic effects of BPA on different metabolic systems in the human body, followed by its mechanism of action. Various novel detection techniques (LC-MS, GC-MS, capillary electrophoresis, immunoassay and sensors) involving a pretreatment step (liquid-liquid microextraction and molecularly imprinted solid-phase extraction) have also been detailed. Mechanisms of various remediation strategies, including biodegradation using native enzymes, membrane separation processes, photocatalytic oxidation, use of nanosorbents and thermal degradation has been detailed. An overview of the global regulations pertaining to BPA has been presented. More investigations are required on the efficiency of integrated remediation technologies rather than standalone methods for BPA removal. The effect of processing operations on BPA in food matrices is also warranted to restrict its transport into food products.
Collapse
Affiliation(s)
- Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Palanisamy Athiyaman Balakumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - R Reshmy
- Department of Chemistry, Bishop Moore College, Mavelikkara 690110, Kerela, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerela, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Yogesh Kumar
- Department of Food Science and Technology, National Institute of Food Technology and Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology and Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
19
|
Maršálek P, Kovaříková S, Lueerssen F, Večerek V. Determination of bisphenol A in commercial cat food marketed in the Czech Republic. J Feline Med Surg 2022; 24:160-167. [PMID: 34013813 PMCID: PMC10812174 DOI: 10.1177/1098612x211013745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Bisphenol A (BPA) is one of the most widely used synthetic compounds on the planet. It is used in the synthesis of polycarbonate plastics, epoxy resins and other polymer materials. Owing to its excellent chemical and physical properties, it is used to produce food and beverage containers or the linings for metal products. BPA has been mentioned as a possible cause of feline hyperthyroidism. Cat food is considered one of the main sources of BPA intake. The purpose of this study was to evaluate BPA concentration in various types of commercial cat food available in the Czech Republic. METHODS In total, 172 samples prepared from 86 different types of commercial cat food were assessed. The concentration of BPA was measured using liquid chromatography-tandem mass spectrometry. RESULTS Measurable concentration of BPA was found in all samples (range 0.065-131 ng/g), with the highest concentration (mean ± SD) of BPA in canned food (24.6 ± 34.8 ng/g). When comparing BPA concentration in food trays (1.58 ± 0.974 ng/g), pouches (0.591 ± 0.592 ng/g) and dry food (1.18 ± 0.518 ng/g), concentrations of BPA in food trays and dry food were significantly higher (P <0.01) compared with pouches. Comparing BPA concentrations in canned food of different manufacturers, statistically significant differences were found as well. CONCLUSIONS AND RELEVANCE The highest concentrations of BPA were found in cans. Thus, cans represent the highest possibility of exposure to BPA in comparison with other types of commercial feline food.
Collapse
Affiliation(s)
- Petr Maršálek
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Simona Kovaříková
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Friedrich Lueerssen
- Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Vladimír Večerek
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
20
|
Moreno-Gómez-Toledano R, Sánchez-Esteban S, Cook A, Mínguez-Moratinos M, Ramírez-Carracedo R, Reventún P, Delgado-Marín M, Bosch RJ, Saura M. Bisphenol A Induces Accelerated Cell Aging in Murine Endothelium. Biomolecules 2021; 11:biom11101429. [PMID: 34680063 PMCID: PMC8533150 DOI: 10.3390/biom11101429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023] Open
Abstract
Bisphenol A (BPA) is a widespread endocrine disruptor affecting many organs and systems. Previous work in our laboratory demonstrated that BPA could induce death due to necroptosis in murine aortic endothelial cells (MAECs). This work aims to evaluate the possible involvement of BPA-induced senescence mechanisms in endothelial cells. The β-Gal assays showed interesting differences in cell senescence at relatively low doses (100 nM and 5 µM). Western blots confirmed that proteins involved in senescence mechanisms, p16 and p21, were overexpressed in the presence of BPA. In addition, the UPR (unfolding protein response) system, which is part of the senescent phenotype, was also explored by Western blot and qPCR, confirming the involvement of the PERK-ATF4-CHOP pathway (related to pathological processes). The endothelium of mice treated with BPA showed an evident increase in the expression of the proteins p16, p21, and CHOP, confirming the results observed in cells. Our results demonstrate that oxidative stress induced by BPA leads to UPR activation and senescence since pretreatment with N-acetylcysteine (NAC) in BPA-treated cells reduced the percentage of senescent cells prevented the overexpression of proteins related to BPA-induced senescence and reduced the activation of the UPR system. The results suggest that BPA participates actively in accelerated cell aging mechanisms, affecting the vascular endothelium and promoting cardiovascular diseases.
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Sandra Sánchez-Esteban
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Alberto Cook
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Marta Mínguez-Moratinos
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | | | - Paula Reventún
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - María Delgado-Marín
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Ricardo J. Bosch
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Marta Saura
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
- Correspondence:
| |
Collapse
|
21
|
Bousoumah R, Leso V, Iavicoli I, Huuskonen P, Viegas S, Porras SP, Santonen T, Frery N, Robert A, Ndaw S. Biomonitoring of occupational exposure to bisphenol A, bisphenol S and bisphenol F: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146905. [PMID: 33865140 DOI: 10.1016/j.scitotenv.2021.146905] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) and its substitutes bisphenol S (BPS) and bisphenol F (BPF) are endocrine disrupting chemicals widely used in the production of polycarbonate plastics, epoxy resins and thermal papers. The aim of the review was to identify occupational studies using human biomonitoring (HBM) as a tool for bisphenol exposure assessment and to characterize research gaps on the topic as part of the HBM4EU project. Hence, a systematic literature search using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was conducted for articles published between 2000 and 27th March 2020 across three databases (PubMed, Scopus and Web of Science). Thirty studies on the occupational HBM of BPA met the inclusion criteria. Regarding BPS and BPF, only 4 and 2 publications were retrieved, respectively. Fifty-seven percent (57%) of the studies selected for BPA were conducted in Asia whereas half of BPS and BPF studies were undertaken in Europe. Studies on BPA in plastic and epoxy resin sectors were infrequent in Europe while Asian data showed higher exposure when the substance is employed as raw material. The main data on BPS were among cashiers while BPF data were available from incinerator workers. Several research gaps have been identified: (i) shortage of HBM studies on occupational exposure, especially to BPS and BPF; (ii) different methodological designs making suitable comparisons between studies difficult; and (iii) only few studies conducted on the industrial applications of bisphenols outside Asia. This review highlights the lack of recent occupational HBM studies on bisphenols and the need for a harmonized approach to acquire reliable data. Considering the increasing replacement of BPA by BPS and BPF, it is of relevance to evaluate the exposure to these substances and the impact of the available risk management measures on workers exposure and possible health risk.
Collapse
Affiliation(s)
- Radia Bousoumah
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), 1 rue du Morvan, 54519 Vandœuvre-Lès-Nancy, France.
| | - Veruscka Leso
- Department of Public Health (DPH), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Ivo Iavicoli
- Department of Public Health (DPH), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Pasi Huuskonen
- Finnish Institute of Occupational Health (FIOH), P.O. Box 40, FI-00032 Työterveyslaitos, Finland
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal; Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal; H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1500-310 Lisboa, Portugal
| | - Simo P Porras
- Finnish Institute of Occupational Health (FIOH), P.O. Box 40, FI-00032 Työterveyslaitos, Finland
| | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), P.O. Box 40, FI-00032 Työterveyslaitos, Finland
| | - Nadine Frery
- Public Health France (SpFrance), 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| | - Alain Robert
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), 1 rue du Morvan, 54519 Vandœuvre-Lès-Nancy, France
| | - Sophie Ndaw
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), 1 rue du Morvan, 54519 Vandœuvre-Lès-Nancy, France
| |
Collapse
|
22
|
Environmental and occupational exposures associated with male infertility. ACTA ACUST UNITED AC 2021; 72:101-113. [PMID: 34187108 PMCID: PMC8265198 DOI: 10.2478/aiht-2021-72-3510] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/01/2021] [Indexed: 12/30/2022]
Abstract
The upsurge in male infertility over the last two decades, possibly due to environmental exposure, has raised significant interest, particularly boosted by reports from fertility clinics, which showed that chronic diseases and hereditary or other medical conditions might only partially explain current incidence of male infertility. Both environmental and occupational settings may have a significant role in exposure to complex mixtures of endocrine disruptors (ED), which play a major role in fertility disorders. The aim of this review is to give an insight into the current knowledge on exposure settings which may be associated with male infertility. Our study relied on a systematic search of PubMed, Scopus, and Web of Science for articles published between January 2000 and September 2020. It showed that some well documented factors associated with male infertility include smoking, and physiological disturbances or chronic diseases such as obesity and diabetes, which in turn, may also reflect lifestyle choices and environmental exposures, especially to EDs such as phthalates, bisphenols, pesticides, and flame retardants. However, the number of studies on the aetiology of male infertility is still too low in comparison with the size of affected population. Occupational health follow-ups and medical surveillance do not collect any data on male infertility, even though ED chemicals are part of many technological processes.
Collapse
|
23
|
Lombó M, Herráez P. The effects of endocrine disruptors on the male germline: an intergenerational health risk. Biol Rev Camb Philos Soc 2021; 96:1243-1262. [PMID: 33660399 DOI: 10.1111/brv.12701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Environmental pollution is becoming one of the major concerns of society. Among the emerging contaminants, endocrine-disrupting chemicals (EDCs), a large group of toxicants, have been the subject of many scientific studies. Besides the capacity of these compounds to interfere with the endocrine system, they have also been reported to exert both genotoxic and epigenotoxic effects. Given that spermatogenesis is a coordinated process that requires the involvement of several steroid hormones and that entails deep changes in the chromatin, such as DNA compaction and epigenetic remodelling, it could be affected by male exposure to EDCs. A great deal of evidence highlights that these compounds have detrimental effects on male reproductive health, including alterations to sperm motility, sexual function, and gonad development. This review focuses on the consequences of paternal exposure to such chemicals for future generations, which still remain poorly known. Historically, spermatozoa have long been considered as mere vectors delivering the paternal haploid genome to the oocyte. Only recently have they been understood to harbour genetic and epigenetic information that plays a remarkable role during offspring early development and long-term health. This review examines the different modes of action by which the spermatozoa represent a key target for EDCs, and analyses the consequences of environmentally induced changes in sperm genetic and epigenetic information for subsequent generations.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Animal Reproduction, INIA, Puerta de Hierro 18, Madrid, 28040, Spain
| | - Paz Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| |
Collapse
|
24
|
Liu Q, Yu J, Li M, Zhang R, Gao P, Cong G, Cui D, Ji C, Zeng S. Multivariate models for estimating jackass semen production and quality. Reprod Domest Anim 2020; 56:301-312. [PMID: 33068490 DOI: 10.1111/rda.13842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to analyse the effects of season, age, gonad and accessory sex glands on semen characteristics of jackass and to construct multivariate regression models to predict semen quality. In autumn, spring and summer, semen characteristics of 30 sexually mature donkeys (1,014 ejaculations) were analysed to investigate the effect of seasons on semen quality, and gonad and accessory sex gland parameters of 12 jackasses were measured immediately after ejaculation by ultrasonography to investigate the effect of seasons on reproductive organ size. Semen (598 ejaculates), gonad and accessory sex gland parameters of 40 jackasses aged between 3 and 7 years were analysed in autumn to investigate the effects of age and reproductive organ size on semen quality and to construct multivariate models. To verify the accuracy of the models, semen (476 ejaculates), gonad and accessory sex gland parameters of 20 jackasses were measured from March to June. Results revealed that semen, gonad and accessory sex gland parameters were not affected by season and age. Progressive motility (PM) was positively correlated with long axis of the spermatic cord (LASC) and negatively correlated with percentages of sperm abnormality (PSA). Total sperm count (TSC) was positively correlated with testis circumferences (TC) and cross-sectional area of cauda epididymis (CSACE). TC, CSACE, LASC and PSA were included into multivariate models to predict PM, TSC and functional sperm count (FSC) in 20 jackasses (PM = 72.332 + 0.428 LASC - 0.441 PSA; TSC = -169.929 + 8.728 TC + 0.253 CSACE; FSC = -206.645 + 8.788 TC + 0.258 CSACE). The predicted and observed values corresponded well. In conclusion, the tested models can be used for predicting semen quality of donkey.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jie Yu
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, China.,National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, China
| | - Min Li
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, China
| | - Ruitao Zhang
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, China
| | - Peng Gao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guanglei Cong
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Daiyong Cui
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chuanliang Ji
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, China
| | - Shenming Zeng
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Grelska A, Noszczyńska M. White rot fungi can be a promising tool for removal of bisphenol A, bisphenol S, and nonylphenol from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39958-39976. [PMID: 32803603 PMCID: PMC7546991 DOI: 10.1007/s11356-020-10382-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/03/2020] [Indexed: 05/04/2023]
Abstract
Endocrine-disrupting chemicals (EDC) are a wide group of chemicals that interfere with the endocrine system. Their similarity to natural steroid hormones makes them able to attach to hormone receptors, thereby causing unfavorable health effects. Among EDC, bisphenol A (BPA), bisphenol S (BPS), and nonylphenol (NP) seem to be particularly harmful. As the industry is experiencing rapid expansion, BPA, BPS, and NP are being produced in growing amounts, generating considerable environmental pollution. White rot fungi (WRF) are an economical, ecologically friendly, and socially acceptable way to remove EDC contamination from ecosystems. WRF secrete extracellular ligninolytic enzymes such as laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidase, involved in lignin deterioration. Owing to the broad substrate specificity of these enzymes, they are able to remove numerous xenobiotics, including EDC. Therefore, WRF seem to be a promising tool in the abovementioned EDC elimination during wastewater treatment processes. Here, we review WRF application for this EDC removal from wastewater and indicate several strengths and limitations of such methods.
Collapse
Affiliation(s)
- Agnieszka Grelska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Magdalena Noszczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
26
|
Efimova OA, Koltsova AS, Krapivin MI, Tikhonov AV, Pendina AA. Environmental Epigenetics and Genome Flexibility: Focus on 5-Hydroxymethylcytosine. Int J Mol Sci 2020; 21:E3223. [PMID: 32370155 PMCID: PMC7247348 DOI: 10.3390/ijms21093223] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Convincing evidence accumulated over the last decades demonstrates the crucial role of epigenetic modifications for mammalian genome regulation and its flexibility. DNA methylation and demethylation is a key mechanism of genome programming and reprogramming. During ontogenesis, the DNA methylome undergoes both programmed changes and those induced by environmental and endogenous factors. The former enable accurate activation of developmental programs; the latter drive epigenetic responses to factors that directly or indirectly affect epigenetic biochemistry leading to alterations in genome regulation and mediating organism response to environmental transformations. Adverse environmental exposure can induce aberrant DNA methylation changes conducive to genetic dysfunction and, eventually, various pathologies. In recent years, evidence was derived that apart from 5-methylcytosine, the DNA methylation/demethylation cycle includes three other oxidative derivatives of cytosine-5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine. 5hmC is a predominantly stable form and serves as both an intermediate product of active DNA demethylation and an essential hallmark of epigenetic gene regulation. This makes 5hmC a potential contributor to epigenetically mediated responses to environmental factors. In this state-of-the-art review, we consolidate the latest findings on environmentally induced adverse effects on 5hmC patterns in mammalian genomes. Types of environmental exposure under consideration include hypnotic drugs and medicines (i.e., phenobarbital, diethylstilbestrol, cocaine, methamphetamine, ethanol, dimethyl sulfoxide), as well as anthropogenic pollutants (i.e., heavy metals, particulate air pollution, bisphenol A, hydroquinone, and pentachlorophenol metabolites). We put a special focus on the discussion of molecular mechanisms underlying environmentally induced alterations in DNA hydroxymethylation patterns and their impact on genetic dysfunction. We conclude that DNA hydroxymethylation is a sensitive biosensor for many harmful environmental factors each of which specifically targets 5hmC in different organs, cell types, and DNA sequences and induces its changes through a specific metabolic pathway. The associated transcriptional changes suggest that environmentally induced 5hmC alterations play a role in epigenetically mediated genome flexibility. We believe that knowledge accumulated in this review together with further studies will provide a solid basis for new approaches to epigenetic therapy and chemoprevention of environmentally induced epigenetic toxicity involving 5hmC patterns.
Collapse
Affiliation(s)
- Olga A. Efimova
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line 3, 199034 St. Petersburg, Russia; (A.S.K.); (M.I.K.); (A.V.T.); (A.A.P.)
| | | | | | | | | |
Collapse
|
27
|
Cariati F, Carbone L, Conforti A, Bagnulo F, Peluso SR, Carotenuto C, Buonfantino C, Alviggi E, Alviggi C, Strina I. Bisphenol A-Induced Epigenetic Changes and Its Effects on the Male Reproductive System. Front Endocrinol (Lausanne) 2020; 11:453. [PMID: 32849263 PMCID: PMC7406566 DOI: 10.3389/fendo.2020.00453] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/09/2020] [Indexed: 01/14/2023] Open
Abstract
Bisphenol A (BPA) is a widespread chemical agent which can exert detrimental effects on the male reproductive system. Exposure to BPA has been shown to induce several epigenetic modifications in both animal and human cells. Specifically, BPA could not only modify the methylation pattern of multiple genes encoding proteins related to reproductive physiology but also directly influence the genes responsible for DNA methylation. BPA effects include hormonal alterations, microscopic and macroscopic alteration of male reproductive organs, and inheritable epigenetic changes involving human reproduction. BPA exposure was also linked to prostate cancer. This review aims to show the current scenario of BPA-induced epigenetic changes and its effects on the male reproductive system. Possible strategies to counter the toxic effect of BPA were also addressed.
Collapse
Affiliation(s)
- Federica Cariati
- CEINGE-Biotecnologie Avanzate s.c.a.r.l., Naples, Italy
- Fertility Unit, Maternal-Child Department, AOU Policlinico Federico II, Naples, Italy
- *Correspondence: Federica Cariati
| | - Luigi Carbone
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Francesca Bagnulo
- Fertility Unit, Maternal-Child Department, AOU Policlinico Federico II, Naples, Italy
| | | | - Consolata Carotenuto
- Molecular Medicine and Medical Biotechnology Department, Federico II University, Naples, Italy
| | - Cira Buonfantino
- Department of Public Health, Federico II University, Naples, Italy
| | - Erminia Alviggi
- GENERA Centers for Reproductive Medicine, Clinica Ruesch, Naples, Italy
| | - Carlo Alviggi
- Fertility Unit, Maternal-Child Department, AOU Policlinico Federico II, Naples, Italy
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
- Endocrinology and Experimental Oncology Institute (IEOS), National Research Council, Naples, Italy
| | - Ida Strina
- Fertility Unit, Maternal-Child Department, AOU Policlinico Federico II, Naples, Italy
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| |
Collapse
|
28
|
Ma Y, Liu H, Wu J, Yuan L, Wang Y, Du X, Wang R, Marwa PW, Petlulu P, Chen X, Zhang H. The adverse health effects of bisphenol A and related toxicity mechanisms. ENVIRONMENTAL RESEARCH 2019; 176:108575. [PMID: 31299621 DOI: 10.1016/j.envres.2019.108575] [Citation(s) in RCA: 389] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/09/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
Bisphenol A (BPA) is an industrial component commonly used in synthesis of polycarbonate plastics, epoxy resin and other polymer materials. Due to its mass productions and widespread applications, the presence of BPA is ubiquitous in the environment. BPA can enter the body via different ways such as digestive tract, respiratory tract and dermal tract. As an endocrine disruptor, BPA has estrogen-like and anti-androgen effects causing damages to different tissues and organs, including reproductive system, immune system and neuroendocrine system, etc. Recently, it has been shown that BPA could induce carcinogenesis and mutagenesis in animal models. Here, the underlying mechanisms of BPA-induced multi-organ toxicity were well summarized, involving the receptor pathways, disruption of neuroendocrine system, inhibition of enzymes, modulation of immune and inflammatory responses, as well as genotoxic and epigenetic mechanisms. The aim of this review is to compile the available current research data regarding BPA and provide an overview of the current status of BPA exposure and relevant health effects covering reproductive, developmental, metabolic, immuno, respiratory, hepatic and renal toxicity and carcinogenesis of BPA. This review provides comprehensive data of BPA toxicity on human health and related mechanisms. We also identify any missing data which should be addressed by further studies.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | | | | | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
29
|
Chan D, Shao X, Dumargne MC, Aarabi M, Simon MM, Kwan T, Bailey JL, Robaire B, Kimmins S, San Gabriel MC, Zini A, Librach C, Moskovtsev S, Grundberg E, Bourque G, Pastinen T, Trasler JM. Customized MethylC-Capture Sequencing to Evaluate Variation in the Human Sperm DNA Methylome Representative of Altered Folate Metabolism. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:87002. [PMID: 31393794 PMCID: PMC6792365 DOI: 10.1289/ehp4812] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND The sperm DNA methylation landscape is unique and critical for offspring health. If gamete-derived DNA methylation escapes reprograming in early embryos, epigenetic defects in sperm may be transmitted to the next generation. Current techniques to assess sperm DNA methylation show bias toward CpG-dense regions and do not target areas of dynamic methylation, those predicted to be environmentally sensitive and tunable regulatory elements. OBJECTIVES Our goal was to assess variation in human sperm DNA methylation and design a targeted capture panel to interrogate the human sperm methylome. METHODS To characterize variation in sperm DNA methylation, we performed whole genome bisulfite sequencing (WGBS) on an equimolar pool of sperm DNA from a wide cross section of 30 men varying in age, fertility status, methylenetetrahydrofolate reductase (MTHFR) genotype, and exposures. With our targeted capture panel, in individual samples, we examined the effect of MTHFR genotype ([Formula: see text] 677CC, [Formula: see text] 677TT), as well as high-dose folic acid supplementation ([Formula: see text], per genotype, before and after supplementation). RESULTS Through WGBS we discovered nearly 1 million CpGs possessing intermediate methylation levels (20-80%), termed dynamic sperm CpGs. These dynamic CpGs, along with 2 million commonly assessed CpGs, were used to customize a capture panel for targeted interrogation of the human sperm methylome and test its ability to detect effects of altered folate metabolism. As compared with MTHFR 677CC men, those with the 677TT genotype (50% decreased MTHFR activity) had both hyper- and hypomethylation in their sperm. High-dose folic acid supplement treatment exacerbated hypomethylation in MTHFR 677TT men compared with 677CC. In both cases, [Formula: see text] of altered methylation was found in dynamic sperm CpGs, uniquely measured by our assay. DISCUSSION Our sperm panel allowed the discovery of differential methylation following conditions affecting folate metabolism in novel dynamic sperm CpGs. Improved ability to examine variation in sperm DNA methylation can facilitate comprehensive studies of environment-epigenome interactions. https://doi.org/10.1289/EHP4812.
Collapse
Affiliation(s)
- Donovan Chan
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Xiaojian Shao
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Marie-Charlotte Dumargne
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Animal Sciences, McGill University, Montreal, Quebec, Canada
| | - Mahmoud Aarabi
- Medical Genetics & Genomics Laboratories, University of Pittsburgh Medical Center (UPMC) Magee-Womens Hospital, Pittsburgh, Pennsylvania, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Tony Kwan
- McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada
| | - Janice L. Bailey
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Faculté des sciences de l’agriculture et de l’alimentation, Quebec, Quebec, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sarah Kimmins
- Department of Animal Sciences, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Maria C. San Gabriel
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Urology, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Armand Zini
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Urology, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Clifford Librach
- Canadian Reproductive Assisted Technology (CReATe) Fertility Centre, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Sergey Moskovtsev
- Canadian Reproductive Assisted Technology (CReATe) Fertility Centre, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Elin Grundberg
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Center for Pediatric Genomic Medicine, Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Guillaume Bourque
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Center for Pediatric Genomic Medicine, Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Jacquetta M. Trasler
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|