1
|
Seo H, Ahn YJ, Seo H, Seo A, Lee H, Lee SH, Shon WJ, Park Y. Comprehensive assessment of the estrogenic activity of resin composites. CHEMOSPHERE 2023; 343:140104. [PMID: 37696476 DOI: 10.1016/j.chemosphere.2023.140104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Resin-based dental composites have been developed to restore decayed teeth or modify tooth color due to their excellent physical and chemical properties. Such composites may have intrinsic toxicity due to components released into the mouth during the early stage of polymerization, and afterward as a result of erosion or material decomposition. In addition, resin-based dental composites have potential environmental pollutant by elution of monomers and degradation. Since certain monomers of resin matrices are synthesized from bisphenol A (BPA), which acts as an estrogenic endocrine disruptor, these resin matrices may have estrogenic activity. Therefore, the estrogenic endocrine-disrupting activity of various dental composites should be evaluated. In this study, we evaluated the estrogenic endocrine-disrupting activity of 10 resin composites by using a BRET-based estrogen receptor (ER)α and ERβ dimerization assays and ER transactivation assay. BPA, BisDMA, BisGMA, BisEMA, TEGDMA, HMBP, and DMPA mediated ERα dimerization, and BPA, BisDMA, and DMPA also mediated ERβ dimerization. Except for UDMA and CQ, all the compounds were identified as estrogen agonists or antagonists. In-depth information for the safe use of dental composites was acquired, and it was confirmed how the component of dental composites acts in the ER signaling pathway. Further studies on the low-dose and long-term release of these compounds are needed to ensure the safe use of these resin-based dental composites.
Collapse
Affiliation(s)
- Hyeyeong Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Yu-Jin Ahn
- Department of Conservative Dentistry, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Huiwon Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Ahreum Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Hayeon Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea; Department of Food and Medical Products Regulatory Policy, Dongguk University, Seoul, 04620, Republic of Korea
| | - Won-Jun Shon
- Department of Conservative Dentistry, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea; Department of Food and Medical Products Regulatory Policy, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
2
|
Vervliet P, De Nys S, Duca RC, Boonen I, Godderis L, Elskens M, Van Landuyt KL, Covaci A. Degradation products of resin-based materials detected in saliva in vivo. Clin Oral Investig 2023; 27:7189-7198. [PMID: 38051347 DOI: 10.1007/s00784-023-05075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/29/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVES Dental composites remain under scrutiny regarding their (long-term) safety. In spite of numerous studies on the release of monomers both in vitro and in vivo, only limited quantitative data exist on the in vivo leaching of degradation products from monomers and additives. The aim of this observational study was for the first time to quantitatively and qualitatively monitor the release of parent compounds and their degradation products in saliva from patients undergoing multiple restorations. MATERIALS AND METHODS Five patients in need of multiple large composite restorations (minimally 5 up to 28 restorations) due to wear (attrition, abrasion, and erosion) were included in the study, and they received adhesive restorative treatment according to the standard procedures in the university clinic for Restorative Dentistry. Saliva was collected at different time points, starting before the restoration up until 24 h after the treatment with composite restorations. Saliva extracts were analyzed by liquid chromatography-mass spectrometry. RESULTS Leaching of monomers and degradation products was highest within 30 min after the placement of the restorations. The highest median concentrations of monomers were recorded for UDMA, BisEMA-3, and TEGDMA; yet, besides BisEMA-3 and TEGDMA, no monomers could be detected after 24 h. Mono- and demethacrylated degradation products remained present up to 24 h and concentrations were generally higher than those of monomers. In patients with multiple restorations, degradation products were still present in the sample taken before the next operation, several weeks after the previous operation. CONCLUSIONS Exposure to residual monomers and degradation products occurs in the first hours after restoration. Monomers are present in saliva shortly after restoration, but degradation products can be detected weeks after the restoration confirming a long-term release. CLINICAL SIGNIFICANCE Future research should focus more on the release of degradation products from monomers and additives from resin-based materials given their prolonged presence in saliva after restoration.
Collapse
Affiliation(s)
- Philippe Vervliet
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Siemon De Nys
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Louvain, Belgium
| | - Radu Corneliu Duca
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000, Louvain, Belgium
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory (LNS), 1, Rue Louis Rech, L-3555, Dudelange, Luxembourg
| | - Imke Boonen
- Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Ixelles, Belgium
| | - Lode Godderis
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000, Louvain, Belgium
| | - Marc Elskens
- Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Ixelles, Belgium
| | - Kirsten L Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Louvain, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
3
|
Ferreira MN, Neves Dos Santos M, Fernandes I, Marto CM, Laranjo M, Silva D, Serro AP, Carrilho E, Botelho MF, Azul AM, Delgado AH. Effect of varying functional monomers in experimental self-adhesive composites: polymerization kinetics, cell metabolism influence and sealing ability. Biomed Mater 2023; 18:065014. [PMID: 37738988 DOI: 10.1088/1748-605x/acfc8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
The aim was to evaluate the effects of adding different functional monomers to experimental self-adhesive composites (SACs) on polymerization kinetics, cell metabolic activity, and sealing ability. SACs were formulated using urethane dimethacrylate as the base monomer and triethylene glycol dimethacrylate. Additionally, 10 wt.% of distinct functional monomers were added - 10-methacryloyloxydecyl dihydrogen phosphate, glycerol phosphate dimethacrylate (GPDM), 2-hydroxyethyl methacrylate (HEMA) or hydroxyethyl acrylamide (HEAA). ATR-FTIR was used to determine real-time polymerization kinetics (20 min,n= 3). The final extrapolated conversion and polymerization rates were determined (DC,max;Rp,max). TheDC,maxvalues were employed to calculate volumetric shrinkage. The MTT assay was performed on MDPC-23 cells using disc extracts at different concentrations (n= 8). Class V cavities were prepared in 60 sound human molars, assigned to six groups (n= 10), depending on the composite used and aging type (T0 or TC, if thermocycled for 10 000 cycles). One-way ANOVA, two-way, andKruskal-Wallistests were employed to treat the data (ɑ= 0.05). Varying the functional monomers had a large impact on DC,max, as confirmed by one-way ANOVA (p<0.001). The highest was obtained for HEMA (64 ± 3%). The HEMA and HEAA formulations were found to be significantly more toxic at concentrations below 100%. For microleakage, having a functional monomer or not did not show any improvement, irrespective of margin or aging period (Mann-Whitney U,p> 0.05). Larger functional monomers MDP and GPDM affected polymerization properties. Conversely, their acidity did not seem to be detrimental to cell metabolic activity. Regarding sealing ability, it seems that the functional monomers did not bring an advantage to the composites. Varying the functional monomer in SACs had a clear impact on the polymerization kinetics as well as on their cytotoxic potential. However, it did not confer better microleakage and sealing. Claiming self-adhesiveness based only on functional monomers seems dubious.
Collapse
Affiliation(s)
- Marta Nunes Ferreira
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
| | - Marta Neves Dos Santos
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
| | - Inês Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Carlos Miguel Marto
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-354 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-354 Coimbra, Portugal
| | - Diana Silva
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ana Paula Serro
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Eunice Carrilho
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-354 Coimbra, Portugal
- Faculty of Medicine, Institute of Integrated Clinical Practice, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-354 Coimbra, Portugal
| | - Ana Mano Azul
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
| | - António Hs Delgado
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, NW3 2PF London, United Kingdom
| |
Collapse
|
4
|
TOU GADA, GOMES JM, RINCO LSDO, YAMAUTI M, DINIZ IMA, PIRES F, SCHMIDT MEP, MENEZES HC, CARDEAL ZDL, BOTTOLI CBG, MACARI S. Release of leachable products from resinous compounds in the saliva of children with anterior open bite treated with spur. J Appl Oral Sci 2023; 30:e20220227. [PMID: 36753069 PMCID: PMC9936797 DOI: 10.1590/1678-7757-2022-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/04/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND To evaluate the release of bisphenol-A glycidyl methacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA), bisphenol A (BPA), and phthalates of the composite resin used in the bonding of spurs applied in the treatment of children with anterior open bite and its effects on human keratinocytes. METHODOLOGY Saliva samples of 22 children were collected before spur attachment (baseline) and 30 minutes (min) and 24 hours (h) after spur bonding. Analysis was performed using high-performance liquid chromatography (HPLC) coupled to tandem mass spectrometry (HPLC-MS/MS) and gas chromatography coupled to mass spectrometry (GC-MS). Standardized resin increments were added to three different dilutions of the cell culture medium. Keratinocytes (HaCaT) were cultivated in the conditioned media and evaluated for cell viability (MTT) and cell scratch assay. RESULTS The levels of BisGMA (1.74±0.27 μg/mL), TEGDMA (2.29±0.36 μg/mL), and BPA (3.264±0.88 μg/L) in the saliva after 30 min, in comparison to baseline (0±0 μg/mL, 0±0 μg/mL, and 1.15±0.21 μg/L, respectively), presented higher numbers. After 24 h, the levels of the monomers were similar to the baseline. Phthalates showed no significant difference among groups. HaCat cells showed increased viability and reduced cell migration over time after exposure to methacrylate-based resin composites. CONCLUSION Resin composites, used to attach spurs in children with anterior open bite during orthodontic treatment, release monomers after polymerization and can influence the behavior of human keratinocytes, even at very low concentrations. Orthodontists should be aware of the risks of the resinous compounds release and preventive procedures should be held to reduce patient exposure.
Collapse
Affiliation(s)
- Gabriel Antônio dos Anjos TOU
- Universidade Federal de Minas GeraisFaculdade de Odontologia Belo HorizonteDepartamento de Odontologia RestauradoraMinas GeraisBrasilUniversidade Federal de Minas Gerais, Faculdade de Odontologia Belo Horizonte, Departamento de Odontologia Restauradora, Minas Gerais, Brasil.
| | - José Messias GOMES
- Universidade Federal de Minas GeraisInstituto de Ciências ExatasDepartamento de QuímicaBelo HorizonteMinas GeraisBrasilUniversidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Belo Horizonte, Minas Gerais, Brasil.
| | - Luiza Santana de Oliveira RINCO
- Universidade Federal de Minas GeraisFaculdade de Odontologia Belo HorizonteDepartamento de Odontologia RestauradoraMinas GeraisBrasilUniversidade Federal de Minas Gerais, Faculdade de Odontologia Belo Horizonte, Departamento de Odontologia Restauradora, Minas Gerais, Brasil.
| | - Mônica YAMAUTI
- Hokkaido UniversitySchool of DentistryDepartment of Restorative DentistrySapporoJapanHokkaido University, School of Dentistry, Department of Restorative Dentistry, Sapporo, Japan.
| | - Ivana Márcia Alves DINIZ
- Universidade Federal de Minas GeraisFaculdade de Odontologia Belo HorizonteDepartamento de Odontologia RestauradoraMinas GeraisBrasilUniversidade Federal de Minas Gerais, Faculdade de Odontologia Belo Horizonte, Departamento de Odontologia Restauradora, Minas Gerais, Brasil.
| | - Fabiane PIRES
- Universidade Estadual de CampinasInstituto de QuímicaCampinasSão PauloBrasilUniversidade Estadual de Campinas, Instituto de Química, Campinas, São Paulo, Brasil.
| | - Marcella Emilia Petra SCHMIDT
- Universidade Estadual de CampinasInstituto de QuímicaCampinasSão PauloBrasilUniversidade Estadual de Campinas, Instituto de Química, Campinas, São Paulo, Brasil.
| | - Helvécio Costa MENEZES
- Universidade Federal de Minas GeraisInstituto de Ciências ExatasDepartamento de QuímicaBelo HorizonteMinas GeraisBrasilUniversidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Belo Horizonte, Minas Gerais, Brasil.
| | - Zenilda de Lourdes CARDEAL
- Universidade Federal de Minas GeraisInstituto de Ciências ExatasDepartamento de QuímicaBelo HorizonteMinas GeraisBrasilUniversidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Belo Horizonte, Minas Gerais, Brasil.
| | - Carla Beatriz Grespan BOTTOLI
- Universidade Estadual de CampinasInstituto de QuímicaCampinasSão PauloBrasilUniversidade Estadual de Campinas, Instituto de Química, Campinas, São Paulo, Brasil.
| | - Soraia MACARI
- Universidade Federal de Minas GeraisFaculdade de Odontologia Belo HorizonteDepartamento de Odontologia RestauradoraMinas GeraisBrasilUniversidade Federal de Minas Gerais, Faculdade de Odontologia Belo Horizonte, Departamento de Odontologia Restauradora, Minas Gerais, Brasil.
| |
Collapse
|
5
|
Janošević P, Stojanović S, Stojanović I, Janošević M, Najman S. Comparative In Vitro Biocompatibility Study of the Two Orthodontic Bonding Materials of Different Types. Polymers (Basel) 2022; 14:polym14224998. [PMID: 36433124 PMCID: PMC9698495 DOI: 10.3390/polym14224998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
In the present study, the in vitro biocompatibility and cell response to two commonly used orthodontic bonding materials of different types, one self-curing and one light-curing, were examined and compared in indirect and direct cell culture systems. The study was conducted on fibroblasts and macrophages as in vitro models to study the biocompatibility of dental materials. Differences were found between the light- and self-curing material in cytotoxicity and effects on fibroblasts' proliferation in indirect cell culture systems as well as in macrophages response in vitro in both direct and indirect cell culture systems. Based on the obtained results, we can conclude that the self-curing material is generally more cytotoxic for fibroblasts compared to the light-curing, while macrophages' response to these materials was dependent on the macrophages' state and differed between the examined materials. This indicates that more attention should be paid when choosing and applying these materials in practice due to their toxicity to cells. Prior to their use, all aspects should be considered regarding the patient's conditions, associated problems, microenvironment in the oral cavity, etc. Further studies on in vivo models should be conducted to fully understand the potential long-term effects of the use of mentioned materials in orthodontics.
Collapse
Affiliation(s)
- Predrag Janošević
- Department of Orthodontics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Sanja Stojanović
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Correspondence:
| | - Ivana Stojanović
- Department of Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Mirjana Janošević
- Department of Orthodontics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stevo Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| |
Collapse
|
6
|
Evaluation of residual monomer release after polymerization of different restorative materials used in pediatric dentistry. BMC Oral Health 2022; 22:232. [PMID: 35698111 PMCID: PMC9190163 DOI: 10.1186/s12903-022-02260-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The choice of the restorative resin material to be used in pediatric dentistry is of a great importance due to the cytotoxic effects caused by residual monomers. In this study, it was aimed to investigate the amount of residual monomer released over time from different resin-based restorative materials, which are widely used in pediatric dentistry, by using high performance liquid chromatography with photodiode array detector (HPLC-PDA). METHODS The compomers in all colors (Twinky Star and Glasiositte A2), two composites with different hybrid properties (Arabesk-GrandioSO), and RMGIC (Ionolux) samples with 2 × 5 mm diameters were prepared. The samples were polymerized with an LED light unit (CELALUX 2, VOCO, Cuxhaven, Germany) and then finishing-polishing procedures were applied. A total of 156 samples were obtained, 13 samples in each of the 12 groups. The amount of residual monomer (BIS-GMA; HEMA, TEGDMA, UDMA) (µg/mL) released into the 75% ethanol solution was determined at different times, (1st hour, 1st, 7th, 14th, and 21st day) by using HPLC-PDA. RESULTS The residual monomer release continued on day 21 and BIS-GMA was the most released monomer in all groups. HEMA release showed a maximum increase in all the materials at day 7. The highest amount of residual monomer was detected in the gold-colored compomer. HEMA and BIS-GMA release from RMGIC was less than others in all time frames. CONCLUSIONS The color and composition of resin-based restorative materials affect the amount of residual monomer. Pediatric dentists should prefer gold-colored compomers less than others as a restorative material, especially in deep cavities. More studies are needed about the subject.
Collapse
|
7
|
De Angelis F, Sarteur N, Buonvivere M, Vadini M, Šteffl M, D'Arcangelo C. Meta-analytical analysis on components released from resin-based dental materials. Clin Oral Investig 2022; 26:6015-6041. [PMID: 35870020 PMCID: PMC9525379 DOI: 10.1007/s00784-022-04625-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Resin-based materials are applied in every branch of dentistry. Due to their tendency to release substances in the oral environment, doubts have been raised about their actual safety. This review aims to provide a comprehensive analysis of the last decade literature regarding the concentrations of elutable substances released from dental resin-based materials in different type of solvents. MATERIALS AND METHODS All the literature published on dental journals between January 2010 and April 2022 was searched using international databases (PubMed, Scopus, Web of Science). Due to strict inclusion criteria, only 23 papers out of 877 were considered eligible. The concentration of eluted substances related to surface and volume of the sample was analyzed, considering data at 24 h as a reference. The total cumulative release was examined as well. RESULTS The most eluted substances were HEMA, TEGDMA, and BPA, while the less eluted were Bis-GMA and UDMA. Organic solvents caused significantly higher release of substances than water-based ones. A statistically significant inverse correlation between the release of molecules and their molecular mass was observed. A statistically significant positive correlation between the amount of released molecule and the specimen surface area was detected, as well as a weak positive correlation between the release and the specimen volume. CONCLUSIONS Type of solvent, molecular mass of eluates, and specimen surface and volume affect substances release from materials. CLINICAL RELEVANCE It could be advisable to rely on materials based on monomers with a reduced elution tendency for clinical procedures.
Collapse
Affiliation(s)
- Francesco De Angelis
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy.
| | - Nela Sarteur
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Matteo Buonvivere
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Mirco Vadini
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Michal Šteffl
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Camillo D'Arcangelo
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| |
Collapse
|
8
|
Heras-González L, Espino D, Jimenez-Casquet MJ, Lopez-Moro A, Olea-Serrano F, Mariscal-Arcas M. Influence of BPA exposure, measured in saliva, on childhood weight. Front Endocrinol (Lausanne) 2022; 13:1040583. [PMID: 36568119 PMCID: PMC9772023 DOI: 10.3389/fendo.2022.1040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Endocrine disruptors such as bisphenol A (BPA), BPA glycidyl methacrylate, and other BPA acrylate-based derivatives have been related to type 2 diabetes, the metabolic syndrome, and obesity, among other metabolic disorders. The objective of this study is to examine the influence of BPA exposure by saliva analysis and daily physical activity on the risk of overweight/obesity in schoolchildren from southern Spain. METHODS The study included 300 children (53.5% girls) aged 7-10 years. Participants completed a questionnaire with four sections: participant data, including demographic information and life and family habits; semi-quantitative food frequency questionnaire; anthropometric variables; and physical activity variables. All participants underwent dental examination, when the presence of sealants/composites in each tooth and other dental alterations was recorded, and samples of whole saliva were collected for UHPLC-MS/MS analyses. RESULTS Risk of overweight/obesity was significantly influenced by body fat composition (OR = 10.77), not walking to and from school (OR = 1.38), lesser energy expenditure in sedentary activities (OR = 12.71), greater energy expenditure in sports (OR =1.62), and exposure to BPA from dental sealants/composites (OR = 1.38; p = 0.058). DISCUSSION Further research is warranted on this issue in children, who may be especially vulnerable to the negative health effects of endocrine disruption.
Collapse
Affiliation(s)
| | - Diana Espino
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | | | | | - Fatima Olea-Serrano
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Miguel Mariscal-Arcas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
- *Correspondence: Miguel Mariscal-Arcas,
| |
Collapse
|
9
|
Monomer Elution from Three Resin Composites at Two Different Time Interval Using High Performance Liquid Chromatography-An In-Vitro Study. Polymers (Basel) 2021; 13:polym13244395. [PMID: 34960944 PMCID: PMC8704455 DOI: 10.3390/polym13244395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/22/2023] Open
Abstract
Esthetics, improved colour stability and ease of contour have made photo-activated resin based restorative materials being widely used in routine dental clinical practice. Perhaps improper and inadequate polymerization of resin based composite material might lead to elution of monomer. Thus, the aim of the current study was to quantify the monomer elution from three resin composites. The intended analysis was made using high performance liquid chromatography (HPLC) at two different time periods. Three different materials that were investigated in the current study included Swiss Tech resin composite (Group A), Ceram X (Group B) and Beautifil Injectable composite (Group C). Ten cylindrical samples were fabricated in each study group. In 75% wt of ethanol, the samples were ingressed immediately and stored at room temperature. A 0.5 mL of the samples was assessed at pre-defined time intervals at 24 h and 7th day. Later, assessment of the samples was performed with HPLC and the data was analyzed using statistical test. Bisphenol A-glycidyl methacrylate (Bis-GMA), Triethylene glycol dimethacrylate (TEGDMA), 2-hydroxyethyl methacrylate (HEMA) and Urethane dimethacrylate (UDMA) were quantified in the samples. When analyzing the release monomer, it was found that at the end of 24 h Bis-GMA was eluted more in the injectable resin composite whereas, TEGDMA was eluted from Swiss Tech and Ceram X resin composites. At the end of the 7th day it was evident that Bis-GMA was eluted maximum in all the three resin composites. Thus, monomer release was found to be evident among all three resin composites and it is of utmost important to be assessed in routine clinical practice.
Collapse
|
10
|
Cytotoxic and Genotoxic Effects of Composite Resins on Cultured Human Gingival Fibroblasts. MATERIALS 2021; 14:ma14185225. [PMID: 34576450 PMCID: PMC8468467 DOI: 10.3390/ma14185225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 01/18/2023]
Abstract
The aim of the study was to evaluate the cytotoxic and genotoxic potential of five commercially available dental composite resins (CRs), investigating the effect of their quantifiable bisphenol-A-glycidyl-methacrylate (Bis-GMA) and/or triethylene glycol dimethacrylate (TEGDMA) release. Experiments were performed using the method of soaking extracts, which were derived from the immersion of the following CRs in the culture medium: Clearfil-Majesty-ES-2, GrandioSO, and Enamel-plus-HRi (Bis-GMA-based); Enamel-BioFunction and VenusDiamond (Bis-GMA-free). Human Gingival Fibroblasts (hGDFs) were employed as the cellular model to mimic in vitro the oral cavity milieu, where CRs simultaneously release various components. Cell metabolic activity, oxidative stress, and genotoxicity were used as cellular outcomes. Results showed that only VenusDiamond and Enamel-plus-HRi significantly affected the hGDF cell metabolic activity. In accordance with this, although no CR-derived extract induced a significantly detectable oxidative stress, only VenusDiamond and Enamel-plus-HRi induced significant genotoxicity. Our findings showed, for the CRs employed, a cytotoxic and genotoxic potential that did not seem to depend only on the actual Bis-GMA or TEGDMA content. Enamel-BioFunction appeared optimal in terms of cytotoxicity, and similar findings were observed for Clearfil-Majesty-ES-2 despite their different Bis-GMA/TEGDMA release patterns. This suggested that simply excluding one specific monomer from the CR formulation might not steadily turn out as a successful approach for improving their biocompatibility.
Collapse
|
11
|
Liguori F, Moreno-Marrodan C, Barbaro P. Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis. Chem Soc Rev 2021; 49:6329-6363. [PMID: 32749443 DOI: 10.1039/d0cs00179a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bisphenol A is an oil-derived, large market volume chemical with a wide spectrum of applications in plastics, adhesives and thermal papers. However, bisphenol A is not considered safe due to its endocrine disrupting properties and reproductive toxicity. Several functional substitutes of bisphenol A have been proposed in the literature, produced from plant biomass. Unless otherwise specified, the present review covers the most significant contributions that appeared in the time span January 2015-August 2019, describing the sustainable catalytic synthesis of rigid diols from biomass derivatives. The focus is thereupon on heterogeneous catalysis, use of green solvents and mild conditions, cascade processes in one-pot, and continuous flow setups. More than 500 up-to-date references describe the various substitutes proposed and the catalytic methods for their manufacture, broken down according to the main biomass types from which they originate.
Collapse
Affiliation(s)
- Francesca Liguori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Carmen Moreno-Marrodan
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
12
|
Frencken JE, Liang S, Zhang Q. Survival estimates of atraumatic restorative treatment versus traditional restorative treatment: a systematic review with meta-analyses. Br Dent J 2021:10.1038/s41415-021-2701-0. [PMID: 33883705 DOI: 10.1038/s41415-021-2701-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/25/2020] [Indexed: 11/09/2022]
Abstract
Objectives The hypothesis tested was that there is no significant difference between the survival estimates of atraumatic restorative treatment/high-viscosity glass-ionomer cement (ART/HVGIC) restorations, in posterior primary and permanent teeth, and traditional amalgam and resin composite restorations.Data sources The databases PubMed, DOAJ, LILACS, IndMed, Google Scholar and CNKI were searched.Data selection Using inclusion and exclusion criteria led to 14 eligible randomised trials. A low risk of bias was observed for two reports. Homogeneity was obtained for single-surface ART restorations after one and two years in the primary dentition.Data synthesis No statistically significant difference was found between the weighted mean survival percentages of ART/HVGIC and traditional treatments in both single- and multiple-surface restorations in primary molars and in single-surface restorations in posterior permanent teeth at years 1, 2, 3 and 5. At years 4.3 and 6.3, the difference between the two treatments was statistically significant, favouring the ART/HVGIC restorations. No statistically significant difference was found between the weighted mean survival percentages of ART/HVGIC and traditional treatments in multiple-surface restorations in posterior permanent teeth.Conclusion The ART method using HVGICs can be considered as a replacement for traditional restorations in single- and multiple-surface cavities in primary molars, and in single-surface cavities in posterior permanent teeth, particularly for amalgam.
Collapse
Affiliation(s)
- Jo E Frencken
- Department of Dentistry, Section of Function and Prosthetic Dentistry, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Shanshan Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qian Zhang
- Department of Dentistry, Section of Function and Prosthetic Dentistry, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Duruk G, Oruç E, Uğur Y. Evaluation of Residual Monomer Release After Polymerization of Colored Compomer Materials. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2021. [DOI: 10.1590/pboci.2021.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
14
|
Şişmanoğlu S, Demirci M, Schweikl H, Ozen-Eroglu G, Cetin-Aktas E, Kuruca S, Tuncer S, Tekce N. Cytotoxic effects of different self-adhesive resin cements: Cell viability and induction of apoptosis. J Adv Prosthodont 2020; 12:89-99. [PMID: 32377322 PMCID: PMC7183849 DOI: 10.4047/jap.2020.12.2.89] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 02/01/2023] Open
Abstract
PURPOSE The effects of four different self-adhesive resin cement materials on cell viability and apoptosis after direct and indirect exposure were evaluated using different cell culture techniques. MATERIALS AND METHODS Self-adhesive cements were applied to NIH/3T3 mouse fibroblasts by the extract test method, cell culture inserts, and dentin barrier test method. After exposure periods of 24 h and 72 h, the cytotoxicity of these self-adhesive materials was evaluated using the MTT assay (viability) and the Annexin-V-FITC/PI staining (apoptosis). RESULTS The lowest cell viability was found in cells exposed to BeautiCem SA for 24 h in the extract test method. Cell viability was reduced to 70.6% compared to negative controls. After the 72 h exposure period, viability rate of cell cultures exposed to BeautiCem SA decreased more than 2- fold (29.5%) while cells exposed to RelyX U200 showed the highest viability rate of 71.4%. In the dentin barrier test method, BeautiCem SA induced the highest number of cells in apoptosis after a 24 h exposure (4.1%). Panavia SA Cement Plus was the material that caused the lowest number of cells in apoptosis (1.5%). CONCLUSION The used self-adhesive cements have showed different cytotoxic effects based on the evaluation method. As exposure time increased, the materials showed more cytotoxic and apoptotic effects. BeautiCem SA caused significantly more severe cytotoxic and apoptotic effects than other cements tested. Moreover, cements other than BeautiCem SA have caused necrotic cell death rather than apoptotic cell death.
Collapse
Affiliation(s)
- Soner Şişmanoğlu
- Department of Restorative Dentistry, Faculty of Dentistry, Altınbaş University, Istanbul, Turkey
| | - Mustafa Demirci
- Department of Restorative Dentistry, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Helmut Schweikl
- Department of Operative Dentistry and Periodontology, University of Regensburg Medical Centre, Regensburg, Germany
| | - Gunes Ozen-Eroglu
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Cetin-Aktas
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Serap Kuruca
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Safa Tuncer
- Department of Restorative Dentistry, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Neslihan Tekce
- Department of Restorative Dentistry, Faculty of Dentistry, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
15
|
Evaluation of the Degree of Conversion, Residual Monomers and Mechanical Properties of Some Light-Cured Dental Resin Composites. MATERIALS 2019; 12:ma12132109. [PMID: 31262014 PMCID: PMC6651104 DOI: 10.3390/ma12132109] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022]
Abstract
The novelty of this study consists in the formulation and characterization of three experimental dental composites (PM, P14M, P2S) for cervical dental lesion restoration compared to the commercial composites Enamel plus HRi® - En (Micerium S.p.A, Avengo, Ge, Italy), G-ænial Anterior® - Ge, (GC Europe N.V., Leuven, Belgium), Charisma® - Ch (Heraeus Kulzer, Berkshire, UK). The physio-chemical properties were studied, like the degree of conversion and the residual monomers in cured samples using FTIR-ATR (attenuated total reflectance) and HPLC-UV (ultraviolet detection), as well as the evaluation of the mechanical properties of the materials. The null hypothesis was that there would be no differences between experimental and commercial resin composites regarding the evaluated parameters. Statistical analysis revealed that water and saliva storage induced significant modifications of all mechanical parameters after three months for all tested materials, except for a few comparisons for each type of material. Storage medium seemed not to alter the values of mechanical parameters in comparison with the initial ones for: diametral tensile strength (DTS-saliva for Ge and PM, compressive strength (CS)-water for Ch, DTS-water and Young's modulus YM-saliva for P14M and YM-water/ saliva for P2S (p > 0.05). Two of the experimental materials showed less than 1% residual monomers, which sustains good polymerization efficiency. Experimental resin composites have good mechanical properties, which makes them recommendable for the successful use in load-bearing surfaces of posterior teeth.
Collapse
|