1
|
Liu X, Wang C, Ma Y, Fu L, Luo W, Xu C, Tian Y, Ma M, Mao Y. Transcriptome analysis reveals the molecular mechanisms of neonicotinoid acetamiprid in Leydig cells. Toxicol Ind Health 2024:7482337241300215. [PMID: 39529242 DOI: 10.1177/07482337241300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
At present, the reproductive toxicology of neonicotinoids has received greater attention, however, its potential mechanisms are still not fully understood. Acetamiprid (ACE) is a new-generation neonicotinoid and has become a ubiquitous contaminant in the environment. This study aimed to investigate the toxic effects of ACE in TM3 Leydig cells based on transcriptome analysis. The viability and apoptosis of TM3 cells exposed to different concentrations of ACE were assessed by CCK8 and flow cytometry, respectively. After ACE exposure, transcriptome analysis was performed to screen differential expression genes (DEGs), followed by qPCR verification. Results showed that ACE exposure resulted in a time- and dose-dependent decrease in the viability of TM3 cells (p < .05). ACE also exerted a dose-dependent pro-apoptotic effect on TM3 cells. Results of RNA-seq showed that 1477 DEGs were obtained, of which 539 DEGs were up-regulated and 938 DEGs were down-regulated. GO and KEGG analyses of DEGs showed that DNA replication and cell cycle might be the key mechanisms for the cytotoxicity of ACE. qPCR results demonstrated that Mdm2, Cdkn1a (p21) and Gadd45 were significantly increased, and Pcna, Ccna2 (CycA), Ccnb1 (CycB), Ccne1 (CycE), and Cdk1 were significantly decreased, indicating that ACE exposure might promote G1/S and G2/M cell cycle arrest. Additionally, FoxO, p53, and HIF-1 signaling pathways and ferroptosis might play important roles in ACE-induced reproductive toxicity. Collectively, this study provides new perspectives into the mechanism of ACE-induced reproductive toxicity and lays a theoretical foundation for the in-depth study of non-target toxicity mechanisms of neonicotinoid insecticides.
Collapse
Affiliation(s)
- Xun Liu
- Department of Health Inspection and Quarantine, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Ce Wang
- Department of Health Inspection and Quarantine, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Yue Ma
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Linxiang Fu
- Department of Health Inspection and Quarantine, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Wanji Luo
- Department of Health Inspection and Quarantine, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Changjie Xu
- Department of Health Inspection and Quarantine, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Ying Tian
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyue Ma
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Yaping Mao
- Department of Health Inspection and Quarantine, School of Public Health, Shenyang Medical College, Shenyang, China
| |
Collapse
|
2
|
Li Y, Lu J, Song X, Wang Y, Li Q, Pang Y, Gou M. Conjoint transcriptomics and metabolomics analyses provide insights into the toxicity of acetamiprid to Lethenteron reissneri larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116828. [PMID: 39094458 DOI: 10.1016/j.ecoenv.2024.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
The neonicotinoid pesticide acetamiprid has been widely used in agricultural pest control and was frequently detected in the water environment. There have been some studies of the toxic effects of acetamiprid on fish, but studies on aquatic lower vertebrates are still very limited. As a primitive jawless vertebrate, Lethenteron reissneri has a special position in evolution and is now listed as a national second level protected animal in China. The present study aimed to investigate the toxic effect of acetamiprid on the liver of L. reissneri larvae. A conjoint analysis of the transcriptomics and metabolomics was performed to determine the responses of L. reissneri larvae liver to acetamiprid at different concentrations (L for low concentration 25 mg/L and H for high concentration 100 mg/L). Even low concentrations of acetamiprid can cause significant liver damage to L. reissneri larvae in a short period. In omics analyses, 2141 differentially expressed genes (DEGs) and 183 differentially abundant metabolites (DAMs) were identified in the H/Control group, and 229 DEGs and 144 DAMs were identified in the L/C group. Correlation analyses revealed acetamiprid affected the metabolic pathways of L. reissneri larvae liver such as the glycerophospholipid metabolism and arachidonic acid metabolism. This study not only enriches the basis for understanding the toxic effect of acetamiprid exposure to L. reissneri larvae liver and provides more information on the breeding and conservation of L. reissneri, but also further causes attention on toxicity risk from acetamiprid to aquatic lower vertebrate species.
Collapse
Affiliation(s)
- Yitong Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Jiali Lu
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Xiaoping Song
- Respiratory Medicine, Affiliated Zhong Shan Hospital of Dalian University, Dalian 116001, China
| | - Yaocen Wang
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Respiratory Medicine, Affiliated Zhong Shan Hospital of Dalian University, Dalian 116001, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
3
|
Xu MZ, Li YT, Cao CQ. Physiological and gene expression responses of Protohermes xanthodes (Megaloptera: Corydalidae) larvae to imidacloprid. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:46. [PMID: 39249498 DOI: 10.1007/s00114-024-01932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Megaloptera larvae are important bioindicator species and potential resource insects. To further cultivate their economic role, their living environment must be examined in more detail. In this study, we analyzed the physiological and biochemical effects of a sublethal dose of imidacloprid, a widely used neonicotinoid insecticide, on the larvae of Protohermes xanthodes. After treatment with imidacloprid, P. xanthodes larvae exhibited clear symptoms of poisoning, including the head curling up toward the ventral surface. Additionally, the activity of acetylcholinesterase was significantly inhibited following exposure. The activities of glutathione S-transferases initially continuously increased but showed a slight decrease after 8 days. Catalase activity initially increased and then decreased following imidacloprid treatment; superoxide dismutase activity fluctuated over time, and peroxidase activity continuously increased. The expression levels of HSP70s genes were evaluated using qRT-PCR. These results indicate that P. xanthodes larvae exhibit a toxic response to imidacloprid exposure, manifested as oxidative stress, as observed through behavioral and physiological indicators.
Collapse
Affiliation(s)
- Mao-Zhou Xu
- College of Fisher and Life Science, Dalian Ocean University, Dalian, China
| | - Yu-Tong Li
- College of Fisher and Life Science, Dalian Ocean University, Dalian, China
| | - Cheng-Quan Cao
- College of Fisher and Life Science, Dalian Ocean University, Dalian, China.
| |
Collapse
|
4
|
Lv L, Jia F, Deng M, Di S, Chu T, Wang Y. Toxic mechanisms of imazalil, azoxystrobin and their mixture to hook snout carp (Opsariichthys bidens). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172022. [PMID: 38552970 DOI: 10.1016/j.scitotenv.2024.172022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
While combinations of pesticides better represent actual conditions within aquatic ecosystems, the specific toxic effects of these combinations have not been determined yet. The objective of this research was to assess the combined impact of imazalil and azoxystrobin on the hook snout carp (Opsariichthys bidens) and delve into the underlying causes. Our findings indicated that the 4-day LC50 value for imazalil (1.85 mg L-1) was greater than that for azoxystrobin (0.90 mg L-1). When imazalil and azoxystrobin were combined, they presented a heightened effect on the species. Enzyme activities like SOD, CAT, GST, and CarE, along with androgen and estrogen levels, displayed marked differences in most single and combined treatments in comparison to the baseline group. Moreover, four genes (mn-sod, cu-sod, il-1, and esr) related to oxidative stress, immunity, and the endocrine system exhibited more pronounced expression changes when exposed to combined pesticides rather than individual ones. Our tests revealed that the combined use of imazalil and azoxystrobin had more detrimental effect on aquatic vertebrates than when evaluated individually. This finding suggested that future ecological hazard analyses based only on individual tests might not sufficiently safeguard our aquatic ecosystems.
Collapse
Affiliation(s)
- Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Fangzhao Jia
- Zunyi City Company Suiyang Branch, Guizhou Province Tobacco Company, Suiyang, 563300, Guizhou, China
| | - Meihua Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Tianfen Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
5
|
Zhang Y, Zhao A, Mu L, Teng X, Ma Y, Li R, Lei K, Ji L, Wang X, Li P. First Clarification of the Involvement of Glycosyltransferase MdUGT73CG22 in the Detoxification Metabolism of Nicosulfuron in Apple. PLANTS (BASEL, SWITZERLAND) 2024; 13:1171. [PMID: 38732386 PMCID: PMC11085047 DOI: 10.3390/plants13091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
Nicosulfuron, an acetolactate synthase (ALS) inhibitor herbicide, is a broad-spectrum and highly effective post-emergence herbicide. Glycosyltransferases (GTs) are widely found in organisms and transfer sugar molecules from donors to acceptors to form glycosides or sugar esters, thereby altering the physicochemical properties of the acceptor molecule, such as participating in detoxification. In this study, nine glycosyltransferases in group D of the apple glycosyltransferase family I were predicted to possibly be involved in the detoxification metabolism of ALS-inhibiting herbicides based on gene chip data published online. In order to confirm this, we analysed whether the expression of the nine glycosyltransferase genes in group D was induced by the previously reported ALS-inhibiting herbicides by real-time PCR (polymerase chain reaction). It was found that the ALS-inhibiting herbicide nicosulfuron significantly increased the expression of the MdUGT73CG22 gene in group D. Further investigation of the mechanism of action revealed that the apple glycosyltransferase MdUGT73CG22 glycosylated and modified nicosulfuron both in vivo and ex vivo to form nicosulfuron glycosides, which were involved in detoxification metabolism. In conclusion, a new glycosyltransferase, MdUGT73CG22, was identified for the first time in this study, which can glycosylate modifications of the ALS-inhibiting herbicide nicosulfuron and may be involved in the detoxification process in plants, which can help to further improve the knowledge of the non-targeted mechanism of herbicides.
Collapse
Affiliation(s)
- Yuefeng Zhang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Aijuan Zhao
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Lijun Mu
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Xiao Teng
- Rizhao Research Institute of Agricultural Science, Rizhao 276500, China;
| | - Yingxin Ma
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Ru Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Kang Lei
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Lusha Ji
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Xuekun Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Pan Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| |
Collapse
|
6
|
Mu C, Lin M, Shao Y, Liao Q, Liang J, Yu C, Wu X, Chen M, Tang Y, Zhou L, Qiu X, Pan D, Huang D. Associations between maternal serum neonicotinoid pesticide exposure during pregnancy and newborn telomere length: Effect modification by sampling season. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116164. [PMID: 38447517 DOI: 10.1016/j.ecoenv.2024.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND An increasing amount of evidence suggests that telomere length (TL) at birth can predict lifespan and is associated with chronic diseases later in life, but newborn TL may be affected by environmental pollutants. Neonicotinoids (NEOs) are widely used worldwide, and despite an increasing number of studies showing that they may have adverse effects on birth in mammals and even humans, few studies have examined the effect of NEO exposure on newborn TLs. OBJECTIVE To investigate the effects of prenatal exposure to NEOs and the interactions between NEOs and sampling season on newborn TL. METHODS We conducted a prospective cohort study of 500 mother-newborn pairs from the Guangxi Zhuang Birth Cohort. Ultraperformance liquid chromatographymass spectrometry was used to detect ten NEOs in maternal serum, and fluorescence quantitative PCR was used to estimate the newborn TL. A generalized linear model (GLM) was used to evaluate the relationships between individual NEO exposures and TLs , and quantile g-computation (Qgcomp) model and Bayesian kernel machine regression (BKMR) model were used to evaluate the combined effect of mixtures of components. RESULTS The results of the GLM showed that compared with maternal TMX levels < LOD, maternal TMX levels < median were negatively correlated with newborn TL (-6.93%, 95% CI%: -11.92%, -1.66%), and the decrease in newborn TL was more pronounced in girls (-9.60%, 95% CI: -16.84%, -1.72%). Moreover, different kinds of maternal NEO exposure had different effects on newborn TL in different sampling seasons, and the effect was statistically significant in all seasons except in autumn. Mixed exposure analysis revealed a potential positive trend between NEOs and newborn TL, but the association was not statistically significant. CONCLUSION Prenatal exposure to TMX may shorten newborn TL, and this effect is more pronounced among female newborns. Furthermore, the relationship between NEO exposure and TL may be modified by the sampling season.
Collapse
Affiliation(s)
- Changhui Mu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Mengrui Lin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yantao Shao
- Department of Medical and Health Management, Logistics Infrastructure Department, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chuanxiang Yu
- Wujiang District Center for Disease Control and Prevention, Suzhou 215299, China
| | - Xiaolin Wu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Manlin Chen
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ying Tang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lihong Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
7
|
Benchikh I, Ziani K, Gonzalez Mateos A, Khaled BM. Non-acute exposure of neonicotinoids, health risk assessment, and evidence integration: a systematic review. Crit Rev Toxicol 2024; 54:194-213. [PMID: 38470098 DOI: 10.1080/10408444.2024.2310593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
Neonicotinoid pesticides are utilized against an extensive range of insects. A growing body of evidence supports that these neuro-active insecticides are classified as toxicants in invertebrates. However, there is limited published data regarding their toxicity in vertebrates and mammals. the current systematic review is focused on the up-to-date knowledge available for several neonicotinoid pesticides and their non-acute toxicity on rodents and human physiology. Oral lethal dose 50 (LD50) of seven neonicotinoids (i.e. imidacloprid, acetamiprid, clothianidin, dinotefuran, thiamethoxam, thiacloprid, and nitenpyram) was initially identified. Subsequently, a screening of the literature was conducted to collect information about non-acute exposure to these insecticides. 99 studies were included and assessed for their risk of bias and level of evidence according to the Office of Health and Translation (OHAT) framework. All the 99 included papers indicate evidence of reproductive toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, immunotoxicity, and oxidative stress induction with a high level of evidence in the health effect of rodents and a moderate level of evidence for human health. The most studied type of these insecticides among 99 papers was imidacloprid (55 papers), followed by acetamiprid (22 papers), clothianidin (21 papers), and thiacloprid (11 papers). While 10 of 99 papers assessed the relationship between clothianidin, thiamethoxam, dinotefuran, and nitenpyram, showing evidence of liver injury, dysfunctions of oxidative stress markers in the reproductive system, and intestinal toxicity. This systematic review provides a comprehensive overview of the potential risks caused by neonicotinoid insecticides to humans and rodents with salient health effects. However, further research is needed to better emphasize and understand the patho-physiological mechanisms of these insecticides, taking into account various factors that can influence their toxicity.
Collapse
Affiliation(s)
- Imen Benchikh
- Laboratory of Applied Hydrology and Environment, Department of Biology, Faculty of Natural Sciences and Life, Belhadj Bouchaib University, Ain Témouchent, Algeria
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi-Bel-Abbès, Algeria
| | - Kaddour Ziani
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants, Department of Biology, University of Saida-Dr. Taher Moulay, Saida, Algeria
| | - Antonio Gonzalez Mateos
- Department of Physiology, Cell Biology and Communication Research Group, University of Extremadura, Caceres, Spain
| | - Boumediène Méghit Khaled
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi-Bel-Abbès, Algeria
| |
Collapse
|
8
|
Tang X, Chen L, Ding Y, Liu H, Li M, Yang Y. Impact of nanoplastics on the biodegradation, ecotoxicity, and key genes involved in imidacloprid metabolic pathways in papyrus (Cyperus papyrus L.). CHEMOSPHERE 2024; 349:140910. [PMID: 38072197 DOI: 10.1016/j.chemosphere.2023.140910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Both nanoplastics (NPs) and imidacloprid (IMI) are widely distributed in the environment and have attracted significant attention due to their adverse effects on ecosystems. Constructed wetlands have the potential to remove IMI, but there is still limited understanding of how wetland plants interact with IMI, especially when influenced by different charged NPs. This study assessed their ecotoxicological effects, as well as the fate and transformation of IMI in papyrus (Cyperus papyrus L.) under the influence of different charged NPs and identified key driving genes in the plant. Results show that simultaneous exposure to positively charged PS-NH2 and IMI inhibited plant growth. The combined action of NPs and IMI intensified their toxicity, enhancing lipid peroxidation and altering antioxidant enzyme activities. The IMI removal efficiency, which was primarily driven by biodegradation, was 80.61%, 88.91%, and 74.71% in the IMI-alone, co-IMI/PS_COOH, and co-IMI/PS_NH2 systems, respectively. PS-NH2 restricted the roots-to-shoots translocation ability of IMI. PS-COOH enhanced IMI oxidation and nitro reduction, while PS-NH2 inhibited 2-OH-IMI dehydrogenation to IMI-olefin in papyrus. Transcriptomics and gene network analysis identified the genes encoding CYP450 enzymes, reductases, hydrolases, dehydrogenases, and peroxidases as those influencing IMI biodegradation. These enzymes play a crucial role in the hydroxylation, dehydrogenation, reduction, and oxidation processes during biodegradation of IMI in the presence of NPs. This study expands the understanding of the impact of differently charged NPs on the IMI remediation efficacy of papyrus, thus providing new insights into the phytoremediation of organic contaminants in constructed wetlands.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China.
| | - Luying Chen
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Yang Ding
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Huanping Liu
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Muzi Li
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Yang Yang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Batista NR, Farder-Gomes CF, Nocelli RCF, Antonialli-Junior WF. Effects of chronic exposure to sublethal doses of neonicotinoids in the social wasp Polybia paulista: Survival, mobility, and histopathology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166823. [PMID: 37683853 DOI: 10.1016/j.scitotenv.2023.166823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Several studies have investigated the consequences of exposure to neonicotinoids in honeybees. Given the lack of studies concerning the consequences of exposure of social wasps to neonicotinoids, as well as the ecological importance of these insects, the objective of this study was to test the hypothesis that chronic exposure to sublethal concentrations of thiamethoxam decreases survival and mobility by causing damage to the brain and midgut of the social wasp Polybia paulista. The wasps were exposed to different concentrations of thiamethoxam, in order to obtain the mean lethal concentration (LC50), which was used as a reference for calculation of two sublethal concentrations (LC50/100 and LC50/10) employed in subsequent experiments. To calculate survival, groups of exposed (EW) and unexposed (UW) wasps were monitored until death, allowing calculation of the average lethal time. The EW and UW groups were evaluated after 12, 24, 48, and 72 h of exposure, considering their mobility and histopathological parameters of the midgut and brain. A lesion index based on semiquantitative analyses was used for comparison of histopathological damage. The results demonstrated that exposure to the LC50/10 led to a significantly shorter survival time of the P. paulista workers, compared to unexposed wasps. In addition, both sublethal concentrations decreased mobility and caused damage to the intestine (loss of brush border, presence of spherocrystals, loss of cytoplasmic material, and pyknosis) and the brain (loss of cell contact and pyknosis), regardless of the exposure time. The findings showed that, like bees, social wasps are nontarget insects susceptible to the detrimental consequences of neonicotinoid use, with exposure leading to impaired survival, locomotion, and physiology.
Collapse
Affiliation(s)
- Nathan Rodrigues Batista
- Centro de Estudos em Recursos Naturais, Laboratório de Ecologia Comportamental, Universidade Estadual de Mato Grosso Do Sul, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil.
| | - Cliver Fernandes Farder-Gomes
- Universidade Federal de São Carlos Campus Araras, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Rodovia Anhanguera (SP-330), Km 174, Araras, SP, 13600-970, Brazil
| | - Roberta Cornélio Ferreira Nocelli
- Universidade Federal de São Carlos Campus Araras, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Rodovia Anhanguera (SP-330), Km 174, Araras, SP, 13600-970, Brazil
| | - William Fernando Antonialli-Junior
- Centro de Estudos em Recursos Naturais, Laboratório de Ecologia Comportamental, Universidade Estadual de Mato Grosso Do Sul, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
10
|
Sheridan AB, Johnson EJ, Vallat-Michel AJ, Glauser G, Harris JW, Neumann P, Straub L. Thiamethoxam soil contaminations reduce fertility of soil-dwelling beetles, Aethina tumida. CHEMOSPHERE 2023; 339:139648. [PMID: 37506888 DOI: 10.1016/j.chemosphere.2023.139648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
There in increasing evidence for recent global insect declines. This is of major concern as insects play a critical role in ecosystem functionality and human food security. Even though environmental pollutants are known to reduce insect fertility, their potential effects on insect fitness remain poorly understood - especially for soil-dwelling species. Here, we show that fertility of soil-dwelling beetles, Aethina tumida, is reduced, on average, by half due to field-realistic neonicotinoid soil contaminations. In the laboratory, pupating beetles were exposed via soil to concentrations of the neonicotinoid thiamethoxam that reflect global pollution of agricultural and natural habitats. Emerged adult phenotypes and reproduction were measured, and even the lowest concentration reported from natural habitats reduced subsequent reproduction by 50%. The data are most likely a conservative estimate as the beetles were only exposed during pupation. Since the tested concentrations reflect ubiquitous soil pollution, the data reveal a plausible mechanism for ongoing insect declines. An immediate reduction in environmental pollutants is urgently required if our aim is to mitigate the prevailing loss of species biodiversity.
Collapse
Affiliation(s)
- Audrey B Sheridan
- Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, USA
| | - Elijah J Johnson
- Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, USA
| | | | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jeffrey W Harris
- Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, USA
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Swiss Bee Research Center, Agroscope, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong, Thailand; Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom.
| |
Collapse
|
11
|
Flach H, Geiß K, Lohse KA, Feickert M, Dietmann P, Pfeffer S, Kühl M, Kühl SJ. The neonicotinoid thiacloprid leads to multiple defects during early embryogenesis of the South African clawed frog (Xenopuslaevis). Food Chem Toxicol 2023; 176:113761. [PMID: 37028742 DOI: 10.1016/j.fct.2023.113761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
There is increasing concern about the health effects of pesticides that pollute natural waters. In particular, the use of neonicotinoids, such as thiacloprid (THD), is causing unease. THD is considered non-toxic to non-target vertebrates. Studies classify THD as carcinogenic, toxic to reproduction, and therefore harmful to the environment. A detailed study of possible THD effects during the amphibian embryogenesis is needed because leaching can introduce THD into aquatic environments. We incubated stage 2 embryos of the South African clawed frog in various THD concentrations (0.1-100 mg/L) at 14 °C to study the potential effects of a one-time THD contamination of waters on the early embryogenesis. We showed that THD has, indeed, negative effects on the embryonic development of the X. laevis. A treatment with THD led to a reduced embryonic body length and mobility. Furthermore, a treatment with THD resulted in smaller cranial cartilages, eyes and brains, and the embryos had shorter cranial nerves and an impaired cardiogenesis. On a molecular basis, THD led to a reduced expression of the brain marker emx1 and the heart marker mhcα. Our results underly the importance of a strict and efficient monitoring of the regulatory levels and application areas of THD.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kristina Geiß
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kim-André Lohse
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Manuel Feickert
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sarah Pfeffer
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
12
|
Stehle S, Ovcharova V, Wolfram J, Bub S, Herrmann LZ, Petschick LL, Schulz R. Neonicotinoid insecticides in global agricultural surface waters - Exposure, risks and regulatory challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161383. [PMID: 36621497 DOI: 10.1016/j.scitotenv.2022.161383] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Neonicotinoids are the most widely used insecticides worldwide. However, the widespread usage of neonicotinoids has sparked concerns over their effects on non-target ecosystems including surface waters. We present here a comprehensive meta-analysis of 173 peer-reviewed studies (1998-2022) reporting measured insecticide concentrations (MICs; n = 3983) for neonicotinoids in global surface waters resulting from agricultural nonpoint source pollution. We used compound-specific regulatory threshold levels for water (RTLSW) and sediment (RTLSED) defined for pesticide authorization in Canada, the EU and the US, and multispecies endpoints (MSESW) to assess acute and chronic risks of global neonicotinoid water-phase (MICSW; n = 3790) and sediment (MICSED; n = 193) concentrations. Results show a complete lack of exposure information for surface waters in >90 % of agricultural areas globally. However, available data indicates for MICSW overall acute risks to be low (6.7 % RTLSW_acute exceedances), but chronic risks to be of concern (20.7 % RTLSW_chronic exceedances); exceedance frequencies were particularly high for chronic MSESW (63.3 %). We found RTLSW exceedances to be highest for imidacloprid and in less regulated countries. Linear model analysis revealed risks for global agricultural surface waters to decrease significantly over time, potentially biased by the lack of sensitive analytical methods in early years of neonicotinoid monitoring. The Canadian, EU and US RTLSW differ considerably (up to factors of 223 for RTLSW_acute and 13,889 for RTLSW_chronic) for individual neonicotinoids, indicating large uncertainties and regulatory challenges in defining robust and protective RTLs. We conclude that protective threshold levels, in concert with increasing monitoring efforts targeting agricultural surface waters worldwide, are essential to further assess the ecological consequences from anticipated increases of agricultural neonicotinoid uses.
Collapse
Affiliation(s)
- Sebastian Stehle
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany.
| | - Viktoriia Ovcharova
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Jakob Wolfram
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Sascha Bub
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Larissa Zoë Herrmann
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Lara Luisa Petschick
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany; Eusserthal Ecosystem Research Station, University Koblenz-Landau, 76857 Eusserthal, Germany
| |
Collapse
|
13
|
Biodegradation and Metabolic Pathway of the Neonicotinoid Insecticide Thiamethoxam by Labrys portucalensis F11. Int J Mol Sci 2022; 23:ijms232214326. [PMID: 36430799 PMCID: PMC9694413 DOI: 10.3390/ijms232214326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Thiamethoxam (TMX) is an effective neonicotinoid insecticide. However, its widespread use is detrimental to non-targeted organisms and water systems. This study investigates the biodegradation of this insecticide by Labrys portucalensis F11. After 30 days of incubation in mineral salt medium, L. portucalensis F11 was able to remove 41%, 35% and 100% of a supplied amount of TMX (10.8 mg L-1) provided as the sole carbon and nitrogen source, the sole carbon and sulfur source and as the sole carbon source, respectively. Periodic feeding with sodium acetate as the supplementary carbon source resulted in faster degradation of TMX (10.8 mg L-1); more than 90% was removed in 3 days. The detection and identification of biodegradation intermediates was performed by UPLC-QTOF/MS/MS. The chemical structure of 12 metabolites is proposed. Nitro reduction, oxadiazine ring cleavage and dechlorination are the main degradation pathways proposed. After biodegradation, toxicity was removed as indicated using Aliivibrio fischeri and by assessing the synthesis of an inducible β-galactosidase by an E. coli mutant (Toxi-Chromo test). L. portucalensis F11 was able to degrade TMX under different conditions and could be effective in bioremediation strategies.
Collapse
|
14
|
Huang S, Huang H, Xie J, Wang F, Fan S, Yang M, Zheng C, Han L, Zhang D. The latest research progress on the prevention of storage pests by natural products: Species, mechanisms, and sources of inspiration. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Somogyvári D, Farkas A, Mörtl M, Győri J. Behavioral and biochemical alterations induced by acute clothianidin and imidacloprid exposure in the killer shrimp, Dikerogammarus villosus. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109421. [PMID: 35908639 DOI: 10.1016/j.cbpc.2022.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/03/2022]
Abstract
Neonicotinoids are widely used insecticides around the world and are preserved permanently in soils and appear in surface waters posing an increased threat to ecosystems. In the present study, we exposed adult specimens of amphipod Dikerogammarus villosus to environmentally relevant and higher concentrations of two widely used agricultural neonicotinoids, clothianidin (CLO) and imidacloprid (IMI), for 2 days. The acute effects were investigated at the behavioral (immobility time and swimming activity) and biochemical (glutathione S-transferase [GST] and acetylcholine esterase [AchE] activity) levels. All CLO concentrations used (64 nM, 128 nM, 192 nM) significantly decreased the immobility time and swimming activity. In the case of IMI, the immobility time decreased significantly only at the highest concentration applied (977 nM), but the distance travelled by the animals significantly decreased even at lower concentrations (78 nM and 313 nM). The GST enzyme activity did not change in the CLO-treated groups, however, the 626 nM and 977 nM IMI concentrations significantly increased the GST activity. Similarly, to the behavioral level, all CLO concentrations significantly decreased the AchE activity. In contrast, IMI has a significant stimulating effect on the AchE activity at the 313 nM, 626 nM, and 977 nM concentrations. Based on the authors' best knowledge, this is the first study to investigate the effects of CLO and IMI at environmentally-relevant concentrations on D. villosus. Our findings contribute to the understanding of the physiological effects of neonicotinoids.
Collapse
Affiliation(s)
- Dávid Somogyvári
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3, H-8237 Tihany, Hungary; National Laboratory for Water Science and Water Safety, Balaton Limnological Research Institute, Tihany, Hungary; Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, 8200, Hungary.
| | - Anna Farkas
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3, H-8237 Tihany, Hungary; National Laboratory for Water Science and Water Safety, Balaton Limnological Research Institute, Tihany, Hungary
| | - Mária Mörtl
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - János Győri
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3, H-8237 Tihany, Hungary; National Laboratory for Water Science and Water Safety, Balaton Limnological Research Institute, Tihany, Hungary
| |
Collapse
|
16
|
Su Y, Ren X, Ma X, Wang D, Hu H, Song X, Cui J, Ma Y, Yao Y. Evaluation of the Toxicity and Sublethal Effects of Acetamiprid and Dinotefuran on the Predator Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae). TOXICS 2022; 10:toxics10060309. [PMID: 35736917 PMCID: PMC9228657 DOI: 10.3390/toxics10060309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023]
Abstract
Neonicotinoid insecticides affect the physiology or behavior of insects, posing risks to non-target organisms. In this study, the effects of sublethal doses of two neonicotinoid insecticides, acetamiprid and dinotefuran, against Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) were determined and compared. The results showed that acetamiprid and dinotefuran at LD10 (8.18 ng a.i. per insect and 9.36 ng a.i. per insect, respectively) and LD30 (16.84 ng a.i. per insect and 15.01 ng a.i. per insect, respectively) significantly prolonged the larval stages and pupal stages (except acetamiprid LD10), compared to control. In addition, acetamiprid and dinotefuran at LD30 significantly prolonged the adult preoviposition period (APOP) and total preoviposition period (TPOP). In contrast, the two insecticides at LD10 and LD30 had no significant effect on the longevity, fecundity, reproductive days, preadult survival rate (%), intrinsic rate of increase (r), net reproductive rate (R0), and finite rate of increase (λ). These results provide a theoretical basis for the rational use of these two insecticides and the utilization and protection of C. pallens.
Collapse
Affiliation(s)
- Yue Su
- Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, College of Agriculture, Tarim University, Aral 843300, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Y.M.); (Y.Y.)
| | - Yongsheng Yao
- Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, College of Agriculture, Tarim University, Aral 843300, China;
- Correspondence: (Y.M.); (Y.Y.)
| |
Collapse
|
17
|
Farkas A, Somogyvári D, Kovács AW, Mörtl M, Székács A, Győri J. Physiological and metabolic alterations induced by commercial neonicotinoid formulations in Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:415-424. [PMID: 35091852 DOI: 10.1007/s10646-022-02520-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Neonicotinoid insecticides are widely used agents in agriculture to control a broad range of insect pests. Although use of neonicotinoid pesticides has resulted in the widespread contamination of surface waters, sublethal toxicity data of these products in relation to non-target aquatic biota are still poor. Therefore, the objective of this study was to assess the effects of two neonicotinoid pesticides with widespread use on the basic physiological functions: the thoracic limb activity and heart rate of Daphnia magna, and to screen for their potential to affect the cytochrome P450 monooxygenase system (ECOD activity) of daphnids. The considered pesticides were the acetamiprid- and thiacloprid based products Mospilan 20 SG and Calypso 480 SC, respectively. The dose-dependent variation in the three biological endpoints considered were assessed following 24 h exposures. The two neonicotinoid formulations elicited significant depression on the thoracic limb activity and heart rate of daphnids at doses close to the immobility thresholds of formulations (48h-EC50: Mospilan 20 SG = 190 mg L-1; Calypso 480 SC = 120 mg L-1), an effect mainly attributable to the overall drop in the general health status of the organisms. The alterations in the physiological traits were significant at exposures to 190 mg L-1 for Mospilan 20 SG and 48 mg L-1 for Calypso 480 SC. The dose related variation in the ECOD activity of daphnids exposed to the selected neonicotinoid formulations followed a biphasic pattern, with starting effective doses for Mospilan 20 SG of 6.3 mg L-1 (=1/20 of 48h-EC50 for Daphnia neonates), and for Calypso 480 SC of 0.034 mg L-1 (=1/4000 of 48h-EC50). Maximal ECOD activity (2.2 fold increase vs. controls) was induced by Mospilan 20 SG in daphnids exposed to 114 mg L-1 product (=48 h-EC20), and by Calypso 480 SC (1.8 fold increase) at 5.2 mg L-1 dose (=1/20 of 48 h-EC50). Our results outlined significant alterations in the physiological traits and ECOD activity in exposed daphnids at concentrations below the immobility thresholds (48 h-EC50) of the products used as benchmarks to rate their toxicity risks to aquatic biota. Therefore, we think our findings might deserve consideration in the environmental risk evaluation of these products.
Collapse
Affiliation(s)
- Anna Farkas
- Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary.
| | - Dávid Somogyvári
- Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
| | - Attila W Kovács
- Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
| | - Mária Mörtl
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - János Győri
- Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
| |
Collapse
|
18
|
Straub L, Minnameyer A, Camenzind D, Kalbermatten I, Tosi S, Van Oystaeyen A, Wäckers F, Neumann P, Strobl V. Thiamethoxam as an inadvertent anti-aphrodisiac in male bees. Toxicol Rep 2022; 9:36-45. [PMID: 34987978 PMCID: PMC8693414 DOI: 10.1016/j.toxrep.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
There is consensus that neonicotinoids can impact non-target animal fertility. Thiamethoxam reduced both mating success and sperm physiology in bumblebees. Queens mated by exposed males had 50% less total living sperm in their spermatheca. Thiamethoxam may act as anti-aphrodisiac, thereby limiting conservation efforts.
Sexual reproduction is common to almost all multi-cellular organisms and can be compromised by environmental pollution, thereby affecting entire populations. Even though there is consensus that neonicotinoid insecticides can impact non-target animal fertility, their possible impact on male mating success is currently unknown in bees. Here, we show that sublethal exposure to a neonicotinoid significantly reduces both mating success and sperm traits of male bumblebees. Sexually mature male Bombus terrestris exposed to a field-realistic concentration of thiamethoxam (20 ng g−1) or not (controls) were mated with virgin gynes in the laboratory. The results confirm sublethal negative effects of thiamethoxam on sperm quantity and viability. While the latency to mate was reduced, mating success was significantly impaired in thiamethoxam-exposed males by 32% probably due to female choice. Gynes mated by exposed males revealed impaired sperm traits compared to their respective controls, which may lead to severe constraints for colony fitness. Our laboratory findings demonstrate for the first time that neonicotinoid insecticides can negatively affect male mating success in bees. Given that holds true for the field, this provides a plausible mechanism contributing to declines of wild bee populations globally. The widespread prophylactic use of neonicotinoids may therefore have previously overlooked inadvertent anti-aphrodisiac effects on non-target animals, thereby limiting conservation efforts.
Collapse
Affiliation(s)
- Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Angela Minnameyer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Domenic Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Simone Tosi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Italy
| | | | | | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Olivares-Castro G, Cáceres-Jensen L, Guerrero-Bosagna C, Villagra C. Insect Epigenetic Mechanisms Facing Anthropogenic-Derived Contamination, an Overview. INSECTS 2021; 12:780. [PMID: 34564220 PMCID: PMC8468710 DOI: 10.3390/insects12090780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Currently, the human species has been recognized as the primary species responsible for Earth's biodiversity decline. Contamination by different chemical compounds, such as pesticides, is among the main causes of population decreases and species extinction. Insects are key for ecosystem maintenance; unfortunately, their populations are being drastically affected by human-derived disturbances. Pesticides, applied in agricultural and urban environments, are capable of polluting soil and water sources, reaching non-target organisms (native and introduced). Pesticides alter insect's development, physiology, and inheritance. Recently, a link between pesticide effects on insects and their epigenetic molecular mechanisms (EMMs) has been demonstrated. EMMs are capable of regulating gene expression without modifying genetic sequences, resulting in the expression of different stress responses as well as compensatory mechanisms. In this work, we review the main anthropogenic contaminants capable of affecting insect biology and of triggering EMMs. EMMs are involved in the development of several diseases in native insects affected by pesticides (e.g., anomalous teratogenic reactions). Additionally, EMMs also may allow for the survival of some species (mainly pests) under contamination-derived habitats; this may lead to biodiversity decline and further biotic homogenization. We illustrate these patterns by reviewing the effect of neonicotinoid insecticides, insect EMMs, and their ecological consequences.
Collapse
Affiliation(s)
- Gabriela Olivares-Castro
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Santiago 7760197, Chile;
| | - Lizethly Cáceres-Jensen
- Laboratorio de Físicoquímica Analítica, Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile;
| | - Carlos Guerrero-Bosagna
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden;
- Environmental Toxicology Program, Department of Integrative Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Cristian Villagra
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Santiago 7760197, Chile;
| |
Collapse
|
20
|
Svigruha R, Fodor I, Győri J, Schmidt J, Padisák J, Pirger Z. Effects of chronic sublethal progestogen exposure on development, reproduction, and detoxification system of water flea, Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147113. [PMID: 33892323 DOI: 10.1016/j.scitotenv.2021.147113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The presence of sex steroid hormones in aquatic ecosystems is of rapidly growing concern worldwide since they can affect the different non-target species including cladocerans. Although data are available on the effects of estrogens on the well-established ecotoxicological model organism Daphnia magna, the molecular or behavioural alterations induced by environmentally relevant concentrations (from a few ng L-1 to a few hundred ng L-1 in average) of progestogens have not been investigated on this species. In the present study, we exposed neonates of D. magna to relevant equi-concentrations (1, 10, 100, 500 ng L-1) of mixtures of four progestogens (progesterone, drospirenone, gestodene, levonorgestrel) in short-term (6 days) and long-term (21 days) experiments. Significant alterations were observed at the molecular, cellular, and individual levels. During the short-term exposure, all of the mixtures increased the gene expression of glutathione S-transferase (GST) detoxification enzyme, moreover, the activity of GST was also significantly increased at the concentrations of 10, 100, and 500 ng L-1. In long-term exposure, the number of days until production of the first eggs was reduced at the 10 ng L-1 concentration compared to control, furthermore, the maximum egg number per individual increased at the concentrations of 1 and 10 ng L-1. Based on the authors' best knowledge, this is the first study to investigate the effects of progestogens in mixtures and at environmentally relevant concentrations on D. magna. Our findings contribute to the understanding of the possible physiological effects of human progestogens. Future research should be aimed at understanding the potential mechanisms (e.g., perception) underlying the changes induced by progestogens.
Collapse
Affiliation(s)
- Réka Svigruha
- Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, 8200 Veszprém, Hungary; NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary; Ecophysiology and Environmental Toxicology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary
| | - István Fodor
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary; Ecophysiology and Environmental Toxicology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary
| | - János Győri
- Ecophysiology and Environmental Toxicology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Judit Padisák
- Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, 8200 Veszprém, Hungary
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary; Ecophysiology and Environmental Toxicology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary.
| |
Collapse
|
21
|
Abstract
Seed treatment as a method of local application of pesticides in precise agriculture reduces the amount of pesticides used per unit area and is considered to be the safest, cheapest and most ecologically acceptable method of protecting seeds and young plants from pests in the early stages of their development. With the introduction of insecticides from the neonicotinoid group in the mid-1990s, the frequency of seed treatment increased. Due to suspected negative effects on pollinators, most of these insecticides are banned in the European Union. The ban has therefore led to a reduction in the number of active substances approved for seed treatment and to an increased re-use of active substances from the group of pyrethroids as well as other organophosphorus insecticides, which pose potentially very serious risks, perhaps even greater than those of the banned neonicotinoids. The objective of this review is to analyze the advantages and disadvantages of seed treatment and the potential role of insecticide seed treatment in reducing the negative impact of pesticides on the environment. The main disadvantage of this method is that it has been widely accepted and has become a prophylactic protective measure applied to almost all fields. This is contrary to the principles of integrated pest management and leads to an increased input of insecticides into the environment, by treating a larger number of hectares with a lower amount of active ingredient, and a negative impact on beneficial entomofauna. In addition, studies show that due to the prophylactic approach, the economic and technical justification of this method is often questionable. Extremely important for a quality implementation are the correct processing and implementation of the treatment procedure as well as the selection of appropriate insecticides, which have proven to be problematic in the case of neonicotinoids. The ban on neonicotinoids and the withdrawal of seed treatments in oilseed rape and sugar beet has led to increased problems with a range of pests affecting these crops at an early stage of growth. The results of the present studies indicate good efficacy of active ingredients belonging to the group of anthranilic diamides, cyantraniliprole and chlorantraniliprole in the treatment of maize, soybean, sugar beet and rice seeds on pests of the above-ground part of the plant, but not on wireworms. Good efficacy in controlling wireworms in maize is shown by an insecticide in the naturalites group, spinosad, but it is currently used to treat seeds of vegetable crops, mainly onions, to control onion flies and flies on other vegetable crops. Seed treatment as a method only fits in with the principles of integrated pest management when treated seeds are sown on land where there is a positive prognosis for pest infestation.
Collapse
|
22
|
Park J, Taly A, Bourreau J, De Nardi F, Legendre C, Henrion D, Guérineau NC, Legros C, Mattei C, Tricoire-Leignel H. Partial Agonist Activity of Neonicotinoids on Rat Nicotinic Receptors: Consequences over Epinephrine Secretion and In Vivo Blood Pressure. Int J Mol Sci 2021; 22:ijms22105106. [PMID: 34065933 PMCID: PMC8151892 DOI: 10.3390/ijms22105106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neonicotinoid insecticides are nicotine-derived molecules which exert acute neurotoxic effects over the insect central nervous system by activating nicotinic acetylcholine receptors (nAChRs). However, these receptors are also present in the mammalian central and peripheral nervous system, where the effects of neonicotinoids are faintly known. In mammals, cholinergic synapses are crucial for the control of vascular tone, blood pressure and skeletal muscle contraction. We therefore hypothesized that neonicotinoids could affect cholinergic networks in mammals and sought to highlight functional consequences of acute intoxication in rats with sub-lethal concentrations of the highly used acetamiprid (ACE) and clothianidin (CLO). In this view, we characterized their electrophysiological effects on rat α3β4 nAChRs, knowing that it is predominantly expressed in ganglia of the vegetative nervous system and the adrenal medulla, which initiates catecholamine secretion. Both molecules exhibited a weak agonist effect on α3β4 receptors. Accordingly, their influence on epinephrine secretion from rat adrenal glands was also weak at 100 μM, but it was stronger at 500 μM. Challenging ACE or CLO together with nicotine (NIC) ended up with paradoxical effects on secretion. In addition, we measured the rat arterial blood pressure (ABP) in vivo by arterial catheterization. As expected, NIC induced a significant increase in ABP. ACE and CLO did not affect the ABP in the same conditions. However, simultaneous exposure of rats to both NIC and ACE/CLO promoted an increase of ABP and induced a biphasic response. Modeling the interaction of ACE or CLO on α3β4 nAChR is consistent with a binding site located in the agonist pocket of the receptor. We present a transversal experimental approach of mammal intoxication with neonicotinoids at different scales, including in vitro, ex vivo, in vivo and in silico. It paves the way of the acute and chronic toxicity for this class of insecticides on mammalian organisms.
Collapse
Affiliation(s)
- Joohee Park
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Antoine Taly
- Theoretical Biochemistry Laboratory, Institute of Physico-Chemical Biology, CNRS UPR 9080, University of Paris Diderot Sorbonne Paris Cité, 75005 Paris, France;
| | - Jennifer Bourreau
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Frédéric De Nardi
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Claire Legendre
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Daniel Henrion
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Nathalie C. Guérineau
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- IGF, University of Montpellier, CNRS, INSERM, 34000 Montpellier, France
| | - Christian Legros
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - César Mattei
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- Correspondence: (C.M.); (H.T.-L.)
| | - Hélène Tricoire-Leignel
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- Correspondence: (C.M.); (H.T.-L.)
| |
Collapse
|
23
|
Macaulay SJ, Hageman KJ, Piggott JJ, Matthaei CD. Imidacloprid dominates the combined toxicities of neonicotinoid mixtures to stream mayfly nymphs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143263. [PMID: 33246716 DOI: 10.1016/j.scitotenv.2020.143263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/30/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Contamination of the environment with toxic chemicals such as pesticides has become a global problem. Understanding the role of chemical contaminants as stressors in ecological systems is therefore an important research need in the 21st century. In surface freshwaters, mixtures of neonicotinoid insecticides are being detected around the world as more monitoring data become available. Combinations of imidacloprid, clothianidin and thiamethoxam are commonly found, but studies testing their combined toxicities to freshwater invertebrates are rare. Taking a multiple-stressor approach, we employed a full-factorial design to investigate the individual and combined chronic toxicities of these three neonicotinoids in a 28-day laboratory experiment using Deleatidium spp. mayfly nymphs. Imidacloprid (1.2 μg/L achieved concentration) reduced mayfly survival (by 50% on Day 28) and mobility (~100%) more than clothianidin (1.1 μg/L, affecting about 25% of individuals across the responses measured) and thiamethoxam (2.9 μg/L, affecting 12%). Imidacloprid interacted with the other two neonicotinoids to cause a greater-than-additive negative effect when combined until 25 days of exposure, after which the strong negative overall effects of imidacloprid prevented these interactions from being observed. Our findings represent a novel contribution to multiple-stressor research by demonstrating the combined effects of chronic exposure to environmentally relevant neonicotinoid concentrations on an ecologically important stream insect taxon. These results emphasise the higher toxicity of imidacloprid to non-target freshwater insects compared to clothianidin and thiamethoxam, implying that stricter regulation to control the use of imidacloprid may need to be prioritised to protect vulnerable aquatic insect populations that provide key links to terrestrial food webs. Finally, our study provides an ecological, multiple-stressor comparison for related ecotoxicological investigations indicating neonicotinoid mixtures can deviate from additive toxicity.
Collapse
Affiliation(s)
- Samuel J Macaulay
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand.
| | - Kimberly J Hageman
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0305, USA
| | - Jeremy J Piggott
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand; School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Christoph D Matthaei
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
24
|
Bonmatin JM, Mitchell EAD, Glauser G, Lumawig-Heitzman E, Claveria F, Bijleveld van Lexmond M, Taira K, Sánchez-Bayo F. Residues of neonicotinoids in soil, water and people's hair: A case study from three agricultural regions of the Philippines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143822. [PMID: 33246718 DOI: 10.1016/j.scitotenv.2020.143822] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Synthetic pesticides such as neonicotinoids are commonly used to treat crops in tropical regions, where data on environmental and human contamination are patchy and make it difficult to assess to what extent pesticides may harm human health, especially in less developed countries. To assess the degree of environmental and human contamination with neonicotinoids we collected soil, water and people's hair in three agricultural regions of the Philippines and analysed them by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS-MS). Five neonicotinoids, namely acetamiprid, clothianidin, imidacloprid, thiacloprid and thiamethoxam were targeted. Residues of neonicotinoids were found in 78% of 67 soil samples from the three provinces. Total neonicotinoid loads ranged on average between 0.017 and 0.89 μg/kg in soils of rice, banana and vegetable crops, and were 130 times higher (113.5 μg/kg) in soils of a citrus grove. Imidacloprid was the most prevalent compound at an average of 0.56 μg/kg in soil while thiacloprid was below the limit of detection. Half of the eight water samples from a rice field and nearby creek contained residues of imidacloprid (mean 1.29 ng/L) and one contained thiamethoxam (0.15 ng/L). Residues of neonicotinoids were found in 81% of 99 samples of people's hair from the surveyed regions (average total concentrations 0.14 to 1.18 ng/g, maximum 350 ng/g). Hair residue levels correlated well with the concentrations of thiamethoxam and total residues in soils from the same locality (r = 0.98). The presence of thiacloprid in 15% of the hair samples but not in soil samples suggests an additional route of exposure among people, which is most likely to be through ingestion of agricultural food and drinks available in the market.
Collapse
Affiliation(s)
- Jean-Marc Bonmatin
- Centre National de La Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, CS 80054, 45071 Orléans, France
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, Université de Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland; Neuchâtel Botanical Garden, Chemin du Perthuis-du-Sault 58, CH-2000 Neuchâtel, Switzerland
| | - Gaëtan Glauser
- Neuchatel Platform of Analytical Chemistry (NPAC), Université de Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | | | | | | | - Kumiko Taira
- Department of Anesthesiology, Tokyo Women's Medical University Medical Center East, Nishi-ogu 2-1-10, Arakawa-ku, Tokyo 116-8567, Japan
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW 2015, Australia.
| |
Collapse
|
25
|
Abstract
Contaminants in water were studied using ultraviolet absorption with light emitting diode and deuterium lamp sources, and a thresholding detector. The absorption spectra of potassium hydrogen pthalate, clothianidin, tryptophan, thiamethoxam, uric acid and metaldehyde were obtained in the range 200–360 nm. Only metaldehyde was not suitable for detection in this range. For the other contaminants, and mixtures of pairs of compounds, the transmitted signal could be approximately described with a simple spectral model of the source–absorption–detector system. Combined measurements at two wavelengths could allow relative concentrations in certain mixtures to be determined, and real-time absorption measurements were demonstrated in a flume.
Collapse
|
26
|
Herbert LT, Cossi PF, Painefilú JC, Mengoni Goñalons C, Luquet CM, Kristoff G. Acute neurotoxicity evaluation of two anticholinesterasic insecticides, independently and in mixtures, and a neonicotinoid on a freshwater gastropod. CHEMOSPHERE 2021; 265:129107. [PMID: 33288284 DOI: 10.1016/j.chemosphere.2020.129107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Neurotoxic insecticides are ubiquitous in aquatic ecosystems, frequently as part of complex mixtures. Freshwater gastropods are generally underrepresented in neurotoxicity evaluations and cumulative toxicity testing. This study investigates the behavioural and biochemical effects of acute exposures to the carbamate carbaryl, the organophosphate chlorpyrifos, and the neonicotinoid acetamiprid on the freshwater gastropod Chilina gibbosa. First, we evaluated behavioural neurotoxicity and cholinesterase (ChE), carboxylesterase (CE), and glutathione S-transferase (GST) activities in acute (48h) single-chemical exposures to increasing concentrations of carbaryl (0.5-500 μg L-1), chlorpyrifos (10-7500 μg L-1), and acetamiprid (1-10000 μg L-1). We then studied the effects of acute (48h) exposures to binary mixtures of carbaryl and chlorpyrifos equivalent to 0.5, 1, and 1.5 ChE 48h-IC50. None of the insecticides caused severe behavioural neurotoxicity, except for a significant lack of adherence by 5000 μg L-1 chlorpyrifos. Carbaryl caused concentration-dependent inhibition of ChEs (NOEC 5 μg L-1; 48h-IC50 45 μg L-1) and CEs with p-nitrophenyl butyrate as substrate (NOEC 5 μg L-1; 48h-IC50 37 μg L-1). Chlorpyrifos caused concentration-dependent inhibition of ChEs (NOEC 50 μg L-1; 48h-IC50 946 μg L-1) but did not affect CEs (NOEC ≥7500 μg L-1). Carbaryl-chlorpyrifos mixtures inhibited ChEs additively, inhibited CEs with p-nitrophenyl butyrate, and did not affect behaviour. GST activity was not affected by single or mixture exposures. Acute exposure to acetamiprid did not affect any of the endpoints evaluated. This study provides new information on carbaryl, chlorpyrifos, and acetamiprid toxicity on C. gibbosa, relevant to improve gastropod representation in ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Lucila Thomsett Herbert
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| | - Paula Fanny Cossi
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| | - Julio César Painefilú
- Laboratorio de Ecotoxicología Acuática (INIBIOMA, UNCo-CONICET)-CEAN, Junín de Los Andes, Neuquén, Argentina.
| | | | - Carlos Marcelo Luquet
- Laboratorio de Ecotoxicología Acuática (INIBIOMA, UNCo-CONICET)-CEAN, Junín de Los Andes, Neuquén, Argentina.
| | - Gisela Kristoff
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
27
|
Ewere EE, Reichelt-Brushett A, Benkendorff K. Impacts of Neonicotinoids on Molluscs: What We Know and What We Need to Know. TOXICS 2021; 9:21. [PMID: 33499264 PMCID: PMC7911472 DOI: 10.3390/toxics9020021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
The broad utilisation of neonicotinoids in agriculture has led to the unplanned contamination of adjacent terrestrial and aquatic systems around the world. Environmental monitoring regularly detects neonicotinoids at concentrations that may cause negative impacts on molluscs. The toxicity of neonicotinoids to some non-target invertebrates has been established; however, information on mollusc species is limited. Molluscs are likely to be exposed to various concentrations of neonicotinoids in the soil, food and water, which could increase their vulnerability to other sources of mortality and cause accidental exposure of other organisms higher in the food chain. This review examines the impacts of various concentrations of neonicotinoids on molluscs, including behavioural, physiological and biochemical responses. The review also identifies knowledge gaps and provides recommendations for future studies, to ensure a more comprehensive understanding of impacts from neonicotinoid exposure to molluscs.
Collapse
Affiliation(s)
- Endurance E Ewere
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia; (E.E.E.); (A.R.-B.)
- Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, PMB 1154 Benin City, Nigeria
| | - Amanda Reichelt-Brushett
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia; (E.E.E.); (A.R.-B.)
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia; (E.E.E.); (A.R.-B.)
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia
| |
Collapse
|
28
|
Addesso KM, Oliver JB, Youssef NN, Fare DC. Evaluation of Systemic Imidacloprid and Herbicide Treatments on Flatheaded Borer (Coleoptera: Buprestidae) Management in Field Nursery Production. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2808-2819. [PMID: 33080001 PMCID: PMC7724753 DOI: 10.1093/jee/toaa228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 05/30/2023]
Abstract
The flatheaded appletree borer, Chrysobothris femorata (Olivier) (Coleoptera: Buprestidae), and related species are deciduous tree pests. Female beetles prefer to oviposit at tree bases, and larvae tunnel beneath the bark, which weakens or kills young or newly transplanted trees. In the first objective of this study, Discus N/G (2.94% imidacloprid + 0.7% cyfluthrin) applied at six lower-than-labeled rates (0.0, 0.98, 1.97, 3.94, 5.91, and 7.87 ml/cm of average trunk dia.) was evaluated for protection of field-grown maples. A second objective evaluated imidacloprid with and without herbicides to assess the impact of weed competition at the tree base on insecticide effectiveness. A third objective determined relative imidacloprid concentrations in leaf tissue samples with ELISA and related to insecticide rates, herbicide treatments, and the level of flatheaded borer protection. In two trials, higher rates of insecticide were more effective at protecting trees, with rates ≥3.94 ml product/cm trunk diameter performing equivalently. Weed-free trees had more borer attacks and grew faster than trees in weedy plots. Imidacloprid content in leaf tissues had a trend for higher concentrations in smaller, weedy trees in the first season, but that pattern disappeared in subsequent years. Based on fewer attacks in weedy versus weed-free trees (60-90% reduction), it was concluded that weed presence can reduce borer attack success in nurseries independent of insecticide treatment, but tree growth was reduced by weed presence. In addition, Discus applied at rates >3.94 ml/cm did not confer added borer damage protection in weedy plots.
Collapse
Affiliation(s)
- Karla M Addesso
- Department of Agricultural and Environmental Sciences, Tennessee State University, Otis L. Floyd Nursery Research Center, McMinnville, TN
| | - Jason B Oliver
- Department of Agricultural and Environmental Sciences, Tennessee State University, Otis L. Floyd Nursery Research Center, McMinnville, TN
| | - Nadeer N Youssef
- Department of Agricultural and Environmental Sciences, Tennessee State University, Otis L. Floyd Nursery Research Center, McMinnville, TN
| | - Donna C Fare
- Retired USDA-ARS, Floral and Nursery Plants Research, Otis L. Floyd Nursery Research Center, McMinnville, TN
| |
Collapse
|
29
|
Vaulin OV, Karagodin DA, Novgorodova TA, Glupov VV. Analysis of Anopheles messeae s.l. intron gene polymorphism associated with imidacloprid resistance. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2020; 45:220-232. [PMID: 33207047 DOI: 10.1111/jvec.12393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Due to their high solubility and stability, neonicotinoid insecticides are able to accumulate in water bodies, affecting aquatic organisms. The aims of this study were to evaluate resistance (LC50 ) of Anopheles messeae s.l. (Anopheles messeae and An. daciae) to the neonicotinoid imidacloprid and to search for genetic markers associated with insecticide resistance. The LC50 values of these species in the collections during 2017 and 2018 were indistinguishable and were in the range of 0.027-0.051 mg/l. In general, the LC50 values of the mosquitoes were comparable with values of other mosquito species of the Anopheles and Culex genera. Gene polymorphisms of the variations in intron lengths and the presence of restriction sites in introns that were potentially associated with the metabolism of insecticides were studied. Polymorphisms of the studied genes in the pair of closely related species considered overlapped, but allele frequencies were different. Part of the genetic variants arose due to insertions of repetitive elements of the genome. Two variants of the cytochrome P450 gene Cyp6AG1 in An. daciae were associated with increased resistance to imidacloprid. Possible side effects of selection on insecticide resistance in blood-sucking mosquitoes are discussed.
Collapse
Affiliation(s)
- Oleg V Vaulin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry A Karagodin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatiana A Novgorodova
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
30
|
Mörtl M, Takács E, Klátyik S, Székács A. Appearance of Thiacloprid in the Guttation Liquid of Coated Maize Seeds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3290. [PMID: 32397272 PMCID: PMC7246591 DOI: 10.3390/ijerph17093290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 11/17/2022]
Abstract
Thiacloprid (TCL) uptake by maize plants that emerge from coated seeds has been investigated and characterized via measurements of the compound in the guttation liquid. TCL levels were determined in the guttation liquid: (a) under field and semi-field conditions, (b) for different maize varieties, (c) applying different dosages, and (d) as affected by cross-contamination between maize seeds via soil. Cross-contamination was described by uptake interactions between seeds coated with TCL and neighboring seeds not coated or coated with other neonicotinoids, e.g., either thiamethoxam (TMX) or clothianidin (CLO). TCL levels remained under 100 µg/mL in the guttation liquid under field conditions, and were quantifiable even on the 39th day after planting of coated seeds. Higher levels up to 188.6 µg/mL were detected in plants grown under semi-field conditions in pots. Levels in the guttation liquid were also found to be influenced by the applied dosages. The uptake of TCL was found to vary for different maize varieties. Appearance of TCL as a cross-contaminant in the guttation liquid of neighboring plants emerging from non-coated maize seeds indicates translocation of the compound via soil. Peak levels of TCL cross-contamination were found to be lower (43.6 µg/mL) than the corresponding levels in the parent maize plants emerging from coated seeds (107.5 µg/mL), but values converge to each other. Similar trends were observed with neighboring seeds coated with other neonicotinoids (TMX or CLO). The translocation rate of TCL and its uptake by other plants seem to be lower than that of TMX or CLO.
Collapse
Affiliation(s)
- Mária Mörtl
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, H−1022 Budapest, Hungary; (E.T.); (S.K.); (A.S.)
| | | | | | | |
Collapse
|