1
|
Fricano A, Bianchi F, Di Filippo P, Pomata D, Riccardi C, Simonetti G, Buiarelli F. Determination of additives as markers of microplastic contamination in the environment. Talanta 2025; 285:127344. [PMID: 39667269 DOI: 10.1016/j.talanta.2024.127344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Microplastics are mostly inert particles and, therefore, may exhibit low toxicity, but adverse health effects may result from chemical additives commonly added to plastics. Plastic additives serve to make the material workable and thermodynamically stable as well as acting as softeners, fillers and colorants. They may include hazardous chemicals, such as organic phosphates, phthalates, terephthalates, adipates, benzoates, citrates, sebacates, trimellitates, etc. The use of chromatography coupled to Mass Spectrometry for the analysis of plastic additives can constitute a valid support for the determination of microplastics in the environment. In this paper, results of investigation by chromatographic techniques coupled with mass spectrometry for analysis of phosphates, phthalates, terephthalates, adipates, benzoates, citrates, sebacates, trimellitates in settled dust of a workplace are reported. Both gas and liquid chromatography were used to separate the analytes with different chemical-physical properties. An excellent extraction and evaporation method preceded by an efficient clean-up process were fundamental steps for the subsequent proper detection of the analytes. LOD and LOQ values sufficiently low to detect the analytes in the environmental samples and good instrumental repeatability were obtained as a result of thorough cleaning cycles of sorbents and extraction cells, prior to the treatment of real samples. Such a step was crucial due to the ubiquity of many of the analytes investigated. Their presence in blank samples was minimized, obtaining statistically acceptable values to be subtracted from real samples. Our optimized method enabled the detection in samples of settled dust of most of the analytes investigated, some known as substances of very high concern and/or persistent, bioaccumulative, and possible reprotoxic endocrine disruptors. Safe, non-toxic, and biodegradable plasticizers were also found. This search for plastic additives in dust samples to which workers may be exposed has the dual purpose of identifying the presence of toxic chemicals and detecting the presence of microplastics.
Collapse
Affiliation(s)
- Andrea Fricano
- Department of Chemistry, Sapienza University of Rome, 00185, Rome, Italy
| | - Federica Bianchi
- Department of Chemistry, Sapienza University of Rome, 00185, Rome, Italy
| | | | - Donatella Pomata
- DIT, Italian Workers' Compensation Authority (INAIL), 00143, Rome, Italy
| | - Carmela Riccardi
- DIT, Italian Workers' Compensation Authority (INAIL), 00143, Rome, Italy
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, 00185, Rome, Italy
| | | |
Collapse
|
2
|
Jagić K, Dvoršćak M, Tariba Lovaković B, Klinčić D. Polybrominated diphenyl ethers in paired dust-breast milk samples: Levels, predictors of contamination, and health risk assessment for infants and mothers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104547. [PMID: 39218329 DOI: 10.1016/j.etap.2024.104547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
An integrated study on the levels of 7 polybrominated diphenyl ethers (PBDEs) in house dust and breast milk samples from women (N = 30) living in these households was conducted. ∑PBDEs ranged from
Collapse
Affiliation(s)
- Karla Jagić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Marija Dvoršćak
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Blanka Tariba Lovaković
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Darija Klinčić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia.
| |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Hart A, Schroeder H, Rose M, Vrijheid M, Kouloura E, Bordajandi LR, Riolo F, Vleminckx C. Update of the scientific opinion on tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J 2024; 22:e8859. [PMID: 39010865 PMCID: PMC11247339 DOI: 10.2903/j.efsa.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 μg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
Collapse
|
4
|
Pomata D, La Nasa J, Biale G, Barlucchi L, Ceccarini A, Di Filippo P, Riccardi C, Buiarelli F, Modugno F, Simonetti G. Plastic breath: Quantification of microplastics and polymer additives in airborne particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173031. [PMID: 38723961 DOI: 10.1016/j.scitotenv.2024.173031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The widespread extensive use of synthetic polymers has led to a substantial environmental crisis caused by plastic pollution, with microplastics detected in various environments and posing risks to both human health and ecosystems. The possibility of plastic fragments to be dispersed in the air as particles and inhaled by humans may cause damage to the respiratory and other body systems. Therefore, there is a particular need to study microplastics as air pollutants. In this study, we tested a combination of analytical pyrolysis, gas chromatography-mass spectrometry, and gas and liquid chromatography-mass spectrometry to identify and quantify both microplastics and their additives in airborne particulate matter and settled dust within a workplace environment: a WEEE treatment plant. Using this combined approach, we were able to accurately quantify ten synthetic polymers and eight classes of polymer additives. The identified additives include phthalates, adipates, citrates, sebacates, trimellitates, benzoates, organophosphates, and newly developed brominated flame retardants.
Collapse
Affiliation(s)
- Donatella Pomata
- DIT, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, Pisa, Italy; CISUP Centre for Instrument Sharing, University of Pisa, Pisa, Italy.
| | - Greta Biale
- Department of Chemistry and Industrial Chemistry, Pisa, Italy
| | | | - Alessio Ceccarini
- Department of Chemistry and Industrial Chemistry, Pisa, Italy; CISUP Centre for Instrument Sharing, University of Pisa, Pisa, Italy
| | | | - Carmela Riccardi
- DIT, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | | | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, Pisa, Italy; CISUP Centre for Instrument Sharing, University of Pisa, Pisa, Italy
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
6
|
Pomata D, Di Filippo P, Riccardi C, Buiarelli F, Marini F, Romani L, Lucarelli F, Pazzi G, Galarini R, Simonetti G. Concentrations and co-occurrence of 101 emerging and legacy organic pollutants in the ultrafine, fine and coarse fractions of airborne particulates associated with treatment of waste from electrical and electronic equipment. CHEMOSPHERE 2023; 338:139443. [PMID: 37453523 DOI: 10.1016/j.chemosphere.2023.139443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Occupational exposure to airborne particles can increase the development of morbidity, also because of the chemical composition of particulate matter (PM). In workplace, where manual and mechanical disassembly of electric and electronic equipment (EEE) take place, there are evident risks of respiratory exposure to a great number of different toxic organic compounds present in the electrical and plastic materials of which the equipment is made. Airborne particles are numerous, cover a wide range of sizes and are rich in toxic organic compounds. In the present work, a sampling program was conducted and ultrafine, fine and coarse airborne particles were collected in three EEE waste treatment plants. Afterwards, the extraction and analysis of polycyclic aromatic hydrocarbons (PAHs), their nitro and oxygenated derivatives (nitroPAHs, oxyPAHs), organophosphorus compounds (OPEs), Brominated Flame Retardants (BFRs), polychlorinated biphenyls (PCBs), Polybrominated Diphenyl Ethers (PBDEs), and polyfluoralkyl substances (PFASs) was performed. The percentage ratio of the mass of organic compounds and the mass of the ultrafine fraction of PM (PM0.1) was higher than those of the fine and coarse fractions. Even with low concentrations, the co-occurrence of numerous potentially toxic compounds capable of easily reaching other organs passing by the lung vasculature, through the lymph makes the working environment unhealthy.
Collapse
Affiliation(s)
- Donatella Pomata
- DIT, Italian Workers' Compensation Authority (INAIL), 00143, Rome, Italy
| | | | - Carmela Riccardi
- DIT, Italian Workers' Compensation Authority (INAIL), 00143, Rome, Italy
| | | | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, 00185, Rome, Italy
| | - Leonardo Romani
- Department of Chemistry, Sapienza University of Rome, 00185, Rome, Italy
| | - Franco Lucarelli
- Department of Physics and Astronomy and INFN, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Giulia Pazzi
- Department of Physics and Astronomy and INFN, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Roberta Galarini
- Experimental Zooprophylactic Institute of Umbria and Marche, 06126, Perugia, Italy
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, 00185, Rome, Italy
| |
Collapse
|
7
|
Christensen BT, Calkins MM. Occupational exposure to per- and polyfluoroalkyl substances: a scope review of the literature from 1980-2021. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:673-686. [PMID: 36977833 PMCID: PMC10533727 DOI: 10.1038/s41370-023-00536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) comprise a large group of chemicals that have been integrated into a wide variety of industrial processes and consumer products since the 1950s. Due to their profuse usage and high persistence in human serum, understanding workplace exposures to PFAS is critical. OBJECTIVE We aimed to characterize the PFAS exposure profiles of relevant occupational populations, elucidate trends in the PFAS exposure characterization process, and identify major research gaps that remain within the occupational PFAS exposure literature. METHODS A systematic search of four literature databases for peer-reviewed articles published between 1980 and 2021 on PFAS exposure in occupational settings was conducted. RESULTS Of the 2574 articles identified, 92 met the inclusion criteria. Fluorochemical workers were the target population in most early exposure assessment research; however, studies conducted within the last 10 years have evaluated a wider range of occupational populations and settings. The highest exposures were reported in fluorochemical workers, but, in comparison to reference populations, one or more PFAS were elevated in most workers and in most workplaces that were assessed. PFAS was most frequently assessed in worker serum using a discrete analytical panel of PFAS, with earlier studies restricted to a few long-alkyl chain PFAS while more recent studies have included more expansive panels due to more robust methods. SIGNIFICANCE Characterization of occupational exposure to PFAS is limited but expanding. Current analytical methods are not robust enough to fully capture the potential range of PFAS present across different workers and workplaces. While exposures to PFAS for certain occupational groups have been studied in detail, exposure information for other occupational groups with high potential for exposure are limited. This review highlights substantial findings and major research gaps within the occupational literature.
Collapse
Affiliation(s)
- Brian T Christensen
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, 45213, USA.
| | - Miriam M Calkins
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, 45213, USA
| |
Collapse
|
8
|
Liu C, Hou HS. Physical exercise and persistent organic pollutants. Heliyon 2023; 9:e19661. [PMID: 37809764 PMCID: PMC10558913 DOI: 10.1016/j.heliyon.2023.e19661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Exposure to the legacy and emerging persistent organic pollutants (POPs) incessantly has become an important threat to individual health, which is closely related to neurodevelopment, endocrine and cardiovascular homeostasis. Exercise, on the other hand, has been consistently shown to improve physical fitness. Whereas associations between traditional air pollutants, exercise and lung function have been thoroughly reviewed, reviews on associations between persistent organic pollutants and exercise are scarce. Hence, a literature review focused on exercise, exposure to POPs, and health risk assessment was performed for studies published from 2004 to 2022. The purpose of this review is to provide an overview of exposure pathways and levels of POPs during exercise, as well as the impact of exercise on health concerns attributable to the redistribution, metabolism, and excretion of POPs in vivo. Therein lies a broader array of exercise benefits, including insulin sensitizing, mitochondrial DNA repair, lipid metabolism and intestinal microecological balance. Physical exercise is conducive to reduce POPs body burden and resistant to health hazards of POPs generally. Besides, individual lipid metabolism condition is a critical factor in evaluating potential link in exercise, POPs and health effects.
Collapse
Affiliation(s)
- Chang Liu
- College of P.E, Minzu University of China, # 27, South Street Zhongguancun, Beijing, 100081, China
| | - Hui sheng Hou
- College of P.E, Minzu University of China, # 27, South Street Zhongguancun, Beijing, 100081, China
| |
Collapse
|
9
|
Łomża P, Krucoń T, Tabernacka A. Potential of Microbial Communities to Perform Dehalogenation Processes in Natural and Anthropogenically Modified Environments-A Metagenomic Study. Microorganisms 2023; 11:1702. [PMID: 37512875 PMCID: PMC10385969 DOI: 10.3390/microorganisms11071702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Halogenated organic compounds (HOCs) pose a serious problem for the environment. Many are highly toxic and accumulate both in soil and in organisms. Their biological transformation takes place by dehalogenation, in which the halogen substituents are detached from the carbon in the organic compound by enzymes produced by microorganisms. This increases the compounds' water solubility and bioavailability, reduces toxicity, and allows the resulting compound to become more susceptible to biodegradation. The microbial halogen cycle in soil is an important part of global dehalogenation processes. The aim of the study was to examine the potential of microbial communities inhabiting natural and anthropogenically modified environments to carry out the dehalogenation process. The potential of microorganisms was assessed by analyzing the metagenomes from a natural environment (forest soils) and from environments subjected to anthropopression (agricultural soil and sludge from wastewater treatment plants). Thirteen genes encoding enzymes with dehalogenase activity were identified in the metagenomes of both environments, among which, 2-haloacid dehalogenase and catechol 2,3-dioxygenase were the most abundant genes. Comparative analysis, based on comparing taxonomy, identified genes, total halogens content and content of DDT derivatives, demonstrated the ability of microorganisms to transform HOCs in both environments, indicating the presence of these compounds in the environment for a long period of time and the adaptive need to develop mechanisms for their detoxification. Metagenome analyses and comparative analyses indicate the genetic potential of microorganisms of both environments to carry out dehalogenation processes, including dehalogenation of anthropogenic HOCs.
Collapse
Affiliation(s)
- Pola Łomża
- Department of Biology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 20 Nowowiejska Street, 00-653 Warsaw, Poland
| | - Tomasz Krucoń
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-089 Warsaw, Poland
| | - Agnieszka Tabernacka
- Department of Biology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 20 Nowowiejska Street, 00-653 Warsaw, Poland
| |
Collapse
|
10
|
Anake WU, Nnamani EA. Physico-chemical characterization of indoor settled dust in Children's microenvironments in Ikeja and Ota, Nigeria. Heliyon 2023; 9:e16419. [PMID: 37251465 PMCID: PMC10220365 DOI: 10.1016/j.heliyon.2023.e16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Indoor dust is a collection of particles identified as a major reservoir for several emerging indoor chemical pollutants. This study presents indoor dust particles' morphology and elemental composition in eight children's urban and semi-urban microenvironments (A-H) in Nigeria. Samples were collected using a Tesco vacuum cleaner and analyzed with scanning electron microscopy coupled with an energy-dispersive X-ray (SEM-EDX). The morphology results confirm the presence of alumino silicates, mineral particles and flakes, fly ash and soot, and soot aggregates deposited on alumino silicate particles in the sampled microenvironments. These particles may trigger serious health concerns that directly or indirectly affect the overall well-being of children. From the EDX analysis, the trend of elements (w/w %) in the dust particles across the sampled sites was silicon (386) > oxygen (174)> aluminium (114) > carbon (34.5) > iron (28.0) > calcium (16.7) > magnesium (14.2) > sodium (7.92) > potassium (7.58) > phosphorus (2.22) > lead (2.04) > manganese (1.17) > titanium (0.21). Lead (Pb), a toxic and carcinogenic heavy metal, was observed in locations A and B. This is a concern without a safe lead level because of the neurotoxicity effect on children. As a result, further research on the concentrations, bioavailability, and health risk assessment of heavy metals in these sampled locations is recommended. Furthermore, frequent vacuum cleaning, wet moping and adequate ventilation systems will significantly reduce the accumulation of indoor dust-bound metals.
Collapse
Affiliation(s)
- Winifred U. Anake
- Department of Chemistry, College of Science and Technology, Covenant University, P.M.B 1023, Ota, Ogun State, Nigeria
| | - Esther A. Nnamani
- Department of Chemistry, College of Science and Technology, Covenant University, P.M.B 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
11
|
Shockley KR, Dunnick JK. Gene expression profiling after exposure to a chemical carcinogen, Pentabrominated Diphenyl Ether, at different life stages. FRONTIERS IN TOXICOLOGY 2023; 4:1028309. [PMID: 36687508 PMCID: PMC9847571 DOI: 10.3389/ftox.2022.1028309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Exposure to environmental hazards occurs at different stages of our lifetime-infant, child, adult. This study integrates recently published toxicogenomics data to examine how exposure to a known rat chemical carcinogen (pentabrominated diphenyl ether (PBDE)) upregulated liver transcriptomic changes at different life cycle stages (PND 4, PND 22, adult). We found that at all three life cycle stages PBDE exposure induced hepatocellular transcriptomic changes in disease pathways including cancer, metabolic, membrane function, and Nrf2 antioxidant pathways, pathways all characteristics of chemical carcinogens. In addition, in the adult rat after a 5-day exposure to the chemical carcinogen, there was upregulation of members of the Ras oncogenic pathway, a specific pathway found to be activated in the PBDE-induced tumors in rats in a previous hazard identification cancer study. The findings of liver transcript changes characteristic of carcinogenic activity after early life exposures and after short-term adult exposures provides data to support the use of transcriptomic data to predict the apical cancer endpoints in model studies. Using data from gene expression profiling studies after neonatal, young, or adult short-term chemical exposure helps to meet the 21st century toxicology goal of developing study designs to reduce, refine, and replace the use of traditional 2-year rodent cancer studies to provide hazard identification information. The studies reported here find that key transcripts associated with carcinogenesis were elevated in neonate (PND 4), young (PND 22) and adult animals after short-term exposure to PBDE, a known experimental chemical carcinogen in model systems.
Collapse
Affiliation(s)
- Keith R. Shockley
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - June K. Dunnick
- Systems Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| |
Collapse
|
12
|
Sonego E, Simonetti G, Di Filippo P, Riccardi C, Buiarelli F, Fresta A, Olivastri M, Pomata D. Characterization of organophosphate esters (OPEs) and polyfluoralkyl substances (PFASs) in settled dust in specific workplaces. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52302-52316. [PMID: 35258734 DOI: 10.1007/s11356-022-19486-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
An analytical method for detecting flame retardants was slightly modified and optimized for the simultaneous determination of 11 organophosphate esters (OPEs) and 26 polyfluoralkyl substances (PFASs) contained in dust. All the analytes were determined in HPLC/MS-MS, and OPEs were also analyzed in GC/MS, and the results were compared. The study was conducted through the investigation of the Standard Reference Material SRM 2585 of the National Institute of Standard and Technology (NIST). The results were compared with the available reference mass fraction reported in the NIST certificate. The mass fraction obtained for the other OPEs and PFASs was compared to available data in the literature. After verifying the reliability of the results, the method was applied to environmental samples of settled dust, collected in four workplaces, where OPE and PFAS content is expected to be higher than in house dust: a mechanical workshop, an electronic repair center, a disassembly site, and a shredding site of two electronic waste recycling plants. By analyzing both PFASs and OPEs in the same samples, the present work demonstrated that the selected working places were more polluted in OPEs than houses; on the contrary, PFAS content in house dust proved to be more than ten times higher than that in workplaces. Additional research is necessary to confirm these data. Nevertheless, because this preliminary study showed not negligible concentrations of OPEs in some workplaces and of PFASs in houses, their monitoring should be extended to other domestic and selected working sites.
Collapse
Affiliation(s)
- Elisa Sonego
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | | | | | - Francesca Buiarelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Alice Fresta
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Matteo Olivastri
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | | |
Collapse
|
13
|
Esplugas R, Rovira J, Mari M, Fernández-Arribas J, Eljarrat E, Domingo JL, Schuhmacher M. Emerging and legacy flame retardants in indoor air and dust samples of Tarragona Province (Catalonia, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150494. [PMID: 34844308 DOI: 10.1016/j.scitotenv.2021.150494] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Flame retardants (FRs) are widely used in consumer products including furniture foam and electronic equipment such as computers, monitors and TVs. Over time, FRs can easily migrate into the surrounding environments. Since brominated FRs (BFRs) has been determined of high concern due to their environmental persistence, bioaccumulation and potential toxicity, novel FRs have emerged. The present study was aimed at identifying and quantifying the indoor levels of 41 legacy and novel FRs, which include 20 OPFRs and 21 HFRs (8 PBDEs, 3 HBCDDs, 5 NBFRs and 5 DECs) in Tarragona Province (Catalonia, Spain). The results have confirmed the presence of both legacy and novel FRs in air and dust of homes, schools and offices. To the best of our knowledge, this is the first European study measuring OPFRs at office environments and also confirming the presence of the following OPFRs: TEP, TCIPP, T2IPPP, TPPO, DCP, TMCP and B4IPPPP in indoor air, even some of them at high levels. OPFRs in general and TCIPP in particular showed high concentrations in air (94,599 pg/m3 and 72,281 pg/m3, respectively) and dust (32,084 ng/g and 13,496 ng/g, respectively) samples collected in indoor environments. HBCDDs were found at high levels in dust (32,185 ng/g), whereas the presence of PBDEs and DECs were low in both matrices (<160 pg/m3 in air and <832 ng/g in dust). NBFRs showed higher levels than the two legacy FRs groups, which is supported by the current restrictions of these FRs (640 pg/m3 in air and 1291 ng/g in dust). Samples of schools had significantly lower levels of NBFRs, but significantly higher concentrations of HFRs in air than in home samples, while dust levels of HFRs were significantly lower than those in samples of offices. Regarding human health risks, the current assessment suggests that those derived from exposure to FRs were lower -although close- to assumable risks, evidencing the potential of FRs for non-carcinogenic and carcinogenic risks, mainly due to the exposure to TCIPP, which was the main contributor together with ΣHBCDDs and also EHDPP.
Collapse
Affiliation(s)
- Roser Esplugas
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Joaquim Rovira
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
| | - Montse Mari
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira i Virgili, Tarragona, Spain
| | - Julio Fernández-Arribas
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - Ethel Eljarrat
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Schuhmacher
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
14
|
Toxic Organic Contaminants in Airborne Particles: Levels, Potential Sources and Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084352. [PMID: 33923970 PMCID: PMC8073354 DOI: 10.3390/ijerph18084352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/25/2022]
Abstract
In the last years, many studies have focused on risk assessment of exposure of workers to airborne particulate matter (PM). Several studies indicate a strong correlation between PM and adverse health outcomes, as a function of particle size. In the last years, the study of atmospheric particulate matter has focused more on particles less than 10 μm or 2.5 μm in diameter; however, recent studies identify in particles less than 0.1 μm the main responsibility for negative cardiovascular effects. The present paper deals with the determination of 66 organic compounds belonging to six different classes of persistent organic pollutants (POPs) in the ultrafine, fine and coarse fractions of PM (PM < 0.1 µm; 0.1 < PM < 2.5 µm and 2.5 < PM < 10 µm) collected in three outdoor workplaces and in an urban outdoor area. Data obtained were analyzed with principal component analysis (PCA), in order to underline possible correlation between sites and classes of pollutants and characteristic emission sources. Emission source studies are, in fact, a valuable tool for both identifying the type of emission source and estimating the strength of each contamination source, as useful indicator of environment healthiness. Moreover, both carcinogenic and non-carcinogenic risks were determined in order to estimate human health risk associated to study sites. Risk analysis was carried out evaluating the contribution of pollutant distribution in PM size fractions for all the sites. The results highlighted significant differences between the sites and specific sources of pollutants related to work activities were identified. In all the sites and for all the size fractions of PM both carcinogenic and non-carcinogenic risk values were below acceptable and safe levels of risks recommended by the regulatory agencies.
Collapse
|
15
|
Marteinson SC, Bodnaryk A, Fry M, Riddell N, Letcher RJ, Marvin C, Tomy GT, Fernie KJ. A review of 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane in the environment and assessment of its persistence, bioaccumulation and toxicity. ENVIRONMENTAL RESEARCH 2021; 195:110497. [PMID: 33232751 DOI: 10.1016/j.envres.2020.110497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
Following the ban of many historically-used flame retardants (FRs), numerous replacement chemicals have been produced and used in products, with some being identified as environmental contaminants. One of these replacement flame retardants is 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (DBE-DBCH; formerly abbreviated as TBECH), which to date has not been identified for risk assessment and potential regulation. DBE-DBCH technical mixtures consist largely of α- and β-diastereomers with trace amounts of γ- and δ-DBE-DBCH. The α- and β-isomers are known contaminants in various environmental media. While current global use and production volumes of DBE-DBCH are unknown, recent studies identified that DBE-DBCH concentrations were among the highest of the measured bromine-based FRs in indoor and urban air in Europe. Yet our mass balance fugacity model and modeling of the physical-chemical properties of DBE-DBCH estimated only 1% partitioning to air with a half-life of 2.2 d atmospherically. In contrast, our modeling characterized DBE-DBCH adsorbing strongly to suspended particulates in the water column (~12%), settling onto sediment (2.5%) with minimal volatilization, but with most partitioning and adsorbing strongly to soil (~85%) with negligible volatilization and slow biodegradation. Our modeling further predicted that organisms would be exposed to DBE-DBCH through partitioning from the dissolved aquatic phase, soil, and by diet, and given its estimated logKow (5.24) and a half-life of 1.7 d in fish, DBE-DBCH is expected to bioaccumulate into lipophilic tissues. Low concentrations of DBE-DBCH are commonly measured in biota and humans, possibly because evidence suggests rapid metabolism. Yet toxicological effects are evident at low exposure concentrations: DBE-DBCH is a proven endocrine disruptor of sex and thyroid hormone pathways, with in vivo toxic effects on reproductive, metabolic, and other endpoints. The objectives of this review are to identify the current state of knowledge concerning DBE-DBCH through an evaluation of its persistence, potential for bioaccumulation, and characterization of its toxicity, while identifying areas for future research.
Collapse
Affiliation(s)
- Sarah C Marteinson
- Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada
| | - Anjelica Bodnaryk
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, R3T 2N2, Canada
| | - Mark Fry
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, R3T 2N2, Canada
| | - Nicole Riddell
- Wellington Laboratories, 345 Southgate Dr., Guelph, ON, N1G 3M5, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
| | - Chris Marvin
- Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada
| | - Gregg T Tomy
- University of Manitoba, Department of Chemistry, Winnipeg, MB, R3T 2N2, Canada
| | - Kim J Fernie
- Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada.
| |
Collapse
|
16
|
Vasiljević J, Štular D, Kalčíková G, Zajc J, Šobak M, Demšar A, Tomšič B, Simončič B, Čolović M, Šelih VS, Jerman I. New Insights into Antibacterial and Antifungal Properties, Cytotoxicity and Aquatic Ecotoxicity of Flame Retardant PA6/DOPO-Derivative Nanocomposite Textile Fibers. Polymers (Basel) 2021; 13:905. [PMID: 33804277 PMCID: PMC7998799 DOI: 10.3390/polym13060905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/03/2022] Open
Abstract
The aim of this study was to evaluate the antibacterial and antifungal activity, cytotoxicity, leaching, and ecotoxicity of novel flame retardant polyamide 6 (PA6) textile fibers developed by our research group. The textile fibers were produced by the incorporation of flame-retardant bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivative (PHED) in the PA6 matrix during the in situ polymerization process at concentrations equal to 10 and 15 wt% (PA6/10PHED and PA6/15PHED, respectively). Whilst the nanodispersed PHED provided highly efficient flame retardancy, its biological activity led to excellent antibacterial activity against Escherichia coli and Staphylococcus aureus, as well as excellent antifungal activity against Aspergillus niger and Candida albicans. The results confirmed leaching of the PHED, but the tested leachates did not cause any measurable toxic effect to the duckweed Lemna minor. The in vitro cytotoxicity of the leached PHED from the PA6/15PHED sample was confirmed for human cells from adipose tissue in direct and prolonged contact. The targeted biological activity of the organophosphinate flame retardant could be beneficial for the development of PA6 textile materials with multifunctional properties and the low ecotoxicity profile, while the PHED's leaching and cytotoxicity limit their application involving the washing processes and direct contact with the skin.
Collapse
Affiliation(s)
- Jelena Vasiljević
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (A.D.); (B.T.); (B.S.)
| | - Danaja Štular
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (D.Š.); (M.Š.); (M.Č.); (V.S.Š.); (I.J.)
| | - Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| | - Janja Zajc
- Agricultural Institute of Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia;
| | - Matic Šobak
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (D.Š.); (M.Š.); (M.Č.); (V.S.Š.); (I.J.)
| | - Andrej Demšar
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (A.D.); (B.T.); (B.S.)
| | - Brigita Tomšič
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (A.D.); (B.T.); (B.S.)
| | - Barbara Simončič
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (A.D.); (B.T.); (B.S.)
| | - Marija Čolović
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (D.Š.); (M.Š.); (M.Č.); (V.S.Š.); (I.J.)
| | - Vid Simon Šelih
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (D.Š.); (M.Š.); (M.Č.); (V.S.Š.); (I.J.)
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (D.Š.); (M.Š.); (M.Č.); (V.S.Š.); (I.J.)
| |
Collapse
|
17
|
De Miranda BR, Castro SL, Rocha EM, Bodle CR, Johnson KE, Greenamyre JT. The industrial solvent trichloroethylene induces LRRK2 kinase activity and dopaminergic neurodegeneration in a rat model of Parkinson's disease. Neurobiol Dis 2021; 153:105312. [PMID: 33636387 DOI: 10.1016/j.nbd.2021.105312] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Gene-environment interaction is implicated in the majority of idiopathic Parkinson's disease (PD) risk, and some of the most widespread environmental contaminants are selectively toxic to dopaminergic neurons. Pesticides have long been connected to PD incidence, however, it has become increasingly apparent that other industrial byproducts likely influence neurodegeneration. For example, organic solvents, which are used in chemical, machining, and dry-cleaning industries, are of growing concern, as decades of solvent use and their effluence into the environment has contaminated much of the world's groundwater and soil. Like some pesticides, certain organic solvents, such as the chlorinated halocarbon trichloroethylene (TCE), are mitochondrial toxicants, which are collectively implicated in the pathogenesis of dopaminergic neurodegeneration. Recently, we hypothesized a possible gene-environment interaction may occur between environmental mitochondrial toxicants and the protein kinase LRRK2, mutations of which are the most common genetic cause of familial and sporadic PD. In addition, emerging data suggests that elevated wildtype LRRK2 kinase activity also contributes to the pathogenesis of idiopathic PD. To this end, we investigated whether chronic, systemic TCE exposure (200 mg/kg) in aged rats produced wildtype LRRK2 activation and caused nigrostriatal dopaminergic dysfunction. Interestingly, we found that TCE not only induced LRRK2 kinase activity in the brain, but produced a significant dopaminergic lesion in the nigrostriatal tract, elevated oxidative stress, and caused endolysosomal dysfunction and α-synuclein accumulation. Together, these data suggest that TCE-induced LRRK2 kinase activity contributed to the selective toxicity of dopaminergic neurons. We conclude that gene-environment interactions between certain industrial contaminants and LRRK2 likely influence PD risk.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Sandra L Castro
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christopher R Bodle
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Katrina E Johnson
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|