1
|
Younes AH, Mustafa YF. Sweet Bell Pepper: A Focus on Its Nutritional Qualities and Illness-Alleviated Properties. Indian J Clin Biochem 2024; 39:459-469. [PMID: 39346723 PMCID: PMC11436515 DOI: 10.1007/s12291-023-01165-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 10/01/2024]
Abstract
Sweet bell pepper (SBP, Capsicum annuum L.) can be employed as a spice in many dishes and may also be eaten as a delicious fruit. These two nutritional attributes are owing to the strong, deep taste of many SBP phytochemicals. This fruit has many additional beneficial properties because it contains high concentrations of minerals and vitamins that distinguish it from other kinds of fruits. Almost every part of the SBP is thought to be an excellent source of bioactive substances that are health supporters, such as flavonoids, polyphenols, and various aromatic substances. The ability of SBP-phytochemicals to work as antioxidants, reducing the harmful effects of oxidative stress and consequently preventing many chronic illnesses, is one of their main biomedical characteristics. These phytochemicals have good antibacterial properties, mostly against gram-positive pathogenic microbes, in addition to their anti-carcinogenic and cardio-preventive effects. So, this review aims to highlight the nutritional qualities of SBP-derived phytochemicals and their illness-alleviated characteristics. Antioxidant, anti-inflammatory, antitumor, antidiabetic, and analgesic properties are some of the ones discussed.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
2
|
Khaksari M, Shahryari M, Raji-Amirhasani A, Soltani Z, Bibak B, Keshavarzi Z, Shakeri F. Aloe vera Leaf Extract Reduced BBB Permeability and Improved Neurological Results after Traumatic Brain Injury: The Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:5586814. [PMID: 39040520 PMCID: PMC11262876 DOI: 10.1155/2024/5586814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/24/2024]
Abstract
Introduction Recognizing the importance of medicinal plants and the absence of specific medications for traumatic brain injury (TBI) treatment, this study was conducted to evaluate the effects of an aqueous extract of Aloe vera on oxidative stress, blood-brain barrier (BBB) permeability, and neurological scores following TBI. Materials and Methods Adult male rats were categorized into five groups: sham, TBI, vehicle, low-dose Aloe vera (LA), and high-dose Aloe vera (HA). We induced diffuse TBI using the Marmaro model and administered the aqueous Aloe vera leaf extract, as well as vehicle, via intraperitoneal injection half an hour after TBI. Neurological outcomes were assessed both before and several hours after TBI. Additionally, oxidative stress factors were measured 24 hr after TBI, and Evans blue content (a BBB permeability index) was determined 5 hr after TBI in both serum and brain. Results Both LA and HA reduced the increase in BBB permeability after TBI, with HA having a more pronounced effect than LA. Both Aloe vera doses decreased brain MDA levels, increased brain TAC, and lowered both serum and brain PC levels. The impact of Aloe vera on brain oxidative parameters was more significant than on serum. HA also counteracted the declining effects of TBI on neurological outcomes at 4 and 24 hr post-TBI. Conclusion This study suggests that Aloe vera extract may reduce BBB permeability and improve neurological outcomes after TBI by decreasing oxidative factors and increasing antioxidant factors.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and PharmacologyAfzalipour Faculty of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Shahryari
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of PhysiologyNeuroscience Research CenterMedical FacultyGolestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Raji-Amirhasani
- Endocrinology and Metabolism Research CenterKerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and PharmacologyAfzalipour Faculty of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Physiology Research CenterInstitute of NeuropharmacologyKerman University of Medical Sciences, Kerman, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research CenterNorth Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and PharmacologySchool of MedicineNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research CenterNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Department of Physiology and PharmacologySchool of MedicineNorth Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
3
|
Eid RA, Abadi AM, Alghamdi MA, El-Kott AF, Mohamed G, Al-Shraim M, Alaa Eldeen M, Zaki MSA, Shalaby FM. Echinops Asteraceae extract guards against malathion-induced liver damage via minimizing oxidative stress, inflammation, and apoptosis. Toxicon 2024; 244:107750. [PMID: 38750940 DOI: 10.1016/j.toxicon.2024.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Malathion (MAL) is one of the highly toxic organophosphorus (OP) compounds that induces hepatotoxicity. Echinops. ritro leaves extract (ERLE) is traditionally used in the treatment of bacterial/fungal infections. This study's goal was to investigate the potential of extracts from ERLE against hepatotoxicity induced by MAL in male albino rats. Four equal groups of forty mature male albino rats were created: The rats in the first group used as a control. The second group of rats received ERLE orally. The third group received MAL. ERLE and MAL were administered to the fourth group of rats. Six-week treatment groups were conducted. Using lipid peroxidation indicators [malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST)], oxidative stress markers [catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)], apoptotic markers [Bcl-2 & caspase-3] and tumor necrosis factor alpha (TNF-α). Rats treated with MAL underwent a significant increase on MDA, ALT, AST, caspase-3 and TNF-α marker with a significant decrease in antioxidant markers [CAT, SOD, GPx] and Bcl-2. Histologically, MAL-treated group's liver sections displayed damaged hepatocytes with collapsed portions, pyknotic nuclei, vacuolated cytoplasm, and congested central veins. Ultra structurally, rat livers treated with MAL showed dilated cisternae of endoplasmic reticulum, swollen mitochondria with disrupted cristae, nuclei with disrupted chromatin content, multiple lysosomes, multiple vacuolations and a disrupted blood sinusoid. With rats treated with ERLE, these alterations were essentially non-existent. It is possible to conclude that ERLE protects against MAL hepatotoxicity, and that this protection is related, at least in part, to its antioxidant activities.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Alsaleem Mohammed Abadi
- Department of Family and Community Medicine, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia; Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia; Department of Zoology, College of Science, Damanhur University, Damanhur 22511, Egypt.
| | - Gamal Mohamed
- Department of Human Anatomy, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed Samir A Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Fatma Mohsen Shalaby
- King Khalid University, Faculty of Sciences, Biology Department, Abha, Kingdom of Saudi Arabia; Mansoura University, Faculty of Sciences, Department of Zoology, Mansoura, Egypt.
| |
Collapse
|
4
|
Berroug L, Laaroussi M, Essaidi O, Malqui H, Anarghou H, Chaoui AA, Najimi M, Chigr F. Sex-specific neurobehavioral and biochemical effects of developmental exposure to Malathion in offspring mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2215-2231. [PMID: 37804342 DOI: 10.1007/s00210-023-02749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Malathion is an organophosphate pesticide (OP) commonly used in agriculture, industry, and veterinary medicine. Sex is a crucial factor in responding to neurotoxicants, yet the sex-specific effects of OP exposure, particularly neurological impairments following chronic low-level exposure remains limited. Our study aims to evaluate the neurobehavioral and biochemical effects of developmental exposure to Malathion across sexes. Pregnant mice were exposed to a low oral dose of Malathion from gestation up to the weaning of the pups, which were individually gavaged with a similar dose regimen until postnatal day 70. Our results show that Malathion decreased body weight and food intake, reduced locomotor activity and recognition memory. Motor coordination and special memory were only altered in females, whereas we found a male-specific effect of Malathion on social behavior and marble burying. These alterations were accompanied by increased malondialdehyde (MDA), decreased brain acetylcholinesterase activity (AChE), and disrupted brain redox homeostasis. Our findings about the effects of Malathion exposure across sexes may, in part, contribute to understanding the dimorphic susceptibilities observed in neurological disorders.
Collapse
Affiliation(s)
- Laila Berroug
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Meriem Laaroussi
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Oumaima Essaidi
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hafsa Malqui
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hammou Anarghou
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Ahmed Ait Chaoui
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Mohamed Najimi
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco.
| |
Collapse
|
5
|
Omer AB, Altayb HN, Al-Abbasi FA, Gupta G, Ahmed MM, Alghamdi AM, Alzarea SI, Sayyed N, Nadeem MS, Kazmi I. Acemannan ameliorates STZ-activated diabetes by attenuating high glucose via inhibiting inflammatory cytokines and apoptosis pathway. Int J Biol Macromol 2023; 253:127127. [PMID: 37776926 DOI: 10.1016/j.ijbiomac.2023.127127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Acemannan, the main polysaccharide in Aloe vera, is a -(1, 4)-acetylated polymannose. According to numerous research findings, acemannan is a viable alternative for the treatment of pathological disorders. Streptozotocin (STZ, 60 mg/kg) administered intraperitoneally caused type 2 diabetes in rats. The current study sought to determine the anti-diabetic efficacy of acemannan (25 and 50 mg/kg) in STZ-injected rats. Different biochemical parameters including HbA1C, glucose and serum insulin, lipid profile, inflammatory markers, antioxidant, oxidative balance, liver function test, glycogen and creatinine, and caspase-3 were evaluated. In addition, a molecular docking study was performed to estimate acemannan's binding affinity to inflammatory markers. Acemannan may be a potent anti-diabetic agent for the treatment of diabetic patients, which will aid in future research into alternative diabetes medications.
Collapse
Affiliation(s)
- Asma B Omer
- Department of Basic Health Sciences, Foundation Year for the Health Colleges, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Hisham N Altayb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Jaipur, India.
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Amira M Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia.
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
6
|
Gupta VK, Park U, Siddiqi NJ, Huh YS, Sharma B. Amelioration of Hepatotoxic and Neurotoxic Effect of Cartap by Aloe vera in Wistar Rats. TOXICS 2023; 11:toxics11050472. [PMID: 37235286 DOI: 10.3390/toxics11050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Pesticide exposure can pose a serious risk to nontarget animals. Cartap is being broadly used in agricultural fields. The toxic effects of cartap on the levels of hepatotoxicity and neurotoxicity have not been properly studied in mammalian systems. Therefore, the present work focused on the effect of cartap on the liver and brain of Wistar rats and made an assessment of the ameliorating potential of A. vera. The experimental animals were divided into 4 groups, comprising six rats in each: Group 1-Control; Group 2-A. vera; Group 3-Cartap; and Group 4-A. vera + Cartap. The animals orally given cartap and A. vera were sacrificed after 24 h of the final treatment and histological and biochemical investigations were conducted in liver and brain of Wistar rats. Cartap at sublethal concentrations caused substantial decreases in CAT, SOD, and GST levels in the experimental rats. The activity levels of transaminases and phosphatases in cartap group were also found to be substantially altered. The AChE activity was recorded as decreasing in RBC membrane and brain of the cartap-treated animals. The TNF-α and IL-6 level in serum were increased expressively in the cartap challenged groups. Histological investigation of liver showed disorganized hepatic cords and severely congested central veins due to cartap. However, the A. vera extract was observed to significantly protect against the effects of cartap toxicity. The protective impact of A. vera against cartap toxicity may be due to the existence of antioxidants in it. These findings suggest that A. vera may be developed as a potential supplement to the appropriate medication in the treatment of cartap toxicity.
Collapse
Affiliation(s)
- Vivek Kumar Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Uichang Park
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Nikhat J Siddiqi
- FCSM-Department of Biochemistry, King Saud University, Riyadh 11495, Saudi Arabia
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
7
|
Ileriturk M, Kandemir FM. Carvacrol protects against λ-Cyhalothrin-induced hepatotoxicity and nephrotoxicity by modulating oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress, and autophagy. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36947485 DOI: 10.1002/tox.23784] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
λ-Cyhalothrin, a type II synthetic pyrethroid, has been widely used in households, agriculture, public health, and gardening to control insect pests. Despite its widespread usage, it is known to induce a variety of adverse effects, including hepatotoxicity and nephrotoxicity. The goal of this study was to investigate the protective effect of carvacrol, which has antioxidant, anti-inflammatory, anti-apoptotic, and some other properties, on λ-Cyhalothrin-induced hepatotoxicity and nephrotoxicity 35 male Sprague-Dawley rats were randomly divided into five groups for this purpose: I-Control group: II-CRV group (50 mg/kg carvacrol), III-LCT group (6.23 mg/kg LCT), IV-LCT + CRV 25 group (6.23 mg/kg LCT + 25 mg/kg carvacrol), and V-LCT + CRV 50 group (6.23 mg/kg LCT + 50 mg/kg carvacrol). Using biochemical, real-time PCR, and western blotting methods, the collected tissues were analyzed. While λ-Cyhalothrin treatment increased MDA levels, which are indicated of lipid peroxidation, but reduced SOD, CAT, GPx activities, and GSH levels. After receiving carvacrol therapy, the degree of oxidative stress reduced as the values of these parameters approached those of the control group. Increased inflammation, apoptosis, endoplasmic reticulum stress, and autophagy with λ-Cyhalothrin administration reduced with carvacrol co-administration, and liver and kidney tissues were protected from damage, depending on the degree of oxidative stress. After considering all of these data, it was discovered that λ-Cyhalothrin-induced oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress, and autophagy in the liver and kidneys; however, carvacrol protected the tissues from damage. Our findings indicate that carvacrol may be a promising protective agent in λ-Cyhalothrin-induced hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Mustafa Ileriturk
- Department of Animal Science, Horasan Vocational College, Ataturk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
8
|
Lima Matos F, Duarte EL, S V Muniz G, Alexander Milán-Garcés E, Coutinho K, Teresa Lamy M, da Cunha AR. Spectroscopic characterization of different protonation/deprotonation states of Barbaloin in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122020. [PMID: 36323087 DOI: 10.1016/j.saa.2022.122020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/25/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Barbaloin (10-glucopyranosyl-1,8-dihydroxy-3-(hydroxymethyl)-9(10H)-anthraquinone: aloin A), present in Aloe species, is widely used in food, cosmetic and pharmaceutical industries. Here we characterize its optical absorption and emission spectra in aqueous solution at different pH values. Through pH titration, using both absorption and fluorescence spectroscopy, two pKa values for Barbaloin were determined: pKa1=9.6±0.6 and pKa2=12.6±0.8. These acidity constants were found to be higher than those found for Emodin, a similar molecule which lacks the sugar moiety present in Barbaloin. Performing quantum mechanical calculations for non-ionized, singly, doubly, and triply deprotonated forms of Barbaloin in vacuum and in water, we assigned the positions of the site for the first and third deprotonation in the anthraquinone group, and the second deprotonation in the glucose group. The instability of Barbaloin in high pH solutions is discussed here, and the optical absorption and fluorescence spectra due to products resulted from Barbaloin degradation at high pH is well separated from the Barbaloin original spectra. Biological fluids have specific pH values to maintain homeostasis, hence determining the pKa of Barbaloin is important to evaluate the mechanism of action of this drug in different parts of an organism as well as to predict pharmacological relevant parameters, such as absorption, distribution, metabolism, and excretion.
Collapse
Affiliation(s)
- Fernanda Lima Matos
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil.
| | - Evandro L Duarte
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil.
| | - Gabriel S V Muniz
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil; Instituto de Química, Universidade de Brasília, CEP 70910-900, Campus Universitário Darcy Ribeiro, Brasília, Brazil.
| | | | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil.
| | - M Teresa Lamy
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil.
| | - Antonio R da Cunha
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil; Universidade Federal do Maranhão, UFMA, Campus Balsas, CEP 65800-000, Maranhão, Brazil.
| |
Collapse
|
9
|
Asogwa FC, Apebende CG, Ugodi GW, Ebo P, Louis H, Ikeuba AI, Asogwa CJ, Gber TE, Ikot IJ, Owen AE. Anti-inflammatory, Immunomodulatory and DFT Evaluation of the Reactivity Indexes of Phytochemicals Isolated from Harungana madagascariensis. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Españo E, Kim J, Kim JK. Utilization of Aloe Compounds in Combatting Viral Diseases. Pharmaceuticals (Basel) 2022; 15:ph15050599. [PMID: 35631425 PMCID: PMC9145703 DOI: 10.3390/ph15050599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
Plants contain underutilized resources of compounds that can be employed to combat viral diseases. Aloe vera (L.) Burm. f. (syn. Aloe barbadensis Mill.) has a long history of use in traditional medicine, and A. vera extracts have been reported to possess a huge breadth of pharmacological activities. Here, we discuss the potential of A. vera compounds as antivirals and immunomodulators for the treatment of viral diseases. In particular, we highlight the use of aloe emodin and acemannan as lead compounds that should be considered for further development in the management and prevention of viral diseases. Given the immunomodulatory capacity of A. vera compounds, especially those found in Aloe gel, we also put forward the idea that these compounds should be considered as adjuvants for viral vaccines. Lastly, we present some of the current limitations to the clinical applications of compounds from Aloe, especially from A. vera.
Collapse
|
11
|
Parny M, Coste A, Aubouy A, Rahabi M, Prat M, Pipy B, Treilhou M. Differential immunomodulatory effects of six pesticides of different chemical classes on human monocyte-derived macrophage functions. Food Chem Toxicol 2022; 163:112992. [PMID: 35395341 DOI: 10.1016/j.fct.2022.112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 01/19/2023]
Abstract
Exposure to pesticides through eyes, skin, ingestion and inhalation may affects human health by interfering with immune cells, such as macrophages. We evaluated, in vitro, the effect of six pesticides widely used in apple arboriculture on the functions of human monocyte-derived macrophages (hMDMs). hMDMs were cultured for 4 or 24 h with or without pesticides (0.01, 0.1, 1, 10 μmol.L-1). We showed that chlorpyrifos, thiacloprid, thiophanate, boscalid, and captan had little toxic effect at the tested concentrations, while dithianon had low-cytotoxicity at 10 μmol.L-1. While boscalid showed no effect on hMDMs function, thiophanate (0.01 μmol.L-1) stimulated with TPA and thiacloprid (1, 10 μmol.L-1) stimulated with zymosan activated ROS production. Chlorpyrifos, dithianon, and captan inhibited ROS production and TNF-α, IL-1β pro-inflammatory cytokines. We established that dithianon (0.01-1 μmol.L-1) and captan (0.1, 1 μmol.L-1) induced mRNA expression of NQO1 and HMOX1 antioxidant enzymes. Dithianon also induced the mRNA expression of catalase, superoxide dismutase-2 at 10 μmol.L-1. Together, these results show that exposure to chlorpyrifos, dithianon, and captan induce immunomodulatory effects that may influence the disease fighting properties of monocytes/macrophages while pesticides such as thiacloprid, thiophanate and boscalid have little influence.
Collapse
Affiliation(s)
- Melissa Parny
- EA7417, BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France; PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Agnès Coste
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Agnès Aubouy
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Mouna Rahabi
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Melissa Prat
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Bernard Pipy
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Michel Treilhou
- EA7417, BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France.
| |
Collapse
|
12
|
Yang F, Cao Y, Yu H, Guo Y, Cheng Y, Qian H, Yao W, Xie Y. Transformation and degradation of barbaloin in aqueous solutions and aloe powder under different processing conditions. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Davidović-Plavšić B, Kukavica B, Škondrić S, Jimenez-Gallardo C, Žabić M. Wild garlic extract reduces lipid peroxidation in terbuthylazine-treated human erythrocytes. Biomarkers 2021; 26:617-624. [PMID: 34253103 DOI: 10.1080/1354750x.2021.1953598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: Among other negative effects, herbicides induce oxidative stress, leading to lipid peroxidation and protein oxidation. Therefore, there is a growing need to identify natural compounds with sufficient antioxidant capacity and mitigate the negative effects of herbicides without side effects.Objective: Our study aimed to examine the protective effect of the phenolic extract of wild garlic (WG) leaves on terbuthylazine-treated erythrocytes.Material and methods: In human erythrocytes treated with the herbicide terbuthylazine (4.5 mg/L) alone and a combination of terbuthylazine and WG extract, we measured malondialdehyde (MDA) and haemoglobin (Hb) concentrations and the antioxidant activities of CuZn superoxide dismutase (SOD1; EC 1.15.1.1) and catalase (CAT; EC 1.11.1.6) in vitro.Results: In comparison with terbuthylazine, WG extract reduced the concentrations of MDA and Hb from 59.69 to 43.45 nmol/gHb (27%, p < 0.001) and 165.08 to 128.64 g/L (22%, p < 0.05), respectively. Catalase activity was induced for samples treated with both WG extract and terbuthylazine compared with terbuthylazine alone (p < 0.05).Conclusions: The results demonstrated that WG may reduce the toxicity of terbuthylazine, and the erythrocyte membrane may be the primary site of phenolic action. Therefore, the lipid peroxidation intensity could be a biomarker of oxidative damage caused by terbuthylazine and the protective effect of WG.
Collapse
Affiliation(s)
- Biljana Davidović-Plavšić
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Biljana Kukavica
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Siniša Škondrić
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | | | - Mirjana Žabić
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
14
|
Sharma B. Meet the Editorial Board Member. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/157488551602210604092815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bechan Sharma
- Department of Biochemistry University of Allahabad, Allahabad-UP, India
| |
Collapse
|
15
|
Berktas OA, Peker EGG. The investigation of the protective effect of cinnamon water extract and vitamin E on malathion-induced oxidative damage in rats. Toxicol Res (Camb) 2021; 10:627-630. [PMID: 34141176 PMCID: PMC8201577 DOI: 10.1093/toxres/tfab021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Pesticides and other agricultural protective chemical products are widely used almost all over the world. It poses a serious threat, especially for public health. Many studies have reported that pesticide poisoning is a major problem in morbidity and mortality. Accordingly, it is aimed to determine the protective properties of the cinnamon extract against oxidative stress caused by malathion used as a pesticide within the scope of this study. In total, 30 Wistar-albino rats have fasted for 24 h. Cinnamon water extract (150 mg/kg), vitamin E, corn oil, and malathion (150 mg/kg) was administered by the oral route. Rats were sacrificed 24 h after administration and stomach and liver tissues were removed. Then, catalase, superoxide dismutase enzyme activities, glutathione, and lipid peroxidation amounts were measured in tissues biochemically. It was determined that the oxidative stress occurring in the malathion-treated group was significantly reduced (P < 0.05) in the applied spice dose and in the positive control vitamin E group. On the other hand, with the application of malathion, it has been determined that catalase and lipid peroxidation levels increase, while superoxide dismutase and glutathione levels decrease. With the measured enzyme activity differences, this spice extract was found to be an oxidative stress reducer. Oxidative stress, which can be determined with oxidative/antioxidant parameters, has been significantly prevented by the applications that do not occur.
Collapse
Affiliation(s)
- Ozlem Aydin Berktas
- Faculty of Healthy Science, Department of Nursing, Giresun University, 28100, Giresun, Turkey
| | | |
Collapse
|
16
|
Chowdhury MAH, Sultana T, Rahman MA, Chowdhury T, Enyoh CE, Saha BK, Qingyue W. Nitrogen use efficiency and critical leaf N concentration of Aloe vera in urea and diammonium phosphate amended soil. Heliyon 2020; 6:e05718. [PMID: 33367129 PMCID: PMC7749385 DOI: 10.1016/j.heliyon.2020.e05718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/10/2020] [Accepted: 12/09/2020] [Indexed: 12/01/2022] Open
Abstract
Aloe vera L. is widely cultivated in many countries due to its importance as an all-purpose herbal or medicinal plant. The growth and yield of this plant can be enhanced by application of fertilizer. It is expected that a higher and balanced nutrient supply will result in higher crop production maintaining soil health, which is possible when the applied fertilizers are done in way that is efficient. So, there is a need to understand the amount of applied and type of fertilizer that will give the best output for farmers and to formulate economical market products. This study was conducted to investigate the effect of N fertilizer on leaf yield, its uptake and requirement, critical concentration, use efficiency and economics of Aloe vera L. Plants were grown at six levels of N: 0, 40, 80, 100, 150 and 200 kg ha−1 from urea and diammonium phosphate (DAP) following completely randomized design with three replicates under field condition. The highest values of yield and yield attributes and profit based on benefit cost ratio (3.81 for urea and 2.91 for DAP) were obtained with 150 kg N ha−1 (urea) and 100 kg N ha−1 (DAP). Leaf biomass yield increased by 18–128 % in urea-N and 30–139 % in DAP-N fertilized plant over control while DAP > urea by 7.59 %. Sucker production (mean number) was urea-N (4.95 Plant−1) > DAP-N (2.28 Plant−1). Both gel and leaf N concentration and uptake was highest at 200 kg ha−1 for both sources. For 80 % leaf biomass yield, minimum requirement of N was ca 74.90 (urea) and 89.60 kg ha−1 (DAP). Growth and yield parameters to N application exhibited significant and positive correlations. Critical leaf N concentration was ca 0.88% (DAP) and 0.90% (urea) while mean and maximum NUE was 34% and 64 % (urea) and 43% and 69% (DAP), respectively. Farmers can be advised to apply N at the rate of 150 kg ha−1 from urea for producing economically higher yield and better-quality A. vera leaves.
Collapse
Affiliation(s)
| | - Taslima Sultana
- Dept. of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Arifur Rahman
- Dept. of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Tanzin Chowdhury
- Dept. of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.,Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Christian Ebere Enyoh
- Group Research in Analytical Chemistry, Environment and Climate Change (GRACE&CC), Department of Chemistry, Imo State University (IMSU), PMB 2000 Owerri, Imo State, Nigeria
| | - Biplob Kumar Saha
- Dept. of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.,School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Wang Qingyue
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
17
|
Chowdhury MAH, Sultana T, Rahman MA, Saha BK, Chowdhury T, Tarafder S. Sulphur fertilization enhanced yield, its uptake, use efficiency and economic returns of Aloe vera L. Heliyon 2020; 6:e05726. [PMID: 33364495 PMCID: PMC7753130 DOI: 10.1016/j.heliyon.2020.e05726] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/13/2020] [Accepted: 12/10/2020] [Indexed: 11/30/2022] Open
Abstract
Sulphur plays a vital role in the formation and biosynthesis of protein, chlorophyll, and few amino acids. To investigate the effect of sulphur fertilizer on leaf biomass yield, critical sulphur concentration, sulphur requirement and uptake by Aloe vera L., a pot experiment was carried out following completely randomized design with six levels of sulphur viz., 0, 15, 30, 45, 60 and 80 kg ha-1 with three replications. The results of the study revealed that the growth attributes, leaf and gel yield, and sulphur uptake significantly improved with sulphur application and the best results were obtained from the application of 45 kg sulphur ha-1. On average, addition of sulphur enhanced the leaf biomass yield by 47.5% and sulphur use efficiency by 38% compared to control. The effect of sulphur on the growth parameters and their significant and positive correlations with yield signifies the importance of sulphur on the yield and quality of A. vera. The calculated minimum amount of sulphur for 80% leaf biomass production was 21.1 kg sulphur ha-1 with a critical leaf sulphur concentration of 0.23% in A. vera. Moreover, sulphur addition to soil substantially enhanced the economic returns of A. vera. Therefore, addition of 45 kg sulphur ha-1 could be a better option for obtaining higher yield and economic return of A. vera.
Collapse
Affiliation(s)
| | - Taslima Sultana
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Arifur Rahman
- Department of Agricultural Chemistry, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Biplob Kumar Saha
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Tanzin Chowdhury
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Subrata Tarafder
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
18
|
Otuechere CA, Farombi EO. Pterocarpus mildbraedii leaf extract ebbs propanil-induced oxidative and apoptotic damage in the liver of rats. Drug Chem Toxicol 2020; 45:1476-1483. [PMID: 33148076 DOI: 10.1080/01480545.2020.1842884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phytochemicals derived from plant sources are well recognized as sources of pharmacologically potent drugs in the treatment of several oxidative stress-related ailments. Dichloromethane/methanol (1:1) leaf extract of Pterocarpus mildbraedii was evaluated for its possible protection against oxidative stress and apoptosis in the liver of male Wistar rats exposed to propanil (PRP). In the experimental design, olive oil served as the vehicle, and rats were grouped into control (2 mL/kg olive oil), PRP (200 mg/kg/day), Pterocarpus mildbraedii extract (200 mg/kg/day), and Pterocarpus mildbraedii extract (200 mg/kg/day)+PRP (200 mg/kg/day), and treated daily, p.o., for seven days. Oxidative stress parameters, B-cell lymphoma 2 (Bcl-2), Bcl 2-associated X protein (Bax), p53, caspases (9/3), and terminal transferase dUTP nick end labeling (TUNEL) assays were observed in all groups. Propanil significantly elevated superoxide dismutase and lipid peroxidation levels, while concomitantly depleting GSH and p53 levels. Further, PRP enhanced the expressions of caspase-9, caspase-3, Bax, and TUNEL-positive cells in the liver of rats. However, these observed alterations were reversed following treatment with Pterocarpus mildbraedii extract. Our studies suggest that Pterocarpus mildbraedii extract protected against PRP toxicity by reducing oxidative stress and attenuating critical endpoints in the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Chiagoziem A Otuechere
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria.,Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|