1
|
Wu HT, Liao CC, Peng CF, Lee TY, Liao PH. Exploring the application of machine learning to identify the correlations between phthalate esters and disease: enhancing nursing assessments. Health Inf Sci Syst 2025; 13:10. [PMID: 39736874 PMCID: PMC11683034 DOI: 10.1007/s13755-024-00324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Background Health risks associated with phthalate esters depend on exposure level, individual sensitivities, and other contributing factors. Purpose This study employed artificial intelligence algorithms while applying data mining techniques to identify correlations between phthalate esters [di(2-ethylhexyl) phthalate, DEHP], lifestyle factors, and disease outcomes. Methods We conducted exploratory analysis using demographic and laboratory data collected from the Taiwan Biobank. The study developed a prediction model to examine the relationship between phthalate esters and the risk of developing certain diseases based on various artificial intelligence algorithms, including logistic regression, artificial neural networks, and Bayesian networks. Results The results indicate that phthalate esters exhibited a greater impact on bone and joint issues than heart problems. We observed that DEHP metabolites, such as mono(2-carboxymethylhexyl) phthalate, mono-n-butyl phthalate, and monoethylphthalate, leave higher residue in females than in males, with statistically significant differences. Monoethylphthalate levels were lower in individuals who exercised regularly than those who did not, indicating statistically significant differences. Conclusions This study's findings can serve as a valuable reference for clinical nursing assessments regarding diseases related to osteoporosis, arthritis, and musculoskeletal pain. Medical professionals can enhance care quality by considering factors beyond patients' essential physical assessment items.Trial Registration: This study was registered under NCT05892029 on May 5, 2023, retrospectively.
Collapse
Affiliation(s)
- Hao-Ting Wu
- Department of Nursing, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chien-Chang Liao
- Department of Gastroenterologist, Tainan Municipal Hospital (Managed By Show Chwan Medical Care Corporation), Tainan, Taiwan
| | - Chiung-Fang Peng
- Department of Research, Taiwan Academy of Ecological Hazard & Health Management, Taipei, Taiwan
| | - Tso-Ying Lee
- Nursing Reserach center & School of Nursing, Taipei Medical University Hospital & Taipei Medical University, Taipei, Taiwan
| | - Pei-Hung Liao
- School of Nursing, National Taipei University of Nursing and Health Sciences, No. 365, Ming-Te Road, Peitou District, Taipei, 112 Taiwan
| |
Collapse
|
2
|
Omidoyin KC, Jho EH. Environmental occurrence and ecotoxicological risks of plastic leachates in aquatic and terrestrial environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176728. [PMID: 39383966 DOI: 10.1016/j.scitotenv.2024.176728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Plastic pollution poses a significant threat to environmental and human health, with microplastics widely distributed across various ecosystems. Although current ecotoxicological studies have primarily focused on the inherent toxicity of plastics in natural environments, the role of chemical additives leaching from plastics into the environment remains underexplored despite their significant contribution to the overall toxic potential of plastics. Existing systematic studies on plastic leachates have often examined isolated additive compounds, neglecting the ecotoxicological effects of multiple compounds present in plastic leachates. Additionally, most previous research has focused on aquatic environments, overlooking the leaching mechanisms and ecological risks to diverse species with various ecological roles in aquatic and terrestrial ecosystems. This oversight hinders comprehensive ecological risk assessments. This study addresses these research gaps by reviewing the environmental occurrence of plastic leachates and their ecotoxicological impacts on aquatic and terrestrial ecosystems. Key findings reveal the pervasive presence of plastic leachates in various environments, identifying common additives such as phthalates, polybrominated diphenyl ethers (PBDEs), bisphenol A (BPA), and nonylphenols (NPs). Ecotoxicologically, chemical additives leaching from plastics under specific environmental conditions can influence their bioavailability and subsequent uptake by organisms. This review proposes a novel ecotoxicity risk assessment framework that integrates chemical analysis, ecotoxicological testing, and exposure assessment, offering a comprehensive approach to evaluating the risks of plastic leachates. This underscores the importance of interdisciplinary research that combines advanced analytical techniques with ecotoxicological studies across diverse species and environmental conditions to enhance the understanding of the complex impacts of plastic leachates and inform future research and regulatory policies.
Collapse
Affiliation(s)
- Kehinde Caleb Omidoyin
- Department of Agricultural Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Eun Hea Jho
- Department of Agricultural Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Department of Agricultural and Biological Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center of SEBIS (Strategic Solutions for Environmental Blindspots in the Interest of Society), 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
3
|
Lee PC, Lin MW, Liao HC, Lin CY, Liao PH. Applying machine learning to construct an association model for lung cancer and environmental hormone high-risk factors and nursing assessment reconstruction. J Nurs Scholarsh 2024. [PMID: 38837653 DOI: 10.1111/jnu.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION To utilize machine learning techniques to develop an association model linking lung cancer and environmental hormones to enhance the understanding of potential lung cancer risk factors and refine current nursing assessments for lung cancer. DESIGN This study is exploratory in nature. In Stage 1, data were sourced from a biological database, and machine learning methods, including logistic regression and neural-like networks, were employed to construct an association model. Results indicate significant associations between lung cancer and blood cadmium, urine cadmium, urine cadmium/creatinine, and di(2-ethylhexyl) phthalate. In Stage 2, 128 lung adenocarcinoma patients were recruited through convenience sampling, and the model was validated using a questionnaire assessing daily living habits and exposure to environmental hormones. RESULTS Analysis reveals correlations between the living habits of patients with lung adenocarcinoma and exposure to blood cadmium, urine cadmium, urine cadmium/creatinine, polyaromatic hydrocarbons, diethyl phthalate, and di(2-ethylhexyl) phthalate. CONCLUSIONS According to the World Health Organization's global statistics, lung cancer claims approximately 1.8 million lives annually, with more than 50% of patients having no history of smoking or non-traditional risk factors. Environmental hormones have garnered significant attention in recent years in pathogen exploration. However, current nursing assessments for lung cancer risk have not incorporated environmental hormone-related factors. This study proposes reconstructing existing lung cancer nursing assessments with a comprehensive evaluation of lung cancer risks. CLINICAL RELEVANCE The findings underscore the importance of future studies advocating for public screening of environmental hormone toxins to increase the sample size and validate the model externally. The developed association model lays the groundwork for advancing cancer risk nursing assessments.
Collapse
Affiliation(s)
- Pin-Chieh Lee
- Department of Nursing, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Mong-Wei Lin
- Department of Surgery, Division of Thoracic Surgery, Department of Surgery, College of Medicine, National Taiwan University, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Chi Liao
- College of Medicine, Department of Traumatology, National Taiwan University, National Taiwan University Hospital, Taipei, Taiwan
| | - Chan-Yi Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Hung Liao
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
4
|
Eleiwa NZH, Elsayed ASF, Said EN, Metwally MMM, Abd-Elhakim YM. Di (2-ethylhexyl) phthalate alters neurobehavioral responses and oxidative status, architecture, and GFAP and BDNF signaling in juvenile rat's brain: Protective role of Coenzyme10. Food Chem Toxicol 2024; 184:114372. [PMID: 38113957 DOI: 10.1016/j.fct.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a phthalate plasticizer, is widely spread in the environment, presenting hazards to human health and food safety. Hence, this study examined the probable preventive role of coenzyme10 (CQ10) (10 mg/kg.b.wt) against DEHP (500 mg/kg.wt) - induced neurotoxic and neurobehavioral impacts in juvenile (34 ± 1.01g and 3 weeks old) male Sprague Dawley rats in 35-days oral dosing trial. The results indicated that CQ10 significantly protected against DEHP-induced memory impairment, anxiety, depression, spatial learning disorders, and repetitive/stereotypic-like behavior. Besides, the DEHP-induced depletion in dopamine and gamma amino butyric acid levels was significantly restored by CQ10. Moreover, CQ10 significantly protected against the exhaustion of CAT, GPx, SOD, GSH, and GSH/GSSG ratio, as well as the increase in malondialdehyde, Caspas-3, interleukin-6, and tumor necrosis factor-alpha brain content accompanying with DEHP exposure. Furthermore, CQ10 significantly protected the brain from the DEHP-induced neurodegenerative alterations. Also, the increased immunoexpression of brain-derived neurotrophic factor, not glial fibrillary acidic protein, in the cerebral, hippocampal, and cerebellar brain tissues due to DEHP exposure was alleviated with CQ10. This study's findings provide conclusive evidence that CQ10 has the potential to be used as an efficient natural protective agent against the neurobehavioral and neurotoxic consequences of DEHP.
Collapse
Affiliation(s)
- Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Alaa S F Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Enas N Said
- Department of Behaviour and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
5
|
Štampar M, Ravnjak T, Domijan AM, Žegura B. Combined Toxic Effects of BPA and Its Two Analogues BPAP and BPC in a 3D HepG2 Cell Model. Molecules 2023; 28:molecules28073085. [PMID: 37049848 PMCID: PMC10095618 DOI: 10.3390/molecules28073085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Bisphenol A (BPA) is one of the most commonly used substances in the manufacture of various everyday products. Growing concerns about its hazardous properties, including endocrine disruption and genotoxicity, have led to its gradual replacement by presumably safer analogues in manufacturing plastics. The widespread use of BPA and, more recently, its analogues has increased their residues in the environment. However, our knowledge of their toxicological profiles is limited and their combined effects are unknown. In the present study, we investigated the toxic effects caused by single bisphenols and by the combined exposure of BPA and its two analogues, BPAP and BPC, after short (24-h) and prolonged (96-h) exposure in HepG2 spheroids. The results showed that BPA did not reduce cell viability in HepG2 spheroids after 24-h exposure. In contrast, BPAP and BPC affected cell viability in HepG2 spheroids. Both binary mixtures (BPA/BPAP and BPA/BPC) decreased cell viability in a dose-dependent manner, but the significant difference was only observed for the combination of BPA/BPC (both at 40 µM). After 96-h exposure, none of the BPs studied affected cell viability in HepG2 spheroids. Only the combination of BPA/BPAP decreased cell viability in a dose-dependent manner that was significant for the combination of 4 µM BPA and 4 µM BPAP. None of the BPs and their binary mixtures studied affected the surface area and growth of spheroids as measured by planimetry. In addition, all BPs and their binary mixtures studied triggered oxidative stress, as measured by the production of reactive oxygen species and malondialdehyde, at both exposure times. Overall, the results suggest that it is important to study the effects of BPs as single compounds. It is even more important to study the effects of combined exposures, as the combined effects may differ from those induced by single compounds.
Collapse
|
6
|
Coiffier O, Nakiwala D, Rolland M, Malatesta A, Lyon-Caen S, Chovelon B, Faure P, Sophie Gauchez A, Guergour D, Sakhi AK, Sabaredzovic A, Thomsen C, Pin I, Slama R, Corne C, Philippat C. Exposure to a mixture of non-persistent environmental chemicals and neonatal thyroid function in a cohort with improved exposure assessment. ENVIRONMENT INTERNATIONAL 2023; 173:107840. [PMID: 36857904 DOI: 10.1016/j.envint.2023.107840] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In vitro and toxicological studies have shown that non-persistent environmental chemicals can perturb thyroid hormone homeostasis. Epidemiological studies with improved exposure assessment (i.e., repeated urine samples) are needed to evaluate effects of these compounds, individually or as a mixture, in humans. We studied the associations between prenatal exposure to non-persistent environmental chemicals and neonatal thyroid hormones. METHODS The study population consisted of 442 mother-child pairs from the French SEPAGES mother-child cohort recruited between July 2014 and July 2017. For each participant, four parabens, five bisphenols, triclosan, triclocarban, benzophenone-3 as well as metabolites of phthalates and of di(isononyl)cyclohexane-1,2-dicarboxylate were assessed in two pools of repeated urine samples (median: 21 spot urines per pool), collected in the 2nd and 3rd trimesters of pregnancy, respectively. Thyroid stimulating hormone (TSH) and total thyroxine (T4) levels were determined in newborns from a heel-prick blood spot. Maternal iodine and selenium were assessed in urine and serum, respectively. Adjusted linear regression (uni-pollutant model) and Bayesian Kernel Machine Regression (BKMR, mixture model) were applied to study overall and sex-stratified associations between chemicals and hormone concentrations. RESULTS Interaction with child sex was detected for several compounds. Triclosan, three parabens, and one phthalate metabolite (OH-MPHP) were negatively associated with T4 among girls in the uni-pollutant model. BKMR also suggested a negative association between the mixture and T4 in girls, whereas in boys the association was positive. The mixture was not linked to TSH levels, and for this hormone the uni-pollutant model revealed associations with only a few compounds. CONCLUSION Our study, based on repeated urine samples to assess exposure, showed that prenatal exposure to some phenols and phthalates disturb thyroid hormone homeostasis at birth. Furthermore, both uni-pollutant and mixture models, suggested effect modification by child sex, while, to date underlying mechanisms for such sex-differences are not well understood.
Collapse
Affiliation(s)
- Ophélie Coiffier
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Dorothy Nakiwala
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Matthieu Rolland
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Andres Malatesta
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Benoît Chovelon
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, CNRS, UMR 5063, F-38041 Grenoble, France; Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, France
| | - Patrice Faure
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, CNRS, UMR 5063, F-38041 Grenoble, France; Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, France
| | - Anne Sophie Gauchez
- Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, France
| | - Dorra Guergour
- Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, France
| | | | | | | | - Isabelle Pin
- Pediatric Department, Grenoble University Hospital, 38700 La Tronche, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Christelle Corne
- Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France.
| |
Collapse
|
7
|
Carli F, Tait S, Busani L, Ciociaro D, Della Latta V, Pala AP, Deodati A, Raffaelli A, Pratesi F, Conte R, Maranghi F, Tassinari R, Fabbrizi E, Toffol G, Cianfarani S, La Rocca C, Gastaldelli A. Exposure to Endocrine Disruptors (Di(2-Ethylhexyl)phthalate (DEHP) and Bisphenol A (BPA)) in Women from Different Residing Areas in Italy: Data from the LIFE PERSUADED Project. Int J Mol Sci 2022; 23:16012. [PMID: 36555656 PMCID: PMC9783390 DOI: 10.3390/ijms232416012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Phthalates and bisphenol A (BPA) are plasticizers used in many industrial products that can act as endocrine disruptors and lead to metabolic diseases. During the LIFE PERSUADED project, we measured the urinary concentrations of BPA and Di(2-ethylhexyl)phthalate (DEHP) metabolites in 900 Italian women representative of the Italian female adult population (living in the north, centre, and south of Italy in both rural and urban areas). The whole cohort was exposed to DEHP and BPA with measurable levels above limit of detection in more than 99% and 95% of the samples, respectively. The exposure patterns differed for the two chemicals in the three macro-areas with the highest urinary levels for DEHP in south compared to central and northern Italy and for BPA in northern compared to central and southern Italy. BPA levels were higher in women living in urban areas, whereas no difference between areas was observed for DEHP. The estimated daily intake of BPA was 0.11 μg/kg per day, about 36-fold below the current temporary tolerable daily intake of 4 μg/kg per day established by the EFSA in 2015. The analysis of cumulative exposure showed a positive correlation between DEHP and BPA. Further, the reduction of exposure to DEHP and BPA, through specific legislative measures, is necessary to limit the harmfulness of these substances.
Collapse
Affiliation(s)
- Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Sabrina Tait
- Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Luca Busani
- Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Demetrio Ciociaro
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | | | - Anna Paola Pala
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Annalisa Deodati
- Dipartimento Pediatrico, Universitario Ospedaliero “Bambino Gesù” Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Andrea Raffaelli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Filippo Pratesi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Raffaele Conte
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Francesca Maranghi
- Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Roberta Tassinari
- Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Enrica Fabbrizi
- Unità Operativa Dipartimentale di Pediatria, Asur Marche Area Vasta 3, Ospedale di Civitanova Marche, 62012 (MC), Italy
| | | | - Stefano Cianfarani
- Dipartimento Pediatrico, Universitario Ospedaliero “Bambino Gesù” Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Women’s and Children’s Health, Karolinska Institute and University Hospital, 171 77 Stockholm, Sweden
| | - Cinzia La Rocca
- Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | | |
Collapse
|
8
|
Zhang C, Wang S, Wang Z, Zhang Q, Chen R, Zhang H, Hua Z, Ma S. Repair mechanism of Wuwei Fuzheng Yijing formula in di-2-ethylhexyl phthalate-induced sperm DNA fragmentation in mice. PHARMACEUTICAL BIOLOGY 2022; 60:1286-1302. [PMID: 35797467 PMCID: PMC9272935 DOI: 10.1080/13880209.2022.2089694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 06/01/2023]
Abstract
CONTEXT Di-2-ethylhexyl phthalate (DEHP), a known persistent organic pollutant, can increase the sperm DNA fragmentation index (DFI). OBJECTIVE To investigate the mechanism underlying the repair of DEHP-induced sperm DNA damage in mice by Wuwei Fuzheng Yijing (WFY) formula. MATERIALS AND METHODS The potential targets of WFY and sperm DNA fragment (SDF) were obtained from the TCMSP, BATMAN-TCM, OMIM and GeneCards. The protein-protein interaction (PPI) network, GO and KEGG pathway analyses of WFY-SDF were constructed. An animal model of DEHP-induced sperm DNA damage was replicated by gavage of SPF ICR (CD1) mice DEHP at 1 g/kg/d and treated with WFY at 8.92, 17.84 and 35.67 g/kg, respectively, for 60 d. Sperm DFI of each group was detected and compared. The target genes of WFY identified by transcriptomic and proteomic analyses were validated by qRT-PCR and Western blotting. RESULTS Network pharmacology pathway analysis indicated that PI3K/Akt was the potential target of WFY on SDF. The DFI of the DEHP group (25.48%) was significantly higher than that of the control group (4.02%). The high-dose WFY group (19.05%) exhibited the most significant repairing effect. The related pathways were PI3K/Akt and metabolic. Aass, Aldh1a7, GSTA3, betaine homocysteine S-methyltransferase (Bhmt), Mug2 and Svs1 were screened and Bhmt was validated. DISCUSSION AND CONCLUSIONS WFY can repair sperm DNA damage caused by DEHP, and the mechanism may be related to PI3K/Akt and metabolic pathways, and Bhmt. This provides a new direction for using traditional Chinese medicine to prevent and repair reproductive system injury caused by pollutants.
Collapse
Affiliation(s)
- Chenming Zhang
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shiqi Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zulong Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Qi Zhang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rubing Chen
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hao Zhang
- The Third Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhong Hua
- The Third Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Sicheng Ma
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
9
|
Mindang ELN, Awounfack CF, Ndinteh DT, Krause RWM, Njamen D. Effects of Tartrazine on Some Sexual Maturation Parameters in Immature Female Wistar Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10410. [PMID: 36012044 PMCID: PMC9408620 DOI: 10.3390/ijerph191610410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Over the past century, the average age for onset of puberty has declined. Several additives present in our food are thought to contribute significantly to this early puberty which is recognized to also affect people's health in later life. On this basis, the impact of 40-days unique oral administration of the food dye tartrazine (7.5, 27, and 47 mg/kg BW doses) was evaluated on some sexual maturation parameters on immature female Wistar rats. Vaginal opening was evaluated during the treatment period. At the end of the treatments, animals were sacrificed (estrus phase) and the relative weight of reproductive organs, pituitary gonadotrophin and sexual steroids level, cholesterol level in ovaries and folliculogenesis were evaluated. Compared to the control group, animals receiving tartrazine (47 mg/kg BW) showed significantly high percentage of early vaginal opening from day 45 of age, and an increase in the number of totals, primaries, secondaries, and antral follicles; a significant increase in serum estrogen, LH and in uterine epithelial thickness. Our findings suggest that tartrazine considerably disturbs the normal courses of puberty. These results could validate at least in part the global observations on increasingly precocious puberty in girls feeding increasingly with industrially processed foods.
Collapse
Affiliation(s)
- Elisabeth Louise Ndjengue Mindang
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde P.O. Box 812, Cameroon
- Department of Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Rhodes University, Makhanda P.O. Box 94, South Africa
| | - Charline Florence Awounfack
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde P.O. Box 812, Cameroon
- Department of Psychology, Faculty of Arts, Letters and Social Sciences, University of Yaounde I, Yaounde P.O. Box 7011, Cameroon
| | - Derek Tantoh Ndinteh
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Johannesburg P.O. Box 17011, South Africa
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Rhodes University, Makhanda P.O. Box 94, South Africa
| | - Dieudonne Njamen
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde P.O. Box 812, Cameroon
| |
Collapse
|
10
|
Zhou P, Wu S, Huang D, Wang K, Su X, Yang R, Shao C, Wu J. Oral exposure to DEHP may stimulate prostatic hyperplasia associated with upregulation of COX-2 and L-PGDS expressions in male adult rats. Reprod Toxicol 2022; 112:160-170. [PMID: 35905844 DOI: 10.1016/j.reprotox.2022.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a typical environmental endocrine disruptor (EED), can disrupt estrogen and androgen secretion and metabolism process, thus inducing dysfunctional reproduction such as impaired gonadal development and spermatogenesis disorder. Prostaglandin synthases (PGS) catalyze various prostaglandins biosynthesis, involved in inflammatory cascade and tumorigenesis. Yet, little is known about how PGS may impact prostatic hyperplasia development and progression. This study concentrates predominantly on the potential prostatic toxicity of DEHP exposure and the mediating role of PGS. In vivo study, adult male rats were administered via oral gavage 30 μg/kg/d, 90 μg/kg/d, 270 μg/kg/d, 810 μg/kg/d DEHP or vehicle for four weeks. The results elucidated that low-dose DEHP may cause the proliferation of the prostate with an increased PCNA/TUNEL ratio. Given the importance of estrogens and androgens in prostatic hyperplasia, our first objective was to evaluate the levels of sex hormones. DEHP improved the ratio of estradiol (E2)/testosterone (T) in a dose-dependent manner and upregulated estrogen receptor alpha (ERα) and androgen receptor (AR) expressions. Prostaglandin synthases, including cyclooxygenase-2 (COX-2) and lipocalin-type prostaglandin D synthase (L-PGDS), were significantly upregulated in the ventral prostate. COX-2 and L-PGDS might mediate the tendency of prostatic hyperplasia induced by low-dose DEHP through estradiol/androgen regulation and imbalance between proliferation and apoptosis in vivo. These findings provide the first evidence that prostaglandin synthases contribute to the tendency toward benign prostatic hyperplasia induced by DEHP. Further investigations will have to be performed to facilitate an improved understanding of the role of prostaglandin synthases in DEHP-induced prostatic lesions.
Collapse
Affiliation(s)
- Ping Zhou
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Shuangshuang Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Dongyan Huang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Kaiyue Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Xin Su
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Rongfu Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Congcong Shao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Jianhui Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China.
| |
Collapse
|
11
|
Mengozzi A, Carli F, Pezzica S, Biancalana E, Gastaldelli A, Solini A. High exposure to phthalates is associated with HbA1 c worsening in type 2 diabetes subjects with and without edentulism: a prospective pilot study. Diabetol Metab Syndr 2022; 14:100. [PMID: 35858871 PMCID: PMC9301841 DOI: 10.1186/s13098-022-00875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Phthalates exposure and complete edentulism are related to both low socioeconomic status. No study by far has verified if and to what extent these two conditions are related. We aimed to explore their potential association and interplay in the metabolic control and cardiovascular risk profile. METHODS In our small (n = 48) prospective pilot study twenty-four patients with type 2 diabetes (DnE) and twenty-four patients with type 2 diabetes and edentulism (DE) followed for 19 ± 2 months were treated according to best clinical standards. Phthalates' exposure was evaluated by urinary concentration of di-2-ethylhexylphthalate (DEHP), metabolites, i.e. mono 2-ethylhexyl phthalate (MEHP), mono-2-ethyl-5-oxohexyl phthalate (MEOHP) and mono 2-ethyl-5-hydroxyhexyl phthalate (MEHHP). RESULTS No association between phthalates and edentulism was found, nor did edentulism affect glucose control. Higher phthalates exposure was associated with a glycated haemoglobin worsening. This association was found for all the measured phthalates metabolites, both as a whole (DEHP; r = 0.33, p = 0.0209) and individually: MEHP (r = 0.41, p = 0.0033), MEHHP (r = 0.32, p = 0.028), MEOHP (r = 0.28, p = 0.0386). CONCLUSIONS Phthalates are not associated with edentulism but predict the worsening of glucose control in subjects with type 2 diabetes. These findings might prove relevant in identifying novel biomarkers of cardiometabolic risk. Further studies are needed to validate our results and estimate the true potential of phthalates in terms of risk assessment.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Samantha Pezzica
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Edoardo Biancalana
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy.
| |
Collapse
|
12
|
Tian M, Xia P, Gou X, Yan L, Yu H, Zhang X. CRISPR screen identified that UGT1A9 was required for bisphenols-induced mitochondria dyshomeostasis. ENVIRONMENTAL RESEARCH 2022; 205:112427. [PMID: 34861229 DOI: 10.1016/j.envres.2021.112427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Exposure to bisphenols chemicals could cause various adverse health effects, including non-alcoholic fatty liver disease (NAFLD), which have been associated with cellular mitochondria stress. However, the biological mechanism underlying the mitochondria stress-mediated cell death by bisphenols was poorly understood. Here, CRISPR screens were performed to identify the critical genes which were involved in cell death caused by exposure to four bisphenols (BPA, BPB, BPE and BPS). Results of CRISPR screens showed that UGT1A9 was the primary genetic factor facilitating cell death induced by all of the four bisphenols. Systematic toxicological tests demonstrated that UGT1A9 was required for BPA-induced mitochondria dyshomeostasis in vitro and in vivo, and UGT1A9-mediated mitochondria dyshomeostasis was an important cause of facilitating cell death. Liver injury caused by exposure to BPA in wild-type mice was accompanied with suppression of mitophagy and increased expression of C-Caspase 3, but UGT1A9 knockout attenuated these adverse effects induced by BPA. Finally, molecular epidemiology analysis suggested that the five genetic variants of UGT1A9 could be potential genetic risk factors of NAFLD when people were exposed to BPA. The biological mechanism uncovered here provided mechanistic evidence for identification of susceptible populations of liver injury associated with exposure to BPA.
Collapse
Affiliation(s)
- Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
13
|
Ozkemahli G, Ozyurt AB, Erkekoglu P, Zeybek ND, Yersal N, Kocer-Gumusel B. The Effects of Prenatal and Lactational Bisphenol A and/or Di(2-Ethylhexyl) Phthalate Exposure on Female Reproductive System. Toxicol Mech Methods 2022; 32:597-605. [PMID: 35321620 DOI: 10.1080/15376516.2022.2057265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP) are endocrine disrupting chemicals (EDCs) which are abundantly used in polyvinyl chloride plastics, polycarbonates and epoxy resins. Prenatal and early postnatal exposures to EDCs are suggested to be more critical. Such exposures can lead to reprotoxic effects, hormonal and metabolic consequences in adulthood. Moreover, combined exposure to different EDCs can lead to more serious adverse effects, some of which cannot be predicted by examining their individual toxicity profiles. This study aimed to evaluate effects of single and combined prenatal and lactational exposures to BPA and/or DEHP on female reproductive hormones and ovarian follicle development. Pregnant Sprague-Dawley rats were divided randomly to four groups (n = 3/group): Control (received vehicle only); DEHP (30 mg/kg/day); BPA (50 mg/kg/day) and BPA + DEHP (30 mg/kg/day DEHP; 50 mg/kg/day BPA) through 6-21 gestational days and lactation by intra-gastric lavage. Female offspring (n = 6/group) were fed until the end of twelfth postnatal week and then euthanized. Reproductive hormones, ovarian follicle numbers and ovarian development were determined. Plasma testosterone and estradiol levels of BPA and BPA + DEHP groups were significantly lower than control. In BPA group, the number of tertiary ovarian follicles decreased significantly compared to control. In the combined exposure group, the number of corpus luteum (29%) as well as the number of primordial follicles (36%) showed marked decreases compared to control group.It can be suggested that early life exposure to BPA and DEHP may cause late life adverse effects in female reproductive system especially after combined exposure.
Collapse
Affiliation(s)
- Gizem Ozkemahli
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Aylin Balci Ozyurt
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Pinar Erkekoglu
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Nilgun Yersal
- Faculty of Medicine, Department of Histology and Embryology, Gaziosmanpasa University, Tokat, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
14
|
Human Biomonitoring Data in Health Risk Assessments Published in Peer-Reviewed Journals between 2016 and 2021: Confronting Reality after a Preliminary Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063362. [PMID: 35329058 PMCID: PMC8955248 DOI: 10.3390/ijerph19063362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
Human biomonitoring (HBM) is a rapidly developing field that is emphasized as an important approach for the assessment of health risks. However, its value for health risk assessment (HRA) remains to be clarified. We performed a review of publications concerned with applications of HBM in the assessment of health risks. The selection of publications for this review was limited by the search engines used (only PubMed and Scopus) and a timeframe of the last five years. The review focused on the clarity of 10 HRA elements, which influence the quality of HRA. We show that the usage of HBM data in HRA is limited and unclear. Primarily, the key HRA elements are not consistently applied or followed when using HBM in such assessments, and secondly, there are inconsistencies regarding the understanding of fundamental risk analysis principles and good practices in risk analysis. Our recommendations are as follows: (i) potential usage of HBM data in HRA should not be non-critically overestimated but rather limited and aligned to a specific value for exposure assessment or for the interpretation of health damage; (ii) improvements to HRA approaches, using HBM information or not, are needed and should strictly follow theoretical foundations of risk analysis.
Collapse
|
15
|
Zhang H, Ben Y, Han Y, Zhang Y, Li Y, Chen X. Phthalate exposure and risk of diabetes mellitus: Implications from a systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 204:112109. [PMID: 34562484 DOI: 10.1016/j.envres.2021.112109] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiologic studies indicated that phthalate exposure might be associated with diabetes mellitus (DM). However, discrepancies existed. The link between phthalate exposure and risk of DM remained unclarified. METHODS We conducted a meta-analysis to explore the association between phthalate exposure and risk of DM. Effects of phthalate exposure on insulin resistance were also evaluated by systematic review. RESULTS Seven studies involving 12,139 participants were included in this meta-analysis. Our results showed that urinary concentrations of phthalates were positively associated with risk of DM. The pooled ORs were 3.11 (95% CI: 1.16-8.37) for monomethyl phthalate (MMP), 1.27 (95% CI: 1.03-1.56) for mono-n-butyl phthalate (MnBP), 2.59 (95% CI: 1.10-6.10) for mono-isobutyl phthalate (MiBP), 1.99 (95% CI: 1.52-2.61) for mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), 1.90 (95% CI: 1.40-2.57) for mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), 1.55 (95% CI: 1.10-2.20) for mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), and 2.39 (95% CI: 1.18-4.85) for mono-(3-carboxypropyl) phthalate (MCPP), respectively. Molar summation of di-2-ethylhexyl phthalate metabolites (∑DEHP) was also found to be correlated with risk of DM (OR 2.15, 95% CI: 1.48-3.13). No significant association with risk of DM was found regarding monoethyl phthalate (MEP), monobenzyl phthalate (MBzP) and mono(2-ethylhexyl) phthalate (MEHP). In literature review, most studies showed positive correlations of phthalates, especially ∑DEHP, with homeostasis model assessment of insulin resistance and fasting glucose. CONCLUSION Exposure to phthalates, especially MMP, MnBP, MiBP, MCPP and DEHP metabolites, might be a risk factor of DM. Our results should be interpreted with caution due to heterogeneous design of enrolled studies.
Collapse
Affiliation(s)
- Hong Zhang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Yujie Ben
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yonghe Han
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Yong Zhang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinwang Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
16
|
Erkekoglu P, Özyurt A, Yirün A, Çakır D. Testicular dysgenesis syndrome and phthalate exposure: A review of literature. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Endocrine disruptors are chemicals that interfere with the body's endocrine system and cause adverse effects in biological systems. Phthalates are a group of man-made chemicals which are mainly used as plasticizers and classified as endocrine disruptors. They are also used in cosmetic and personal care products as color or smell fixators. Moreover, phthalates are present in inks, adhesives, sealants, automobile parts, tools, toys, carpets, medical tubing and blood storage bags, and food packages. Pathological condition known as "testicular dysgenesis syndrome" (TDS) or "phthalate syndrome" is usually linked to phthalate exposure and is coined to describe the rise in alterations in reproductive health in men, such as reduced semen quality (decrease in sperm counts, sperm motility and increase in abnormal sperms), hypospadias, cryptorchidism, reduced anogenital distance and early-life testicular cancer. Phthalates are suggested to cause direct effect on gonadal and non-gonadal tissues, impair the differentiation and morphogenesis of seminiferous tubules and accessory sex organs and testicular cells (both Sertoli and Leydig cells), alter estradiol and/or testosterone levels, decrease insulin-like 3 (INSL3) peptide production, impair spermatogenesis and lead to epigenetic alterations, all of which may lead to TDS. This review will mainly focus on phthalates as causes of TDS and their mechanisms of action.
Collapse
|