1
|
Malmqvist E, Stroh E, Flanagan E, Isaxon C, Roldin P, Oudin A. Estimating the potential health effects of cleaner air in the initial stages of the COVID-19 pandemic: a study in Malmö, Sweden. Glob Health Action 2024; 17:2416291. [PMID: 39434666 PMCID: PMC11497565 DOI: 10.1080/16549716.2024.2416291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND During the initial phase of the COVID-19 pandemic, reductions in air pollution were globally observed owing to decreased human activities, underscoring the potential for cleaner air through shifts in human behaviour. OBJECTIVES The objective of the present study was to hypothetically estimate the resulting population health impacts in Malmö, Sweden, if these improvements in air quality were to become permanent. METHODS We utilized air pollution data from two measurement campaigns conducted in the spring of 2019 and the spring of 2020 for our Health Impact Assessment, applying standard methods. This assessment involved making assumptions about baseline population risk and using established concentration-response functions. RESULTS In the spring of 2020, the NO2 concentrations exhibited an average decrease of 6.6 μg/m3 (42%) decrease and PM2.5 concentrations a 1.9 μg/m3 (22%) decrease, compared to the spring of 2019. If sustained, such improvements could lead to an estimated 1-3% decrease in premature deaths, a 2% decrease in preeclampsia cases, a 6% decrease in low birthweight children, a 4% decrease in bronchitis cases among children, a 2% decrease in asthma cases, a 0.2% decrease in hospital admissions for respiratory diagnoses, and an estimated 11% decrease in dementia cases annually. CONCLUSION The findings illustrate the potential for enhanced health in Malmö due to improved air quality. Efforts to combat air pollution and implement long-term strategies, such as those targeting urban mobility and commuting patterns, are essential for the health and well-being of both local and global populations.
Collapse
Affiliation(s)
- Ebba Malmqvist
- Division for Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Emilie Stroh
- Division for Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Erin Flanagan
- Division for Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Christina Isaxon
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Pontus Roldin
- IVL, Swedish Environmental Research Institute, Malmö, Sweden
- Department of Physics, Lund University, Lund, Sweden
| | - Anna Oudin
- Division for Occupational and Environmental Medicine, Lund University, Lund, Sweden
- Sustainable Health, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Oudin A, Raza W, Flanagan E, Segersson D, Jalava P, Kanninen KM, Rönkkö T, Giugno R, Sandström T, Muala A, Topinka J, Sommar J. Exposure to source-specific air pollution in residential areas and its association with dementia incidence: a cohort study in Northern Sweden. Sci Rep 2024; 14:15521. [PMID: 38969679 PMCID: PMC11226641 DOI: 10.1038/s41598-024-66166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
The aim of this study was to investigate the relationship between source-specific ambient particulate air pollution concentrations and the incidence of dementia. The study encompassed 70,057 participants from the Västerbotten intervention program cohort in Northern Sweden with a median age of 40 years at baseline. High-resolution dispersion models were employed to estimate source-specific particulate matter (PM) concentrations, such as PM10 and PM2.5 from traffic, exhaust, and biomass (mainly wood) burning, at the residential addresses of each participant. Cox regression models, adjusted for potential confounding factors, were used for the assessment. Over 884,847 person-years of follow-up, 409 incident dementia cases, identified through national registers, were observed. The study population's average exposure to annual mean total PM10 and PM2.5 lag 1-5 years was 9.50 µg/m3 and 5.61 µg/m3, respectively. Increased risks were identified for PM10-Traffic (35% [95% CI 0-82%]) and PM2.5-Exhaust (33% [95% CI - 2 to 79%]) in the second exposure tertile for lag 1-5 years, although no such risks were observed in the third tertile. Interestingly, a negative association was observed between PM2.5-Wood burning and the risk of dementia. In summary, this register-based study did not conclusively establish a strong association between air pollution exposure and the incidence of dementia. While some evidence indicated elevated risks for PM10-Traffic and PM2.5-Exhaust, and conversely, a negative association for PM2.5-Wood burning, no clear exposure-response relationships were evident.
Collapse
Affiliation(s)
- Anna Oudin
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden.
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Wasif Raza
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Erin Flanagan
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
| | - Pasi Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere, Finland
| | - Rosalba Giugno
- Computer Science Department, University of Verona, Verona, Italy
| | - Thomas Sandström
- Division of Medicine/Respiratory Medicine, Department of Toxicology and Molecular Epidemiology, Umeå University, Umeå, Sweden
| | - Ala Muala
- Division of Medicine/Respiratory Medicine, Department of Toxicology and Molecular Epidemiology, Umeå University, Umeå, Sweden
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Johan Sommar
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Pennington AF, Cornwell CR, Sircar KD, Mirabelli MC. Electric vehicles and health: A scoping review. ENVIRONMENTAL RESEARCH 2024; 251:118697. [PMID: 38499224 PMCID: PMC11273362 DOI: 10.1016/j.envres.2024.118697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The health impacts of the rapid transition to the use of electric vehicles are largely unexplored. We completed a scoping review to assess the state of the evidence on use of battery electric and hybrid electric vehicles and health. METHODS We conducted a literature search of MEDLINE, Embase, Global Health, CINAHL, Scopus, and Environmental Science Collection databases for articles published January 1990 to January 2024. We included articles if they presented observed or modeled data on the association between battery electric or hybrid electric cars, trucks, or buses and health-related outcomes. We abstracted data and summarized results. RESULTS Out of 897 reviewed articles, 52 met our inclusion criteria. The majority of included articles examined transitions to the use of electric vehicles (n = 49, 94%), with fewer studies examining hybrid electric vehicles (n = 11, 21%) or plug-in hybrid electric vehicles (n = 8, 15%). The most common outcomes examined were premature death (n = 41, 79%) and monetized health outcomes such as medical expenditures (n = 33, 63%). We identified only one observational study on the impact of electric vehicles on health; all other studies reported modeled data. Almost every study (n = 51, 98%) reported some evidence of a positive health impact of transitioning to electric or hybrid electric vehicles, although magnitudes of association varied. There was a paucity of information on the environmental justice implications of vehicle transitions. CONCLUSIONS The results of the current literature on electric vehicles and health suggest an overall positive health impact of transitioning to electric vehicles. Additional observational studies would help expand our understanding of the real-world health effects of electric vehicles. Future research focused on the environmental justice implications of vehicle fleet transitions could provide additional information about the extent to which the health benefits occur equitably across populations.
Collapse
Affiliation(s)
- Audrey F Pennington
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Cheryl R Cornwell
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kanta Devi Sircar
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA; Commissioned Corps, United States Public Health Service, Rockville, MD, USA
| | - Maria C Mirabelli
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
4
|
Lepistö T, Lintusaari H, Oudin A, Barreira LMF, Niemi JV, Karjalainen P, Salo L, Silvonen V, Markkula L, Hoivala J, Marjanen P, Martikainen S, Aurela M, Reyes FR, Oyola P, Kuuluvainen H, Manninen HE, Schins RPF, Vojtisek-Lom M, Ondracek J, Topinka J, Timonen H, Jalava P, Saarikoski S, Rönkkö T. Particle lung deposited surface area (LDSA al) size distributions in different urban environments and geographical regions: Towards understanding of the PM 2.5 dose-response. ENVIRONMENT INTERNATIONAL 2023; 180:108224. [PMID: 37757619 DOI: 10.1016/j.envint.2023.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Recent studies indicate that monitoring only fine particulate matter (PM2.5) may not be enough to understand and tackle the health risk caused by particulate pollution. Health effects per unit PM2.5 seem to increase in countries with low PM2.5, but also near local pollution sources (e.g., traffic) within cities. The aim of this study is to understand the differences in the characteristics of lung-depositing particles in different geographical regions and urban environments. Particle lung deposited surface area (LDSAal) concentrations and size distributions, along with PM2.5, were compared with ambient measurement data from Finland, Germany, Czechia, Chile, and India, covering traffic sites, residential areas, airports, shipping, and industrial sites. In Finland (low PM2.5), LDSAal size distributions depended significantly on the urban environment and were mainly attributable to ultrafine particles (<100 nm). In Central Europe (moderate PM2.5), LDSAal was also dependent on the urban environment, but furthermore heavily influenced by the regional aerosol. In Chile and India (high PM2.5), LDSAal was mostly contributed by the regional aerosol despite that the measurements were done at busy traffic sites. The results indicate that the characteristics of lung-depositing particles vary significantly both within cities and between geographical regions. In addition, ratio between LDSAal and PM2.5 depended notably on the environment and the country, suggesting that LDSAal exposure per unit PM2.5 may be multiple times higher in areas having low PM2.5 compared to areas with continuously high PM2.5. These findings may partly explain why PM2.5 seems more toxic near local pollution sources and in areas with low PM2.5. Furthermore, performance of a typical sensor based LDSAal measurement is discussed and a new LDSAal2.5 notation indicating deposition region and particle size range is introduced. Overall, the study emphasizes the need for country-specific emission mitigation strategies, and the potential of LDSAal concentration as a health-relevant pollution metric.
Collapse
Affiliation(s)
- Teemu Lepistö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland.
| | - Henna Lintusaari
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Anna Oudin
- Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Sustainable Health, Sweden; Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Luis M F Barreira
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00101, Finland
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority HSY, Helsinki 00066, Finland
| | - Panu Karjalainen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Laura Salo
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Ville Silvonen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Lassi Markkula
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Jussi Hoivala
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Petteri Marjanen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Sampsa Martikainen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Minna Aurela
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00101, Finland
| | | | | | - Heino Kuuluvainen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority HSY, Helsinki 00066, Finland
| | - Roel P F Schins
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Michal Vojtisek-Lom
- Centre of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague 160 00, Czechia
| | - Jakub Ondracek
- Laboratory of Aerosol Chemistry and Physics, ICPF CAS, Prague 165 00, Czechia
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, 142 20 Prague, Czechia
| | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00101, Finland
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Sanna Saarikoski
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00101, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| |
Collapse
|
5
|
Vallabani NVS, Gruzieva O, Elihn K, Juárez-Facio AT, Steimer SS, Kuhn J, Silvergren S, Portugal J, Piña B, Olofsson U, Johansson C, Karlsson HL. Toxicity and health effects of ultrafine particles: Towards an understanding of the relative impacts of different transport modes. ENVIRONMENTAL RESEARCH 2023; 231:116186. [PMID: 37224945 DOI: 10.1016/j.envres.2023.116186] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.
Collapse
Affiliation(s)
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | | | - Sarah S Steimer
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Jana Kuhn
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sanna Silvergren
- Environment and Health Administration, 104 20, Stockholm, Sweden
| | - José Portugal
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christer Johansson
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden; Environment and Health Administration, 104 20, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
6
|
Lepistö T, Barreira LMF, Helin A, Niemi JV, Kuittinen N, Lintusaari H, Silvonen V, Markkula L, Manninen HE, Timonen H, Jalava P, Saarikoski S, Rönkkö T. Snapshots of wintertime urban aerosol characteristics: Local sources emphasized in ultrafine particle number and lung deposited surface area. ENVIRONMENTAL RESEARCH 2023; 231:116068. [PMID: 37149021 DOI: 10.1016/j.envres.2023.116068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
Urban air fine particles are a major health-relating problem. However, it is not well understood how the health-relevant features of fine particles should be monitored. Limitations of PM2.5 (mass concentration of sub 2.5 μm particles), which is commonly used in the health effect estimations, have been recognized and, e.g., World Health Organization (WHO) has released good practice statements for particle number (PN) and black carbon (BC) concentrations (2021). In this study, a characterization of urban wintertime aerosol was done in three environments: a detached housing area with residential wood combustion, traffic-influenced streets in a city centre and near an airport. The particle characteristics varied significantly between the locations, resulting different average particle sizes causing lung deposited surface area (LDSA). Near the airport, departing planes had a major contribution on PN, and most particles were smaller than 10 nm, similarly as in the city centre. The high hourly mean PN (>20 000 1/cm3) stated in the WHO's good practices was clearly exceeded near the airport and in the city centre, even though traffic rates were reduced due to a SARS-CoV-2-related partial lockdown. In the residential area, wood combustion increased both BC and PM2.5, but also PN of sub 10 and 23 nm particles. The high concentrations of sub 10 nm particles in all the locations show the importance of the chosen lower size limit of PN measurement, e.g., WHO states that the lower limit should be 10 nm or smaller. Furthermore, due to ultrafine particle emissions, LDSA per unit PM2.5 was 1.4 and 2.4 times higher near the airport than in the city centre and the residential area, respectively, indicating that health effects of PM2.5 depend on urban environment as well as conditions, and emphasizing the importance of PN monitoring in terms of health effects related to local pollution sources.
Collapse
Affiliation(s)
- Teemu Lepistö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33014, Finland.
| | - Luis M F Barreira
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, 00101, Finland
| | - Aku Helin
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, 00101, Finland
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority HSY, Helsinki, 00066, Finland
| | - Niina Kuittinen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33014, Finland
| | - Henna Lintusaari
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33014, Finland
| | - Ville Silvonen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33014, Finland
| | - Lassi Markkula
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33014, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority HSY, Helsinki, 00066, Finland
| | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, 00101, Finland
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Sanna Saarikoski
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, 00101, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33014, Finland
| |
Collapse
|
7
|
Andersson J, Sundström A, Nordin M, Segersson D, Forsberg B, Adolfsson R, Oudin A. PM2.5 and Dementia in a Low Exposure Setting: The Influence of Odor Identification Ability and APOE. J Alzheimers Dis 2023; 92:679-689. [PMID: 36776047 PMCID: PMC10041445 DOI: 10.3233/jad-220469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Growing evidence show that long term exposure to air pollution increases the risk of dementia. OBJECTIVE The aim of this study was to investigate associations between PM2.5 exposure and dementia in a low exposure area, and to investigate the role of olfaction and the APOE ɛ4 allele in these associations. METHODS Data were drawn from the Betula project, a longitudinal study on aging, memory, and dementia in Sweden. Odor identification ability was assessed using the Scandinavian Odor Identification Test (SOIT). Annual mean PM2.5 concentrations were obtained from a dispersion-model and matched at the participants' residential address. Proportional hazard regression was used to calculate hazard ratios. RESULTS Of 1,846 participants, 348 developed dementia during the 21-year follow-up period. The average annual mean PM2.5 exposure at baseline was 6.77μg/m3, which is 1.77μg/m3 above the WHO definition of clean air. In a fully adjusted model (adjusted for age, sex, APOE, SOIT, cardiovascular diseases and risk factors, and education) each 1μg/m3 difference in annual mean PM2.5-concentration was associated with a hazard ratio of 1.23 for dementia (95% CI: 1.01-1.50). Analyses stratified by APOE status (ɛ4 carriers versus non-carriers), and odor identification ability (high versus low), showed associations only for ɛ4 carriers, and for low performance on odor identification ability. CONCLUSION PM2.5 was associated with an increased risk of dementia in this low pollution setting. The associations between PM2.5 and dementia seemed stronger in APOE carriers and those with below average odor identification ability.
Collapse
Affiliation(s)
| | - Anna Sundström
- Department of Psychology, Umeå University, Umeå, Sweden.,Centre for Demographic and Ageing Research (CEDAR), Umeå University, Sweden.,Department of Research and Development, Sundsvall Hospital, Sundsvall, Sweden
| | - Maria Nordin
- Department of Psychology, Umeå University, Umeå, Sweden
| | - David Segersson
- Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden
| | - Bertil Forsberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.,Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Flanagan E, Malmqvist E, Gustafsson S, Oudin A. Estimated public health benefits of a low-emission zone in Malmö, Sweden. ENVIRONMENTAL RESEARCH 2022; 214:114124. [PMID: 35998694 DOI: 10.1016/j.envres.2022.114124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/27/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Air pollution is one of the leading causes of morbidity and mortality worldwide. Low-emission zones (LEZ) have been increasingly implemented in cities throughout Europe as a measure to reduce the adverse health effects and premature deaths associated with traffic-related air pollution. In the present study, a health impact analysis was conducted to estimate the effect of a hypothetical LEZ on mortality and morbidity in Malmö, Sweden. Baseline health statistics were gathered from health registers and applied to each resident according to individual-level data on age and/or sex. Concentration-response parameters were derived from current epidemiological literature, specifically meta-analyses. A Gaussian dispersion model (AERMOD) combined with a detailed emission database was used to calculate NO2 emissions from traffic, which could be applied on an individual-level using data on each person's residential coordinates. The adjusted exposure scenario replaced all vehicles on municipal roads having Euro 5 or lower emission standards with Euro 6 equivalents. This LEZ would, on average, decrease NO2 concentrations by 13.4%, preventing an estimated 9-26 deaths in Malmö each year. Additionally, 12 respiratory disease hospitalizations, 8 childhood asthma cases, and 9 cases of hypertensive disorders of pregnancy were estimated to be avoided annually. These results suggest that LEZs can effectively improve air quality, reduce greenhouse gas emissions, and safeguard public health.
Collapse
Affiliation(s)
- Erin Flanagan
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 22242, Lund, Skåne, Sweden.
| | - Ebba Malmqvist
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 22242, Lund, Skåne, Sweden.
| | - Susanna Gustafsson
- Environmental Department of the City of Malmö, 21154, Malmö, Skåne, Sweden.
| | - Anna Oudin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 22242, Lund, Skåne, Sweden; Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 90187, Umeå, Västerbotten, Sweden.
| |
Collapse
|
9
|
Sommar JN, Norberg M, Grönlund C, Segersson D, Näslund U, Forsberg B. Long-term exposure to particulate air pollution and presence and progression of carotid artery plaques - A northern Sweden VIPVIZA cohort study. ENVIRONMENTAL RESEARCH 2022; 211:113061. [PMID: 35257687 DOI: 10.1016/j.envres.2022.113061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
AIMS To estimate the association between long-term exposure to particulate air pollution and sub-clinical atherosclerosis based on the existence of plaque and the carotid intima-media thickness (cIMT). METHODS Visualization of asymptomatic atherosclerotic disease for optimum cardiovascular prevention (VIPVIZA) is a randomised controlled trial integrated within the Västerbotten Intervention Programme, an ongoing population-based cardiovascular disease (CVD) prevention programme in northern Sweden. Individuals aged 40, 50, or 60 years with one or more conventional CVD risk factors in Umeå municipality were eligible to participate. The 1425 participants underwent an ultrasound assessment of cIMT and plaque formation during the period 2013-2016 and at 3-year follow-up. Source-specific annual mean concentrations of particulate matter with aerodynamic diameter ≤10 μm (PM10) and ≤2.5 μm (PM2.5), and black carbon (BC) at the individual's residential address were modelled for the calendar years 1990, 2001 and 2011. Poisson regression was used to estimate prevalence ratios for presence of carotid artery plaques, and linear regression for cIMT. RESULTS The plaque prevalence was 43% at baseline and 47% at follow-up. An interquartile range (IQR) increase in PM10 (range in year 2011: 7.1-13.5 μg/m3) was associated with a prevalence ratio at baseline ultrasound of 1.11 (95% CI 0.99-1.25), 1.08 (95% CI 0.99-1.17), and 1.00 (95% CI 0.93-1.08) for lag 23, 12 and 2 years, and at follow-up 1.04 (95% CI 0.95-1.14), 1.08 (95% CI 1.00-1.16), and 1.01 (95% CI 0.95-1.08). Similar prevalence ratios per IQR were found for PM2.5 and BC, but with somewhat lower precision for the later. Particle concentrations were however not associated with the progression of plaque. No cross-sectional or longitudinal associations of change were found for cIMT. CONCLUSIONS This study of individuals with low/moderate risk for CVD give some additional support for an effect of long-term air pollution in early subclinical atherosclerosis.
Collapse
Affiliation(s)
- Johan Nilsson Sommar
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| | - Margareta Norberg
- Section of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
| | - Ulf Näslund
- Section of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bertil Forsberg
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Balidemaj F, Flanagan E, Malmqvist E, Rittner R, Källén K, Åström DO, Oudin A. Prenatal Exposure to Locally Emitted Air Pollutants Is Associated with Birth Weight: An Administrative Cohort Study from Southern Sweden. TOXICS 2022; 10:toxics10070366. [PMID: 35878271 PMCID: PMC9318414 DOI: 10.3390/toxics10070366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022]
Abstract
While prenatal exposure to ambient air pollution has been shown to be associated with reduced birth weight, there is substantial heterogeneity across studies, and few epidemiological studies have utilized source-specific exposure data. The aim of the present study was, therefore, to investigate the associations between local, source-specific exposure to fine particulate matter (PM2.5) during pregnancy and birth weight. An administrative cohort comprising 40,245 singleton births from 2000 to 2009 in Scania, Sweden, was combined with data on relevant covariates. Investigated sources of PM2.5 included all local sources together as well as tailpipe exhaust, vehicle wear-and-tear, and small-scale residential heating separately. The relationships between these exposures, represented as interquartile range (IQR) increases, and birth weight (continuous) and low birth weight (LBW; <2500 g) were analyzed in crude and adjusted models. Each local PM2.5 source investigated was associated with reduced birth weight; average decreases varied by source (12−34 g). Only small-scale residential heating was clearly associated with LBW (adjusted odds ratio: 1.14 (95% confidence interval: 1.04−1.26) per IQR increase). These results add to existing evidence that prenatal exposure to ambient air pollution disrupts fetal growth and suggest that PM2.5 from both vehicles and small-scale residential heating may reduce birth weight.
Collapse
Affiliation(s)
- Festina Balidemaj
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; (F.B.); (E.F.); (E.M.); (R.R.); (K.K.); (D.O.Å.)
| | - Erin Flanagan
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; (F.B.); (E.F.); (E.M.); (R.R.); (K.K.); (D.O.Å.)
| | - Ebba Malmqvist
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; (F.B.); (E.F.); (E.M.); (R.R.); (K.K.); (D.O.Å.)
| | - Ralf Rittner
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; (F.B.); (E.F.); (E.M.); (R.R.); (K.K.); (D.O.Å.)
| | - Karin Källén
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; (F.B.); (E.F.); (E.M.); (R.R.); (K.K.); (D.O.Å.)
| | - Daniel Oudin Åström
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; (F.B.); (E.F.); (E.M.); (R.R.); (K.K.); (D.O.Å.)
- Sustainable Health, Department for Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Anna Oudin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; (F.B.); (E.F.); (E.M.); (R.R.); (K.K.); (D.O.Å.)
- Sustainable Health, Department for Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
- Correspondence:
| |
Collapse
|