1
|
Álvarez-Barrera L, Rodríguez-Mercado JJ, Mateos-Nava RA, Acosta-San Juan A, Altamirano-Lozano MA. Cytogenetic damage by vanadium(IV) and vanadium(III) on the bone marrow of mice. Drug Chem Toxicol 2024; 47:721-728. [PMID: 37795609 DOI: 10.1080/01480545.2023.2263669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/19/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Vanadium is a strategic metal that has many important industrial applications and is generated by the use of burning fossil fuels, which inevitably leads to their release into the environment, mainly in the form of oxides. The wastes generated by their use represent a major health hazard. Furthermore, it has attracted attention because several genotoxicity studies have shown that some vanadium compounds can affect DNA; among the most studied compounds is vanadium pentoxide, but studies in vivo with oxidation states IV and III are scarce and controversial. In this study, the genotoxic and cytotoxic potential of vanadium oxides was investigated in mouse bone marrow cells using structural chromosomal aberration (SCA) and mitotic index (MI) test systems. Three groups were administered vanadium(IV) tetraoxide (V2O4) intraperitoneally at 4.7, 9.4 or 18.8 mg/kg, and three groups were administered vanadium(III) trioxide (V2O3) at 4.22, 8.46 or 16.93 mg/kg body weight. The control group was treated with sterile water, and the positive control group was treated with cadmium(II) chloride (CdCl2). After 24 h, all doses of vanadium compounds increased the percentage of cells with SCA and decreased the MI. Our results demonstrated that under the present experimental conditions and doses, treatment with V2O4 and V2O3 induces chromosomal aberrations and alters cell division in the bone marrow of mice.
Collapse
Affiliation(s)
- Lucila Álvarez-Barrera
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México, CP, Mexico
- Carrera Médico Cirujano, Ciencias Biomédicas, BQ. FES-Zaragoza UNAM. Campus I, Ciudad de México, CP, Mexico
| | - Juan José Rodríguez-Mercado
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México, CP, Mexico
| | - Rodrigo Aníbal Mateos-Nava
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México, CP, Mexico
| | - Adolfo Acosta-San Juan
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México, CP, Mexico
| | | |
Collapse
|
2
|
Lin Y, Yang F, Dai X, Shan J, Cao H, Hu G, Zhang C, Xing C. Mitochondria-associated endoplasmic reticulum membrane as a mediator of vanadium-induced endoplasmic reticulum quality control in duck brains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26510-26526. [PMID: 38446297 DOI: 10.1007/s11356-023-31413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/04/2023] [Indexed: 03/07/2024]
Abstract
Vanadium (V) plays a crucial role in normal cells, but excess V causes multi-organ toxicity, including neurotoxicity. Mitochondria-associated endoplasmic reticulum membrane (MAM) is a dynamic structure between endoplasmic reticulum (ER) and mitochondria that mediates ER quality control (ERQC). To explore the effects of excess V on MAM and ERQC in the brain, 72 ducks were randomly divided into two groups: the control group (basal diet) and the V group (30 mg V/kg basal diet). On days 22 and 44, brain tissues were collected for histomorphological observation and determination of trace element contents. In addition, the mRNA and protein levels of MAM and ERQC-related factors in the brain were analyzed. Results show that excessive V causes the imbalance of trace elements, the integrity disruption of MAM, rupture of ER and autophagosomes formation. Moreover, it inhibits IP3R and VDAC1 co-localization, down-regulates the expression levels of MAM-related factors, but up-regulates the expression levels of ERQC and autophagy related factors. Together, results indicate that V exposure causes disruption of MAM and activates ERQC, which is further causing autophagy.
Collapse
Affiliation(s)
- Yiqun Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Jiyi Shan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China.
| |
Collapse
|
3
|
Prokopciuk N, Taminskiene V, Vaideliene L, Juskiene I, Svist V, Valiulyte I, Valskys V, Valskiene R, Valiulis A, Aukstikalnis T, Vaidelys L, Butikis M, Norkuniene J, Tarasiuk N, Valiulis A. The incidence of upper respiratory infections in children is related to the concentration of vanadium in indoor dust aggregates. Front Public Health 2024; 12:1339755. [PMID: 38577275 PMCID: PMC10993999 DOI: 10.3389/fpubh.2024.1339755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Background It has been reported that the disease-initiated and disease-mediated effects of aerosol pollutants can be related to concentration, site of deposition, duration of exposure, as well as the specific chemical composition of pollutants. Objectives To investigate the microelemental composition of dust aggregates in primary schools of Vilnius and determine trace elements related to acute upper respiratory infections among 6-to 11-year-old children. Methods Microelemental analysis of aerosol pollution was performed using dust samples collected in the classrooms of 11 primary schools in Vilnius from 2016 to 2020. Sites included areas of its natural accumulation behind the radiator heaters and from the surface of high cupboards. The concentrations of heavy metals (Pb, W, Sb, Sn, Zr, Zn, Cu, Ni, Mn, Cr, V, and As) in dust samples were analyzed using a SPECTRO XEPOS spectrometer. The annual incidence rates of respiratory diseases in children of each school were calculated based on data from medical records. Results The mean annual incidence of physician-diagnosed acute upper respiratory infections (J00-J06 according to ICD-10A) among younger school-age children was between 25.1 and 71.3% per school. A significant correlation was found between vanadium concentration and the number of episodes of acute upper respiratory infections during each study year from 2016 to 2020. The lowest was r = 0.67 (p = 0.024), and the highest was r = 0.82 (p = 0.002). The concentration of vanadium in the samples of dust aggregates varied from 12.7 to 52.1 parts per million (ppm). No significant correlations between the other trace elements and the incidence of upper respiratory infections were found, which could be caused by a small number of study schools and relatively low concentrations of other heavy metals found in the samples of indoor dust aggregates. Conclusion A significant and replicable correlation was found between the concentration of vanadium in the samples of natural dust aggregates collected in primary schools and the incidence of acute upper respiratory infections in children. Monitoring the concentration of heavy metals in the indoor environment can be an important instrument for the prevention and control of respiratory morbidity in children.
Collapse
Affiliation(s)
- Nina Prokopciuk
- Clinic of Children’s Diseases, Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
- Human Ecology Multidisciplinary Research Group, Department of Public Health, Faculty of Medicine, Institute of Health Sciences, Vilnius University, Vilnius, Lithuania
| | - Vaida Taminskiene
- Human Ecology Multidisciplinary Research Group, Department of Public Health, Faculty of Medicine, Institute of Health Sciences, Vilnius University, Vilnius, Lithuania
| | - Laimute Vaideliene
- Clinic of Children’s Diseases, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Izabele Juskiene
- Clinic of Children’s Diseases, Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
| | - Vitalija Svist
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Indre Valiulyte
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Kantonsspital Münsterlingen, Münsterlingen, Switzerland
| | - Vaidotas Valskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Roberta Valskiene
- Laboratory of Ecotoxicology, Nature Research Centre, Vilnius, Lithuania
| | - Algirdas Valiulis
- Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tomas Aukstikalnis
- Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Lukas Vaidelys
- Clinic of Children’s Diseases, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mindaugas Butikis
- Human Ecology Multidisciplinary Research Group, Department of Public Health, Faculty of Medicine, Institute of Health Sciences, Vilnius University, Vilnius, Lithuania
| | - Jolita Norkuniene
- Department of Mathematical Statistics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Nikolaj Tarasiuk
- Human Ecology Multidisciplinary Research Group, Department of Public Health, Faculty of Medicine, Institute of Health Sciences, Vilnius University, Vilnius, Lithuania
| | - Arunas Valiulis
- Clinic of Children’s Diseases, Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Human Ecology Multidisciplinary Research Group, Department of Public Health, Faculty of Medicine, Institute of Health Sciences, Vilnius University, Vilnius, Lithuania
- Clinic of Asthma, Allergy and Chronic Respiratory Diseases, Vilnius, Lithuania
| |
Collapse
|
4
|
Chao YJ, Lai PT, Lai YT, Chao CJ. Severe chemical pneumonitis by vanadium pentoxide responded well to aggressive steroid therapy. Respir Med Case Rep 2024; 48:102003. [PMID: 38510661 PMCID: PMC10951705 DOI: 10.1016/j.rmcr.2024.102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
The optimal treatment of acute chemical pneumonitis remains controversial. Here we report a healthy man with severe chemical pneumonitis caused by accidental inhalation of vanadium pentoxide. He presented with acute respiratory distress and received aggressive steroid therapy on arrival. Pulmonary symptoms and chest X-ray were improved dramatically the next day. The beneficial effect of steroid therapy for such a critical patient may outweigh the infection risk following inhalation of relative sterile material. We suggest early and aggressive steroid therapy may help shorten the disease course.
Collapse
Affiliation(s)
- Ying Ju Chao
- Department of Internal Medicine, Tungs' Taichung Metroharbor Hospital, No.699, Section 8, Taiwan Boulevard, Wuqi District, Taichung City, 43503, Taiwan
| | - Ping Tsun Lai
- Department of Chest, Tungs' Taichung Metroharbor Hospital, No.699, Section 8, Taiwan Boulevard, Wuqi District, Taichung City, 43503, Taiwan
| | - Yen Ting Lai
- Department of Internal Medicine, Tungs' Taichung Metroharbor Hospital, No.699, Section 8, Taiwan Boulevard, Wuqi District, Taichung City, 43503, Taiwan
| | - Che Jen Chao
- Department of Gastroenterology, Cheng Chin Hospital, 6F.-7, No.175, Sec. 1, Hume W. St., West Dist., Taichung City, 40353, Taiwan
| |
Collapse
|
5
|
Li JB, Li D, Liu YY, Cao A, Wang H. Cytotoxicity of vanadium dioxide nanoparticles to human embryonic kidney cell line: Compared with vanadium(IV/V) ions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104378. [PMID: 38295964 DOI: 10.1016/j.etap.2024.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024]
Abstract
Vanadium dioxide (VO2) is a class of thermochromic material with potential applications in various fields. Massive production and wide application of VO2 raise the concern of its potential toxicity to human, which has not been fully understood. Herein, a commercial VO2 nanomaterial (S-VO2) was studied for its potential toxicity to human embryonic kidney cell line HEK293, and two most common vanadium ions, V(IV) and V(V), were used for comparison to reveal the related mechanism. Our results indicate that S-VO2 induces dose-dependent cellular viability loss mainly through the dissolved V ions of S-VO2 outside the cell rather than S-VO2 particles inside the cell. The dissolved V ions of S-VO2 overproduce reactive oxygen species to trigger apoptosis and proliferation inhibition via several signaling pathways of cell physiology, such as MAPK and PI3K-Akt, among others. All bioassays indicate that the differences in toxicity between S-VO2, V(IV), and V(V) in HEK293 cells are very small, supporting that the toxicity is mainly due to the dissolved V ions, in the form of V(V) and/or V(IV), but the V(V)'s behavior is more similar to S-VO2 according to the gene expression analysis. This study reveals the toxicity mechanism of nanosized VO2 at the molecular level and the role of dissolution of VO2, providing valuable information for safe applications of vanadium oxides.
Collapse
Affiliation(s)
- Jia-Bei Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Dan Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Wang S, Xiong Z, Han X, Wang L, Liang T. Unveiling the spatial differentiation drivers of major soil element behavior along traffic network accessibility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123045. [PMID: 38048872 DOI: 10.1016/j.envpol.2023.123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/05/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
Advancements in transportation networks have induced a spatial-temporal convergence effect, accelerating socio-economic elements flow and dismantling the conventional "core-periphery" urbanization gradient. Accessibility of transportation networks emerges as a reliable indicator of urbanization. There has been a growing global and Chinese focus on the various forms of metal pollution in urban soil. This study aims to investigate the driving forces and effects of urbanization factors (Gross Domestic Product (GDP), value added of secondary industries (VA), night light (NL), population density (PD), and road density (Distance)), soil property factors (pH, electrical conductivity (EC), and total organic carbon (TOC)), and topographic factors (elevation (DEM), aspect, and slope) on toxic heavy metal elements (Cd, As, and Hg) and trace elements (Mn, Ti, V) in surface soil (0-20 cm) across varying accessibility levels in the Beijing-Tianjin-Hebei urban agglomeration. Results reveal significant influence of accessibility on Cd and Hg levels (p < 0.05), with higher accessibility areas displaying elevated element concentrations. According to the evaluation results of the single-factor pollution index, Cd and V have the highest pollution exceedance rates (93.18% and 75.76%, respectively). Moran's Index results highlight typical spatial clustering of elements, with hotspots in areas of high accessibility. Urbanization has led to distinct spatial agglomeration patterns in element concentrations and environmental factors. Geographic detector analysis reveal that in low accessibility areas, metal element pollution and distribution are influenced by a combination of complex factors, including soil properties (pH), terrain conditions (DEM), and the urbanization process (VA). In high accessibility areas, toxic heavy metal elements are primarily driven by urbanization factors, largely influenced by transportation activities, industrial development, and population density, while elements Mn, Ti, and V are still influenced by both natural processes and urbanization activities. These findings suggest that urbanization intensifies the impact on potential toxic elements in soil, and that trace elements are increasingly affected by urbanization, warranting further attention.
Collapse
Affiliation(s)
- Siyu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhunan Xiong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Han
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Tehrani MW, Fortner EC, Robinson ES, Chiger AA, Sheu R, Werden BS, Gigot C, Yacovitch T, Van Bramer S, Burke T, Koehler K, Nachman KE, Rule AM, DeCarlo PF. Characterizing metals in particulate pollution in communities at the fenceline of heavy industry: combining mobile monitoring and size-resolved filter measurements. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1491-1504. [PMID: 37584085 PMCID: PMC10510330 DOI: 10.1039/d3em00142c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
Exposures to metals from industrial emissions can pose important health risks. The Chester-Trainer-Marcus Hook area of southeastern Pennsylvania is home to multiple petrochemical plants, a refinery, and a waste incinerator, most abutting socio-economically disadvantaged residential communities. Existing information on fenceline community exposures is based on monitoring data with low temporal and spatial resolution and EPA models that incorporate industry self-reporting. During a 3 week sampling campaign in September 2021, size-resolved particulate matter (PM) metals concentrations were obtained at a fixed site in Chester and on-line mobile aerosol measurements were conducted around Chester-Trainer-Marcus Hook. Fixed-site arsenic, lead, antimony, cobalt, and manganese concentrations in total PM were higher (p < 0.001) than EPA model estimates, and arsenic, lead, and cadmium were predominantly observed in fine PM (<2.5 μm), the PM fraction which can penetrate deeply into the lungs. Hazard index analysis suggests adverse effects are not expected from exposures at the observed levels; however, additional chemical exposures, PM size fraction, and non-chemical stressors should be considered in future studies for accurate assessment of risk. Fixed-site MOUDI and nearby mobile aerosol measurements were moderately correlated (r ≥ 0.5) for aluminum, potassium and selenium. Source apportionment analyses suggested the presence of four major emissions sources (sea salt, mineral dust, general combustion, and non-exhaust vehicle emissions) in the study area. Elevated levels of combustion-related elements of health concern (e.g., arsenic, cadmium, antimony, and vanadium) were observed near the waste incinerator and other industrial facilities by mobile monitoring, as well as in residential-zoned areas in Chester. These results suggest potential co-exposures to harmful atmospheric metal/metalloids in communities surrounding the Chester-Trainer-Marcus Hook industrial area at levels that may exceed previous estimates from EPA modeling.
Collapse
Affiliation(s)
- Mina W Tehrani
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Ellis S Robinson
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrea A Chiger
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Risk Sciences and Public Policy Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Roger Sheu
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Carolyn Gigot
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Thomas Burke
- Risk Sciences and Public Policy Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Health Policy and Management, Johns Hopkins University, Baltimore, MD, USA
| | - Kirsten Koehler
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Keeve E Nachman
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Risk Sciences and Public Policy Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter F DeCarlo
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Risk Sciences and Public Policy Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
8
|
de Oliveira M, Melo ESDP, da Silva TC, Cardozo CML, Siqueira IV, Hamaji MP, Braga VT, Martin LFT, Fonseca A, do Nascimento VA. Quantification of Metal(loid)s in Lubricating Eye Drops Used in the Treatment of Dry Eye Disease. Molecules 2023; 28:6508. [PMID: 37764284 PMCID: PMC10536462 DOI: 10.3390/molecules28186508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of the study was to evaluate the presence of metal(loid)s in lubricating eye drops used in the treatment of dry eye disease. The concentrations of Al, As, Ba, Cd, Co, Cu, Cr, Pb, Fe, Mg, Mn, Mo, Ni, Se, V, and Zn were determined in 19 eye drop samples using inductively coupled plasma optical emission spectrometry (ICP OES). The limit of detection (LOD) and limit of quantification (LOQ) values for the quantified elements ranged from 0.0002-0.0363 (mg/L) and 0.0007-0.1211 (mg/L), respectively. High values of concentrations of Al (2.382 µg/g), As (0.204 µg/g), Ba (0.056 µg/g), Cd (0.051 µg/g), Co (1.085 µg/g), Cr (0.020 µg/g), Cu (0.023 µg/g), Fe (0.453 µg/g), Mg (24.284 µg/g), Mn (0.014 µg/g), Mo (0.046 µg/g), Ni (0.071 µg/g), Pb (0.049 µg/g), Se (0.365 µg/g), V (0.083 µg/g), and Zn (0.552 µg/g) were quantified in samples of eye drops with and without preservatives. The concentrations of As (5 samples) and Cd (3 samples) were higher than those allowed by the Brazilian Pharmacopoeia for impurities (parenteral use). The value of Co content (µg/g) in a sample was higher than the value established by the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH Q3D (R2)) in the parenteral route. The daily eye drop instillation exposure (µg/day) was below the values from the parenteral-permitted daily exposure (PDE) set by the ICH Q3D guideline (R2). The presence of heavy metals in eye drops is an alert to regulatory agencies in several countries so that control and inspections can be carried out.
Collapse
Affiliation(s)
- Marcelo de Oliveira
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (M.d.O.); (C.M.L.C.); (V.T.B.)
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Elaine S. de Pádua Melo
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Thaís Carvalho da Silva
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Carla Maiara Lopes Cardozo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (M.d.O.); (C.M.L.C.); (V.T.B.)
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Igor Valadares Siqueira
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Mariana Pereira Hamaji
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Vanessa Torres Braga
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (M.d.O.); (C.M.L.C.); (V.T.B.)
| | - Luiz Fernando Taranta Martin
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Alessandro Fonseca
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (M.d.O.); (C.M.L.C.); (V.T.B.)
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| |
Collapse
|
9
|
Abd Elnabi MK, Elkaliny NE, Elyazied MM, Azab SH, Elkhalifa SA, Elmasry S, Mouhamed MS, Shalamesh EM, Alhorieny NA, Abd Elaty AE, Elgendy IM, Etman AE, Saad KE, Tsigkou K, Ali SS, Kornaros M, Mahmoud YAG. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. TOXICS 2023; 11:580. [PMID: 37505546 PMCID: PMC10384455 DOI: 10.3390/toxics11070580] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Natural and anthropogenic sources of metals in the ecosystem are perpetually increasing; consequently, heavy metal (HM) accumulation has become a major environmental concern. Human exposure to HMs has increased dramatically due to the industrial activities of the 20th century. Mercury, arsenic lead, chrome, and cadmium have been the most prevalent HMs that have caused human toxicity. Poisonings can be acute or chronic following exposure via water, air, or food. The bioaccumulation of these HMs results in a variety of toxic effects on various tissues and organs. Comparing the mechanisms of action reveals that these metals induce toxicity via similar pathways, including the production of reactive oxygen species, the inactivation of enzymes, and oxidative stress. The conventional techniques employed for the elimination of HMs are deemed inadequate when the HM concentration is less than 100 mg/L. In addition, these methods exhibit certain limitations, including the production of secondary pollutants, a high demand for energy and chemicals, and reduced cost-effectiveness. As a result, the employment of microbial bioremediation for the purpose of HM detoxification has emerged as a viable solution, given that microorganisms, including fungi and bacteria, exhibit superior biosorption and bio-accumulation capabilities. This review deals with HM uptake and toxicity mechanisms associated with HMs, and will increase our knowledge on their toxic effects on the body organs, leading to better management of metal poisoning. This review aims to enhance comprehension and offer sources for the judicious selection of microbial remediation technology for the detoxification of HMs. Microbial-based solutions that are sustainable could potentially offer crucial and cost-effective methods for reducing the toxicity of HMs.
Collapse
Affiliation(s)
- Manar K. Abd Elnabi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
- Biotechnology Program, Institute of Basic and Applied Science (BAS), Egypt-Japan University of Science and Technology, New Borg El-Arab City 21934, Egypt
| | - Nehal E. Elkaliny
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Maha M. Elyazied
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Shimaa H. Azab
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Shawky A. Elkhalifa
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Sohaila Elmasry
- Microbiology Department, Faculty of science, Damanhour University, Behaira 22514, Egypt;
| | - Moustafa S. Mouhamed
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Ebrahim M. Shalamesh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Naira A. Alhorieny
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Abeer E. Abd Elaty
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Ibrahim M. Elgendy
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Alaa E. Etman
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Kholod E. Saad
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Konstantina Tsigkou
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece;
| | - Sameh S. Ali
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece;
| | - Yehia A.-G. Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| |
Collapse
|
10
|
Schiavo B, Meza-Figueroa D, Vizuete-Jaramillo E, Robles-Morua A, Angulo-Molina A, Reyes-Castro PA, Inguaggiato C, Gonzalez-Grijalva B, Pedroza-Montero M. Oxidative potential of metal-polluted urban dust as a potential environmental stressor for chronic diseases. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3229-3250. [PMID: 36197533 DOI: 10.1007/s10653-022-01403-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 06/01/2023]
Abstract
Oxidative stress (OS) associated with metals in urban dust has become a public health concern. Chronic diseases linked to general inflammation are particularly affected by OS. This research analyzes the spatial distribution of metals associated with OS, the urban dust´s oxidative potential (OP), and the occurrence of diseases whose treatments are affected by OS. We collected 70 urban dust samples during pre- and post-monsoon seasons to achieve this. We analyzed particle size distribution and morphology by scanning electron microscopy, as well as metal(loid)s by portable X-ray fluorescence, and OP of dust in artificial lysosomal fluid by using an ascorbic acid depletion assay. Our results show that the mean concentration of Fe, Pb, As, Cr, Cu, and V in pre-monsoon was 83,984.6, 98.4, 23.5, 165.8, 301.3, and 141.9 mg kg-1, while during post-monsoon was 50,638.8, 73.9, 16.7, 124.3, 178.9, and 133.5 mg kg-1, respectively. Impoverished areas with the highest presence of cardiovascular, cancer, diabetes, and respiratory diseases coincide with contaminated areas where young adults live. We identified significant differences in the OP between seasons. OP increases during the pre-monsoon (from 7.8 to 237.5 nmol AA min-1) compared to the post-monsoon season (from 1.6 to 163.2 nmol AA min-1). OP values are much higher than measured standards corresponding to contaminated soil and urban particulate matter, which means that additional sources beside metals cause the elevated OP. The results show no risk from chronic exposure to metals; however, our results highlight the importance of studying dust as an environmental factor that may potentially increase oxidative stress.
Collapse
Affiliation(s)
- Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, 04150, Mexico City, Mexico.
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico.
| | - Efrain Vizuete-Jaramillo
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Agustin Robles-Morua
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| | - Pablo A Reyes-Castro
- Centro de Estudios en Salud y Sociedad, El Colegio de Sonora, Hermosillo, Mexico
| | - Claudio Inguaggiato
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada, Mexico
| | - Belem Gonzalez-Grijalva
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| | - Martin Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
11
|
Chin WS, Chien LC, Kao HC, Chuang YN, Liao KW. Monitoring and evaluating the dietary risk of trace elements content in bottled and hand-shaken tea in Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55716-55729. [PMID: 36897450 DOI: 10.1007/s11356-023-26130-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Tea is the most frequently consumed beverage worldwide and is obtained from the leaves Camellia sinensis. The traditional way of tea consumption through brewing is gradually being replaced by the consumption of bottled and hand-shaken tea. Despite the different ways of tea consumption, trace elements accumulation and contamination of tea leaves have caused concerns. However, limited studies have reported trace element concentrations in different types of tea in bottled or hand-shaken tea and their health risks. This study aimed to determine the level of trace elements (V, Cr, Co, As, Cd, Pb, Mn, and Zn) in green tea, black tea, and Oolong tea in two varieties of products (bottled and hand-shaken tea). The health risks associated with tea consumption in various age subgroups among Taiwan's general population were also estimated. A Monte Carlo simulation was applied to estimate the distribution of daily trace elements intake through bottled and hand-shaken tea consumption. As to the non-carcinogenic risks, the Monte Carlo simulation showed that hand-shaken green tea had a higher percentage of hazard index (HI) >1 (1.08%~6.05%) among all age groups. As to carcinogenic risks, the Monte Carlo simulation showed that the risks of As exposure from bottled Oolong tea and hand-shaken black, green, and Oolong teas in the 90th percentile in >18 to ≤65 and >65-year-old groups were higher than 10-6. The current study findings provided some information about trace elements of both bottled and hand-shaken tea and human health risks in the general population of Taiwan.
Collapse
Affiliation(s)
- Wei-Shan Chin
- School of Nursing, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan
| | - Ling-Chu Chien
- School of Public Health, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ho-Ching Kao
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ning Chuang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
12
|
Ajarem JS, Hegazy AK, Allam GA, Allam AA, Maodaa SN, Mahmoud AM. Impact of petroleum industry on goats in Saudi Arabia: heavy metal accumulation, oxidative stress, and tissue injury. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2836-2849. [PMID: 35939190 DOI: 10.1007/s11356-022-22309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) constitute a group of persistent toxic pollutants, and the petroleum industry is one of the sources of these metals. This study aimed to evaluate the levels of lead (Pb), cadmium (Cd), nickel (Ni), and vanadium (V) in Plantago ovata and milk and tissues of domestic goats in the eastern region of Saudi Arabia. Plant samples and blood, milk, muscle, liver, and kidney samples were collected from domestic goats and the levels of Pb, Cd, V, and Ni were determined. Liver and kidney tissue injury, oxidative stress, and expression of pro-inflammatory and apoptosis markers were evaluated. Pb, Cd, V, and Ni were increased in Plantago ovata as well as in milk, blood, muscle, liver, and kidney of goats collected from the polluted site. Aminotransferases, creatinine, and urea were increased in serum, and histopathological changes were observed in the liver and kidney of goats at the oil extraction site. Malondialdehyde and the expression levels of pro-inflammatory cytokines, Bax, and caspase-3 were increased, whereas cellular antioxidants and Bcl-2 were decreased in liver and kidney of goats at the polluted site. In conclusion, petroleum industry caused liver and kidney injury, oxidative stress, and upregulated pro-inflammatory and apoptosis markers in goats. These findings highlight the negative impact of petroleum industry on the environment and call attention to the assessment of its effect on the health of nearby communities.
Collapse
Affiliation(s)
- Jamaan S Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad K Hegazy
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Gamal A Allam
- Immunology Section, Department of Microbiology, College of Medicine, Taif University, Taif, Saudi Arabia
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Allam
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Saleh N Maodaa
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
| |
Collapse
|
13
|
Li T, Yu Y, Sun Z, Duan J. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part Fibre Toxicol 2022; 19:67. [PMID: 36447278 PMCID: PMC9707232 DOI: 10.1186/s12989-022-00507-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
The impacts of air pollution on public health have become a great concern worldwide. Ambient particulate matter (PM) is a major air pollution that comprises a heterogeneous mixture of different particle sizes and chemical components. The chemical composition and physicochemical properties of PM change with space and time, which may cause different impairments. However, the mechanisms of the adverse effects of PM on various systems have not been fully elucidated and systematically integrated. The Adverse Outcome Pathway (AOP) framework was used to comprehensively illustrate the molecular mechanism of adverse effects of PM and its components, so as to clarify the causal mechanistic relationships of PM-triggered toxicity on various systems. The main conclusions and new insights of the correlation between public health and PM were discussed, especially at low concentrations, which points out the direction for further research in the future. With the deepening of the study on its toxicity mechanism, it was found that PM can still induce adverse health effects with low-dose exposure. And the recommended Air Quality Guideline level of PM2.5 was adjusted to 5 μg/m3 by World Health Organization, which meant that deeper and more complex mechanisms needed to be explored. Traditionally, oxidative stress, inflammation, autophagy and apoptosis were considered the main mechanisms of harmful effects of PM. However, recent studies have identified several emerging mechanisms involved in the toxicity of PM, including pyroptosis, ferroptosis and epigenetic modifications. This review summarized the comprehensive evidence on the health effects of PM and the chemical components of it, as well as the combined toxicity of PM with other air pollutants. Based on the AOP Wiki and the mechanisms of PM-induced toxicity at different levels, we first constructed the PM-related AOP frameworks on various systems.
Collapse
Affiliation(s)
- Tianyu Li
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Yang Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhiwei Sun
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Junchao Duan
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| |
Collapse
|
14
|
Zwolak I, Wnuk E, Świeca M. Identification of Potential Artefacts in In Vitro Measurement of Vanadium-Induced Reactive Oxygen Species (ROS) Production. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15214. [PMID: 36429933 PMCID: PMC9691132 DOI: 10.3390/ijerph192215214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
We investigated vanadium, i.e., a redox-active heavy metal widely known for the generation of oxidative stress in cultured mammalian cells, to determine its ability to interfere with common oxidative stress-related bioassays in cell-free conditions. We first assessed the prooxidant abilities (H2O2 level, oxidation of DHR 123, and DCFH-DA dyes) and antioxidant capacity (ABTS, RP, OH, and DPPH methods) of popular mammalian cell culture media, i.e., Minimal Essential Medium (MEM), Dulbecco's Minimal Essential Medium (DMEM), Dulbecco's Minimal Essential Medium-F12 (DMEM/F12), and RPMI 1640. Out of the four media studied, DMEM has the highest prooxidant and antioxidant properties, which is associated with the highest concentration of prooxidant and antioxidant nutrients in its formulation. The studied vanadium compounds, vanadyl sulphate (VOSO4), or sodium metavanadate (NaVO3) (100, 500, and 1000 µM), either slightly increased or decreased the level of H2O2 in the studied culture media. However, these changes were in the range of a few micromoles, and they should rather not interfere with the cytotoxic effect of vanadium on cells. However, the tested vanadium compounds significantly stimulated the oxidation of DCFH-DA and DHR123 in a cell-independent manner. The type of the culture media and their pro-oxidant and antioxidant abilities did not affect the intensity of oxidation of these dyes by vanadium, whereas the vanadium compound type was important, as VOSO4 stimulated DCFH-DA and DHR oxidation much more potently than NaVO3. Such interactions of vanadium with these probes may artefactually contribute to the oxidation of these dyes by reactive oxygen species induced by vanadium in cells.
Collapse
Affiliation(s)
- Iwona Zwolak
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708 Lublin, Poland
| | - Ewa Wnuk
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708 Lublin, Poland
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland
| |
Collapse
|
15
|
Li CH, Tsai ML, Chiou HY(C, Lin YC, Liao WT, Hung CH. Role of Macrophages in Air Pollution Exposure Related Asthma. Int J Mol Sci 2022; 23:ijms232012337. [PMID: 36293195 PMCID: PMC9603963 DOI: 10.3390/ijms232012337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction, bronchial hyper-responsiveness, and airway inflammation. The chronic inflammation of the airway is mediated by many cell types, cytokines, chemokines, and inflammatory mediators. Research suggests that exposure to air pollution has a negative impact on asthma outcomes in adult and pediatric populations. Air pollution is one of the greatest environmental risks to health, and it impacts the lungs' innate and adaptive defense systems. A major pollutant in the air is particulate matter (PM), a complex component composed of elemental carbon and heavy metals. According to the WHO, 99% of people live in air pollution where air quality levels are lower than the WHO air quality guidelines. This suggests that the effect of air pollution exposure on asthma is a crucial health issue worldwide. Macrophages are essential in recognizing and processing any inhaled foreign material, such as PM. Alveolar macrophages are one of the predominant cell types that process and remove inhaled PM by secreting proinflammatory mediators from the lung. This review focuses on macrophages and their role in orchestrating the inflammatory responses induced by exposure to air pollutants in asthma.
Collapse
Affiliation(s)
- Chung-Hsiang Li
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Mei-Lan Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Ying (Clair) Chiou
- Teaching and Research Center of Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Yi-Ching Lin
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Ting Liao
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (W.-T.L.); or (C.-H.H.); Tel.: +886-7-312-1101 (ext. 2791) (W.-T.L.); +886-7-311-5140 (C.-H.H.); Fax: +886-7-312-5339 (W.-T.L.); +886-7-321-3931 (C.-H.H.)
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
- Correspondence: (W.-T.L.); or (C.-H.H.); Tel.: +886-7-312-1101 (ext. 2791) (W.-T.L.); +886-7-311-5140 (C.-H.H.); Fax: +886-7-312-5339 (W.-T.L.); +886-7-321-3931 (C.-H.H.)
| |
Collapse
|
16
|
Tan S, Ouyang P, Zhang Q, Yang S, Wang H. Removal of Vanadium(IV) Ions from Aqueous Solution by Graphene Oxide. ChemistrySelect 2022. [DOI: 10.1002/slct.202202311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shi‐Ying Tan
- Institute of Nanochemistry and Nanobiology Shanghai University NO.99 Shangda Road Shanghai 200444 China
| | - Peng Ouyang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University NO. 16, South Section 1st Ring Road Chengdu 610041 Sichuan China
| | - Qiangqiang Zhang
- Institute of Nanochemistry and Nanobiology Shanghai University NO.99 Shangda Road Shanghai 200444 China
| | - Sheng‐Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University NO. 16, South Section 1st Ring Road Chengdu 610041 Sichuan China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology Shanghai University NO.99 Shangda Road Shanghai 200444 China
| |
Collapse
|
17
|
Álvarez-Barrera L, Rodríguez-Mercado JJ, Mateos-Nava RA, Ocampo-Aguilera NA, Altamirano-Lozano MA. Vanadium(IV) oxide affects embryonic development in mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:1587-1596. [PMID: 35243760 DOI: 10.1002/tox.23508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Vanadium(V) and vanadium(IV) are the predominant redox forms present in the environment, and epidemiological studies have reported that prenatal vanadium exposure is associated with restricted fetal growth and adverse birth outcomes. However, data about the toxic effects of vanadium(IV) oxide (V2 O4 ) on the development of mammals are still limited. Therefore, in this work, 4.7, 9.4, or 18.7 mg/kg body weight/injection/day V2 O4 was administered through an intraperitoneal (ip) injection to pregnant mice from gestational days 6 to 16. The results showed that V2 O4 produced maternal and embryo-fetal toxicity and external abnormalities in the offspring, such as malrotated and malpositioned hind limbs, hematomas and head injuries. Moreover, the skeletons of the fetuses presented reduced ossification of the cranial bones, including the frontal and parietal bones, corresponding to head injuries observed in the external assessment of the fetuses. These results demonstrate that administration of V2 O4 to pregnant females in the organogenesis period adversely affects embryonic development.
Collapse
Affiliation(s)
- Lucila Álvarez-Barrera
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Juan José Rodríguez-Mercado
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Rodrigo Aníbal Mateos-Nava
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Nydia Angélica Ocampo-Aguilera
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Mario Agustín Altamirano-Lozano
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| |
Collapse
|
18
|
Liu J, Ruan F, Cao S, Li Y, Xu S, Xia W. Associations between prenatal multiple metal exposure and preterm birth: Comparison of four statistical models. CHEMOSPHERE 2022; 289:133015. [PMID: 34822868 DOI: 10.1016/j.chemosphere.2021.133015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure to some heavy metals has been demonstrated to be related to the risk of preterm birth (PTB). However, the effects of multi-metal mixture are seldom assessed. Thus, we aimed to investigate the associations of maternal exposure to metal mixture with PTB, and to identify the main contributors to PTB from the mixture. METHODS The population in the nested case-control study was from a prospective cohort enrolled in Wuhan, China between 2012 and 2014. Eighteen metals were measured in maternal urine collected before delivery. Logistic regression, elastic net regularization (ENET), weighted quantile sum regression (WQSR), and Bayesian kernel machine regression (BKMR) were used to estimate the overall effect and identify important mixture components that drive the associations with PTB. RESULTS Logistic regression found naturally log-transformed concentrations of 13 metals were positively associated with PTB after adjusting for the covariates, and only V, Zn, and Cr remained the significantly positive associations when additionally adjusting for the 13 metals together. ENET identified 11 important metals for PTB, and V (β = 0.23) had the strongest association. WQSR determined the positive combined effect of metal mixture on PTB (OR: 1.44, 95%CI: 1.32, 1.57), and selected Cr and V (weighted 0.41 and 0.32, respectively) as the most weighted metals. BKMR analysis confirmed the overall mixture was positively associated with PTB, and the independent effect of V was the most significant. Besides, BKMR showed the non-linear relationships of V and Cu with PTB, and the potential interaction between Zn and Cu. CONCLUSION Applying different statistical models, the study found that exposure to the metal mixture was associated with a higher risk of PTB, and V was identified as the most important risk factor among co-exposed metals for PTB.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Fengyu Ruan
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Shuting Cao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Yuanyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Shunqing Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Wei Xia
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|