1
|
de Brito Duval I, Cardozo ME, Souza JLN, de Medeiros Brito RM, Fujiwara RT, Bueno LL, Magalhães LMD. Parasite infections: how inflammation alters brain function. Trends Parasitol 2025:S1471-4922(24)00367-2. [PMID: 39779386 DOI: 10.1016/j.pt.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Parasitic infections can profoundly impact brain function through inflammation within the central nervous system (CNS). Once viewed as an immune-privileged site, the CNS is now recognized as vulnerable to immune disruptions from both local and systemic infections. Recent studies reveal that certain parasites, such as Toxoplasma gondii and Plasmodium falciparum, can invade the CNS or influence it indirectly by triggering neuroinflammation. These processes may disrupt brain homeostasis, influence neurotransmission, and lead to significant behavioral or cognitive changes. This review discusses the pathways by which parasites disrupt CNS function and highlights systemic inflammation as a critical link between peripheral infections and neuroinflammatory conditions, advancing understanding of parasite-associated neurological complications.
Collapse
Affiliation(s)
- Isabela de Brito Duval
- Laboratory of Interactions in Immuno-Parasitology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil; Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Marcelo Eduardo Cardozo
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Ramayana Morais de Medeiros Brito
- Laboratory of Interactions in Immuno-Parasitology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil; Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Luisa Mourão Dias Magalhães
- Laboratory of Interactions in Immuno-Parasitology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil.
| |
Collapse
|
2
|
da Rocha GHO, Müller C, Przybylski-Wartner S, Schaller H, Riemschneider S, Lehmann J. AhR-Induced Anti-Inflammatory Effects on a Caco-2/THP-1 Co-Culture Model of Intestinal Inflammation Are Mediated by PPARγ. Int J Mol Sci 2024; 25:13072. [PMID: 39684781 DOI: 10.3390/ijms252313072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) and the peroxisome proliferator-activated receptor γ (PPARγ) are ligand-activated transcription factors that have in recent years been investigated for their anti-inflammatory properties for treatment of inflammatory bowel diseases (IBDs). These are globally prevalent chronic maladies of the gut that lack cost-efficient therapeutical options capable of inducing long-term remission. In the present study, we used an in vitro Transwell® co-culture model composed of Caco-2 epithelial cells in the apical compartment and lipopolysaccharide-treated (LPS) THP-1 macrophages in the basolateral compartment. Secretion of cytokines, disruption of epithelial integrity, and expression of surface markers and junctional proteins were assessed in order to investigate interactions between AhR and PPARγ on the ligand-elicited effects on the control of inflammation. The results revealed that the potent AhR ligand 6-formylindolo[3,2-b]carbazole (FICZ) attenuated LPS-induced IL-6 release by macrophages, which then stabilized Caco-2 monolayer permeability by decreasing claudin-2 expression. These effects were disrupted by GW9662 and to some extent by CH223191, inhibitors of PPARγ and AhR, respectively. Our main findings evidence PPARγ might be a downstream regulator of AhR activation essential for its ligand-based anti-inflammatory effects, suggesting it might be employed as either an auxiliary target or as a biomarker of therapeutical efficacy on AhR-based IBD pharmacotherapy.
Collapse
Affiliation(s)
| | - Claudia Müller
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Susanne Przybylski-Wartner
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Heidrun Schaller
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Sina Riemschneider
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Jörg Lehmann
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases [CIMD], 04103 Leipzig, Germany
| |
Collapse
|
3
|
Liu R, Wang J, Liu Y, Gao Y, Yang R. Regulation of gut microbiota on immune cell ferroptosis: A novel insight for immunotherapy against tumor. Cancer Lett 2024; 598:217115. [PMID: 39025428 DOI: 10.1016/j.canlet.2024.217115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiota contributes to the homeostasis of immune system and is related to various diseases such as tumorigenesis. Ferroptosis, a new type of cell death, is also involved in the disease pathogenesis. Recent studies have found the correlations of gut microbiota mediated ferroptosis and immune cell death. Gut microbiota derived immunosuppressive metabolites, which can promote differentiation and function of immune cells, tend to inhibit ferroptosis through their receptors, whereas inflammatory metabolites from gut microbiota also affect the differentiation and function of immune cells and their ferroptosis. Thus, it is possible for gut microbiota to regulate immune cell ferroptosis. Indeed, gut microbiota metabolite receptor aryl hydrocarbon receptor (AhR) can affect ferroptosis of intestinal intraepithelial lymphocytes, leading to disease pathogenesis. Since immune cell ferroptosis in tumor microenvironment (TME) affects the occurrence and development of tumor, the modulation of gut microbiota in these cell ferroptosis might influence on the tumorigenesis, and also immunotherapy against tumors. Here we will summarize the recent advance of ferroptosis mediated by gut microbiota metabolites, which potentially acts as regulator(s) on immune cells in TME for therapy against tumor.
Collapse
Affiliation(s)
- Ruobing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Gupta SK, Vyavahare S, Duchesne Blanes IL, Berger F, Isales C, Fulzele S. Microbiota-derived tryptophan metabolism: Impacts on health, aging, and disease. Exp Gerontol 2023; 183:112319. [PMID: 37898179 DOI: 10.1016/j.exger.2023.112319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The intricate interplay between gut microbiota and the host is pivotal in maintaining homeostasis and health. Dietary tryptophan (TRP) metabolism initiates a cascade of essential endogenous metabolites, including kynurenine, kynurenic acid, serotonin, and melatonin, as well as microbiota-derived Trp metabolites like tryptamine, indole propionic acid (IPA), and other indole derivatives. Notably, tryptamine and IPA, among the indole metabolites, exert crucial roles in modulating immune, metabolic, and neuronal responses at both local and distant sites. Additionally, these metabolites demonstrate potent antioxidant and anti-inflammatory activities. The levels of microbiota-derived TRP metabolites are intricately linked to the gut microbiota's health, which, in turn, can be influenced by age-related changes. This review aims to comprehensively summarize the cellular and molecular impacts of tryptamine and IPA on health and aging-related complications. Furthermore, we explore the levels of tryptamine and IPA and their corresponding bacteria in select diseased conditions, shedding light on their potential significance as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sonu Kumar Gupta
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ian L Duchesne Blanes
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ford Berger
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Carlos Isales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
5
|
Li S. Modulation of immunity by tryptophan microbial metabolites. Front Nutr 2023; 10:1209613. [PMID: 37521424 PMCID: PMC10382180 DOI: 10.3389/fnut.2023.1209613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023] Open
Abstract
Tryptophan (Trp) is an essential amino acid that can be metabolized via endogenous and exogenous pathways, including the Kynurenine Pathway, the 5-Hydroxyindole Pathway (also the Serotonin pathway), and the Microbial pathway. Of these, the Microbial Trp metabolic pathways in the gut have recently been extensively studied for their production of bioactive molecules. The gut microbiota plays an important role in host metabolism and immunity, and microbial Trp metabolites can influence the development and progression of various diseases, including inflammatory, cardiovascular diseases, neurological diseases, metabolic diseases, and cancer, by mediating the body's immunity. This review briefly outlines the crosstalk between gut microorganisms and Trp metabolism in the body, starting from the three metabolic pathways of Trp. The mechanisms by which microbial Trp metabolites act on organism immunity are summarized, and the potential implications for disease prevention and treatment are highlighted.
Collapse
|
6
|
Schmidt JR, Haupt J, Riemschneider S, Kämpf C, Löffler D, Blumert C, Reiche K, Koehl U, Kalkhof S, Lehmann J. Transcriptomic signatures reveal a shift towards an anti-inflammatory gene expression profile but also the induction of type I and type II interferon signaling networks through aryl hydrocarbon receptor activation in murine macrophages. Front Immunol 2023; 14:1156493. [PMID: 37287978 PMCID: PMC10242070 DOI: 10.3389/fimmu.2023.1156493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates a broad range of target genes involved in the xenobiotic response, cell cycle control and circadian rhythm. AhR is constitutively expressed in macrophages (Mϕ), acting as key regulator of cytokine production. While proinflammatory cytokines, i.e., IL-1β, IL-6, IL-12, are suppressed through AhR activation, anti-inflammatory IL-10 is induced. However, the underlying mechanisms of those effects and the importance of the specific ligand structure are not yet completely understood. Methods Therefore, we have compared the global gene expression pattern in activated murine bone marrow-derived macrophages (BMMs) subsequently to exposure with either benzo[a]pyrene (BaP) or indole-3-carbinol (I3C), representing high-affinity vs. low-affinity AhR ligands, respectively, by means of mRNA sequencing. AhR dependency of observed effects was proved using BMMs from AhR-knockout (Ahr-/-) mice. Results and discussion In total, more than 1,000 differentially expressed genes (DEGs) could be mapped, covering a plethora of AhR-modulated effects on basal cellular processes, i.e., transcription and translation, but also immune functions, i.e., antigen presentation, cytokine production, and phagocytosis. Among DEGs were genes that are already known to be regulated by AhR, i.e., Irf1, Ido2, and Cd84. However, we identified DEGs not yet described to be AhR-regulated in Mϕ so far, i.e., Slpi, Il12rb1, and Il21r. All six genes likely contribute to shifting the Mϕ phenotype from proinflammatory to anti-inflammatory. The majority of DEGs induced through BaP were not affected through I3C exposure, probably due to higher AhR affinity of BaP in comparison to I3C. Mapping of known aryl hydrocarbon response element (AHRE) sequence motifs in identified DEGs revealed more than 200 genes not possessing any AHRE, and therefore being not eligible for canonical regulation. Bioinformatic approaches modeled a central role of type I and type II interferons in the regulation of those genes. Additionally, RT-qPCR and ELISA confirmed a AhR-dependent expressional induction and AhR-dependent secretion of IFN-γ in response to BaP exposure, suggesting an auto- or paracrine activation pathway of Mϕ.
Collapse
Affiliation(s)
- Johannes R. Schmidt
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
| | - Janine Haupt
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
| | - Sina Riemschneider
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Christoph Kämpf
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Dennis Löffler
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Conny Blumert
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute for Clinical Immunology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ulrike Koehl
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Institute for Clinical Immunology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Stefan Kalkhof
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Department of Applied Sciences, Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Jörg Lehmann
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
| |
Collapse
|
7
|
Huang Y, Liu L, Hao Z, Chen L, Yang Q, Xiong X, Deng Y. Potential roles of gut microbial tryptophan metabolites in the complex pathogenesis of acne vulgaris. Front Microbiol 2022; 13:942027. [PMID: 35966699 PMCID: PMC9363916 DOI: 10.3389/fmicb.2022.942027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Acne vulgaris is a chronic inflammatory skin disease in which the influence of gut microbiota has been implicated but without clarification of mechanisms. Gut microbiota may exert such an influence via metabolites, particularly those of tryptophan. End metabolites of tryptophan activate receptors, including aryl hydrocarbon, G protein-coupled, and pregnane X receptors to stabilize the immune microenvironment and intestinal mucosal homeostasis. Any impact on the pathogenesis of acne vulgaris remains unclear. The current review collates recent advances concerning potential roles of tryptophan metabolism in mediating skin inflammation, follicular sebaceous gland function and intestinal permeability, all of which influence the pathogenesis of acne vulgaris. The aim was to improve understanding of the pathogenesis of acne vulgaris and to expose therapeutic opportunities.
Collapse
Affiliation(s)
- Yukun Huang
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lu Liu
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhenyu Hao
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lingna Chen
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qian Yang
- School of Nursing, Chengdu Medical College, Chengdu, China
- *Correspondence: Qian Yang,
| | - Xia Xiong
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Xia Xiong,
| | - Yongqiong Deng
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Yongqiong Deng,
| |
Collapse
|
8
|
Su X, Gao Y, Yang R. Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells 2022; 11:2296. [PMID: 35892593 PMCID: PMC9330295 DOI: 10.3390/cells11152296] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/16/2022] Open
Abstract
Tryptophan is an essential amino acid from dietary proteins. It can be metabolized into different metabolites in both the gut microbiota and tissue cells. Tryptophan metabolites such as indole-3-lactate (ILA), indole-3-acrylate (IAC), indole-3-propionate (IPA), indole-3-aldehyde (IAID), indoleacetic acid (IAA), indole-3-acetaldehyde and Kyn can be produced by intestinal microorganisms through direct Trp transformation and also, partly, the kynurenine (Kyn) pathway. These metabolites play a critical role in maintaining the homeostasis of the gut and systematic immunity and also potentially affect the occurrence and development of diseases such as inflammatory bowel diseases, tumors, obesity and metabolic syndrome, diseases in the nervous system, infectious diseases, vascular inflammation and cardiovascular diseases and hepatic fibrosis. They can not only promote the differentiation and function of anti-inflammatory macrophages, Treg cells, CD4+CD8αα+ regulatory cells, IL-10+ and/or IL-35+B regulatory cells but also IL-22-producing innate lymphoid cells 3 (ILC3), which are involved in maintaining the gut mucosal homeostasis. These findings have important consequences in the immunotherapy against tumor and other immune-associated diseases. We will summarize here the recent advances in understanding the generation and regulation of tryptophan metabolites in the gut microbiota, the role of gut microbiota-derived tryptophan metabolites in different immune cells, the occurrence and development of diseases and immunotherapy against immune-associated diseases.
Collapse
Affiliation(s)
- Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|