1
|
Aranega-Bou P, Pottage T, Fenwick A, D'Costa W, Brown NF, Yaxley N, King MF, Parker ST, Miller D, López-García M, Noakes CJ, Moore G, Bennett A. A 17-month longitudinal surface sampling study carried out on public transport vehicles operating in England during the COVID-19 pandemic identified low levels of SARS-CoV-2 RNA contamination. J Appl Microbiol 2024; 135:lxae095. [PMID: 38637309 DOI: 10.1093/jambio/lxae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
AIMS To monitor severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA contamination in vehicles operating in England during the pandemic, to better understand transmission risk of SARS-CoV-2 on public transport. METHODS AND RESULTS We collected 1314 surface samples between December 2020 and April 2022 on trains and buses managed by five different transport operators. The presence of SARS-CoV-2 RNA was investigated through reverse transcription polymerase chain reaction (RT-PCR). SARS-CoV-2 RNA was found on 197 (15%) of the 1314 surfaces sampled, including seat head rests, handholds, and air extract grilles, but the levels of RNA recovered on those samples (median value of 23.4, interquartile range: 14.3-35.4, N gene copies per extraction) made the presence of infectious virus at the time of sampling extremely unlikely. However, detection rates varied over time with peaks broadly coinciding with times of high community transmission, when it was more likely that people infected with SARS-CoV-2 were travelling on public transport. CONCLUSION During the pandemic, and as in other public spaces, low levels of SARS-CoV-2 RNA were found on surfaces associated with public transport.
Collapse
Affiliation(s)
- Paz Aranega-Bou
- Biosafety, Air and Water Microbiology Group, UK Health Security Agency, Porton Down, SP4 0JG Salisbury, United Kingdom
| | - Thomas Pottage
- Biosafety, Air and Water Microbiology Group, UK Health Security Agency, Porton Down, SP4 0JG Salisbury, United Kingdom
| | - Abigail Fenwick
- Biosafety, Air and Water Microbiology Group, UK Health Security Agency, Porton Down, SP4 0JG Salisbury, United Kingdom
| | - Wilhemina D'Costa
- Biosafety, Air and Water Microbiology Group, UK Health Security Agency, Porton Down, SP4 0JG Salisbury, United Kingdom
| | - Natalie F Brown
- Biosafety, Air and Water Microbiology Group, UK Health Security Agency, Porton Down, SP4 0JG Salisbury, United Kingdom
| | - Nicola Yaxley
- Biosafety, Air and Water Microbiology Group, UK Health Security Agency, Porton Down, SP4 0JG Salisbury, United Kingdom
| | - Marco-Felipe King
- School of Civil Engineering, University of Leeds, Woodhouse Lane, LS29JT Leeds, United Kingdom
| | - Simon T Parker
- Defence Science and Technology Laboratory, Porton Down, SP4 0JG Salisbury, United Kingdom
| | - Daniel Miller
- Defence Science and Technology Laboratory, Porton Down, SP4 0JG Salisbury, United Kingdom
| | - Martín López-García
- School of Mathematics, University of Leeds, Woodhouse Lane, LS2 9JT Leeds , United Kingdom
| | - Catherine J Noakes
- School of Civil Engineering, University of Leeds, Woodhouse Lane, LS29JT Leeds, United Kingdom
| | - Ginny Moore
- Biosafety, Air and Water Microbiology Group, UK Health Security Agency, Porton Down, SP4 0JG Salisbury, United Kingdom
| | - Allan Bennett
- Biosafety, Air and Water Microbiology Group, UK Health Security Agency, Porton Down, SP4 0JG Salisbury, United Kingdom
| |
Collapse
|
2
|
Aranega-Bou P, Brown N, Stigling A, D’Costa W, Verlander NQ, Pottage T, Bennett A, Moore G. Laboratory Evaluation of a Quaternary Ammonium Compound-Based Antimicrobial Coating Used in Public Transport during the COVID-19 Pandemic. Appl Environ Microbiol 2023; 89:e0174422. [PMID: 36856438 PMCID: PMC10057021 DOI: 10.1128/aem.01744-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/19/2023] [Indexed: 03/02/2023] Open
Abstract
The virucidal activity of the Zoono Z71 Microbe Shield surface sanitizer and protectant, a quaternary ammonium compound (QAC)-based antimicrobial coating that was used by the United Kingdom rail industry during the COVID-19 pandemic, was evaluated, using the bacteriophage ɸ6 as a surrogate for SARS-CoV-2. Immediately after application and in the absence of interfering substances, the product effectively reduced (>3 log10) the viability of ɸ6 on some materials that are typically used in rail carriages (stainless steel, high-pressure laminate, plastic). If, after the application of the product, these surfaces remained undisturbed, the antimicrobial coating retained its efficacy for at least 28 days. However, efficacy depended on the material being coated. The product provided inconsistent results when applied to glass surfaces and was ineffective (i.e., achieved <3 log10 reduction) when applied to a train arm rest that was made of Terluran 22. Regardless of the material that was coated or the time since application, the presence of organic debris (fetal bovine serum) significantly reduced the viricidal activity of the coating. Wiping the surface with a wetted cloth after the deposition of organic debris was not sufficient to restore efficacy. We conclude that the product is likely to be of limited effectiveness in a busy, multiuser environment, such as public transport. IMPORTANCE This study evaluated the performance of a commercially available antimicrobial coating that was used by the transport industry in the United Kingdom during the COVID-19 pandemic. While the product was effective against ɸ6, the efficacy of the coating depended upon the material to which it was applied. Similarly, and regardless of the surface material, the presence of organic debris severely impaired viricidal activity, and efficacy could not be recovered through wiping (cleaning) the surface. This highlights the importance of including relevant materials and conditions when evaluating antimicrobial coatings in the laboratory. Further efforts are required to identify suitable infection prevention and control practices for the transport industry.
Collapse
Affiliation(s)
- Paz Aranega-Bou
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Natalie Brown
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Abigail Stigling
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Wilhemina D’Costa
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Neville Q. Verlander
- Statistics, Modelling and Economics Department, United Kingdom Health Security Agency, United Kingdom
| | - Thomas Pottage
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Allan Bennett
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Ginny Moore
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| |
Collapse
|
3
|
Marcotrigiano V, Pattavina F, Blangiardi L, Salerno G, Dalena A, Del Bianco F, Di Fant M, Fabbro A, Forgiarini M, Lanzilotti C, Wachocka M, Marchet P, Mazzurana M, Rizzi R, Russo C, Salerno F, Vailati M, Stingi GD, Laurenti P, Ferro A, Cinquetti S, Napoli C. The Preventive Health Professions in Italy: The Efficient Use of Resources, Skills and Best Practice during the Pandemic. Healthcare (Basel) 2022; 10:1906. [PMID: 36292353 PMCID: PMC9601740 DOI: 10.3390/healthcare10101906] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2023] Open
Abstract
Health visitors (HVs) and environmental health officers (EHOs) are the healthcare workers (HCWs) who, in the Italian National Health Service, mainly operate in the prevention departments of local health authorities, guaranteeing the territorial activities specifically declared with the respective professional profiles. During the SARS-CoV-2 pandemic, it was necessary to reallocate all HCWs supporting Hygiene and Public Health Services involved on the front lines of the emergency, in order to perform preventive activities and to take immediate action to fight the spread of the virus. By means of an IT survey consisting of three sections, this study investigated how 960 HVs and EHOs dealt with this reallocation, with the shifting in service assignment, and with the perceived level of fatigue and pressure, through the application of skills acquired from university training. The synergy among the preventive health professions, the ability to work in a multi-professional team, and the complementary training of HCWs represent the main strengths for overcoming future public health challenges, aimed at protecting human health.
Collapse
Affiliation(s)
- Vincenzo Marcotrigiano
- Prevention Department, Local Health Authority BT, Barletta-Andria-Trani, 76125 Trani, Italy
| | - Fabio Pattavina
- Hygiene Hospital Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lorenzo Blangiardi
- Prevention Department, Local Health Authority “AULSS 6 Euganea”, 35131 Padua, Italy
| | - Gerardo Salerno
- Department of Neurosciences, Mental Health and Sensory Organs “NESMOS”, Sapienza University of Rome, 00185 Rome, Italy
| | - Annamaria Dalena
- Prevention Department, Local Health Authority Taranto, 74121 Taranto, Italy
| | - Flavio Del Bianco
- Prevention Technical Platform, “AS FO” Western Friuli Health Authority, 33170 Pordenone, Italy
| | - Marcella Di Fant
- Prevention Department, “ASU FC” Friuli Centrale University Health Authority, 33100 Udine, Italy
| | - Anna Fabbro
- Prevention Department, “ASU FC” Friuli Centrale University Health Authority, 33100 Udine, Italy
| | - Mariarita Forgiarini
- Prevention Department, “ASU FC” Friuli Centrale University Health Authority, 33100 Udine, Italy
| | - Carola Lanzilotti
- Prevention Department, Local Health Authority Brindisi, 72100 Brindisi, Italy
| | - Malgorzata Wachocka
- Hygiene Hospital Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Paola Marchet
- Prevention Department, Local Health Authority “AULSS 1 Dolomiti”, 32100 Belluno, Italy
| | - Mirko Mazzurana
- Prevention Department, Provincial Authority for Health Services, “APSS” Autonomous Province of Trento, 38123 Trento, Italy
| | - Roberto Rizzi
- Prevention Department, Local Health Authority Taranto, 74121 Taranto, Italy
| | - Carmela Russo
- Bachelor’s Course in Health Assistance, University of Padua, 35122 Padua, Italy
| | - Fabiana Salerno
- Prevention Department, “ASU FC” Friuli Centrale University Health Authority, 33100 Udine, Italy
| | - Mattia Vailati
- Authorization for the Accreditation of Healthcare Structures Unit, “ATS” Agency for Health Protection of Metropolitan Area of Milan, 20122 Milan, Italy
| | | | - Patrizia Laurenti
- Life Sciences and Public Health Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Ferro
- Prevention Department, Provincial Authority for Health Services, “APSS” Autonomous Province of Trento, 38123 Trento, Italy
| | - Sandro Cinquetti
- Prevention Department, Local Health Authority “AULSS 1 Dolomiti”, 32100 Belluno, Italy
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
4
|
Calderón Peralvo F, Cazorla Vanegas P, Avila-Ordóñez E. A systematic review of COVID-19 transport policies and mitigation strategies around the globe. TRANSPORTATION RESEARCH INTERDISCIPLINARY PERSPECTIVES 2022; 15:100653. [PMID: 35873107 PMCID: PMC9289094 DOI: 10.1016/j.trip.2022.100653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 05/10/2023]
Abstract
This paper reports a Scopus-based systematic literature review of a wide variety of transportation policies and mitigation strategies that have been conducted around the world to minimize COVID-19 contagion risk in transportation systems. The review offers a representative coverage of countries across all continents of the planet, as well as among representative climate regions - as weather is an important factor to consider. The readership interested in policies and mitigation strategies is expected to involve a wide range of actors, each involving a particular application context; hence, the literature is also characterized by key attributes such as: transportation mode; actor (users, operators, government, industry); jurisdiction (national, provincial, city, neighborhood); and area of application (planning, regulation, operations, research, incentives). An in-depth analysis of the surveyed literature is then reported, focusing first on condensing the literature into 151 distinct policies and strategies, which are subsequently categorized into 25 broad categories that are discussed at length. The compendium and discussion of strategies and policies reported not only provide comprehensive guidelines to inform various courses of action for decision-makers, planners, and social communicators, but also emphasize on future work and the potential of some of these strategies to be the precursors of meaningful, more sustainable behavioral changes in future mobility patterns.
Collapse
Affiliation(s)
- Francisco Calderón Peralvo
- Research Group "Models, Analysis and Simulation (MAS) Applied to Transport Systems", Computer Science Department, University of Cuenca, Ecuador
| | - Patricia Cazorla Vanegas
- Research Group "Models, Analysis and Simulation (MAS) Applied to Transport Systems", Computer Science Department, University of Cuenca, Ecuador
| | - Elina Avila-Ordóñez
- Research Group "Models, Analysis and Simulation (MAS) Applied to Transport Systems", Computer Science Department, University of Cuenca, Ecuador
| |
Collapse
|
5
|
Wang Q, Gu J, An T. The emission and dynamics of droplets from human expiratory activities and COVID-19 transmission in public transport system: A review. BUILDING AND ENVIRONMENT 2022; 219:109224. [PMID: 35645454 PMCID: PMC9126829 DOI: 10.1016/j.buildenv.2022.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/03/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The public transport system, containing a large number of passengers in enclosed and confined spaces, provides suitable conditions for the spread of respiratory diseases. Understanding how diseases are transmitted in public transport environment is of vital importance to public health. However, this is a highly multidisciplinary matter and the related physical processes including the emissions of respiratory droplets, the droplet dynamics and transport pathways, and subsequently, the infection risk in public transport, are poorly understood. To better grasp the complex processes involved, a synthesis of current knowledge is required. Therefore, we conducted a review on the behaviors of respiratory droplets in public transport system, covering a wide scope from the emission profiles of expiratory droplets, the droplet dynamics and transport, to the transmission of COVID-19 in public transport. The literature was searched using related keywords in Web of Science and PubMed and screened for suitability. The droplet size is a key parameter in determining the deposition and evaporation, which together with the exhaled air velocity largely determines the horizontal travel distance. The potential transmission route and transmission rate in public transport as well as the factors influencing the virus-laden droplet behaviors and virus viability (such as ventilation system, wearing personal protective equipment, air temperature and relative humidity) were also discussed. The review also suggests that future studies should address the uncertainties in droplet emission profiles associated with the measurement techniques, and preferably build a database based on a unified testing protocol. Further investigations based on field measurements and modeling studies into the influence of different ventilation systems on the transmission rate in public transport are also needed, which would provide scientific basis for controlling the transmission of diseases.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- Institute for Environmental and Climate Research, Jinan University, 511443, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, 511443, Guangzhou, China
| | - Jianwei Gu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006, Guangzhou, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, 510006, Guangzhou, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006, Guangzhou, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, 510006, Guangzhou, China
| |
Collapse
|
6
|
Caggiano G, Lopuzzo M, Spagnuolo V, Diella G, Triggiano F, D’Ambrosio M, Trerotoli P, Marcotrigiano V, Barbuti G, Sorrenti GT, Magarelli P, Sorrenti DP, Napoli C, Montagna MT. Investigations on the Efficacy of Ozone as an Environmental Sanitizer in Large Supermarkets. Pathogens 2022; 11:pathogens11050608. [PMID: 35631128 PMCID: PMC9147425 DOI: 10.3390/pathogens11050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Awareness of the importance of the microbial contamination of air and surfaces has increased significantly during the COVID-19 pandemic. The aim of this study was to evaluate the presence of bacteria and fungi in the air and on surfaces within some critical areas of large supermarkets with and without an ozonation system. Surveys were conducted in four supermarkets belonging to the same commercial chain of an Apulian city in June 2021, of which two (A and B) were equipped with an ozonation system, and two (C and D) did not have any air-diffused remediation treatment. There was a statistically significant difference in the total bacterial count (TBC) and total fungal count (TFC) in the air between A/B and C/D supermarkets (p = 0.0042 and p = 0.0002, respectively). Regarding surfaces, a statistically significant difference in TBC emerged between A/B and C/D supermarkets (p = 0.0101). To the best of our knowledge, this is the first study evaluating the effect of ozone on commercial structures in Italy. Future investigations, supported by a multidisciplinary approach, will make it possible to deepen the knowledge on this method of sanitation, in light of any other epidemic/pandemic waves.
Collapse
Affiliation(s)
- Giuseppina Caggiano
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.T.M.)
- Correspondence: ; Tel.: +39-(0)-80-5478-475
| | - Marco Lopuzzo
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.L.); (V.S.); (F.T.); (M.D.); (G.B.)
| | - Valentina Spagnuolo
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.L.); (V.S.); (F.T.); (M.D.); (G.B.)
| | - Giusy Diella
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.T.M.)
| | - Francesco Triggiano
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.L.); (V.S.); (F.T.); (M.D.); (G.B.)
| | - Marilena D’Ambrosio
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.L.); (V.S.); (F.T.); (M.D.); (G.B.)
| | - Paolo Trerotoli
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.T.M.)
| | - Vincenzo Marcotrigiano
- Department of Prevention, Food Hygiene and Nutrition Service, Local Health Unit BT, Barletta-Andria-Trani, 76125 Trani, Italy; (V.M.); (G.T.S.); (P.M.); (D.P.S.)
| | - Giovanna Barbuti
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.L.); (V.S.); (F.T.); (M.D.); (G.B.)
| | - Giovanni Trifone Sorrenti
- Department of Prevention, Food Hygiene and Nutrition Service, Local Health Unit BT, Barletta-Andria-Trani, 76125 Trani, Italy; (V.M.); (G.T.S.); (P.M.); (D.P.S.)
| | - Pantaleo Magarelli
- Department of Prevention, Food Hygiene and Nutrition Service, Local Health Unit BT, Barletta-Andria-Trani, 76125 Trani, Italy; (V.M.); (G.T.S.); (P.M.); (D.P.S.)
| | - Domenico Pio Sorrenti
- Department of Prevention, Food Hygiene and Nutrition Service, Local Health Unit BT, Barletta-Andria-Trani, 76125 Trani, Italy; (V.M.); (G.T.S.); (P.M.); (D.P.S.)
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Maria Teresa Montagna
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.T.M.)
| |
Collapse
|
7
|
Cardinale D, Tafuro M, Mancusi A, Girardi S, Capuano F, Proroga YTR, Corrado F, D’Auria JL, Coppola A, Rofrano G, Volzone P, Galdi P, De Vita S, Gallo A, Suffredini E, Pierri B, Cerino P, Morgante M. Sponge Whirl-Pak Sampling Method and Droplet Digital RT-PCR Assay for Monitoring of SARS-CoV-2 on Surfaces in Public and Working Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105861. [PMID: 35627397 PMCID: PMC9141805 DOI: 10.3390/ijerph19105861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 can spread directly via saliva, respiratory aerosols and droplets, and indirectly by contact through contaminated objects and/or surfaces and by air. In the context of COVID-19 fomites can be an important vehicle of virus transmission and contribute to infection risk in public environments. The aim of the study was to analyze through surface sampling (sponge method) the presence of SARS-CoV-2 in public and working environments, in order to evaluate the risk for virus transmission. Seventy-seven environmental samples were taken using sterile sponges in 17 animal farms, 4 public transport buses, 1 supermarket and 1 hotel receptive structure. Furthermore, 246 and 93 swab samples were taken in the farms from animals and from workers, respectively. SARS-CoV-2 detection was conducted by real-time RT-PCR and by digital droplet RT-PCR (dd RT-PCR) using RdRp, gene E and gene N as targets. None of the human and animal swab samples were positive for SARS-CoV-2, while detection was achieved in 20 of the 77 sponge samples (26%) using dd RT-PCR. Traces of the RdRp gene, gene E and gene N were found in 17/77 samples (22%, average concentration 31.2 g.c./cm2, range 5.6 to 132 g.c./cm2), 8/77 samples (10%, average concentration 15.1 g.c./cm2, range 6 to 36 g.c./cm2), and in 1/77 (1%, concentration 7.2 g.c./cm2). Higher detection rates were associated with sampling in animal farms and on public transport buses (32% and 30%) compared to the supermarket (21%) and the hotel (no detection). The result of the study suggests that the risk of contamination of surfaces with SARS-CoV-2 increases in environments in which sanitation strategies are not suitable and/or in highly frequented locations, such as public transportation. Considering the analytical methods, the dd RT-PCR was the only approach achieving detection of SARS-CoV-2 traces in environmental samples. Thus, dd RT-PCR emerges as a reliable tool for sensitive SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Davide Cardinale
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (D.C.); (M.T.); (F.C.); (J.L.D.); (A.C.); (G.R.); (P.V.); (P.G.); (S.D.V.); (A.G.); (P.C.)
| | - Maria Tafuro
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (D.C.); (M.T.); (F.C.); (J.L.D.); (A.C.); (G.R.); (P.V.); (P.G.); (S.D.V.); (A.G.); (P.C.)
| | - Andrea Mancusi
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (A.M.); (S.G.); (F.C.); (Y.T.R.P.)
| | - Santa Girardi
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (A.M.); (S.G.); (F.C.); (Y.T.R.P.)
| | - Federico Capuano
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (A.M.); (S.G.); (F.C.); (Y.T.R.P.)
| | - Yolande Thérèse Rose Proroga
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (A.M.); (S.G.); (F.C.); (Y.T.R.P.)
| | - Federica Corrado
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (D.C.); (M.T.); (F.C.); (J.L.D.); (A.C.); (G.R.); (P.V.); (P.G.); (S.D.V.); (A.G.); (P.C.)
| | - Jacopo Luigi D’Auria
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (D.C.); (M.T.); (F.C.); (J.L.D.); (A.C.); (G.R.); (P.V.); (P.G.); (S.D.V.); (A.G.); (P.C.)
| | - Annachiara Coppola
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (D.C.); (M.T.); (F.C.); (J.L.D.); (A.C.); (G.R.); (P.V.); (P.G.); (S.D.V.); (A.G.); (P.C.)
| | - Giuseppe Rofrano
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (D.C.); (M.T.); (F.C.); (J.L.D.); (A.C.); (G.R.); (P.V.); (P.G.); (S.D.V.); (A.G.); (P.C.)
| | - Palmiero Volzone
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (D.C.); (M.T.); (F.C.); (J.L.D.); (A.C.); (G.R.); (P.V.); (P.G.); (S.D.V.); (A.G.); (P.C.)
| | - Pio Galdi
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (D.C.); (M.T.); (F.C.); (J.L.D.); (A.C.); (G.R.); (P.V.); (P.G.); (S.D.V.); (A.G.); (P.C.)
| | - Sabato De Vita
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (D.C.); (M.T.); (F.C.); (J.L.D.); (A.C.); (G.R.); (P.V.); (P.G.); (S.D.V.); (A.G.); (P.C.)
| | - Alfonso Gallo
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (D.C.); (M.T.); (F.C.); (J.L.D.); (A.C.); (G.R.); (P.V.); (P.G.); (S.D.V.); (A.G.); (P.C.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Biancamaria Pierri
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (D.C.); (M.T.); (F.C.); (J.L.D.); (A.C.); (G.R.); (P.V.); (P.G.); (S.D.V.); (A.G.); (P.C.)
- Correspondence:
| | - Pellegrino Cerino
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, 80055 Portici, Italy; (D.C.); (M.T.); (F.C.); (J.L.D.); (A.C.); (G.R.); (P.V.); (P.G.); (S.D.V.); (A.G.); (P.C.)
| | - Maria Morgante
- Azienda Sanitaria Locale Avellino, 83100 Avellino, Italy;
| |
Collapse
|