1
|
Asteray DB, Elsaigh WA. Waste Plastic to Roads - HDPE-modified Bitumen and PET Plastic Fibres for Road Maintenance in South Africa: A Review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:932-946. [PMID: 39069720 PMCID: PMC11451075 DOI: 10.1177/0734242x241263008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
This review article provides a comprehensive analysis of the transformative potential of waste plastic in South Africa, with a specific focus on high-density polyethylene-modified bitumen and polyethylene terephthalate plastic fibres asphalt. The review encompasses a wide range of topics, including the environmental and socio-economic impacts of plastic waste, the current state of plastic waste management practices in South Africa, and the potential use of waste plastic in road construction. The aim is to critically evaluate the compatibility of recycled waste plastics as bitumen modifiers and fibre to enhance road performance. Additionally, it explores the challenges and opportunities associated with the incorporation of waste plastic in road construction, shedding light on the environmental, economic and technological aspects. The review also emphasizes the need for targeted interventions and collaborative efforts from the South African government and industry stakeholders to address plastic waste management challenges and promote sustainable infrastructure development. Overall, this review provides valuable insights into the transformative potential of waste plastic in South African road maintenance and offers a roadmap for future research and initiatives in this critical area of sustainable development.
Collapse
Affiliation(s)
- Demiss B. Asteray
- Department of Civil Engineering and Environmental Engineering and Building Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Walied A. Elsaigh
- Department of Civil Engineering and Environmental Engineering and Building Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
2
|
Tesfaye B, Geremew A, Gobena T, Argaw Tessema R, Bayu K, Liang S. Plastic pollution in Harari region, Ethiopia: practices and impacts on health and environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-16. [PMID: 39221993 DOI: 10.1080/09603123.2024.2395443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Plastic pollution poses a significant threat to the environment and human health on a global level. This study aimed to investigate plastic pollution in the Harari region of Ethiopia. The result indicated that 62% of respondents demonstrated good knowledge about plastic waste, and 59% of them perceived plastic waste as harmful. Polyethylene terephthalate, high-density polyethylene, polyvinyl chloride, low-density polyethylene, polypropylene, polystyrene, and polycarbonates were the types of plastic waste identified. Being female (AOR = 1.82), aged 15-45 (AOR = 1.82), married (AOR = 1.83), and having families >3 (AOR = 2.15) were significantly positively associated with good plastic waste management practice. Being illiterate (AOR = 0.52), and having poor knowledge about plastic waste (AOR = 0.54) were significantly negatively associated with poor management practice. The findings indicated that the Harari region is prone to adverse health and environmental effects from plastic pollution. Policies restricting plastic use, training municipal waste collectors and health extension workers, and improving public awareness are indispensable.
Collapse
Affiliation(s)
- Biruk Tesfaye
- Harar City Administration, Municipality Office, Dire Dawa, Ethiopia
| | - Abraham Geremew
- School of Environmental Health, College of Health and Medical Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Tesfaye Gobena
- School of Environmental Health, College of Health and Medical Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Roba Argaw Tessema
- School of Environmental Health, College of Health and Medical Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Kefelegn Bayu
- School of Environmental Health, College of Health and Medical Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Song Liang
- Department of Environmental Health Sciences School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
3
|
Mvala B, Munonde TS, Mpupa A, Bambo MF, Matabola KP, Nomngongo PN. Valorization and Upcycling of Acid Mine Drainage and Plastic Waste via the Preparation of Magnetic Sorbents for Adsorption of Emerging Contaminants. ACS OMEGA 2024; 9:34700-34718. [PMID: 39157114 PMCID: PMC11325435 DOI: 10.1021/acsomega.4c03426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
Plastic waste poses a serious environmental risk, but it can be recycled to produce a variety of nanomaterials for water treatment. In this study, poly(ethylene terephthalate) (PET) waste and acid mine drainage were used in the preparation of magnetic mesoporous carbon (MMC) nanocomposites for the adsorptive removal of pharmaceuticals and personal care products (PPCPs) from water samples. The latter were then characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), and ζ potential. The results of Brunauer-Emmett-Teller isotherms revealed high specific surface areas of 404, 664, and 936 m2/g with corresponding pore sizes 2.51, 2.28, and 2.26 nm for MMC, MMAC-25%, and MMAC-50% adsorbents, respectively. Under optimized conditions, the equilibrium studies were best described by the Langmuir and Freundlich models and kinetics by the pseudo-second-order model. The maximum adsorption capacity for monolayer adsorption from the Langmuir model was 112, 102, and 106 mg/g for acetaminophen, caffeine, and carbamazepine, respectively. The composites could be reused for up to six cycles without losing their adsorption efficiency. Furthermore, prepared adsorbents were used to remove acetaminophen, caffeine, and carbamazepine from wastewater samples, and up to a 95% removal efficiency was attained.
Collapse
Affiliation(s)
- Bongiwe
Apatia Mvala
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Department
of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
| | - Tshimangadzo S. Munonde
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Institute
for Nanotechnology and Water Sustainability, College of Science, Engineering
and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Anele Mpupa
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mokae Fanuel Bambo
- DSI/Mintek-
Nanotechnology Innovation Centre, Advanced Materials, Mintek, Randburg 2125, South Africa
| | - Kgabo Phillemon Matabola
- DSI/Mintek-
Nanotechnology Innovation Centre, Advanced Materials, Mintek, Randburg 2125, South Africa
- Department
of Water and Sanitation, University of Limpopo, Private Bag X 1106, Sovenga 0727, South Africa
| | - Philiswa Nosizo Nomngongo
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Department
of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
4
|
Verschoor JA, Croese MRJ, Lakemeier SE, Mugge A, Burgers CMC, Innocenti P, Willemse J, Crooijmans ME, van Wezel GP, Ram AFJ, de Winde JH. Polyester degradation by soil bacteria: identification of conserved BHETase enzymes in Streptomyces. Commun Biol 2024; 7:725. [PMID: 38867087 PMCID: PMC11169514 DOI: 10.1038/s42003-024-06414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
The rising use of plastic results in an appalling amount of waste which is scattered into the environment. One of these plastics is PET which is mainly used for bottles. We have identified and characterized an esterase from Streptomyces, annotated as LipA, which can efficiently degrade the PET-derived oligomer BHET. The Streptomyces coelicolor ScLipA enzyme exhibits varying sequence similarity to several BHETase/PETase enzymes, including IsPETase, TfCut2, LCC, PET40 and PET46. Of 96 Streptomyces strains, 18% were able to degrade BHET via one of three variants of LipA, named ScLipA, S2LipA and S92LipA. SclipA was deleted from S. coelicolor resulting in reduced BHET degradation. Overexpression of all LipA variants significantly enhanced BHET degradation. All variants were expressed in E. coli for purification and biochemical analysis. The optimum conditions were determined as pH 7 and 25 °C for all variants. The activity on BHET and amorphous PET film was investigated. S2LipA efficiently degraded BHET and caused roughening and indents on the surface of PET films, comparable to the activity of previously described TfCut2 under the same conditions. The abundance of the S2LipA variant in Streptomyces suggests an environmental advantage towards the degradation of more polar substrates including these polluting plastics.
Collapse
Affiliation(s)
- Jo-Anne Verschoor
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Martijn R J Croese
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Sven E Lakemeier
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Annemiek Mugge
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Charlotte M C Burgers
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Paolo Innocenti
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Joost Willemse
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Marjolein E Crooijmans
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Arthur F J Ram
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Johannes H de Winde
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
| |
Collapse
|
5
|
Pratiwi OA, Achmadi UF, Kurniawan R. Microplastic pollution in landfill soil: Emerging threats the environmental and public health. Environ Anal Health Toxicol 2024; 39:e2024009-0. [PMID: 38631401 PMCID: PMC11079410 DOI: 10.5620/eaht.2024009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Insufficient knowledge about the decomposition of microplastics from plastic waste in landfills hinders community involvement in waste management and sorting, posing a new threat to the environment and public health. The present study identifies, characterizes, and quantifies the microplastics in landfills soil sample to determine the latest threats posed by microplastics in the environment, particularly in landfills that are close to residential areas. This research is a descriptive study, with soil samples taken from six points in landfill site in Depok City. The abundance and shape of microplastics were characterized using a microscope, while the microplastic types were identified using Fourier Transform Infrared Spectroscopy (FTIR). The results showed that the abundance of microplastics in the Depok City landfill soil was 60,111.67 particles/kg, with the largest percentage being fragments at 63 %. FTIR functional group characterization showed the presence of plastic types, such as Polyethylene (PE), Polyvinyl Chloride (PVC), Polystyrene (PS), Polypropylene (PP), Polyethylene Terephthalate (PET), and Polyamide. The differences in waste types entering the Depok Landfill caused variations in the number, shape, and type of microplastic samples, and this study provides a foundation for mitigating and biodegrading microplastics in the landfill to minimize environmental impact and protect public health.
Collapse
Affiliation(s)
- Okky Assetya Pratiwi
- Department of Environmental Health, Faculty of Public Health, University of Indonesia, Indonesia
| | - Umar Fahmi Achmadi
- Department of Environmental Health, Faculty of Public Health, University of Indonesia, Indonesia
| | - Rico Kurniawan
- Department of Biostatistic and Population Studies, Faculty of Public Health, University of Indonesia, Indonesia
| |
Collapse
|
6
|
Lin YD, Huang PH, Chen YW, Hsieh CW, Tain YL, Lee BH, Hou CY, Shih MK. Sources, Degradation, Ingestion and Effects of Microplastics on Humans: A Review. TOXICS 2023; 11:747. [PMID: 37755757 PMCID: PMC10534390 DOI: 10.3390/toxics11090747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Celluloid, the predecessor to plastic, was synthesized in 1869, and due to technological advancements, plastic products appear to be ubiquitous in daily life. The massive production, rampant usage, and inadequate disposal of plastic products have led to severe environmental pollution. Consequently, reducing the employment of plastic has emerged as a pressing concern for governments globally. This review explores microplastics, including their origins, absorption, and harmful effects on the environment and humans. Several methods exist for breaking down plastics, including thermal, mechanical, light, catalytic, and biological processes. Despite these methods, microplastics (MPs, between 1 and 5 mm in size) continue to be produced during degradation. Acknowledging the significant threat that MPs pose to the environment and human health is imperative. This form of pollution is pervasive in the air and food and infiltrates our bodies through ingestion, inhalation, or skin contact. It is essential to assess the potential hazards that MPs can introduce. There is evidence suggesting that MPs may have negative impacts on different areas of human health. These include the respiratory, gastrointestinal, immune, nervous, and reproductive systems, the liver and organs, the skin, and even the placenta and placental barrier. It is encouraging to see that most of the countries have taken steps to regulate plastic particles. These measures aim to reduce plastic usage, which is essential today. At the same time, this review summarizes the degradation mechanism of plastics, their impact on human health, and plastic reduction policies worldwide. It provides valuable information for future research on MPs and regulatory development.
Collapse
Affiliation(s)
- Yan-Duan Lin
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-D.L.); (C.-Y.H.)
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No.4, Meicheng Road, Higher Education Park, Huai’an 223003, China;
| | - Yu-Wei Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 60004, Taiwan;
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-D.L.); (C.-Y.H.)
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan
| |
Collapse
|
7
|
Wu Y, Tang R, Guo A, Tao X, Hu Y, Sheng X, Qu P, Wang S, Li J, Li F. Enhancing Starch-Based Packaging Materials: Optimization of Plasticizers and Process Parameters. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5953. [PMID: 37687646 PMCID: PMC10488439 DOI: 10.3390/ma16175953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
In order to actively promote green production and address these concerns, there is an urgent need for new packaging materials to replace traditional plastic products. Starch-based packaging materials, composed of starch, fiber, and plasticizers, offer a degradable and environmentally friendly alternative. However, there are challenges related to the high crystallinity and poor compatibility between thermoplastic starch and fibers, resulting in decreased mechanical properties. To address these challenges, a novel approach combining plasticizer optimization and response surface method (RSM) optimization has been proposed to enhance the mechanical properties of starch-based packaging materials. This method leverages the advantages of composite plasticizers and process parameters. Scanning electron microscopy and X-ray crystallography results demonstrate that the composite plasticizer effectively disrupts the hydrogen bonding and granule morphology of starch, leading to a significant reduction in crystallinity. Fourier transform infrared spectroscopy results show that an addition of glycerol and D-fructose to the starch can form new hydrogen bonds between them, resulting in an enhanced plasticizing effect. The optimal process parameters are determined using the RSM, resulting in a forming temperature of 198 °C, a forming time of 5.4 min, and an AC content of 0.84 g. Compared with the non-optimized values, the tensile strength increases by 12.2% and the rebound rate increases by 8.1%.
Collapse
Affiliation(s)
- Yue Wu
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China; (Y.W.); (R.T.); (X.T.); (X.S.); (P.Q.); (S.W.)
| | - Rongji Tang
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China; (Y.W.); (R.T.); (X.T.); (X.S.); (P.Q.); (S.W.)
| | - Anfu Guo
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China; (Y.W.); (R.T.); (X.T.); (X.S.); (P.Q.); (S.W.)
| | - Xiaodong Tao
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China; (Y.W.); (R.T.); (X.T.); (X.S.); (P.Q.); (S.W.)
| | - Yingbin Hu
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, OH 45056, USA;
| | - Xianliang Sheng
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China; (Y.W.); (R.T.); (X.T.); (X.S.); (P.Q.); (S.W.)
| | - Peng Qu
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China; (Y.W.); (R.T.); (X.T.); (X.S.); (P.Q.); (S.W.)
| | - Shaoqing Wang
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China; (Y.W.); (R.T.); (X.T.); (X.S.); (P.Q.); (S.W.)
| | - Jianfeng Li
- School of Mechanical Engineering, Shandong University, Jinan 250061, China; (J.L.); (F.L.)
| | - Fangyi Li
- School of Mechanical Engineering, Shandong University, Jinan 250061, China; (J.L.); (F.L.)
| |
Collapse
|
8
|
Zhang GW, Gao JG, Wang R, Lee TT, Schachtely U, Kobayashi H, Wang WW. Space Charge Characteristics and Breakdown Properties of Nanostructured SiO 2/PP Composites. Polymers (Basel) 2023; 15:2826. [PMID: 37447472 DOI: 10.3390/polym15132826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Polypropylene (PP) has gained attention in the industry as an environmentally friendly material. However, its electrical properties are compromised due to space charge accumulation during operation, limiting its application in high-voltage DC cable insulation. This study investigates the effect and mechanism of SiO2 with a DDS surface hydrophobic treatment on space charge suppression and the electrical properties of PP composites. The PP matrix was doped with SiO2 nanostructures, both with a DDS surface hydrophobic treatment and untreated as a control group. The functional group structure and dispersion of nanostructured SiO2 in the matrix were characterized. The findings reveal that the incorporation of SiO2 nanostructures effectively mitigates charge accumulation in PP composites. However, a high concentration of unsurfaced nanostructures tends to agglomerate, resulting in inadequate space charge suppression and a diminished DC breakdown field strength. Nonetheless, surface treatment improves the dispersion of SiO2 within the matrix. Notably, the composite containing 1.0 wt% of surface hydrophobic SiO2 exhibits the least space charge accumulation. Compared to the base material PP, the average charge density is reduced by 83.9% after the 1800 s short-circuit discharges. Moreover, its DC breakdown field strength reaches 3.45 × 108 V/m, surpassing pure PP by 19.4% and untreated SiO2/PP composites of the same proportion by 24.0%.
Collapse
Affiliation(s)
- Guang-Wei Zhang
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Jun-Guo Gao
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Ran Wang
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Ting-Tai Lee
- Evonik Specialty Chemicals Co., Ltd., Shanghai 201108, China
| | | | | | - Wei-Wang Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
9
|
Rajvanshi J, Sogani M, Kumar A, Arora S, Syed Z, Sonu K, Gupta NS, Kalra A. Perceiving biobased plastics as an alternative and innovative solution to combat plastic pollution for a circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162441. [PMID: 36858235 DOI: 10.1016/j.scitotenv.2023.162441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Plastic waste from fossil-based sources, including single-use packaging materials, is continuously accumulating in landfills, and leaching into the environment. A 2021 UN Environment Programme (UNEP) report suggests that the plastic pollution is likely to be doubled by 2030, posing a major challenge to the environment and the overall global plastic waste management efforts. The use of biobased plastics such as polyhydroxyalkanoates (PHAs) as a biodegradable substitute for petroleum-based plastics could be a feasible option to combat this issue which may further result in much lower carbon emissions and energy usage in comparison to conventional plastics as additional advantages. Though recent years have seen the use of microbes as biosynthetic machinery for biobased plastics, using various renewable feedstocks, the scaled-up production of such materials is still challenging. The current study outlays applications of biobased plastics, potential microorganisms producing biobased plastics such as Cupriavidus necator, Bacillus sp., Rhodopseudomonas palustris, microalgae, and mixed microbial cultures, and inexpensive and renewable resources as carbon substrates including industrial wastes. This review also provides deep insights into the operational parameters, challenges and mitigation, and future opportunities for maximizing the production of biobased plastic products. Finally, this review emphasizes the concept of biorefinery as a sustainable and innovative solution for biobased plastic production for achieving a circular bioeconomy.
Collapse
Affiliation(s)
- Jayana Rajvanshi
- Department of Biosciences, Manipal University Jaipur, 303007, Rajasthan, India
| | - Monika Sogani
- Department of Biosciences, Manipal University Jaipur, 303007, Rajasthan, India.
| | - Anu Kumar
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, Rajasthan, India
| | - Zainab Syed
- Department of Biosciences, Manipal University Jaipur, 303007, Rajasthan, India
| | - Kumar Sonu
- Department of Mechanical Engineering, Kashi Institute of Technology, Varanasi, 221307, Uttar Pradesh, India
| | - Nishan Sen Gupta
- Department of Biosciences, Manipal University Jaipur, 303007, Rajasthan, India
| | - Aakanksha Kalra
- Dr. B. Lal Institute of Biotechnology, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, Rajasthan, India
| |
Collapse
|
10
|
Jayan N, Skariyachan S, Sebastian D. The escalated potential of the novel isolate Bacillus cereus NJD1 for effective biodegradation of LDPE films without pre-treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131623. [PMID: 37207482 DOI: 10.1016/j.jhazmat.2023.131623] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
This study focused on the biodegradation of LDPE films using a novel isolate of Bacillus obtained from soil samples collected from a 20-year-old plastic waste dump. The aim was to evaluate the biodegradability of LDPE films treated with this bacterial isolate. The results indicated a 43% weight loss of LDPE films within 120 days of treatment. The biodegradability of LDPE films was confirmed through various testing methods, including BATH, FDA, CO2 evolution tests, and changes in total cell growth count, protein content, viability, pH of the medium, and release of microplastics. The bacterial enzymes, including laccases, lipases, and proteases, were also identified. SEM analysis revealed biofilm formation and surface changes in treated LDPE films, while EDAX analysis showed a reduction in carbon elements. AFM analysis demonstrated differences in roughness compared to the control. Furthermore, wettability increased and tensile strength decreased, confirming the biodegradation of the isolate. FTIR spectral analysis showed changes in skeletal vibrations, such as stretches and bends, in the linear structure of polyethylene. FTIR imaging and GC-MS analysis also confirmed the biodegradation of LDPE films by the novel isolate identified as Bacillus cereus strain NJD1. The study highlights the potentiality of the bacterial isolate for safe and effective microbial remediation of LDPE films.
Collapse
Affiliation(s)
- Nithya Jayan
- Department of Life Sciences, University of Calicut, Malappuram, Kerala 673635, India
| | - Sinosh Skariyachan
- St. Pius X College Rajapuram, Department of Microbiology, Kasaragod, India
| | - Denoj Sebastian
- Department of Life Sciences, University of Calicut, Malappuram, Kerala 673635, India.
| |
Collapse
|
11
|
Gbadeyan OJ, Linganiso LZ, Deenadayalu N. Assessment and Optimization of Thermal Stability and Water Absorption of Loading Snail Shell Nanoparticles and Sugarcane Bagasse Cellulose Fibers on Polylactic Acid Bioplastic Films. Polymers (Basel) 2023; 15:polym15061557. [PMID: 36987337 PMCID: PMC10055778 DOI: 10.3390/polym15061557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The optimization and modeling of the parameters, the concentration of polylactic acid (PLA), sugarcane bagasse cellulose fibers (SBCF), and snail shell nanoparticles (SSNP), were investigated for the development of bioplastic films. With the aid of the Box-Behnken experimental design, response surface methodology was used to assess the consequence of the parameters on the water absorption and thermal stability of fabricated bioplastic films. Varied water absorption and thermal stability with different component loading were obtained, evidencing the loading effect of snail shell nanoparticles and sugar bagasse cellulose fibers on bioplastic film's water absorption and thermal stability. The quadratic polynomial model experiment data offered a coefficient of determination (R2) of 0.8422 for water absorption and 0.8318 for thermal stability, verifying the models' fitness to develop optimal concentration. The predicted optimal parameters were polylactic acid (99.815%), sugarcane bagasse cellulose fibers (0.036%), and snail shell nanoparticles (0.634%). The bioplastic developed with optimized concentrations of each component exhibited water absorption and thermal stability of 0.45% and 259.7 °C, respectively. The FTIR curves of bioplastic films show oxygen stretching in-plane carbon and single-bonded hydroxyl bending in the carboxylic acids functional group. SEM and TEM images of the bioplastic showed dispersion of the nanoparticles in the matrix, where SSNP is more visible than SBCF, which may be due to the lesser loading of SBCF. The improved properties suggest an optimum concentration of naturally sourced resources for developing bioplastic, which may be used for food and drug packaging for delivery.
Collapse
Affiliation(s)
- Oluwatoyin J Gbadeyan
- Green Engineering Research Focus Area, Faculty of Engineering and Built Environment, Durban University of Technology, Durban 4001, South Africa
- Department of Chemistry, Durban University of Technology, Durban 4001, South Africa
| | - Linda Z Linganiso
- Department of Chemistry, Durban University of Technology, Durban 4001, South Africa
| | - Nirmala Deenadayalu
- Green Engineering Research Focus Area, Faculty of Engineering and Built Environment, Durban University of Technology, Durban 4001, South Africa
- Department of Chemistry, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
12
|
Chang X, Fang Y, Wang Y, Wang F, Shang L, Zhong R. Microplastic pollution in soils, plants, and animals: A review of distributions, effects and potential mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157857. [PMID: 35932864 DOI: 10.1016/j.scitotenv.2022.157857] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Increasing production of synthetic plastics and poor management of plastic wastes have dramatically increased the amount of plastics in the environment. In 2014, at the first United Nations Environment Assembly, marine plastic waste pollution was listed as one of the 10 most pressing environmental issues. In addition, there is much plastic waste in terrestrial ecosystems due to substantial residues from agricultural mulching and packing. As a recently recognized pollutant, microplastics (MPs) have attracted significant attention from the public and various governments. Concentrations of MPs in the environment vary among locations, from <100 to >1 × 106 particles per cubic meter. Many studies have addressed the impacts and potential mechanisms of MPs on the environment and organisms. Humans and other organisms can ingest or carry MPs in a variety of passive ways and these MPs can have a range of negative effects on metabolism, function, and health. Additionally, given their large surface area, MPs can sorb various pollutants, including heavy metals and persistent organic pollutants, with serious implications for animals and human wellbeing. However, due to their complexity and a lack of accurate determination methods, the systematic impacts of MP pollution on whole foodwebs are not clearly established. Therefore, this review summarizes current research advances in MP pollution, particularly the impact of MPs on soils, plants, and animals, and proposes potential future research prospects to better characterize MPs.
Collapse
Affiliation(s)
- Xiao Chang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | - Ying Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Ministry of Education, Jilin Jianzhu University, Changchun, Jilin 130118, China
| | - Fei Wang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | - Liyuan Shang
- Jilin Provincial Institute of Animal Science and Veterinary Medicine, Changchun, Jilin 130102, China
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China.
| |
Collapse
|