1
|
Chen Z, Zhou Z, Zhang X, Wang Z, Fan J, Wang W, Zheng Y, Wang S. A carboxymethyl chitosan and dextran hydrogel with slow and rapid photothermal conversion for sequential promoting burn wound healing and inhibiting scar proliferation. Carbohydr Polym 2025; 350:123045. [PMID: 39647948 DOI: 10.1016/j.carbpol.2024.123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Facilitating swift burn wound healing while effectively preventing scar formation continues to be a considerable challenge in medical practice. In this study, an injectable carboxymethyl chitosan/oxidized dextran/polyvinylpyrrolidone/dopamine (COPD) hydrogel was designed for the effective sequentially promotion of burn wound healing and inhibition of scar formation. The COPD hydrogel precursor solution was injected into the burn wound via a double-barreled syringe and transformed into an adherent hydrogel within 25 s. The inclusion of dopamine imparted good free radical scavenging properties to the hydrogel. In particular, the gradual oxidation of dopamine to polydopamine enabled a unique heat production pattern-initially slow (photothermal conversion efficiency: 30.3 %) and then rapidly temperature increasing (photothermal conversion efficiency: 42.8 %) -under single laser irradiation. The effect of promoting healing at the initial stage of the wound was evaluated by constructing a male C57BL/6 mice model with deep second-degree burns, observation of the wound area, PCR analysis, and immunohistochemical staining. Furthermore, the scar inhibition was confirmed by observing reduced expression levels of α-SMA and COLI, along with a decreased collagen I/III ratio. With tunable mechanical properties (maximum compressive strength of 966.4 ± 51.7 kPa), the COPD hydrogel holds significant promise as an adjunctive photothermal platform for intelligent burn wound management.
Collapse
Affiliation(s)
- Zheng Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China; School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Zixuan Zhou
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Xinyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Zhengyue Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region.
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| |
Collapse
|
2
|
Khazaei M, Meskaraf-Asadabadi M, Khazaei F, Kadivarian S, Ghanbari E. Green synthesis of magnesium oxide nanoparticles using the extract of Falcaria vulgaris to enhance the healing of burn wounds. J Drug Target 2025:1-12. [PMID: 39707827 DOI: 10.1080/1061186x.2024.2445744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/11/2024] [Accepted: 11/24/2024] [Indexed: 12/23/2024]
Abstract
Treating burn lesions has always been challenging because any product should be cheap, accessible, and have anti-bacterial commodities and tissue regeneration properties. The green synthesis of magnesium oxide nanoparticles (GS-MgONPs) can create an optimal prospect that is safe with low toxicity in biological tissue and better safety for application while including the antibacterial effect. This recent study aimed to evaluate the effectiveness of burn wound treatment using GS-MgONPs in rats. GS-MgONPs were synthesised for the first time using a Falcaria vulgaris extract (FVE) and characterised. Thirty male Wistar rats were divided into five groups: An untreated group, conventional product treated group, GS-MgONPs (1 wt%), GS-MgONPs (3 wt%) and 5. FVE (1 wt%). Treatments commenced immediately following burn induction and were administered daily for a duration of 21 d. GS-MgONPs showed a spherical morphology with a diameter of less than 100 nm. The NPs (1% and 3 wt%) and FVE demonstrated significant growth inhibition against Staphylococcus aureus while showing no cytotoxic effects on human fibroblast cells. The proposed subjects treated with 1 wt% and 3 wt% GS-MgONPs were able to significantly increase the rate of wound closure (p < 0.05). Histological observations revealed that collagen formation and epithelial regeneration were more pronounced in the groups receiving 1 wt% and 3 wt% MgONPs. These results indicate that GS-MgONPs effectively enhance the regeneration process.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Fatemeh Khazaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepide Kadivarian
- Student Research Committee, Department of Microbiology, School of Medical Sciences, Tehran, Iran
| | - Elham Ghanbari
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Rageh MA, Fathi MK, Ibrahim SMA. Efficacy and Safety of Autologous Nanofat Injection in the Treatment of Postburn Scars Using Optical Skin Imaging Analysis. Dermatol Surg 2025; 51:40-45. [PMID: 39018082 DOI: 10.1097/dss.0000000000004322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BACKGROUND Burn scars are considered one of the challenging issues that can affect the quality of life by causing aesthetic and functional problems. Injecting nanofat particles, which are considered a source of stem cells, into the dermis and/or subcutis of the burned area is considered a promising procedure for the treatment of scars and the correction of volume shortage and skin renewal. OBJECTIVE To assess the safety and effectiveness of using autologous nanofat injections to treat burn scars. METHODS Thirty patients with postburn scars participated in the trial. Each patient received one session of liposuction, which was then converted into nanofat and injected back into the scar tissue. Four months after the session, the evaluation was conducted both objectively using the Antera camera 3D imaging and subjectively using the Vancouver scar scale (VSS). RESULTS Because there were statistically significant improvements in the treated scars' height, color, vascularity, and pliability, the total VSS scores differed significantly before and after treatment. Furthermore, the Antera 3D imaging revealed a statistically significant variation in the treated scars' indentations, erythema, and pigmentation scores. CONCLUSION The study findings demonstrated that nanofat is a successful postburn scar treatment option that improves patients' quality of life.
Collapse
Affiliation(s)
- Mahmoud A Rageh
- All authors are affiliated with the Department of Dermatology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | | |
Collapse
|
4
|
Vipin CL, Kumar GSV. Exosome laden sprayable thermo-sensitive polysaccharide-based hydrogel for enhanced burn wound healing. Int J Biol Macromol 2024; 290:138712. [PMID: 39710019 DOI: 10.1016/j.ijbiomac.2024.138712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Severe burns pose significant threats to patient well-being, characterized by pain, inflammation, bacterial infection, and extended recovery periods. While exosome-loaded hydrogels have demonstrated considerable promise in wound healing, current formulations often fall short of achieving optimal therapeutic efficacy for burn wounds due to challenges related to their adaptability to wound shape and limited anti-bacterial capabilities. In this study a novel exosome laden sprayable thermosensitive polysaccharide-based hydrogel (ADA-aPF127@LL18/Exo) comprising alginate dialdehyde (ADA) and aminated Pluronic F127 (aPF127) was fabricated via Schiff base reaction. ADA-aPF127@LL18/Exo exhibited sustained release of exosome and enhanced antibacterial efficacy. Furthermore, the biological assessments displayed excellent biocompatibility and enhanced in vitro cell proliferation and migration. In a deep partial thickness burn model, ADA-aPF127@LL18/Exo significantly augmented wound healing processes by accelerating epithelialization, promoting granulation tissue formation and collagen deposition, inducing hair follicle regeneration, effectively mitigating inflammatory responses, and facilitating enhanced neovascularization. In conclusion, ADA-aPF127@LL18/Exo represents a highly promising therapeutic dressing for the treatment of deep burns, exhibiting multifaceted properties conducive to efficient wound management.
Collapse
Affiliation(s)
- C L Vipin
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thycaud P.O, Poojappura, Thiruvananthapuram, Kerala 695014, India; Regional Centre for Biotechnology (BRIC-RCB), Faridabad, Haryana 121001, India
| | - G S Vinod Kumar
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thycaud P.O, Poojappura, Thiruvananthapuram, Kerala 695014, India.
| |
Collapse
|
5
|
Zubair M, Hussain S, Ur-Rehman M, Hussain A, Akram ME, Shahzad S, Rauf Z, Mujahid M, Ullah A. Trends in protein derived materials for wound care applications. Biomater Sci 2024; 13:130-160. [PMID: 39569610 DOI: 10.1039/d4bm01099j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Natural resource based polymers, especially those derived from proteins, have attracted significant attention for their potential utilization in advanced wound care applications. Protein based wound care materials provide superior biocompatibility, biodegradability, and other functionalities compared to conventional dressings. The effectiveness of various fabrication techniques, such as electrospinning, phase separation, self-assembly, and ball milling, is examined in the context of developing protein-based materials for wound healing. These methods produce a wide range of forms, including hydrogels, scaffolds, sponges, films, and bioinspired nanomaterials, each designed for specific types of wounds and different stages of healing. This review presents a comprehensive analysis of recent research that investigates the transformation of proteins into materials for wound healing applications. Our focus is on essential proteins, such as keratin, collagen, gelatin, silk, zein, and albumin, and we emphasize their distinct traits and roles in wound care management. Protein-based wound care materials show promising potential in biomedical engineering, offering improved healing capabilities and reduced risks of infection. It is crucial to explore the potential use of these materials in clinical settings while also addressing the challenges that may arise from their commercialization in the future.
Collapse
Affiliation(s)
- Muhammad Zubair
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - Saadat Hussain
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Mujeeb- Ur-Rehman
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Muhammad Ehtisham Akram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Zahid Rauf
- Pakistan Forest Institute (PFI), Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Maria Mujahid
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Aman Ullah
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
6
|
Madadizadeh F, Afzal G. Medication management in burn patients: Key role of clinical pharmacists. Burns 2024; 51:107349. [PMID: 39721241 DOI: 10.1016/j.burns.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Affiliation(s)
- Farzan Madadizadeh
- Center for Healthcare Data Modeling, Departments of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Golnaz Afzal
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Sadoughi University of Medical Science, Yazd, Iran.
| |
Collapse
|
7
|
Delgado-Enciso I, Aurelien-Cabezas NS, Meza-Robles C, Walle-Guillen M, Hernandez-Fuentes GA, Cabrera-Licona A, Hernandez-Rangel AE, Delgado-Machuca M, Rodriguez-Hernandez A, Beas-Guzman OF, Cardenas-Aguilar CB, Rodriguez-Sanchez IP, Martinez-Fierro ML, Chaviano-Conesa D, Paz-Michel BA. Efficacy of neutral electrolyzed water vs. common topical antiseptics in the healing of full‑thickness burn: Preclinical trial in a mouse model. Biomed Rep 2024; 21:189. [PMID: 39479362 PMCID: PMC11522847 DOI: 10.3892/br.2024.1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Burn injuries impose challenges such as infection risk, pain management, fluid loss, electrolyte imbalance and psychological and emotional impact, on healthcare professionals, requiring effective treatments to enhance wound healing. The present study evaluated the efficacy superoxidized electrolyzed solution (SES), with low (SES-low) or high (SES-high) concentrations of active species, alone or in combination with a formulation in gel (G), in comparison with commonly prescribed treatments for burn injury, including nitrofurazone (NF) and silver sulfadiazine (S); normal saline was used as placebo (PI). A scald burn model was established in BALB/c mice. Measurements of the burned area and histological parameters such as inflammatory infiltration state, epithelial regeneration and collagen fibers were evaluated on days 3, 6, 9, 18 and 32 to assess healing score and status. All treatments achieved wound closure at day 32; histopathological parameters indicated that SES-low and SES-low + G performed better than the Pl and S groups (P<0.05). All treatments showed a lower count of inflammatory cells compared with S (P<0.05); for collagen deposition and orientation, SES-low + G showed a more uniform horizontal orientation compared with Pl, SES-high + G, NF and S groups (P<0.05). SES-Low was the most effective substance to induce favorable and organized healing, while S was the worst, inducing disorganized closure of the wound due to a pro-inflammatory effect.
Collapse
Affiliation(s)
- Ivan Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
- Department of Research, State Cancerology Institute of Colima, Health Services of The Mexican Social Security Institute for Welfare (IMSS-BIENESTAR Colima), Colima 28085, Mexico
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | | | - Carmen Meza-Robles
- Department of Research, State Cancerology Institute of Colima, Health Services of The Mexican Social Security Institute for Welfare (IMSS-BIENESTAR Colima), Colima 28085, Mexico
| | - Mireya Walle-Guillen
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
| | | | | | | | - Marina Delgado-Machuca
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
| | | | - Oscar F. Beas-Guzman
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
| | | | - Iram P. Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Autonomous University of Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, México
| | - Daniel Chaviano-Conesa
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
| | | |
Collapse
|
8
|
Wang Z, Wu T, Zhao F, Zhao C, Ma F, Song H, Chen L, Wang W, Xing J. An injectable epoxidized soybean oil/gelatin-based photothermal biogel with remarkable rapid hemostasis capability for wound repair. Int J Biol Macromol 2024; 283:137902. [PMID: 39571869 DOI: 10.1016/j.ijbiomac.2024.137902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The development of wound dressings with rapid hemostasis, antibacterial activity without the addition of antibiotics and on-demand removability that effectively avoid secondary damage to the wound during replacement still faces significant challenges. Herein, injectable epoxidized soybean oil/gelatin-based photothermal biogel with outstanding tissue adhesion, on-demand removability, shape-adaptability, and antibacterial performance is prepared as a removable wound dressing for wound repair. The biogel is composed of two types of hydrophilic/hydrophobic three-dimensional network structures, which interweave together through dynamic imine bonds, coordination bonds and numerous hydrogen bonds to synergistically improve injectability, self-healing, tissue adhesion, and compressive performance of the biogel. Moreover, the prepared EG-02 biogel not only has excellent thermal stability, biodegradability, hemocompatibility, and RBCs and platelet adhesion properties, but also displays outstanding cytocompatibility and the ability to promote cell migration. Furthermore, the EG-02 biogel treated with a near-infrared (NIR) laser (808 nm, 0.2 W·cm-2) exhibits prominent photothermal cycling stability and antibacterial performance. Notably, the EG-02 biogel presents remarkable rapid hemostasis capability, with the hemostatic time greatly shortened to 40 s and the blood loss significantly reduced to 89.2 mg. Therefore, the injectable photothermal biogel, as a fascinating candidate for on-demand removable wound dressing, has shown promising application prospects in wound repair.
Collapse
Affiliation(s)
- Zhen Wang
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Tong Wu
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Fangzheng Zhao
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Chunyue Zhao
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Feifei Ma
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
9
|
Zhang W, Geng X, Qin S, Xie Z, Li W, Li J. Research progress and application of chitosan dressings in hemostasis: A review. Int J Biol Macromol 2024; 282:136421. [PMID: 39389479 DOI: 10.1016/j.ijbiomac.2024.136421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Hemorrhage affects human health, and severe bleeding remains a leading contributor to trauma-related mortality. The speed and effectiveness of the application of hemostatic materials are critical. Conventional hemostatic dressings such as bandages and gauze are gradually being replaced by new types of hemostatic dressings due to their poor hemostatic and antibacterial properties. Chitosan, a biopolymer, is biodegradable and nontoxic and possesses hemostatic and antibacterial properties. Chitosan induces hemostasis through direct contact with red corpuscles and platelets, independent of the coagulation pathways of the host, rendering it an optimal hemostatic dressing. It is widely used in wound care, particularly to stop bleeding, promote wound healing, and provide antimicrobial properties. This article reviews the recent research and development of chitosan-based hemostatic dressings, focusing on trauma hemostasis, burn hemostasis, diabetic skin ulcer hemostasis and other aspects. It also emphasizes the significance of chitosan dressings in wound hemostasis and healing, identifies their research opportunities in hemostasis and wound healing, and explores new research directions.
Collapse
Affiliation(s)
- Wenwen Zhang
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xinrong Geng
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Song Qin
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zeping Xie
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Wenjun Li
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Jie Li
- Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
10
|
Messelu MA, Abrha NN, Jemberie HK, Demile TA, Belayneh AG. The national burden of mortality and its associated factors among burn patients in Ethiopia. A systematic review and meta-analysis. Burns 2024; 50:107201. [PMID: 39317547 DOI: 10.1016/j.burns.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/20/2024] [Accepted: 07/04/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Despite all advances in burn prevention, treatment, acute care, and rehabilitation, burn injuries continue to cause significant mortality and disability in Ethiopia. Thus, this review and meta-analysis aimed to assess the pooled prevalence and the determinants of mortality in Ethiopia. METHODS This systematic review was conducted according to the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A structured search of databases (Medline/PubMed, Google Scholar, CINAHL, EMBASE, HINARI, and Web of Science) was undertaken. Selection, screening, reviewing, and data extraction were done by independent reviewers using a Microsoft Excel spreadsheet. The quality of the included studies was assessed using the Joanna Briggs Institute (JBI) critical appraisal tool. A random-effects meta-analysis model with a 95 % confidence interval was computed to estimate the pooled effect size (i.e., prevalence and odds ratio). Publication bias was checked using the funnel plot, Egger's, and Begg's tests. The heterogeneity of studies was assessed using I2 statistics. Subgroup analysis based on the region and age group was done. RESULTS This systematic review and meta-analysis included a total of ten studies. The pooled prevalence of mortality among patients with burn injuries in Ethiopia was found to be 6.01 % (95 % CI: 2.75, 9.26). Subgroup analysis based on the region showed that the pooled prevalence of mortality was highest in the Oromia region (12.02 %), followed by the Amhara region (8.5 %). Additionally, subgroup analysis based on patients' ages revealed that the pooled estimates of mortality among all age groups and children were 5.18 % and 7.91 %, respectively. The meta-analysis demonstrated that the extent of burn > 10 % TBSA (OR = 5.04, 95 % CI: 2.72, 9.35), presence of comorbidity (OR = 4.01, 95 % CI: 1.44, 11.18), and presence of a 3rd degree burn (OR = 10.64, 95 % CI: 2.82, 40.16) were significantly associated with mortality among burn patients. CONCLUSION AND RECOMMENDATIONS The national prevalence of mortality among burn patients in Ethiopia was high. The extent of burn, presence of comorbidity, and 3rd degree burns were significant predictors of mortality. We strongly recommend that health care workers give special attention to burn patients with greater extent and depth of burn, and for those who have comorbid diseases.
Collapse
Affiliation(s)
- Mengistu Abebe Messelu
- Department of Nursing, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia.
| | - Nega Nigussie Abrha
- Department of Emergency and Critical Care Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Haymanot Kitaw Jemberie
- Department of Emergency and Critical Care Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tiruye Azene Demile
- Department of Surgical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Asnake Gashaw Belayneh
- Department of Emergency and Critical Care Nursing, School of Nursing, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
11
|
Zhou X, Yu X, You T, Zhao B, Dong L, Huang C, Zhou X, Xing M, Qian W, Luo G. 3D Printing-Based Hydrogel Dressings for Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404580. [PMID: 39552255 DOI: 10.1002/advs.202404580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/21/2024] [Indexed: 11/19/2024]
Abstract
Skin wounds have become an important issue that affects human health and burdens global medical care. Hydrogel materials similar to the natural extracellular matrix (ECM) are one of the best candidates for ideal wound dressings and the most feasible choices for printing inks. Distinct from hydrogels made by traditional technologies, which lack bionic and mechanical properties, 3D printing can promptly and accurately create hydrogels with complex bioactive structures and the potential to promote tissue regeneration and wound healing. Herein, a comprehensive review of multi-functional 3D printing-based hydrogel dressings for wound healing is presented. The review first summarizes the 3D printing techniques for wound hydrogel dressings, including photo-curing, extrusion, inkjet, and laser-assisted 3D printing. Then, the properties and design approaches of a series of bioinks composed of natural, synthetic, and composite polymers for 3D printing wound hydrogel dressings are described. Thereafter, the application of multi-functional 3D printing-based hydrogel dressings in a variety of wound environments is discussed in depth, including hemostasis, anti-inflammation, antibacterial, skin appendage regeneration, intelligent monitoring, and machine learning-assisted therapy. Finally, the challenges and prospects of 3D printing-based hydrogel dressings for wound healing are presented.
Collapse
Affiliation(s)
- Xuan Zhou
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Xunzhou Yu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Tingting You
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Baohua Zhao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Lanlan Dong
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Can Huang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Xiaoqing Zhou
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| |
Collapse
|
12
|
Zou Y, Mao Z, Zhao C, Fan Z, Yang H, Xia A, Zhang X. Fish skin dressing for wound regeneration: A bioactive component review of omega-3 PUFAs, collagen and ECM. Int J Biol Macromol 2024; 283:137831. [PMID: 39566781 DOI: 10.1016/j.ijbiomac.2024.137831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/07/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Wound healing is a complex biological process that involves several stages, including hemostasis, inflammation, proliferation, and remodeling. Traditional wound dressings, to a certain extent, can provide wound protection but are limited in promoting wound healing, reducing scar formation, and preventing bacterial infections. In recent years, with the advancement of research in biomedical materials, fish skin dressings have become a research hotspot in the field of tissue regeneration due to their remarkable biocompatibility and precious bioactive components. However, current research on fish skin dressings remains focused on clinical treatment. To further deepen and promote the development of fish skin dressings, we put emphasis on discussing main bioactive components in fish skin. This article has reviewed the advantages of fish skin dressings in wound regeneration, especially the promotive effects of its main bioactive components-Omega-3 polyunsaturated fatty acids, collagen derived from fish skin, and the extracellular matrix of fish skin-on the wound healing process. Besides, by critically summarizing the research issues of each bioactive component, this review assists researchers in better defining the next direction of research, thereby designing the optimal dressing for different types of wounds.
Collapse
Affiliation(s)
- Ying Zou
- Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Zongtao Mao
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chenyu Zhao
- Department of China Medical University-The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhonghao Fan
- Department of China Medical University-The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Anqi Xia
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Xudong Zhang
- Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| |
Collapse
|
13
|
Goh M, Du M, Peng WR, Saw PE, Chen Z. Advancing burn wound treatment: exploring hydrogel as a transdermal drug delivery system. Drug Deliv 2024; 31:2300945. [PMID: 38366562 PMCID: PMC10878343 DOI: 10.1080/10717544.2023.2300945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024] Open
Abstract
Burn injuries are prevalent and life-threatening forms that contribute significantly to mortality rates due to associated wound infections. The management of burn wounds presents substantial challenges. Hydrogel exhibits tremendous potential as an ideal alternative to traditional wound dressings such as gauze. This is primarily attributed to its three-dimensional (3D) crosslinked polymer network, which possesses a high water content, fostering a moist environment that supports effective burn wound healing. Additionally, hydrogel facilitates the penetration of loaded therapeutic agents throughout the wound surface, combating burn wound pathogens through the hydration effect and thereby enhancing the healing process. However, the presence of eschar formation on burn wounds obstructs the passive diffusion of therapeutics, impairing the efficacy of hydrogel as a wound dressing, particularly in cases of severe burns involving deeper tissue damage. This review focuses on exploring the potential of hydrogel as a carrier for transdermal drug delivery in burn wound treatment. Furthermore, strategies aimed at enhancing the transdermal delivery of therapeutic agents from hydrogel to optimize burn wound healing are also discussed.
Collapse
Affiliation(s)
- MeeiChyn Goh
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Meng Du
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Wang Rui Peng
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Zhiyi Chen
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
14
|
Luo W, Xiong L, Wang J, Li C, Zhang S. Development and performance evaluation of a clinical prediction model for sepsis risk in burn patients. Medicine (Baltimore) 2024; 103:e40709. [PMID: 39612449 PMCID: PMC11608753 DOI: 10.1097/md.0000000000040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024] Open
Abstract
Sepsis is a common and severe complication in burn patients and remains one of the leading causes of mortality. This retrospective study aimed to develop a predictive model for the risk of in-hospital sepsis among burn patients treated at Guangzhou Red Cross Hospital between January 2022 and January 2024, with the goal of improving clinical outcomes through early prevention based on risk stratification. A total of 302 eligible patients were randomly divided into training and validation cohorts in a 7:3 ratio for model development and validation, respectively. Predictive factors were initially selected using LASSO regression, followed by logistic regression analysis to establish the prediction model and construct a nomogram. The final model incorporated 4 independent predictors: burn area (odds ratio [OR] = 1.043, 95% confidence interval [CI]: 1.026-1.062/1%), hemoglobin (OR = 0.968, 95% CI: 0.954-0.980/1 g/L), diabetes (OR = 10.91, 95% CI: 2.563-56.62), and potassium (OR = 3.091, 95% CI: 1.635-6.064/1 mmol/L). The areas under the receiver operating characteristic curve were 0.875 and 0.861 for the training and validation cohorts, with Youden indexes of 0.634 and 0.600, respectively. The calibration curve and decision curve analysis demonstrated good predictive accuracy and clinical utility of the model. These findings suggest that our developed model exhibits robust predictive performance for the risk of in-hospital sepsis in burn patients, and early prevention strategies based on risk stratification may potentially improve clinical outcomes.
Collapse
Affiliation(s)
- Weiqing Luo
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Lei Xiong
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Jianshuo Wang
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Chen Li
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Shaoheng Zhang
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Hassan A, Ali S, Farooq MA, Sulayman R, Liaqat I, Shahzad H, Mumtaz S, Summer M, Mughal TA. Synergetic Effects of Sericin and Turmeric on Burn Wound Healing in Mice. J Burn Care Res 2024; 45:1527-1535. [PMID: 38596864 DOI: 10.1093/jbcr/irae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 04/11/2024]
Abstract
Burn wounds are one of the most hazardous issues, globally. Silkworm produces a protein called sericin. Sericin assists in wound healing by facilitating the proliferation of keratinocytes and fibroblasts, while turmeric is potentially helpful in wound healing because of its antioxidant, anti-inflammatory, and anti-infectious activities. The current study aimed to investigate the synergetic and individual effects of turmeric, sericin, and their nanoparticles on burn wounds in mice. The female mice having age of 2 months (each weighing 29-30 g) were arbitrarily distributed in 7 groups. Five mice were added to each group. Burn wounds were induced in mice by using a hot metal rod. Burn wounds were evaluated histologically and morphologically. Turmeric nanoparticles substantially improved the wound contraction area as compared to the negative control group and other treatment groups. The serum level of glutathione (4.9 ± 0.1 µmol/L), catalase (6.0 ± 0.2 mmol/mL), glutathione peroxidase (183.4 ± 5.1 U/L), and superoxide dismutase (194.6 ± 5.1 U/mL) was significantly increased in the turmeric nanoparticles (TNPs) group as compared to the negative control (2.8 ± 0.1 µmol/L, 3.5 ± 0.1 mmol/mL, 87.8 ± 3.0 U/L, and 92.0 ± 4.8 U/mL respectively). The minimum levels of malondialdehyde (3.8 ± 0.2 mmol/L) were noticed in the TNPs group contrary to the negative control (7.4 ± 0.2 mmol/L). The restoration of the epidermis was also observed to be faster in the TNPs group as compared to all other treatment groups. The histopathological analysis also demonstrated the effectiveness of turmeric, sericin, and their nanoparticles. In conclusion, turmeric, sericin, and their nanoparticles are effective in improving the healing process of burn wounds, but TNPs showed the most effective results as compared to all other treatment groups.
Collapse
Affiliation(s)
- Ali Hassan
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Adeel Farooq
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Rida Sulayman
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Irfana Liaqat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Hafsa Shahzad
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Samaira Mumtaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhmmad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Tafail Akbar Mughal
- Medical Toxicology and Nano Biotechnology Laboratory, Department of Zoology, Women University of Azad Jammu and Kashmir, Bagh, 12100, Pakistan
| |
Collapse
|
16
|
Nagaraj A, Subramaniyan Y, Surya S, Rekha PD. Burn Wound Healing Abilities of a Uronic Acid Containing Exopolysaccharide Produced by the Marine Bacterium Halomonas malpeensis YU-PRIM-29 T. Appl Biochem Biotechnol 2024; 196:8190-8213. [PMID: 38700619 DOI: 10.1007/s12010-024-04966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 12/14/2024]
Abstract
Bacterial exopolysaccharides (EPS) are an emerging class of biopolymers with extensive applications in different fields due to their versatile physico-chemical and biological properties. The role of EPS in healing of different wound types is gaining interest in the tissue engineering sector. Burn is one of the devitalizing injuries that causes greater physical harm and can be fatal. Appropriate treatment modalities have to be followed for faster healing outcomes and to minimize the risk. In this study, a bacterial EPS (EPS-H29) from the marine bacterium Halomonas malpeensis YU-PRIM-29 T was used to treat the burn wound in vivo. The biochemical and structural characterizations of EPS-H29 were carried out using standard methods. In addition, FE-SEM, conformational, rheological, and HP-GPC analyses were carried out. In vitro biocompatibility of EPS-H29 was studied in human dermal fibroblasts (HDFs) and keratinocytes (HaCaT). Scratch assay was used to study the wound healing in vitro. For in vivo evaluation, burn wound (second-degree) was created on Wistar albino rats and treated with EPS-H29 along with appropriate control groups. The total sugar and protein contents of EPS-H29 were 72.0 ± 1.4% and 4.0 ± 0.5%, respectively, with a molecular weight of 5.2 × 105 Da. The lyophilized samples exhibited porous surface features, and in solution, it showed triple helical conformation and shear thickening behavior. In vitro cell-based assays showed biocompatibility of EPS-H29 up to 200 μg/mL concentration. At a concentration up to 50 μg/mL, EPS-H29 promoted cell proliferation. Significant increase in the HDF cell migration was evident with EPS-H29 (15 μg/mL) treatment in vitro and induced significantly higher (p ≤ 0.0001) closure of the scratch area (90.3 ± 1.1%), compared to the control (84.3 ± 1.3%) at 24 h. Enhanced expression of Ki-67 was associated with the cell proliferative activities of EPS-H29. The animals treated with EPS-H29 showed improved healing of burn wounds with significantly higher wound contraction rate (80.6 ± 9.4%) compared to the positive control (54.6 ± 8.0%) and untreated group (49.2 ± 3.7%) with histopathological evidence of epidermal tissue formation at 15 days of treatment. These results demonstrate the biocompatibility and burn wound healing capability of EPS-H29 and its potential as an effective topical agent for the burn wound care.
Collapse
Affiliation(s)
- Athmika Nagaraj
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Yuvarajan Subramaniyan
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Suprith Surya
- Advanced Surgical Skill ENhancement Division (ASSEND), Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
17
|
Valadi M, Doostan M, Khoshnevisan K, Doostan M, Maleki H. Enhanced healing of burn wounds by multifunctional alginate-chitosan hydrogel enclosing silymarin and zinc oxide nanoparticles. Burns 2024; 50:2029-2044. [PMID: 39181767 DOI: 10.1016/j.burns.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024]
Abstract
Multifunctional wound dressings have been applied for burn injuries to avoid complications and promote tissue regeneration. In the present study, we fabricated a natural alginate-chitosan hydrogel comprising silymarin and green-synthesized zinc oxide nanoparticles (ZnO NPs). Then, the physicochemical attributes of ZnO NPs and loaded hydrogels were analyzed. Afterward, wound healing efficacy was evaluated in a rat model of full-thickness dermal burn wounds. The findings indicated that ZnO NPs were synthesized via reduction with phytochemicals from Elettaria cardamomum seeds extract. The microscopic images exhibited fairly spherical ZnO NPs (35-45 nm), and elemental analysis verified the relevant composition. The hydrogel, containing silymarin and biosynthesized ZnO NPs, displayed a uniform appearance, smooth surfaces, and a porous structure. Moreover, infrared spectroscopy identified functional groups, confirming the successful loading without adverse interactions. The obtained hydrogel exhibited great water absorption, high porosity, sustainable degradation for several days, and enhanced antioxidant capability of the combined loaded component. In vivo studies revealed faster and superior wound healing, achieving nearly complete closure by day 21. Histopathology confirmed improved cell growth, tissue regeneration, collagen deposition, and neovascularization. It is believed that this multifunctional hydrogel-based wound dressing can be applied for effective burn wound treatment.
Collapse
Affiliation(s)
- Moein Valadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Doostan
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Mahtab Doostan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Maleki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
18
|
Guo L, Zhang P, Zhang M, Liang P, Zhou S. LncRNA AGAP2-AS1 stabilizes ATG9A to promote autophagy in endothelial cells - Implications for burn wound healing. Exp Cell Res 2024; 443:114310. [PMID: 39481796 DOI: 10.1016/j.yexcr.2024.114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Deep second- or mixed-degree burn lesions are difficult to heal due to the impaired dermis supporting of epidermis renewal and nutrition delivery. Early dermis debridement and preservation speed healing and enhance results, emphasizing the need of knowing processes that promote burn-denatured dermis recovery, notably endothelial cell angiogenesis and autophagy. Integrative bioinformatics investigations identified AGAP2-AS1 as a highly elevated lncRNA in burn tissues. Pearson's correlation study connected AGAP2-AS1 to 112 differently co-expressed protein-coding genes involved in burn healing processes such cell cycle and TGF-beta receptor signaling. Experimental validation showed that heat damage elevated AGAP2-AS1 in HUVECs and HDMECs. Functionally, AGAP2-AS1 overexpression in heat-denatured HUVECs and HDMECs increased cell survival, migration, invasion, and angiogenesis. In addition, AGAP2-AS1 overexpression increased endothelial cell autophagy. Additional investigation showed AGAP2-AS1's association with ATG9A, stabilizing it. Post-heat damage, ATG9A knockdown drastically reduced HUVEC and HDMEC survival, migration, invasion, angiogenesis, and autophagy. More notably, ATG9A knockdown drastically reduced the benefits of AGAP2-AS1 overexpression on endothelial cell functions and autophagy. The positive association between AGAP2-AS1 and ATG9A expression in burn tissue samples highlights their crucial roles in endothelial cell response to heat injury, indicating that targeting this axis may aid burn wound healing. The research found that lncRNA AGAP2-AS1 stabilizes ATG9A and promotes autophagy in endothelial cells. These results imply that targeting the AGAP2-AS1/ATG9A axis may improve angiogenesis and tissue regeneration in burn injuries, revealing burn wound healing molecular pathways.
Collapse
Affiliation(s)
- Le Guo
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pihong Zhang
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Minghua Zhang
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pengfei Liang
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Situo Zhou
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
19
|
Ryan MJ, Raby E, Masuda R, Lodge S, Nitschke P, Maker GL, Wist J, Fear MW, Holmes E, Nicholson JK, Gray N, Whiley L, Wood FM. Clinical prediction of wound re-epithelisation outcomes in non-severe burn injury using the plasma lipidome. Burns 2024; 51:107282. [PMID: 39566342 DOI: 10.1016/j.burns.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 11/22/2024]
Abstract
Whilst wound repair in severe burns has received substantial research attention, non-severe burns (<20 % total body surface area) remain relatively understudied, despite causing considerable physiological impact and constituting most of the hospital admissions for burns. Early prediction of healing outcomes would decrease financial and patient burden, and aid in preventing long-term complications from poor wound healing. Lipids have been implicated in inflammation and tissue repair and may play essential roles in burn wound healing. In this study, plasma samples were collected from 20 non-severe burn patients over six weeks from admission, including surgery, and analysed by liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance spectroscopy to identify 850 lipids and 112 lipoproteins. Orthogonal projections to latent structures-discriminant analysis was performed to identify changes associated with re-epithelialisation and delayed re-epithelisation. We demonstrated that the lipid and lipoprotein profiles at admission could predict re-epithelisation outcomes at two weeks post-surgery, and that these discriminatory profiles were maintained up to six weeks post-surgery. Inflammatory markers GlycB and C-reactive protein indicated divergent systemic responses to the burn injury at admission. Triacylglycerols, diacylglycerols and low-density lipoprotein subfractions were associated with re-epithelisation (p-value <0.02, Cliff's delta >0.7), whilst high-density lipoprotein subfractions, phosphatidylinositols, phosphatidylcholines, and phosphatidylserines were associated with delayed wound closure at two weeks post-surgery (p-value <0.01, Cliff's delta <-0.7). Further model validation will potentially lead to personalised intervention strategies to reduce the risk of chronic complications post-burn injury.
Collapse
Affiliation(s)
- Monique J Ryan
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Edward Raby
- Burns Service of Western Australia, WA Department of Health, Perth, WA 6150, Australia; Department of Microbiology, PathWest Laboratory Medicine, Perth, WA 6009, Australia; Department of Infectious Diseases, Fiona Stanley Hospital, Perth, WA 6150, Australia
| | - Reika Masuda
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Samantha Lodge
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Philipp Nitschke
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Garth L Maker
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Julien Wist
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Chemistry Department, Universidad del Valle, Cali 76001, Colombia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia; Fiona Wood Foundation, Perth, WA 6150, Australia
| | - Elaine Holmes
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Jeremy K Nicholson
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Institute of Global Health Innovation, Imperial College London, London SW7 2AZ, UK
| | - Nicola Gray
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia.
| | - Fiona M Wood
- Burns Service of Western Australia, WA Department of Health, Perth, WA 6150, Australia; Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia; Fiona Wood Foundation, Perth, WA 6150, Australia.
| |
Collapse
|
20
|
Fan Y, Wang H, Wang C, Xing Y, Liu S, Feng L, Zhang X, Chen J. Advances in Smart-Response Hydrogels for Skin Wound Repair. Polymers (Basel) 2024; 16:2818. [PMID: 39408528 PMCID: PMC11479249 DOI: 10.3390/polym16192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, especially in the treatment of skin wounds, as a result of their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of smart-response features into hydrogels allows for dynamic responses to different external or internal stimuli. Therefore, this paper reviews the design of different smart-responsive hydrogels for different microenvironments in the field of skin wound therapy. First, the unique microenvironments of three typical chronic difficult-to-heal wounds and the key mechanisms affecting wound healing therapeutic measures are outlined. Strategies for the construction of internal stimulus-responsive hydrogels (e.g., pH, ROS, enzymes, and glucose) and external stimulus-responsive hydrogels (e.g., temperature, light, electricity, and magnetic fields) are highlighted from the perspective of the wound microenvironment and the in vitro environment, and the constitutive relationships between material design, intelligent response, and wound healing are revealed. Finally, this paper discusses the severe challenges faced by smart-responsive hydrogels during skin wound repair and provides an outlook on the combination of smart-responsive hydrogels and artificial intelligence to give scientific direction for creating and using hydrogel dressings that respond to stimuli in the clinic.
Collapse
Affiliation(s)
- Yinuo Fan
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Han Wang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Yuanhao Xing
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Shuying Liu
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Linhan Feng
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Xinyu Zhang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
- State Key Laboratory of Mineral Processing, Beijing 100160, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China
| |
Collapse
|
21
|
Kapoor A, Mudaliar SB, Bhat VG, Chakraborty I, Prasad ASB, Mazumder N. Phage therapy: A novel approach against multidrug-resistant pathogens. 3 Biotech 2024; 14:256. [PMID: 39355200 PMCID: PMC11442959 DOI: 10.1007/s13205-024-04101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
The rapid rise of multidrug-resistant (MDR) organisms has created a critical need for alternative treatment options. Phage therapy is gaining attention as an effective way to fight bacterial infections by using lytic bacteriophages to specifically target and kill harmful bacteria. This review discusses several phage therapeutic options and emphasizes new developments in phage biology. Phage treatment has proven to be successful against MDR bacteria, as evidenced by multiple human clinical trials that indicate favorable results in treating a range of diseases caused by these pathogens. Despite these promising results, challenges such as phage resistance, regulatory hurdles, and the need for standardized treatment protocols remain. To effectively combat MDR bacterial infections, future research must focus on enhancing phage effectiveness, guaranteeing safety for human usage and incorporating phage therapy into clinical practice.
Collapse
Affiliation(s)
- Arushi Kapoor
- Robert R Mcormick School of Engineering and Applied Science, Northwestern University, Illinois, USA
| | - Samriti Balaji Mudaliar
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Vyasraj G. Bhat
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Alevoor Srinivas Bharath Prasad
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
22
|
Kim H, Kwak I, Kim M, Um J, Lee S, Chung B, Park C, Won J, Kim H. Evaluation of a Cosmetic Formulation Containing Arginine Glutamate in Patients with Burn Scars: A Pilot Study. Pharmaceutics 2024; 16:1283. [PMID: 39458612 PMCID: PMC11510376 DOI: 10.3390/pharmaceutics16101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Patients with burn scars require effective treatments able to alleviate dry skin and persistent itching. Ion pairing has been employed in cosmetic formulations to enhance solubility in solvents and improve skin permeability. To evaluate the efficacy and safety of the cosmetic formula "RE:pair (arginine-glutamate ion pair)", we analyzed scar size, itching and pain, skin barrier function, scar scale evaluation, and satisfaction in our study participants. Methods: A total of 10 patients were recruited, and the formula was used twice a day for up to 4 weeks. Results: Itching was significantly alleviated after 4 weeks of treatment (95% CI = -0.11-1.71) compared to before application (95% CI = 2.11-4.68). Transepidermal water loss (TEWL) showed an 11% improvement after 4 weeks (95% CI = 3.43-8.83) compared to before application (95% CI = 3.93-9.88), and skin coreneum hydration (SCH) showed a significant 41% improvement after 4 weeks (95% CI = 43.01-62.38) compared to before application (95% CI = 20.94-40.65). Conclusions: Based on the confirmation that RE:pair improves skin barrier function and relieves itching, it is likely to be used as a topical treatment for burn scars pending evaluation in follow-up studies (IRB no. HG2023-016).
Collapse
Affiliation(s)
- HanBi Kim
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (H.K.); (J.U.); (S.L.); (B.C.); (C.P.)
| | - InSuk Kwak
- Department of Anesthesiology and Pain Medicine, Burn Center, Hallym University Hangang Sacred Heart Hospital, Seoul 07247, Republic of Korea;
| | - MiSun Kim
- LG Science Park R&D Center, LG Household & Healthcare (LG H&H), Seoul 07796, Republic of Korea; (M.K.); (J.W.)
| | - JiYoung Um
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (H.K.); (J.U.); (S.L.); (B.C.); (C.P.)
| | - SoYeon Lee
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (H.K.); (J.U.); (S.L.); (B.C.); (C.P.)
| | - BoYoung Chung
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (H.K.); (J.U.); (S.L.); (B.C.); (C.P.)
| | - ChunWook Park
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (H.K.); (J.U.); (S.L.); (B.C.); (C.P.)
| | - JongGu Won
- LG Science Park R&D Center, LG Household & Healthcare (LG H&H), Seoul 07796, Republic of Korea; (M.K.); (J.W.)
| | - HyeOne Kim
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (H.K.); (J.U.); (S.L.); (B.C.); (C.P.)
| |
Collapse
|
23
|
Rahnama M, Ghasemzadeh N, Ebrahimi Y, Golchin A. A comprehensive evaluation of dermal fibroblast therapy in clinical trials for treating skin disorders and cosmetic applications: a scoping review. Stem Cell Res Ther 2024; 15:318. [PMID: 39304949 DOI: 10.1186/s13287-024-03892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Fibroblast cells have the ability to improve skin conditions through regenerative medicine and cell-based therapies. The purpose of this scoping review is to assess the contribution of fibroblast cells to skin homeostasis and extracellular matrix deposition in clinical trials involving skin disorders and cosmetic applications. METHODS Using targeted search terms, published publications from January 2000 to August 2023 that addressed fibroblast uses in clinical trials of skin conditions were obtained from bibliographic databases like PubMed, Scopus, and Web of Science (WoS). Precise inclusion and exclusion criteria were used during the screening process. The potential benefits of induction treatment with fibroblasts lead to the choosing of clinical trials for this kind of treatment. RESULTS Out of the 820 published ppapers initially identified, only 35 studies fulfilled our meticulous eligibility criteria after careful screening. To ensure clarity, we methodically eliminated any duplicate or irrelevant published papers, thereby offering a transparent account of our selection process. CONCLUSION This study highlights the advantages of fibroblast therapy in treating skin conditions such as diabetic foot, venous leg ulcers, and cosmetic reasons. Fibroblasts possess remarkable regenerating capabilities, making dermal fibroblast therapy crucial in cell-based and skin regenerative treatments. Nevertheless, additional research is required for more disorders and cosmetic applications.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Ghasemzadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Ebrahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
24
|
Statha D, Papaioannou A, Kikionis S, Kostaki M, Sfiniadakis I, Vitsos A, Anastassopoulou J, Ioannou E, Roussis V, Rallis MC. Healing Potential of the Marine Polysaccharides Carrageenan and Ulvan on Second-Degree Burns. J Funct Biomater 2024; 15:257. [PMID: 39330232 PMCID: PMC11433208 DOI: 10.3390/jfb15090257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
The treatment of second-degree burn wounds presents a significant clinical challenge, often characterized by prolonged healing times and risk of complications. In this study, the wound healing potential of bioactive marine sulfated polysaccharides ulvan and carrageenan formulated in gels at concentrations of 1.5%, 5.0%, and 10% w/w was evaluated. Hairless female SKH-hr2 mice (n = 7 per treatment) with burn-inflamed skin were treated with the polysaccharide-based gels, and the therapeutic efficacy was assessed using a comprehensive array of evaluation methods, including a histopathological analysis, clinical observation, photo-documentation, an image analysis, an evaluation of biophysical skin parameters, and FT-IR spectroscopy. Our findings indicate that the 10% w/w carrageenan gel exhibited significant enhancement in wound healing, particularly in the early stages of the healing process. This was evidenced by the restoration of the α-helix structure of collagen and the configuration of glycosaminoglycans, as demonstrated by FT-IR absorption bands of the skin both in vivo and ex vivo. Furthermore, the 5% w/w ulvan gel also demonstrated notable efficacy in promoting wound healing, particularly in the later stages of the healing process. These results suggest that carrageenan and ulvan gels hold promise for improving the efficiency of wound healing in second-degree burn wounds. Our study contributes to the understanding of the therapeutic potential of marine polysaccharides and provides insights into their mechanism of action in promoting wound healing.
Collapse
Affiliation(s)
- Dimitra Statha
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Asimina Papaioannou
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria Kostaki
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | | | - Andreas Vitsos
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Jane Anastassopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Michail Christou Rallis
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| |
Collapse
|
25
|
Yassaghi Y, Nazerian Y, Niazi F, Niknejad H. Advancements in cell-based therapies for thermal burn wounds: a comprehensive systematic review of clinical trials outcomes. Stem Cell Res Ther 2024; 15:277. [PMID: 39227861 PMCID: PMC11373270 DOI: 10.1186/s13287-024-03901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Burn trauma is one of the major causes of morbidity and mortality worldwide. The standard management of burn wounds consists of early debridement, dressing changes, surgical management, and split-thickness skin autografts (STSGs). However, there are limitations for the standard management that inclines us to find alternative treatment approaches, such as innovative cell-based therapies. We aimed to systematically review the different aspects of cell-based treatment approaches for burn wounds in clinical trials. METHODS A systematic search through PubMed, Medline, Embase, and Cochrane Library databases was carried out using a combination of keywords, including "Cell transplantation", "Fibroblast", "Keratinocyte", "Melanocyte", or "Stem Cell" with "Burn", "Burn wound", or "Burn injury". Firstly, titles and abstracts of the studies existing in these databases until "February 2024" were screened. Then, the selected studies were read thoroughly, and considering the inclusion and exclusion criteria, final articles were included in this systematic review. Moreover, a manual search was performed through the reference lists of the included studies to minimize the risk of missing reports. RESULTS Overall, 30 clinical trials with 970 patients were included in our study. Considering the type of cells, six studies used keratinocytes, nine used fibroblasts, eight used combined keratinocytes and fibroblasts, one study used combined keratinocytes and melanocytes, five used combined keratinocytes and fibroblasts and melanocytes, and one study used mesenchymal stem cells (MSCs). Evaluation of the preparation type in these studies showed that cultured method was used in 25 trials, and non-cultured method in 5 trials. Also, the graft type of 17 trials was allogeneic, and of 13 other trials was autologous. CONCLUSIONS Our study showed that employing cell-based therapies for the treatment of burn wounds have significant results in clinical studies and are promising approaches that can be considered as alternative treatments in many cases. However, choosing appropriate cell-based treatment for each burn wound is essential and depends on the situation of each patient.
Collapse
Affiliation(s)
- Younes Yassaghi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Feizollah Niazi
- Department of Plastic and Reconstructive Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Alam Shah MK, Nawaz A, Latif MS, Ullah W, Ullah A, Khan AA, Malik A, Kumarasamy V, Subramaniyan V, Azad AK. Chitosan-based Mupirocin and Alkanna tinctoria extract nanoparticles for the management of burn wound: In vitro and in vivo characterization. NANOTECHNOLOGY REVIEWS 2024; 13. [DOI: 10.1515/ntrev-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Abstract
Serious consequences including septicemia and amputations can result from complex wounds, which is a serious healthcare concern. In addition, there are currently only a few choices for management, which justifies the search for novel, highly effective wound-healing medications. This research work was aimed at fabricating chitosan-based Alkanna tinctoria and Mupirocin nanoparticles by ionic gelation technique for burn wound management. Preliminary studies were conducted, and the prepared nanoparticles were characterized by various techniques that involve, high-performance liquid chromatography for the detection of components in A. tinctoria root extract, ATR-FTIR, particle size, zeta potential, percent drug content (DC%), percent entrapment efficiency (EE%), scanning electron microscopy, and transmission electron microscopy (TEM) for surface morphology. The optimized formulation CS-AT-MU-NPs3 shows a particle size of 340.8 ± 34.46 nm and positive zeta potential 27.3 ± 3.10 mV. In vitro drug release study was also performed, which demonstrated improved and controlled release of the drug from the nanoparticles. The CS-AT-MU-NPs3 exhibited a maximum release up to 92.61% (AT) and 88.35% (MU). Antibacterial and antifungal activities of the formulation were also accessed by utilizing the agar well diffusion technique. The combination of AT and MU in chitosan-based nanoparticles was significantly effective against bacterial and fungal strains like Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans as compared to other formulations. The skin irritation study was also conducted, which shows that the prepared formulation did not cause any observable changes to the skin in terms of inflammation, erythema, edema, or any other symptoms associated with skin irritation. All the chitosan-based nanoparticles showed almost 75% reduction in wound contraction, while the optimized formulation CS-AT-MU-NPs3 showed complete wound healing on the 15th day. Based on the results, it can be assumed that chitosan-based nanoparticles containing A. tinctoria and Mupirocin demonstrated good wound healing and could be used to effectively manage burn wounds of any description.
Collapse
Affiliation(s)
- Muhammad Khurshid Alam Shah
- Advance Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University , Dera Ismail Khan , 29050, KP , Pakistan
| | - Asif Nawaz
- Advance Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University , Dera Ismail Khan , 29050, KP , Pakistan
| | - Muhammad Shahid Latif
- Advance Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University , Dera Ismail Khan , 29050, KP , Pakistan
| | - Wasi Ullah
- Advance Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University , Dera Ismail Khan , 29050, KP , Pakistan
| | - Aziz Ullah
- Department of Chemical Engineering, Pukyong National University , Busan 48513 , Republic of Korea
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University , Riyadh 11451 , Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University , Riyadh 11451 , Saudi Arabia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif , 56000 Cheras , Kuala Lumpur , Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500 Selangor Darul Ehsan , Malaysia
| | - Abul Kalam Azad
- Faculty of Pharmacy, University College of MAIWP International, 68100 Batu Caves , Kuala Lumpur , Malaysia
| |
Collapse
|
27
|
Wang X, Xu Z, Xia Y, Chen Z, Zong R, Meng Q, Wang W, Zhuang W, Meng X, Chen G. Characterization of an Escherichia coli phage Tequatrovirus YZ2 and its application in bacterial wound infection. Virology 2024; 597:110155. [PMID: 38943783 DOI: 10.1016/j.virol.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
The increasing prevalence of drug-resistant Escherichia coli (E. coli) resulting from the excessive utilization of antibiotics necessitates the immediate exploration of alternative approaches to counteract pathogenic E. coli. Phages, with their unique antibacterial mechanisms, are considered promising candidates for treating bacterial infections. Herein, we isolated a lytic Escherichia phage Tequatrovirus YZ2 (phage YZ2), which belongs to the genus Tequatrovirus. The genome of phage YZ2 consists of 168,356 base pairs with a G + C content of 35.34% and 269 putative open reading frames (ORFs). Of these, 146 ORFs have been annotated as functional proteins associated with nucleotide metabolism, structure, transcription, DNA replication, translation, and lysis. In the mouse model of a skin wound infected by E. coli, phage YZ2 therapy significantly promoted the wound healing. Furthermore, histopathological analysis revealed reductions in IL-1β and TNF-α and increased VEGF levels, indicating the potential of phages as effective antimicrobial agents against E. coli infection.
Collapse
Affiliation(s)
- Xuewen Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China
| | - Zhou Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China
| | - Yinhe Xia
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China
| | - Zhiling Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China
| | - Rongling Zong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China
| | - Qingye Meng
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China
| | - Weijie Wang
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China
| | - Wenzhen Zhuang
- Office of International Cooperation and Exchange, Weifang People's Hospital, Weifang, 261000, PR China.
| | - Xiangjun Meng
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China.
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China.
| |
Collapse
|
28
|
Zhou M, Yuan T, Shang L. 3D Printing of Naturally Derived Adhesive Hemostatic Sponge. RESEARCH (WASHINGTON, D.C.) 2024; 7:0446. [PMID: 39119591 PMCID: PMC11309851 DOI: 10.34133/research.0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Hydrogel hemostatic sponges have been recognized for its effectiveness in wound treatment due to its excellent biocompatibility, degradability, as well as multi-facet functionalities. Current research focuses on optimizing the composition and structure of the sponge to enhance its therapeutic effectiveness. Here, we propose an adhesive hydrogel made from purely natural substances extracted from okra and Panax notoginseng. We utilize 3-dimensional (3D) printing technology to fabricate the hemostatic hydrogel scaffold, incorporating gelatin into the hydrogel and refining the mixing ratio. The interaction between gelatin and okra polyphenols contributes to successful injectability as well as stability of the printed scaffold. The okra in the scaffold exhibits favorable adhesion and hemostatic effects, and the total saponins of Panax notoginseng facilitate angiogenesis. Through in vitro experiments, we have substantiated the scaffold's excellent stability, adhesion, biocompatibility, and angiogenesis-promoting ability. Furthermore, in vivo experiments have demonstrated its dual functionality in rapid hemostasis and wound repair. These features suggest that the 3D-printed, natural substance-derived hydrogel scaffolds have valuable potential in wound healing and related applications.
Collapse
Affiliation(s)
- Minyu Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Tao Yuan
- Department of Spine Surgery,
Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Luoran Shang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences,
Fudan University, Shanghai, China
| |
Collapse
|
29
|
Gou Y, Hu L, Liao X, He J, Liu F. Advances of antimicrobial dressings loaded with antimicrobial agents in infected wounds. Front Bioeng Biotechnol 2024; 12:1431949. [PMID: 39157443 PMCID: PMC11327147 DOI: 10.3389/fbioe.2024.1431949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Wound healing is a complex process that is critical for maintaining the barrier function of the skin. However, when a large quantity of microorganisms invade damaged skin for an extended period, they can cause local and systemic inflammatory responses. If left untreated, this condition may lead to chronic infected wounds. Infected wounds significantly escalate wound management costs worldwide and impose a substantial burden on patients and healthcare systems. Recent clinical trial results suggest that the utilization of effective antimicrobial wound dressing could represent the simplest and most cost-effective strategy for treating infected wounds, but there has hitherto been no comprehensive evaluation reported on the efficacy of antimicrobial wound dressings in promoting wound healing. Therefore, this review aims to systematically summarize the various types of antimicrobial wound dressings and the current research on antimicrobial agents, thereby providing new insights for the innovative treatment of infected wounds.
Collapse
Affiliation(s)
- Yifan Gou
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Liwei Hu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuejuan Liao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing He
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fan Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Zhao M, Kang M, Wang J, Yang R, Zhong X, Xie Q, Zhou S, Zhang Z, Zheng J, Zhang Y, Guo S, Lin W, Huang J, Guo G, Fu Y, Li B, Fan Z, Li X, Wang D, Chen X, Tang BZ, Liao Y. Stem Cell-Derived Nanovesicles Embedded in Dual-Layered Hydrogel for Programmed ROS Regulation and Comprehensive Tissue Regeneration in Burn Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401369. [PMID: 38822749 DOI: 10.1002/adma.202401369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Burn wounds often bring high risks of delayed healing process and even death. Reactive oxygen species (ROS) play a crucial role in burn wound repair. However, the dynamic process in wound healing requires both the generation of ROS to inhibit bacteria and the subsequent reduction of ROS levels to initiate and promote tissue regeneration, which calls for a more intelligent ROS regulation dressing system. Hence, a dual-layered hydrogel (Dual-Gel) tailored to the process of burn wound repair is designed: the inner layer hydrogel (Gel 2) first responds to bacterial hyaluronidase (Hyal) to deliver aggregation-induced emission photosensitizer functionalized adipose-derived stem cell nanovesicles, which generate ROS upon light irradiation to eliminate bacteria; then the outer layer hydrogel (Gel 1) continuously starts a long-lasting consumption of excess ROS at the wound site to accelerate tissue regeneration. Simultaneously, the stem cell nanovesicles trapped in the burns wound also provide nutrients and mobilize neighboring tissues to thoroughly assist in inflammation regulation, cell proliferation, migration, and angiogenesis. In summary, this study develops an intelligent treatment approach on burn wounds by programmatically regulating ROS and facilitating comprehensive wound tissue repair.
Collapse
Affiliation(s)
- Meijiao Zhao
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, China
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingru Wang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Xiaoping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Qihu Xie
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Sitong Zhou
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yixun Zhang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Shuang Guo
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Weiqiang Lin
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Jialin Huang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Genghong Guo
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yu Fu
- School of Inspection, Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Bin Li
- School of Inspection, Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xipeng Li
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xu Chen
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, China
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Yuhui Liao
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, China
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
- School of Inspection, Ningxia Medical University, Yinchuan, 750004, P. R. China
| |
Collapse
|
31
|
Cangelosi G, Mancin S, Bei D, Clementi E, Pantanetti P, Caggianelli G, Petrelli F. Multidisciplinary Management and Autologous Skin Grafting in a Patient with Severe Burns: A Case Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1201. [PMID: 39202483 PMCID: PMC11356184 DOI: 10.3390/medicina60081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024]
Abstract
Background: Heat burns are a prevalent type of trauma. Rapid and effective treatment is crucial for deep burns to minimize complications. Autologous skin grafting is a highly effective treatment for full-thickness burns. A multidisciplinary team plays a vital role in managing burn patients undergoing skin grafting, from initial contact to outpatient follow-up. Case Summary: This case study involves a 56-year-old patient who suffered burns on 60% of his body following an alcohol explosion on an open flame. The patient underwent autologous skin grafting at a Major Burn Center. Initial symptoms included severe pain and immobility, but the patient remained alert and breathed spontaneously. The diagnosis was a loss of epidermis and dermis with burns covering 60-69% of the total body surface area (TBSA) and third-degree burns covering 10% TBSA. Post-discharge, the patient showed significant improvement, with complete healing of the grafts and partial resolution of other lesions. Six months after the intervention, the patient significantly improved his autonomy and mobility. Conclusions: This case highlights the importance of burn prevention and the critical role of multidisciplinary teams in the entire care pathway of burn patients. Appropriate diagnosis, complete treatment, and continuous multidisciplinary support are essential to prevent complications and ensure recovery.
Collapse
Affiliation(s)
| | | | - Diego Bei
- School of Nursing, Polytechnic University of Marche, 60121 Ancona, Italy; (D.B.); (E.C.)
| | - Eleonora Clementi
- School of Nursing, Polytechnic University of Marche, 60121 Ancona, Italy; (D.B.); (E.C.)
| | | | | | - Fabio Petrelli
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy;
| |
Collapse
|
32
|
Ciftel S, Mercantepe F, Mercantepe T, Ciftel E, Klisic A. Dexmedetomidine on the interplay of IL-6 and STAT3 pathways in adrenal gland damage-induced scalding burns in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03300-7. [PMID: 39042159 DOI: 10.1007/s00210-024-03300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Scalding burns are a common form of thermal injury that often leads to systemic complications. Pro-inflammatory cytokines like interleukin-6 (IL-6) and the activation of signal transducer and activator of transcription 3 (STAT3) pathways have been linked to the pathophysiology of organ damage caused by burns. This study aimed to investigate the potential therapeutic effects of dexmedetomidine, an α2-adrenergic receptor agonist with anti-inflammatory properties, on the interplay of IL-6 and STAT3 pathways in adrenal gland damage following scalding burns in rats. Twenty-eight rats were divided randomly into four groups. Rats in group 1 (n=7, control) were given only 0.9% intraperitoneal (i.p.) NaCl. Rats in group 2 (n=7, DEX) were exposed to 25°C water for 17 s on day 1 and received 100 mcg/kg/day dexmedetomidine i.p. for 3 days; for rats in group 3 (n=7, Burn), boiling water of 94°C was applied inside for 17 s. Rats in group 4 (n=7, Burn+DEX) were exposed to 94°C water for 17 s and received 100 mcg/kg/day dexmedetomidine i.p. for 3 days. Adrenal gland tissues were histopathological examined, and STAT3, IL-6, and TUNEL staining were performed using immunohistochemically. Our results revealed that scalding burns increased IL-6 and STAT3 expression in the adrenal glands of rats. Histological analysis demonstrated that dexmedetomidine administration ameliorated adrenal gland damage and reduced inflammatory cell infiltration. Our findings suggest that dexmedetomidine protects the adrenal glands in scalding burns. This protection appears to be mediated, at least in part, by its modulation of IL-6 and STAT3 pathways.
Collapse
Affiliation(s)
- Serpil Ciftel
- Department of Endocrinology and Metabolism, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, 53010, Turkey.
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Enver Ciftel
- Department of Endocrinology and Metabolism, Sivas Numune Hospital, Sivas, Turkey
| | - Aleksandra Klisic
- University of Montenegro-Faculty of Medicine, Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, Podgorica, Montenegro
| |
Collapse
|
33
|
Li H, Zhao J, Cao L, Luo Q, Zhang C, Zhang L. The NLRP3 inflammasome in burns: a novel potential therapeutic target. BURNS & TRAUMA 2024; 12:tkae020. [PMID: 38957662 PMCID: PMC11218784 DOI: 10.1093/burnst/tkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 07/04/2024]
Abstract
Burns are an underestimated serious injury negatively impacting survivors physically, psychologically and economically, and thus are a considerable public health burden. Despite significant advancements in burn treatment, many burns still do not heal or develop serious complications/sequelae. The nucleotide-binding oligomerization domain-like receptors (NLRs) family pyrin domain-containing 3 (NLRP3) inflammasome is a critical regulator of wound healing, including burn wound healing. A better understanding of the pathophysiological mechanism underlying the healing of burn wounds may help find optimal therapeutic targets to promote the healing of burn wounds, reduce complications/sequelae following burn, and maximize the restoration of structure and function of burn skin. This review aimed to summarize current understanding of the roles and regulatory mechanisms of the NLRP3 inflammasome in burn wound healing, as well as the preclinical studies of the involvement of NLRP3 inhibitors in burn treatment, highlighting the potential application of NLRP3-targeted therapy in burn wounds.
Collapse
Affiliation(s)
- Haihong Li
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Junhong Zhao
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei Province, China
| | - Leilei Cao
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Qizhi Luo
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Beijing 100048, China
| | - Lei Zhang
- Department of Psychiatry and Clinical Psychology, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| |
Collapse
|
34
|
Nadeem Butt E, Ali S, Summer M, Siddiqua Khan A, Noor S. Exploring the mechanistic role of silk sericin biological and chemical conjugates for effective acute and chronic wound repair and related complications. Drug Dev Ind Pharm 2024; 50:577-592. [PMID: 39087808 DOI: 10.1080/03639045.2024.2387814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The current review is designed to elaborate and reveal the underlying mechanism of sericin and its conjugates of drug delivery during wounds and wound-related issues. SIGNIFICANCE Wound healing is a combination of different humoral, molecular, and cellular mechanisms. Various natural products exhibit potential in wound healing but among them, sericin, catches much attention of researchers due to its bio-functional properties such as being biodegradable, biocompatible, anti-oxidant, anti-bacterial, photo-protector, anti-inflammatory and moisturizing agent. METHODS AND RESULTS Sericin triggers the activity of anti-inflammatory cytokines which decrease cell adhesion and promote epithelial cell formation. Moreover, sericin enhances the anti-oxidant enzymes in the wounded area which scavenge the toxic consequences of reactive species (ROS). CONCLUSIONS This article highlights the mechanisms of how topical administration of sericin formulations along with 4-hexylresorcinol,\Chitosan\Ag@MOF-GO, polyvinyl alcohol (PVA), platelet lysate and UV photo cross-linked hydrogel sericin methacrylate which recruits a large number of cytokines on wounded area that stimulate fibroblasts and keratinocyte production as well as collagen deposition that led to early wound contraction. It also reviews the different sericin-based nanoparticles that play a significant role in rapid wound healing.
Collapse
Affiliation(s)
- Esham Nadeem Butt
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ayesha Siddiqua Khan
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
35
|
Aldaghi N, kamalabadi-Farahani M, Alizadeh M, Alizadeh A, Salehi M. Enhancing pressure ulcer healing and tissue regeneration by using N-acetyl-cysteine loaded carboxymethyl cellulose/gelatin/sodium alginate hydrogel. Biomed Eng Lett 2024; 14:833-845. [PMID: 38946815 PMCID: PMC11208367 DOI: 10.1007/s13534-024-00378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/27/2024] [Accepted: 03/31/2024] [Indexed: 07/02/2024] Open
Abstract
Prolonged pressure on the skin can result in pressure ulcers, which may lead to serious complications, such as infection and tissue damage. In this study, we evaluated the effect of a carboxymethyl cellulose/gelatin/sodium alginate (CMC/Gel/Alg) hydrogel containing N-acetyl-cysteine (NAC) on the healing of pressure ulcers. Pressure ulcers were induced by applying a magnet to the dorsum of rat skin. The wounds were then treated with sterile gauze, ChitoHeal Gel®, and CMC/Gel/Alg hydrogel dressings with or without NAC for the other groups. We evaluated the morphology, weight loss, swelling, rheology, blood compatibility, cytocompatibility, antioxidant capacity, and wound scratch of the prepared hydrogel. MTT assay revealed that the optimum concentration of NAC was 5 mg/ml, which induced higher cell proliferation and viability. Results of the histopathological evaluation showed increased wound closure, and complete re-epithelialization in the hydrogel-containing NAC group compared to the other groups. The CMC/Gel/Alg/5 mg/ml NAC hydrogel dressing showed 84% wound closure at 14 days after treatment. Immunohistochemical results showed a decrease in the level of TNF-α on day 14 compared day 7. Results of the qPCR assay revealed that NAC hydrogel increased the expression of Collagen type I and TGF-β1 and decreased MMP2 and MMP9 mRNA on the 14th day. The results suggest that the CMC/Gel/Alg/5 mg/ml NAC hydrogel with antioxidant properties is an appropriate dressing for wound healing.
Collapse
Affiliation(s)
- Niloofar Aldaghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
36
|
Kuncorojakti S, Pratama AZA, Antujala CA, Harijanto CTB, Arsy RK, Kurniawan PA, Tjahjono Y, Hendriati L, Widodo T, Aswin A, Diyantoro D, Wijaya AY, Rodprasert W, Susilowati H. Acceleration of wound healing using adipose mesenchymal stem cell secretome hydrogel on partial-thickness cutaneous thermal burn wounds: An in vivo study in rats. Vet World 2024; 17:1545-1554. [PMID: 39185045 PMCID: PMC11344119 DOI: 10.14202/vetworld.2024.1545-1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/21/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim The intricate healing process involves distinct sequential and overlapping phases in thermal injury. To maintain the zone of stasis in Jackson's burn wound model, proper wound intervention is essential. The extent of research on the histoarchitecture of thermal wound healing and the application of mesenchymal stem cell (MSC)-free-based therapy is limited. This study aimed to assess the efficacy of MSC-secretome-based hydrogel for treating partial-thickness cutaneous thermal burn wounds. Materials and Methods Eighteen male Wistar rats were divided into three groups, namely the hydrogel base (10 mg), hydrogel secretome (10 mg) and Bioplacenton™ (10 mg) treatment groups. All groups were treated twice a day (morning and evening) for 7 days. Skin tissue samples from the animals were processed for histological evaluation using the formalin-fixed paraffin-embedded method on days 3 and 7. Results This study's findings showed that secretome hydrogel expedited thermal burn wound healing, decreasing residual burn area, boosting collagen deposition and angiogenesis, guiding scar formation, and influencing the inflammation response facilitated by polymorphonuclear leukocytes and macrophages. Conclusion The secretome hydrogel significantly improves healing outcomes in partial-thickness cutaneous thermal burn wounds. The administration of secretome hydrogel accelerates the reduction of the residual burn area and promotes fibroblast proliferation and collagen density. The repairment of histo-architecture of the damaged tissue was also observed such as the reduction of burn depth, increased angiogenesis and epidermal scar index while the decreased dermal scar index. Furthermore, the secretome hydrogel can modulate the immunocompetent cells by decreasing the polymorphonuclear and increasing the mononuclear cells. Thus, it effectively and safely substitutes for thermal injury stem cell-free therapeutic approaches. The study focuses on the microscopical evaluation of secretome hydrogel; further research to investigate at the molecular level may be useful in predicting the beneficial effect of secretome hydrogel in accelerating wound healing.
Collapse
Affiliation(s)
- Suryo Kuncorojakti
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | | | - Cahya Asri Antujala
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | | | - Rozak Kurnia Arsy
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Putut Andika Kurniawan
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Yudy Tjahjono
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Lucia Hendriati
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Teguh Widodo
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Ahmad Aswin
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Diyantoro Diyantoro
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Andi Yasmin Wijaya
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Helen Susilowati
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
37
|
Dai Z, Cheng X, Chen F. Effect of Comprehensive Noise Reduction Management on the Postoperative Negative Emotion, Stress Response Hormone and Sleep Status of Burn Patients: Single-Centre Retrospective Analysis. Noise Health 2024; 26:410-416. [PMID: 39345085 PMCID: PMC11539992 DOI: 10.4103/nah.nah_80_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE This study aimed to explore the effect of comprehensive noise reduction management on the postoperative recovery of burn patients. METHODS Data of 156 patients admitted to Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University from October 2022 to July 2023 were retrospectively analysed. The patients were divided into two groups according to the management method: group A (n = 76, standard care of burns) and group B (n = 80, standard care of burns+comprehensive noise reduction management). The stress response level, anxiety and depression level, sleep quality and satisfaction of the two groups were compared before and after the management. RESULTS Before the management, no statistically significant differences in cortisol (Cor), anxiety and depression scores and sleep quality were found between the two groups (P > 0.05). After the management, significant differences in Cor, anxiety scores, sleep quality and patient satisfaction were observed between the two groups (P < 0.001). CONCLUSIONS Comprehensive noise reduction management can reduce postoperative stress hormone levels, alleviate negative emotions, such as anxiety, and improve sleep quality and patient satisfaction.
Collapse
Affiliation(s)
- Zhuo Dai
- Department of Burns and Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaojiao Cheng
- Department of Burns and Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Fang Chen
- Department of Burns and Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Xie S, Han J, Xie W, Luo G, Shi X, Wang H, Hou H, He X, Hu X, Ji P, Ma N, Tong C. Comparing collagenase and silver sulfadiazine in deep second-degree burn treatment. Arch Dermatol Res 2024; 316:417. [PMID: 38904701 DOI: 10.1007/s00403-024-03007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024]
Abstract
The indications for collagenase ointment (CO) and its efficacy are not clearly established in the treatment of second-degree burn wounds. To evaluate the efficacy of CO versus silver sulfadiazine ointment (SSD) in the treatment of second-degree burn wounds. A total of 170 eligible patients with deep second-degree burns, aged 18-65 years, with injuries occurring within 48-96 h, and having a total wound area of less than 30% of the total body surface area were included from 5 centers in China. The primary outcome was the wound healing time, and the secondary outcomes were the clearance time of wound necrotic tissues, wound healing rate, and wound inflammation. The study included 85 patients in SSD group and 84 in CO group in the modified intention-to-treat (mITT) population. The median time of wound healing was comparable in both groups (10 days vs. 10.5 days P = 0.16). The time for wound necrotic tissue removal was significantly shortened by CO compared with SSD (5 vs. 10 days P < 0.01). Wound inflammation, pain, wound healing rate, and scar were compared with SSD (all P-values > 0.05). No adverse events, such as infection or allergic reactions to the drugs and materials used, were reported. Both CO and SSD could heal the burn wounds at 10 days of treatment. However, CO significantly shortened the time of wound necrotic tissue removal by 5 days. Trial Registration: ChiCTR2100046971.
Collapse
Affiliation(s)
- Songtao Xie
- Department of Burn and Skin Surgery, First Affiliated Hospital of Air Force Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, 710032, China
| | - Juntao Han
- Department of Burn and Skin Surgery, First Affiliated Hospital of Air Force Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, 710032, China.
| | | | - Gaoxing Luo
- The First Affiliated Hospital of Army Medical University (Southwest Hospital), Chongqing, China.
| | - Xueqin Shi
- Department of Burn and Skin Surgery, First Affiliated Hospital of Air Force Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, 710032, China
| | - Hongtao Wang
- Department of Burn and Skin Surgery, First Affiliated Hospital of Air Force Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, 710032, China
| | - Hongyi Hou
- Department of Burn and Skin Surgery, First Affiliated Hospital of Air Force Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, 710032, China
| | - Xiang He
- Department of Burn and Skin Surgery, First Affiliated Hospital of Air Force Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, 710032, China
| | - Xiaolong Hu
- Department of Burn and Skin Surgery, First Affiliated Hospital of Air Force Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, 710032, China
| | - Peng Ji
- Department of Burn and Skin Surgery, First Affiliated Hospital of Air Force Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, 710032, China
| | - Ningxia Ma
- Department of Burn and Skin Surgery, First Affiliated Hospital of Air Force Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, 710032, China
| | - Cuifang Tong
- Department of Burn and Skin Surgery, First Affiliated Hospital of Air Force Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, 710032, China
| |
Collapse
|
39
|
Bordeanu-Diaconescu EM, Grosu-Bularda A, Frunza A, Andrei GMC, Costache RA, Dumitru CS, Neagu TP, Lascar I, Hariga CS. The Impact of Burns Involving Over 50% of Total Body Surface Area - a Six-Year Retrospective Study. MAEDICA 2024; 19:247-254. [PMID: 39188841 PMCID: PMC11345052 DOI: 10.26574/maedica.2024.19.2.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
BACKGROUND Severe burns pose significant therapeutic challenges due to their complex pathophysiology, the potential for life-threatening complications, long-term sequelae and the need for a multidisciplinary approach. In this retrospective study, we aimed to comprehensively analyze burns involving over 50% of the total body surface area (TBSA) treated in our institution over six years. MATERIALS AND METHODS We performed a retrospective study including 91 patients. The following epidemiological and clinical characteristics were documented: age, sex, comorbidities, admission modality, mechanism of injury, TBSA burned, burn depth, presence of inhalation injury, outcome, length of stay and associated costs. RESULTS In the study group, subjects had a mean age of 54.4 years (24-93), with a male-to-female ratio of 2.5:1. The median percentage of TBSA burned was 70% (50-99%) and 93.4% of patients had third-degree burns. Inhalation injury was present in 71.4% of patients. Flame burns occurred in 90.1% of patients. Prediction scores were assessed, with 60.4% of patients having an ABSI score above 12. Mortality in our study group was 84.61% and 39.5% of patients died in the first week after burn injury. The most frequent systemic complications were respiratory complications (95.6%), followed by cardiocirculatory (93.4%), metabolic (84.6%), hematological (74.7%), renal (64.8%), hepatic (59.3%) and infectious complications (38.4%). CONCLUSIONS Managing major burns is a highly complex process, which requires specialized care and infrastructure to improve outcomes. Extensive burns, especially over 50% TBSA, have high morbidity and mortality, with factors like age, severity and inhalation injury affecting prognosis. A multidisciplinary approach is essential for treatment, addressing not only the burns but also systemic complications to prevent multiple organ dysfunction syndrome and death.
Collapse
Affiliation(s)
- Eliza-Maria Bordeanu-Diaconescu
- Department of Plastic Surgery and Reconstructive Microsurgery, "Carol Davila" University of Medicine and Pharmacy Bucharest, 010825 Bucharest, Romania
- Burn Centre, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Andreea Grosu-Bularda
- Department of Plastic Surgery and Reconstructive Microsurgery, "Carol Davila" University of Medicine and Pharmacy Bucharest, 010825 Bucharest, Romania
- Burn Centre, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Adrian Frunza
- Department of Plastic Surgery and Reconstructive Microsurgery, "Carol Davila" University of Medicine and Pharmacy Bucharest, 010825 Bucharest, Romania
- Burn Centre, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Grama Mihaela-Cristina Andrei
- Department of Plastic Surgery and Reconstructive Microsurgery, "Carol Davila" University of Medicine and Pharmacy Bucharest, 010825 Bucharest, Romania
| | - Raducu-Andrei Costache
- Department of Plastic Surgery and Reconstructive Microsurgery, "Carol Davila" University of Medicine and Pharmacy Bucharest, 010825 Bucharest, Romania
| | - Catalina-Stefania Dumitru
- Department of Plastic Surgery and Reconstructive Microsurgery, "Carol Davila" University of Medicine and Pharmacy Bucharest, 010825 Bucharest, Romania
| | - Tiberiu-Paul Neagu
- Department of Plastic Surgery and Reconstructive Microsurgery, "Carol Davila" University of Medicine and Pharmacy Bucharest, 010825 Bucharest, Romania
- Burn Centre, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Ioan Lascar
- Department of Plastic Surgery and Reconstructive Microsurgery, "Carol Davila" University of Medicine and Pharmacy Bucharest, 010825 Bucharest, Romania
| | - Cristian-Sorin Hariga
- Department of Plastic Surgery and Reconstructive Microsurgery, "Carol Davila" University of Medicine and Pharmacy Bucharest, 010825 Bucharest, Romania
| |
Collapse
|
40
|
Al-Sobayil FA, Alsupail MM, Tharwat M. Effect of pomegranate peel with/without autologous bone marrow on healing of acute cutaneous wounds in alloxan-induced diabetic rabbits. Open Vet J 2024; 14:1358-1369. [PMID: 39055750 PMCID: PMC11268910 DOI: 10.5455/ovj.2024.v14.i6.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/21/2024] [Indexed: 07/27/2024] Open
Abstract
Background Healing of bum wounds is commonly associated with many complications. Every year various new repair materials are developed and experimentally used for treating burn wounds. Humans with diabetes mellitus usually suffer from chronic wound healing. Vascular, neuropathic, immune function, and biochemical abnormalities each contribute to the altered tissue repair. One underlying factor that accompanies all diabetic ulcerations is poor vascular flow, a circumstance that impedes proper wound healing. Numerous studies have highlighted the importance of adequate vascular sufficiency and vessel proliferation in tissue repair and the lack thereof in diabetic wound healing. Other studies have looked at whether disarrayed capillary remodeling and maturation of vessels might play a role in impaired diabetic wound healing. Aim This investigation has been planned to report the influence of treatment with a mixture of both the powder of pomegranate peel (PP) accompanied with an autologous bone marrow (BM) on the cure of burn injuries in experimentally induced diabetic rabbits. Methods Alloxan monohydrate has been applied to create diabetes in 50 rabbits. Then in each rabbit, two deep second-degree burn wounds were experimentally created. The animals were then divided randomly into 5 treatment sections: non-treatment controls (C1), treated with an available commercial powder for wound (C2), treatment with powder of PP, treatment with alone BM, and the final group treated with PP powder with bone marrow (PPBM). The speed of wound closure and the histopathological changes during healing were measured. The levels of the biomarkers of rabbit platelet-derived growth factor AA (PDGF-AA) and rabbit protease-activated receptor 1 (PAR-1) were measured on days 0, 4, 8, and 12. Results Wound healing was markedly more rapid in all the treatment groups versus the control non-treated group. Interestingly, a rapid wound cure was significantly observed in the PPBM group versus the other treatment ones. The histological assessment clarified a significant elevation in the fibroblast and collagen scores in the PPBM group versus the other sections. In addition, there were significant increases in the serum levels of the biomarkers PDGF-AA and PAR-1 among groups. Conclusion Dependent on the results of current research, it can be concluded that both PP powder with BM PPBM significantly accelerate the healing process of burn wounds in experimentally induced diabetic rabbits.
Collapse
Affiliation(s)
- Fahd A. Al-Sobayil
- Department of Clinical Sciences, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Mohamed Tharwat
- Department of Clinical Sciences, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
41
|
Katiyar S, Singh D, Tripathi AD, Chaurasia AK, Singh RK, Srivastava PK, Mishra A. In vitro and in vivo assessment of curcumin-quercetin loaded multi-layered 3D-nanofibroporous matrix prepared by solution blow-spinning for full-thickness burn wound healing. Int J Biol Macromol 2024; 270:132269. [PMID: 38744363 DOI: 10.1016/j.ijbiomac.2024.132269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Burn wounds (BWs) cause impairment of native skin tissue and may cause significant microbial infections that demand immediate care. Curcumin (Cur) and quercetin (Que) exhibit antimicrobial, hemocompatibility, ROS-scavenging, and anti-inflammatory properties. However, its instability, water insolubility, and low biological fluid absorption render it challenging to sustain local Cur and Que doses at the wound site. Therefore, to combat these limitations, we employed blow-spinning and freeze-drying to develop a multi-layered, Cur/Que-loaded gelatin/chitosan/PCL (GCP-Q/C) nanofibroporous (NFP) matrix. Morphological analysis of the NFP-matrix using SEM revealed a well-formed multi-layered structure. The FTIR and XRD plots demonstrated dual-bioactive incorporation and scaffold polymer interaction. Additionally, the GCP-Q/C matrix displayed high porosity (82.7 ± 2.07 %), adequate pore size (∼121 μm), enhanced water-uptake ability (∼675 % within 24 h), and satisfactory biodegradation. The scaffolds with bioactives had a long-term release, increased antioxidant activity, and were more effective against gram-positive (S. aureus) and gram-negative (E. coli) bacteria than the unloaded scaffolds. The in vitro findings of GCP-Q/C scaffolds showed promoted L929 cell growth and hemocompatibility. Additionally, an in vivo full-thickness BW investigation found that an implanted GCP-Q/C matrix stimulates rapid recuperation and tissue regeneration. In accordance with the findings, the Gel/Ch/PCL-Que/Cur NFP-matrix could represent an effective wound-healing dressing for BWs.
Collapse
Affiliation(s)
- Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Divakar Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Avinash Kumar Chaurasia
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ritika K Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep K Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
42
|
Li Z, Xing X, Zhao C, Wu Q, Liu J, Qiu X, Wang L. A rapid interactive chitosan-based medium with antioxidant and pro-vascularization properties for infected burn wound healing. Carbohydr Polym 2024; 333:121991. [PMID: 38494240 DOI: 10.1016/j.carbpol.2024.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Large-pore hydrogels are better suited to meet the management needs of nutrient transportation and gas exchange between infected burn wounds and normal tissues. However, better construction strategies are required to balance the pore size and mechanical strength of hydrogels to construct a faster substance/gas interaction medium between tissues. Herein, we developed spongy large pore size hydrogel (CS-TA@Lys) with good mechanical properties using a simple ice crystal-assisted method based on chitosan (CS), incorporating tannic acid (TA) and ε-polylysine (Lys). A large-pore and mechanically robust hydrogel medium was constructed based on hydrogen bonding between CS molecules. On this basis, a pro-restorative functional platform with antioxidation and pro-vascularization was constructed using TA and Lys. In vitro experiments displayed that the CS-TA@Lys hydrogel possessed favorable mechanical properties and fast interaction performances. In addition, the CS-TA@Lys hydrogel possessed the capacity to remove intra/extracellular reactive oxygen species (ROS) and possessed antimicrobial and pro-angiogenic properties. In vivo experiments displayed that the CS-TA@Lys hydrogel inhibited wound inflammation and promoted wound vascularization. In addition, the CS-TA@Lys hydrogel showed the potential for rapid hemostasis. This study provides a potential functional wound dressing with rapid interaction properties for skin wound repair.
Collapse
Affiliation(s)
- Zhentao Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Xianglong Xing
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Chaoran Zhao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Qi Wu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Junjie Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Xiaozhong Qiu
- School of Basic Medical Science, Southern Medical University, Guangdong, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China.
| | - Leyu Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China.
| |
Collapse
|
43
|
Mishra A, Kushare A, Gupta MN, Ambre P. Advanced Dressings for Chronic Wound Management. ACS APPLIED BIO MATERIALS 2024; 7:2660-2676. [PMID: 38723276 DOI: 10.1021/acsabm.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Wound healing, particularly for chronic wounds, presents a considerable difficulty due to differences in biochemical and cellular processes that occur in different types of wounds. Recent technological breakthroughs have notably advanced the understanding of diagnostic and therapeutic approaches to wound healing. The evolution in wound care has seen a transition from traditional textile dressings to a variety of advanced alternatives, including self-healing hydrogels, hydrofibers, foams, hydrocolloids, environment responsive dressings, growth factor-based therapy, bioengineered skin substitutes, and stem cell and gene therapy. Technological advancements, such as 3D printing and electronic skin (e-skin) therapy, contribute to the customization of wound healing. Despite these advancements, effectively managing chronic wounds remains challenging. This necessitates the development of treatments that consider performance, risk-benefit balance, and cost-effectiveness. This review discusses innovative strategies for the healing of chronic wounds. Incorporating biomarkers into advanced dressings, coupled with corresponding biosensors and drug delivery formulations, enables the theranostic approach to the treatment of chronic wounds. Furthermore, integrating advanced dressings with power sources and user interfaces like near-field communication, radio frequency identification, and Bluetooth enhances real-time monitoring and on-demand drug delivery. It also provides a thorough evaluation of the advantages, patient compliance, costs, and durability of advanced dressings, emphasizing smart formulations and their preparation methods.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| | - Aniket Kushare
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| | - Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Premlata Ambre
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
44
|
XiaoMing X, Yan C, JiaMing G, LiTao L, LiJuan Z, Ying S, Lu Y, Qian S, Jian D. Human umbilical cord mesenchymal stem cells combined with porcine small intestinal submucosa promote the healing of full-thickness skin injury in SD rats. Future Sci OA 2024; 10:FSO955. [PMID: 38817375 PMCID: PMC11137796 DOI: 10.2144/fsoa-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Aim: To assess the therapeutic potential of human umbilical cord mesenchymal stem cells (hUCMSCs) combined with porcine small intestinal submucosa (SIS) on full-thickness skin injuries in rats. Methods: We established full-thickness skin injury models in Sprague-Dawley rats, dividing them into blank control, SIS, hUCMSCs and hUCMSCs combined with SIS. We monitored wound healing, scores and area, and analyzed inflammatory cells, microvessel density and collagen fibers after 12 days. Results: The blank group showed no healing, forming a scar of 0.6 × 0.5 cm2, while SIS and hUCMSCs groups exhibited incomplete healing with 0.4 × 0.5 cm2 scabs. Wound healing was significantly better in the hUCMSCs combined with the SIS group. Conclusion: Local application of hUCMSCs combined with SIS enhances full-thickness skin injury wound healing in rats.
Collapse
Affiliation(s)
- Xu XiaoMing
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Chen Yan
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Gu JiaMing
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Liang LiTao
- Department of Obstetrics, The Second Affiliated Hospital of Kunming Medical University,Kunming,Yunnan, 650101, China
| | - Zhang LiJuan
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital, Kunming, Yunnan, 650118, China
| | - Song Ying
- Department of Obstetrics, Kunming Maternal & Child Health Hospital, Kunming, Yunnan, 650011, China
| | - Yuan Lu
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Song Qian
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Dong Jian
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| |
Collapse
|
45
|
De Decker I, Janssens D, De Mey K, Hoeksema H, Simaey M, De Coninck P, Verbelen J, De Pessemier A, Blondeel P, Monstrey S, Claes KE. Assessing antibacterial efficacy of a polyhexanide hydrogel versus alginate-based wound dressing in burns. J Wound Care 2024; 33:335-347. [PMID: 38683776 DOI: 10.12968/jowc.2024.33.5.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Burn injuries pose a heightened risk of infection, which is primarily responsible for increased morbidity and mortality. Factors such as extensive skin damage and compromised immunity exacerbate this vulnerability. Pseudomonas aeruginosa and Staphylococcus aureus are frequently identified in burns, with Gram-negative Pseudomonas aeruginosa often resistant to antibacterial agents. While Flaminal, an alginate-based wound dressing (Flen Health, Belgium), aids wound healing, its antibacterial effects are limited compared with 1% silver sulfadiazine (1% SSD). In contrast, Prontosan Wound Gel X, a betaine and polyhexanide-based hydrogel (B. Braun Medical AG, Switzerland), has been shown to effectively combat various microbes and promotes wound healing. METHOD In this study, two research cohorts were retrospectively established (control group: patients receiving standard of care with the alginate-based wound dressing; intervention group: patients receiving the polyhexanide hydrogel wound dressing), comprising patients admitted to a burn centre between 2019 and 2022. Patients were eligible when continuous wound treatment with either of the two wound dressings was performed. Laser Doppler imaging (LDI) scans were conducted. Regions of interest (ROIs) were selected based on LDI scans and divided into healing time categories. Wound swabs were collected and the presence of Pseudomonas aeruginosa and Staphylococcus aureus was documented. Bacterial load was evaluated using a semiquantitative scale. Wound healing was recorded. RESULTS The control group consisted of 31 patients with 93 ROIs, while the intervention group had 67 ROIs involving 29 patients. Both groups exhibited similar proportions of healing time categories (p>0.05). The polyhexanide hydrogel dressing outperformed the alginate-based dressing in antiseptic efficacy by significantly reducing the incidence of Pseudomonas aeruginosa- and Staphylococcus aureus-positive cultures in patients' wounds. Wound healing time for conservative treatment was comparable between groups. CONCLUSION In this study, the polyhexanide hydrogel dressing minimised Pseudomonas aeruginosa and Staphylococcus aureus colonisation in burn wounds, demonstrating strong antibacterial properties, emphasising its potential to minimise infections in burn injuries.
Collapse
Affiliation(s)
- Ignace De Decker
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Dries Janssens
- Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Kimberly De Mey
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Henk Hoeksema
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Marie Simaey
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Petra De Coninck
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Jozef Verbelen
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Alina De Pessemier
- Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Phillip Blondeel
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Stan Monstrey
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Karel Ey Claes
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
46
|
Staubach R, Glosse H, Loff S. The Use of Fish Skin Grafts in Children as a New Treatment of Deep Dermal Burns-Case Series with Follow-Up after 2 Years and Measurement of Elasticity as an Objective Scar Evaluation. J Clin Med 2024; 13:2389. [PMID: 38673661 PMCID: PMC11051571 DOI: 10.3390/jcm13082389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Wound healing in deep dermal burn injuries continues to be a challenge in paediatrics. In the absence quick and spontaneous wound closure, split-thickness skin grafting is often necessary. Since the development of a new type of acellular fish matrix, which is very similar to the human skin matrix, skin closure and wound conditioning can be achieved without split-thickness skin grafting. Methods: The following study shows a case series of 20 children in whom a fish skin graft was used. The aim was to develop an algorithm for selecting and using fish skin and its long-term results after one and two years. Acellular fish skin worked as a granulation base for wound healing and also as a substitute for split-thickness skin grafts. Results: There was no evidence of infection. Skin transplants and, thus, additional operations could be avoided. The follow-up examinations showed an excellent result, both objectively by means of elasticity measurements (DermalabCombo®) and in the subjective assessment of the skin as part of the Patient and Observer Scar Assessment Scale (POSAS). Conclusion: Fish skin grafts are a good alternative to split-thickness skin grafts for deep dermal wounds. These results should be further analysed with a larger number of patients in future publications.
Collapse
Affiliation(s)
- Raphael Staubach
- Department of Pedriatic Surgery, Klinikum Stuttgart, Olgahospital, 70174 Stuttgart, Germany; (H.G.); (S.L.)
| | | | | |
Collapse
|
47
|
Rahmanian E, Tanideh N, Karbalay-Doust S, Mehrabani D, Rezazadeh D, Ketabchi D, EskandariRoozbahani N, Hamidizadeh N, Rahmanian F, Namazi MR. The effect of topical magnesium on healing of pre-clinical burn wounds. Burns 2024; 50:630-640. [PMID: 37980271 DOI: 10.1016/j.burns.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 09/26/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Magnesium (Mg) is an essential factor in the healing process. This study aimed to evaluate the effect of Mg creams on healing burn wounds in the rat model. METHODS To induce burns under general anaesthesia, a 2 × 2 cm2, 100 °C plate was placed for 12 s between the scapulas in 100 male adult Sprague Dawley rats. Animals were divided into five groups (n = 20); positive control (induced burn without treatment); vehicle control (received daily Eucerin cream base topically); comparative control (induced burn and treated daily with Alpha burn cream topically); Treatment 1 and 2 (received daily Mg cream 2% and 4% topically, respectively). All animals were bled for hematological assessment of malondialdehyde (MDA) and TNF-α and sacrificed on days 0, 1, 7, 14, and 21 after interventions for biomechanical, histological, and stereological studies. RESULTS Stereologically speaking, in treatment groups an increase in dermal collagen volume and fibroblasts was noticed. In treatment groups, the length of vessels, angiogenesis, and skin stretch increased, but the wound area, MDA, and TNF-α level decreased. CONCLUSION Mg cream was effective in healing burns.
Collapse
Affiliation(s)
- Elham Rahmanian
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran, And Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem cells technology research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology research Center, Shiraz University of Medical Sciences, Shiraz, iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz, Iran. and Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada
| | - Davood Rezazadeh
- Molecular Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Deniz Ketabchi
- Haj Daei Clinic, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Narges EskandariRoozbahani
- Clinical research development center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasrin Hamidizadeh
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Rahmanian
- Paramedic of Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Reza Namazi
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
48
|
He Y, Zhu H, Xu W, Wang T, Chen Y. Wound healing rates in COPD patients undergoing traditional pulmonary rehabilitation versus tailored Wound-Centric interventions. Int Wound J 2024; 21:e14863. [PMID: 38606653 PMCID: PMC11009941 DOI: 10.1111/iwj.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
This comparative cross-sectional study, conducted at Shanghai Pulmonary Hospital, aimed to evaluate the efficacy of tailored wound-centric interventions (TWCI) versus traditional pulmonary rehabilitation (TPR) in enhancing wound healing in patients with chronic obstructive pulmonary disease (COPD). Enrolling 340 patients with confirmed COPD, the study randomly assigned participants to either the TWCI or TPR group for a 12-week programme. The primary outcome measured was the rate of wound healing, with secondary outcomes including changes in pulmonary function tests (PFTs) and quality of life (QoL) scores. The TWCI group received a customized programme integrating standard pulmonary rehabilitation with specific wound care strategies, such as enhanced oxygen therapy, nutritional supplementation, and infection control measures. In contrast, the TPR group underwent a conventional pulmonary rehabilitation programme without targeted wound care interventions. Wound healing rates, PFTs, and QoL scores were assessed at the end of the intervention and 3 months post-intervention. The TWCI group demonstrated a statistically significant improvement in wound healing rates compared with the TPR group. The TWCI group had a 15% higher rate of reduction in wound size, a 10% rise in complete healing rates, and a 20% drop in infection rates (p < 0.05). Specifically, TWCI group exhibited higher rates of wound size reduction, complete healing, and decreased infection rates. Additionally, long-term pulmonary function and overall quality of life improvements were more pronounced in the tailored group, underscoring the benefits of a personalized approach to managing COPD and wound care. The study concluded that integrating wound-specific care strategies with pulmonary rehabilitation significantly enhances health outcomes in COPD patients with wounds. These findings supported the adoption of customized, multidisciplinary care plans, suggesting that tailored interventions can offer a comprehensive solution to the complex needs of COPD patients, potentially redefining best practices in chronic disease management.
Collapse
Affiliation(s)
- Yan He
- Department of Respiratory and Critical Care MedicineShanghai Fourth People's Hospital Affiliated to Tongji UniversityShanghaiChina
| | - He Zhu
- Department of Thoracic Care UnitShanghai Pulmonary HospitalShanghaiChina
| | - Wenjie Xu
- Department of Respiratory and Critical Care MedicineShanghai Pulmonary HospitalShanghaiChina
| | - Tao Wang
- Department of Thoracic Care UnitShanghai Pulmonary HospitalShanghaiChina
| | - Ying Chen
- Nursing DepartmentShanghai Fourth People’s Hospital Affiliated to Tongji UniversityShanghaiChina
| |
Collapse
|
49
|
Angilia C, Sary NL, Indah R, Suryawati S, Farsa BS, Zeir HA, Fajri F, Husna F. Wound healing effect of nutmeg ( Myristica fragrans) cream on second-degree burn in animal model. NARRA J 2024; 4:e621. [PMID: 38798873 PMCID: PMC11125405 DOI: 10.52225/narra.v4i1.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/25/2024] [Indexed: 05/29/2024]
Abstract
Second-degree burn, the most common among burn degrees, underscores the importance of timely and proper treatment in influencing prognosis. Nutmeg (Myristica fragrans), renowned for its potent antibacterial and antifungal properties, also serves as an effective antiseptic for open wounds. The aim of this study was to identify the phytochemical constituents of nutmeg essential oil and analyze the wound healing effect of nutmeg cream on second-degree burns in an animal model. An experimental study with a completed randomized design was conducted on Rattus norvegicus strain Wistar rats with second-degree burn. This study had four groups and each group consisting of four rats: B (burn-treated base cream), B+N (burn-treated 3% nutmeg cream), B+SSD (burn-treated silver sulfadiazine (BSS)), and B+N+SSD (burn-treated 3% nutmeg cream and SSD in a 1:1 ratio). The phytochemical analysis of nutmeg essential oil was conducted by gas chromatography and mass spectroscopy (GC-MS). The burn diameter and burn wound healing percentage were measured from day 0 to 18. One-way ANOVA followed by post hoc analysis using the least significant difference (LSD) was employed to analysis the effect. The phytochemical analysis of nutmeg essential oil found that myristicin, terpinene-4-ol, terpinene, safrole and terpinolene were the most abundant putative compounds in nutmeg essential oil. On day 0, the average burn wound diameters were 1.4 cm in all groups and increases were observed in all groups on day 3. The wound diameter decreased until day 18 with the smallest burn wound diameter was found in the B+N group (0.86±0.37 cm), followed by B+SSD (0.93±0.29 cm). The B+SSD group exhibited the highest percentage of burn wound healing (56.80±14.05%), which was significantly different from the base cream (p<0.05). The percentage of burn wound healing in rats given 3% nutmeg cream was 41.88±13.81%, suggesting that nutmeg cream could promote burn wound healing in rats induced by second-degree burns.
Collapse
Affiliation(s)
- Ciecielia Angilia
- Master of Biomedical Science, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Nirwana L. Sary
- Department of Physiology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Rosaria Indah
- Department of Anatomy, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Suryawati Suryawati
- Department of Pharmacology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Bianda S. Farsa
- Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Haya A. Zeir
- Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Fauzan Fajri
- Department of Physiology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Fauzul Husna
- Department of Pharmacology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
50
|
Li Z, Cao X, Liu Z, Wu F, Lin C, Wang CM. Therapeutic effect of mitochondrial transplantation on burn injury. Free Radic Biol Med 2024; 215:2-13. [PMID: 38395090 DOI: 10.1016/j.freeradbiomed.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/20/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
As mitochondrial damage or dysfunction is commonly observed following burn injuries, we investigated whether mitochondrial transplantation (MT) can result in therapeutic benefits in the treatment of burns. Human immortalized epidermal cells (HaCaT) and Kunming mice were used to establish a heat-injured cell model and a deep partial-thickness skin burn animal model, respectively. The cell model was established by exposing HaCaT cells to 45 or 50 °C for 10 min, after which cell proliferation was assayed using fluorescent double-staining and colony formation assays, cell migration was assessed using colloidal gold migration and scratch assays, and cell cycle progression and apoptosis were measured by flow cytometry. Histopathological staining, immunohistochemistry, nick-end labeling analysis, and enzyme-linked immunosorbent assays were used to evaluate the effects of MT on inflammation, tissue recovery, apoptosis, and scar growth in a mouse model. The therapeutic effects were observed in the heat-injured HaCaT cell model. MT promoted cell viability, colony formation, proliferation, and migration; decreased G1 phase; promoted cell division; and decreased apoptosis. Wound-healing promotion, anti-inflammation (decreased mast cell aggregation, down-regulated of TNF-α, IL-1β, IL-6, and up-regulated IL-10), acceleration of proliferation recovery (up-regulated CD34 and VEGF), apoptosis reduction, and scar formation reduction (decreased collagen I/III ratio and TGF-β1) were observed in the MT mouse model. The MT mode of action was, however, not investigated in this study. In conclusion, our data indicate that MT exerts a therapeutic effect on burn injuries both in vitro and in vivo.
Collapse
Affiliation(s)
- Zhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xinhui Cao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zuohao Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fen Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Changjun Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Ming Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|