1
|
Behrendt T, Quisilima JI, Bielitzki R, Behrens M, Glazachev OS, Brigadski T, Leßmann V, Schega L. Brain-Derived neurotrophic factor and inflammatory biomarkers are unaffected by acute and chronic intermittent hypoxic-hyperoxic exposure in geriatric patients: a randomized controlled trial. Ann Med 2024; 56:2304650. [PMID: 38253008 PMCID: PMC10810628 DOI: 10.1080/07853890.2024.2304650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Animal and human studies have shown that exposure to hypoxia can increase brain-derived neurotrophic factor (BDNF) protein transcription and reduce systematic inflammatory cytokine response. Therefore, the aim of this study was to investigate the acute and chronic effects of intermittent hypoxic-hyperoxic exposure (IHHE) prior to aerobic exercise on BDNF, interleukin-6 (IL-6), and C-reactive protein (CRP) blood levels in geriatric patients. PATIENTS AND METHODS Twenty-five geriatric patients (83.1 ± 5.0 yrs, 71.1 ± 10.0 kg, 1.8 ± 0.9 m) participated in a placebo-controlled, single-blinded trial and were randomly assigned to either an intervention (IG) or control group (CG) performing an aerobic cycling training (17 sessions, 20 min·session-1, 3 sessions·week-1). Prior to aerobic cycling exercise, the IG was additionally exposed to IHHE for 30 min, whereas the CG received continuous normoxic air. Blood samples were taken immediately before (pre-exercise) and 10 min (post-exercise) after the first session as well as 48 h (post-training) after the last session to determine serum (BDNFS) and plasma BDNF (BDNFP), IL-6, and CRP levels. Intervention effects were analyzed using a 2 x 2 analysis of covariance with repeated measures. Results were interpreted based on effect sizes with a medium effect considered as meaningful (ηp2 ≥ 0.06, d ≥ 0.5). RESULTS CRP was moderately higher (d = 0.51) in the CG compared to the IG at baseline. IHHE had no acute effect on BDNFS (ηp2 = 0.01), BDNFP (ηp2 < 0.01), BDNF serum/plasma-ratio (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 = 0.04). After the 6-week intervention, an interaction was found for BDNF serum/plasma-ratio (ηp2 = 0.06) but not for BDNFS (ηp2 = 0.04), BDNFP (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 < 0.01). BDNF serum/plasma-ratio increased from pre-exercise to post-training (d = 0.67) in the CG compared to the IG (d = 0.51). A main effect of time was found for BDNFP (ηp2 = 0.09) but not for BDNFS (ηp2 = 0.02). Within-group post-hoc analyses revealed a training-related reduction in BDNFP in the IG and CG by 46.1% (d = 0.73) and 24.7% (d = 0.57), respectively. CONCLUSION The addition of 30 min IHHE prior to 20 min aerobic cycling seems not to be effective to increase BDNFS and BDNFP or to reduce IL-6 and CRP levels in geriatric patients after a 6-week intervention.The study was retrospectively registered at drks.de (DRKS-ID: DRKS00025130).
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jessica Ibanez Quisilima
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Oleg S. Glazachev
- Department of Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Medical Faculty, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Burtscher J, Citherlet T, Camacho-Cardenosa A, Camacho-Cardenosa M, Raberin A, Krumm B, Hohenauer E, Egg M, Lichtblau M, Müller J, Rybnikova EA, Gatterer H, Debevec T, Baillieul S, Manferdelli G, Behrendt T, Schega L, Ehrenreich H, Millet GP, Gassmann M, Schwarzer C, Glazachev O, Girard O, Lalande S, Hamlin M, Samaja M, Hüfner K, Burtscher M, Panza G, Mallet RT. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J Physiol 2024; 602:5757-5783. [PMID: 37860950 DOI: 10.1113/jp285230] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Alba Camacho-Cardenosa
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Marta Camacho-Cardenosa
- Clinical Management Unit of Endocrinology and Nutrition - GC17, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Mona Lichtblau
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Julian Müller
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Elena A Rybnikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg, Russia
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sebastien Baillieul
- Service Universitaire de Pneumologie Physiologie, University of Grenoble Alpes, Inserm, Grenoble, France
| | | | - Tom Behrendt
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, University Medical Center and Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| | - Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA
| | - Michael Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gino Panza
- The Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
- John D. Dingell VA Medical Center Detroit, Detroit, MI, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
3
|
Narang BJ, Drole K, Barber JFP, Goods PSR, Debevec T. Utility of hypoxic modalities for musculoskeletal injury rehabilitation in athletes: A narrative review of mechanisms and contemporary perspectives. J Sports Sci 2024:1-14. [PMID: 39448892 DOI: 10.1080/02640414.2024.2416779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Recent evidence suggests that different hypoxic modalities might accelerate the rehabilitation process in injured athletes. In this review, the application of hypoxia during rehabilitation from musculoskeletal injury is explored in relation to two principles: (1) facilitating the healing of damaged tissue, and (2) mitigating detraining and inducing training adaptations with a reduced training load. Key literature that explores the underlying mechanisms for these themes is presented, and considerations for practice and future research directions are outlined. For principle (1), passive intermittent hypoxic exposures might accelerate tissue healing through angiogenic and osteogenic mechanisms. Experimental evidence is largely derived from rodent research, so further work is warranted to establish whether clinically meaningful effects can be observed in humans, before optimal protocols are determined (duration, frequency, and hypoxic severity). Regarding principle (2), a hypoxia-related increase in the cardiometabolic stimulus imposed by low-load exercise is appealing for load-compromised athletes. As rehabilitation progresses, a variety of hypoxic modalities can be implemented to enhance adaptation to energy-systems and resistance-based training, and more efficiently return the athlete to competition readiness. While hypoxic modalities seem promising for accelerating musculoskeletal injury rehabilitation in humans, and are already being widely used in practice, a significant gap remains regarding their evidence-based application.
Collapse
Affiliation(s)
- Benjamin Jonathan Narang
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Kristina Drole
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | | | - Paul S R Goods
- Physical Activity, Sport and Exercise (PHASE) Research Group, School of Allied Health (Exercise Science), Murdoch University, Perth, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
4
|
Xinliang Z, Achkasov EE, Gavrikov LK, Yuchen L, Zhang C, Dudnik EN, Rumyantseva O, Beeraka NM, Glazachev OS. Assessing the importance and safety of hypoxia conditioning for patients with occupational pulmonary diseases: A recent clinical perspective. Biomed Pharmacother 2024; 178:117275. [PMID: 39126774 DOI: 10.1016/j.biopha.2024.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Occupational pulmonary diseases (OPDs) pose a significant global health challenge, contributing to high mortality rates. This review delves into the pathophysiology of hypoxia and the safety of intermittent hypoxic conditioning (IHC) in OPD patients. By examining sources such as PubMed, Relemed, NLM, Scopus, and Google Scholar, the review evaluates the efficacy of IHC in clinical outcomes for OPD patients. It highlights the complexities of cardiovascular and respiratory regulation dysfunctions in OPDs, focusing on respiratory control abnormalities and the impact of intermittent hypoxic exposures. Key areas include the physiological effects of hypoxia, the role of hypoxia-inducible factor-1 alpha (HIF-1α) in occupational lung diseases, and the links between brain ischemia, stroke, and OPDs. The review also explores the interaction between intermittent hypoxic exposures, mitochondrial energetics, and lung physiology. The potential of IHE to improve clinical manifestations and underlying pathophysiology in OPD patients is thoroughly examined. This comprehensive analysis aims to benefit molecular pathologists, pulmonologists, clinicians, and physicians by enhancing understanding of IHE's clinical benefits, from research to patient care, and improving clinical outcomes for OPD patients.
Collapse
Affiliation(s)
- Zhang Xinliang
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Eugeny E Achkasov
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Leonid K Gavrikov
- Volgograd State Medical University, 1, Pavshikh Bortsov Sq., Volgograd 400131, Russia.
| | - Li Yuchen
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Chen Zhang
- Chair of Epidemiology and Modern Technologies of Vaccination, Institute of Professional Education, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia
| | - Elena N Dudnik
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Olga Rumyantseva
- Izmerov Research Institute of Occupational Health, 31 Budeynniy Avenye, Moscow 105275, Russia.
| | - Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA; Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India.
| | - Oleg S Glazachev
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| |
Collapse
|
5
|
Albertus-Cámara I, Paredes-Ruiz MJ, Martínez-González-Moro I. Analysis of Muscle Oxygenation after a Normobaric Hypoxia Tolerance Test. J Funct Morphol Kinesiol 2024; 9:86. [PMID: 38804452 PMCID: PMC11130857 DOI: 10.3390/jfmk9020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The aim of this work was to analyze the influence of acute normobaric hypoxia on quadricep oxygenation. Muscle oxygen saturation (SmO2) was measured using near-infrared spectrometry (NIRS) technology during a normobaric hypoxia tolerance test (NHTT). SmO2 was measured with a Humon Hex® device. In total, 54 healthy subjects participated, 68.5 of which were males and 31.5% of which were females. They performed an NHTT with the IAltitude® simulator, breathing air with an FiO2 level of 11% (equivalent to 5050 m). The maximum duration of the NHTT was set at 10 min, stopping if it reached 83% SpO2. The initial values (PRE) were compared with those obtained at the end of the test (POST) and after 10 min of recovery. The participants were divided into two groups based on whether (G1) they completed the ten minutes or not (G2). In total, 35.1% of men and 41.2% of women completed the 10 min. In both groups, significant differences were observed in the decrease in SmO2 values (p < 0.0001) (G1: PRE = 59.5 ± 12.48%; POST = 55.95 ± 14.30%; G2: PRE = 60.06 ± 13.46%; POST = 57.2 ± 12.3%). There were no differences between groups in any of the three periods. Exposure to normobaric hypoxia produces a decrease in quadricep levels of SmO2 in both sexes, regardless of whether the test is completed. Two patterns appeared: A.-less time and more hypoxia; B. a longer duration and less hypoxia.
Collapse
Affiliation(s)
| | | | - Ignacio Martínez-González-Moro
- Physical Exercise and Human Performance Research Group, Mare Nostrum Campus, University of Murcia, 30001 Murcia, Spain; (I.A.-C.); (M.-J.P.-R.)
| |
Collapse
|
6
|
Timón R, González-Custodio A, Gusi N, Olcina G. Effects of intermittent hypoxia and whole-body vibration training on health-related outcomes in older adults. Aging Clin Exp Res 2024; 36:6. [PMID: 38280022 PMCID: PMC10821964 DOI: 10.1007/s40520-023-02655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/07/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Aging is associated with a health impairment and an increase of the vulnerability of the older people. Strength training under intermittent hypoxic conditions has been shown to have therapeutic effects on individual's health. AIMS The aim of this study was to investigate the effects of a combined intermittent hypoxia (IH) and whole-body vibration (WBV) training program on health-related outcomes in older people. METHODS A total of 60 adults (over the age of 65) voluntarily participated in an intervention that lasted 20 weeks (three 30-min sessions per week). The participants were divided into four experimental groups subjected to different environmental conditions (IH vs normoxia) and exercise (non-exercise vs WBV). Functional fitness, body composition, metabolic parameters, inflammatory biomarkers, and bone turnover were evaluated before and after the intervention. A multifactorial ANOVA with repeated measures was performed to explore differences within and between groups. RESULTS The results showed that IH and WBV had a positive synergistic effect on inflammatory parameters (CRP and IL-10), bone formation biomarker (PINP), and body composition (muscle and bone mass). CONCLUSION In conclusion, a combined IH and WVB training could be a useful tool to prevent the deterioration of health-related outcomes associated with aging. Clinical trial registration NCT04281264. https://clinicaltrials.gov/ .
Collapse
Affiliation(s)
- Rafael Timón
- Facultad de ciencias del deporte, Universidad de Extremadura, Av/Universidad s/n, 10003, Cáceres, Spain.
| | - Adrián González-Custodio
- Facultad de ciencias del deporte, Universidad de Extremadura, Av/Universidad s/n, 10003, Cáceres, Spain
| | - Narcis Gusi
- Facultad de ciencias del deporte, Universidad de Extremadura, Av/Universidad s/n, 10003, Cáceres, Spain
| | - Guillermo Olcina
- Facultad de ciencias del deporte, Universidad de Extremadura, Av/Universidad s/n, 10003, Cáceres, Spain
| |
Collapse
|
7
|
Boulares A, Pichon A, Faucher C, Bragazzi NL, Dupuy O. Effects of Intermittent Hypoxia Protocols on Cognitive Performance and Brain Health in Older Adults Across Cognitive States: A Systematic Literature Review. J Alzheimers Dis 2024; 101:13-30. [PMID: 39093075 DOI: 10.3233/jad-240711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background The rise in the aging population highlights the need to address cognitive decline and neurodegenerative diseases. Intermittent hypoxia (IH) protocols show promise in enhancing cognitive abilities and brain health. Objective This review evaluates IH protocols' benefits on cognition and brain health in older adults, regardless of cognitive status. Methods A systematic search following PRISMA guidelines was conducted across four databases (PubMed, Scopus, Web of Science, and Cochrane Library) and two registers, covering records from inception to May 2024 (PROSPERO: CRD42023462177). Inclusion criteria were: 1) original research with quantitative details; 2) studies involving older adults, with or without cognitive impairment; 3) studies including IH protocols; 4) articles analyzing cognition and brain health in older adults. Results Seven studies and five registered trials met the criteria. Findings indicate that Intermittent Hypoxia Training (IHT) and Intermittent Hypoxia-Hyperoxia Training (IHHT) improved cognitive functions and brain health. Intermittent Hypoxic Exposure (IHE) improved cerebral tissue oxygen saturation, middle cerebral arterial flow velocity, and cerebral vascular conductance, particularly in cognitively impaired populations. IHT and IHHT had no significant effect on BDNF levels. There is a lack of studies on IHHE in older adults with and without cognitive impairment. Conclusions IH protocols may benefit cognition regardless of cognitive status. IHT and IHE positively affect cerebral outcomes, with all protocols having limited effects on BDNF levels. Future research should standardize IH protocols, investigate long-term cognitive effects, and explore neuroprotective biomarkers. Combining these protocols with physical exercise across diverse populations could refine interventions and guide targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ayoub Boulares
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), Faculty of Sport Sciences-STAPS, University of Poitiers, Poitiers, France
| | - Aurélien Pichon
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), Faculty of Sport Sciences-STAPS, University of Poitiers, Poitiers, France
| | - Corentin Faucher
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), Faculty of Sport Sciences-STAPS, University of Poitiers, Poitiers, France
| | - Nicola Luigi Bragazzi
- Department of Mathematics and Statistics, Laboratory for Industrial and Applied Mathematics (LIAM), York University, Toronto, ON, Canada
- Department of Food and Drugs, Medical School, Human Nutrition Unit (HNU), University of Parma, Parma, Italy
- United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair, Health Anthropology Biosphere and Healing Systems, University of Genoa, Genoa, Italy
- Department of Health Sciences (DISSAL), Postgraduate School of Public Health, University of Genoa, Genoa, Italy
| | - Olivier Dupuy
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), Faculty of Sport Sciences-STAPS, University of Poitiers, Poitiers, France
- School of Kinesiology and Physical Activity Sciences (EKSAP), Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
8
|
Raberin A, Burtscher J, Burtscher M, Millet GP. Hypoxia and the Aging Cardiovascular System. Aging Dis 2023; 14:2051-2070. [PMID: 37199587 PMCID: PMC10676797 DOI: 10.14336/ad.2023.0424] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Older individuals represent a growing population, in industrialized countries, particularly those with cardiovascular diseases, which remain the leading cause of death in western societies. Aging constitutes one of the largest risks for cardiovascular diseases. On the other hand, oxygen consumption is the foundation of cardiorespiratory fitness, which in turn is linearly related to mortality, quality of life and numerous morbidities. Therefore, hypoxia is a stressor that induces beneficial or harmful adaptations, depending on the dose. While severe hypoxia can exert detrimental effects, such as high-altitude illnesses, moderate and controlled oxygen exposure can potentially be used therapeutically. It can improve numerous pathological conditions, including vascular abnormalities, and potentially slows down the progression of various age-related disorders. Hypoxia can exert beneficial effects on inflammation, oxidative stress, mitochondrial functions, and cell survival, which are all increased with age and have been discussed as main promotors of aging. This narrative review discusses specificities of the aging cardiovascular system in hypoxia. It draws upon an extensive literature search on the effects of hypoxia/altitude interventions (acute, prolonged, or intermittent exposure) on the cardiovascular system in older individuals (over 50 years old). Special attention is directed toward the use of hypoxia exposure to improve cardiovascular health in older individuals.
Collapse
Affiliation(s)
- Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, A-6020, Austria.
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
9
|
Bestavashvili A, Glazachev O, Ibragimova S, Suvorov A, Bestavasvili A, Ibraimov S, Zhang X, Zhang Y, Pavlov C, Syrkina E, Syrkin A, Kopylov P. Impact of Hypoxia-Hyperoxia Exposures on Cardiometabolic Risk Factors and TMAO Levels in Patients with Metabolic Syndrome. Int J Mol Sci 2023; 24:14498. [PMID: 37833946 PMCID: PMC10572339 DOI: 10.3390/ijms241914498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Along with the known risk factors of cardiovascular diseases (CVDs) constituting metabolic syndrome (MS), the gut microbiome and some of its metabolites, in particular trimethylamine-N-oxide (TMAO), are actively discussed. A prolonged stay under natural hypoxic conditions significantly and multi-directionally changes the ratio of gut microbiome strains and their metabolites in feces and blood, which is the basis for using hypoxia preconditioning for targeted effects on potential risk factors of CVD. A prospective randomized study included 65 patients (32 females) with MS and optimal medical therapy. Thirty-three patients underwent a course of 15 intermittent hypoxic-hyperoxic exposures (IHHE group). The other 32 patients underwent sham procedures (placebo group). Before and after the IHHE course, patients underwent liver elastometry, biochemical blood tests, and blood and fecal sampling for TMAO analysis (tandem mass spectrometry). No significant dynamics of TMAO were detected in both the IHHE and sham groups. In the subgroup of IHHE patients with baseline TMAO values above the reference (TMAO ≥ 5 μmol/l), there was a significant reduction in TMAO plasma levels. But the degree of reduction in total cholesterol (TCh), low-density lipoprotein (LDL), and regression of liver steatosis index was more pronounced in patients with initially normal TMAO values. Despite significant interindividual variations, in the subgroup of IHHE patients with MS and high baseline TMAO values, there were more significant reductions in cardiometabolic and hepatic indicators of MS than in controls. More research is needed to objectify the prognostic role of TMAO and the possibilities of its correction using hypoxia adaptation techniques.
Collapse
Affiliation(s)
- Afina Bestavashvili
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Shabnam Ibragimova
- Department of Therapy of the Institute of Professional Education, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alexander Suvorov
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Shevket Ibraimov
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Xinliang Zhang
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yong Zhang
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, Harbin Medical University, Harbin 150081, China
| | - Chavdar Pavlov
- Department of Therapy of the Institute of Professional Education, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Department of Gastroenterology, Botkin Hospital, 125284 Moscow, Russia
| | - Elena Syrkina
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Abram Syrkin
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Philipp Kopylov
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Timon R, Martinez-Guardado I, Brocherie F. Effects of Intermittent Normobaric Hypoxia on Health-Related Outcomes in Healthy Older Adults: A Systematic Review. SPORTS MEDICINE - OPEN 2023; 9:19. [PMID: 36843041 PMCID: PMC9968673 DOI: 10.1186/s40798-023-00560-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/05/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Aging is a degenerative process that is associated with an increased risk of diseases. Intermittent hypoxia has been investigated in reference to performance and health-related functions enhancement. This systematic review aimed to summarize the effect of either passive or active intermittent normobaric hypoxic interventions compared with normoxia on health-related outcomes in healthy older adults. METHODS Relevant studies were searched from PubMed and Web of Science databases in accordance with PRISMA guidelines (since their inceptions up until August 9, 2022) using the following inclusion criteria: (1) randomized controlled trials, clinical trials and pilot studies; (2) Studies involving humans aged > 50 years old and without any chronic diseases diagnosed; (3) interventions based on in vivo intermittent systemic normobaric hypoxia exposure; (4) articles focusing on the analysis of health-related outcomes (body composition, metabolic, bone, cardiovascular, functional fitness or quality of life). Cochrane Collaboration recommendations were used to assess the risk of bias. RESULTS From 509 articles initially found, 17 studies were included. All interventions were performed in moderate normobaric hypoxia, with three studies using passive exposure, and the others combining intermittent hypoxia with training protocols (i.e., using resistance-, whole body vibration- or aerobic-based exercise). CONCLUSIONS Computed results indicate a limited effect of passive/active intermittent hypoxia (ranging 4-24 weeks, 2-4 days/week, 16-120 min/session, 13-16% of fraction of inspired oxygen or 75-85% of peripheral oxygen saturation) compared to similar intervention in normoxia on body composition, functional fitness, cardiovascular and bone health in healthy older (50-75 years old) adults. Only in specific settings (i.e., intermediate- or long-term interventions with high intensity/volume training sessions repeated at least 3 days per week), may intermittent hypoxia elicit beneficial effects. Further research is needed to determine the dose-response of passive/active intermittent hypoxia in the elderly. TRIAL REGISTRATION SYSTEMATIC REVIEW REGISTRATION PROSPERO 2022 CRD42022338648.
Collapse
Affiliation(s)
- Rafael Timon
- Sport Sciences Faculty, Universidad de Extremadura, Av/ Universidad s/n, 10004, Cáceres, Spain.
| | - Ismael Martinez-Guardado
- grid.464701.00000 0001 0674 2310BRABE Group. Faculty of Life and Nature Sciences, Universidad de Nebrija, Madrid, Spain
| | - Franck Brocherie
- grid.418501.90000 0001 2163 2398Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| |
Collapse
|
11
|
Zhang MH, Han XX, Lu Y, Deng JJ, Zhang WH, Mao JQ, Mi J, Ding WH, Wu MJ, Yu LM, Liu YH. Chronic intermittent hypoxia impaired collagen synthesis in mouse genioglossus via ROS accumulation: A transcriptomic analysis. Respir Physiol Neurobiol 2023; 308:103980. [PMID: 36273780 DOI: 10.1016/j.resp.2022.103980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Obstructive sleep apnea (OSA) is a sleep-related breathing disorder characterized by intermittent and recurrent upper airway collapse during sleep that leads to chronic intermittent hypoxia (CIH). The genioglossus (GG) is the largest dilator muscle, which controls the upper airway and plays an important role in OSA pathology. Elucidating its genetic alterations may help identify potential targets for OSA. However, the genetic aspects of the GG in CIH mice remain unclear. Here, we have conducted an RNA sequencing (RNA-Seq) analysis to assess the differentially expressed genes (DEGs) in the GG between CIH mice and normoxia (NOR) mice. A total of 637 DEGs were identified to be dysregulated in CIH mice compared with control mice. Bioinformatics analysis showed that the DEGs were related to various physiological processes, such as the endogenous stimulus responses, cellular component organization and metabolic processes. Extracellular matrix (ECM)-receptor interaction was the top KEGG pathway in the environmental information processing category with high significance and large fold changes. From the gene weight distributions of collagen (Col)-related biological processes (BPs), we found several significant DEGs, such as Col1a1, Col1a2, Mmp2, Col3a1, Col5a1, Fmod, and Col5a2. A PPI network showed that Col1a1 was linked to ECM-receptor interactions, responses to reactive oxygen species (ROS) and Col-related BPs. It was verified in vivo and in vitro that hypoxia can induce excess ROS and reduce Col expression levels. Moreover, we found NAC can effectively scavenge ROS and restore collagen synthesis. These findings contribute to a better understanding of the mechanisms linking OSA and upper airway muscle injury and may help identify potential therapeutic targets.
Collapse
Affiliation(s)
- Meng-Han Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China; Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou 310005, China
| | - Xin-Xin Han
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Yun Lu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Jia-Jia Deng
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Wei-Hua Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Jia-Qi Mao
- Department of Endodontics, Stomatological Hospital, Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Mi
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Wang-Hui Ding
- Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou 310005, China
| | - Meng-Jie Wu
- Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou 310005, China
| | - Li-Ming Yu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China.
| | - Yue-Hua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China.
| |
Collapse
|
12
|
Brocherie F, Timon R. Editorial: Long-term effects of hypoxic conditioning on sports performance, health and well-being. Front Physiol 2022; 13:1112754. [PMID: 36569755 PMCID: PMC9782396 DOI: 10.3389/fphys.2022.1112754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France,*Correspondence: Franck Brocherie,
| | - Rafael Timon
- Faculty of Sports Sciences, University of Extremadura, Caceres, Spain
| |
Collapse
|
13
|
Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front Neurosci 2022; 16:1067411. [PMID: 36507357 PMCID: PMC9732261 DOI: 10.3389/fnins.2022.1067411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke (IS) is the leading cause of disability and death worldwide. Owing to the aging population and unhealthy lifestyles, the incidence of cerebrovascular disease is high. Vascular risk factors include hypertension, diabetes, dyslipidemia, and obesity. Therefore, in addition to timely and effective reperfusion therapy for IS, it is crucial to actively control these risk factors to reduce the incidence and recurrence rates of IS. Evidence from human and animal studies suggests that moderate intermittent hypoxia (IH) exposure is a promising therapeutic strategy to ameliorate common vascular risk factors and comorbidities. Given the complex pathophysiological mechanisms underlying IS, effective treatment must focus on reducing injury in the acute phase and promoting repair in the recovery phase. Therefore, this review discusses the preclinical perspectives on IH conditioning as a potential treatment for neurovascular injury and highlights IH pre and postconditioning strategies for IS. Hypoxia conditioning reduces brain injury by increasing resistance to acute ischemic and hypoxic stress, exerting neuroprotective effects, and promoting post-injury repair and regeneration. However, whether IH produces beneficial effects depends not only on the hypoxic regimen but also on inter-subject differences. Therefore, we discuss the factors that may influence the effectiveness of IH treatment, including age, sex, comorbidities, and circadian rhythm, which can be used to help identify the optimal intervention population and treatment protocols for more accurate, individualized clinical translation. In conclusion, IH conditioning as a non-invasive, non-pharmacological, systemic, and multi-targeted intervention can not only reduce brain damage after stroke but can also be applied to the prevention and functional recovery of IS, providing brain protection at different stages of the disease. It represents a promising therapeutic strategy. For patients with IS and high-risk groups, IH conditioning is expected to develop as an adjunctive clinical treatment option to reduce the incidence, recurrence, disability, and mortality of IS and to reduce disease burden.
Collapse
Affiliation(s)
- Honghua Yuan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuhang Gu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Xunming Ji,
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China,Guangxian Nan,
| |
Collapse
|
14
|
Camacho-Cardenosa A, Camacho-Cardenosa M, Martínez-Guardado I, Leal A, Andrada JMV, Timón R. Resistance circuit training combined with hypoxia stimulates bone system of older adults: A randomized trial. Exp Gerontol 2022; 169:111983. [PMID: 36243220 DOI: 10.1016/j.exger.2022.111983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Aging leads to gradual irreversible decline in bone mass. As adherence to pharmacological treatment is poor, hypoxia combined with strength training has been suggested for therapeutic benefit for clinical populations. The present study investigated the effects of normobaric cyclic hypoxic exposure combined with resistance circuit training on bone of older adults. METHODS Healthy older adults (n = 50) were randomly assigned to a (1) control group (CON; n = 20), who were instructed to continue with their normal daily activities, (2) a group that performed resistance training in normoxia (RTN; n = 17) and (3) a group that performed resistance training in hypoxia (RTH; n = 13). During 24 weeks, RTH group performed resistance training with elastic bands under normobaric hypoxic conditions (16.1 % FiO2). A session of both exercise groups included nine exercises of several body areas with a structure of 3 sets × 12-15 repetitions per exercise, with a 1-minute rest between sets. Bone mineral density (g·cm-2) was measured using dual-energy X-ray absorptiometry. Bone turnover markers of formation (N-terminal propeptide of type I procollagen; PINP) and resorption (C-terminal telopeptide of type I collagen; bCTX) were analysed with enzyme-linked immunosorbent assay (ELISA) microplate reader. RESULTS Values of bCTX and bCTX/PINP significant decreased in RTN (bCTX: 47.79 %; p = 0.002; bCTX/PINP: 61.43 %; p = 0.007) and RTH (bCTX: 59.09 %; p = 0.001; bCTX/PINP: 62.61 %; p = 0.003) groups compared with CON group. Change in bone mineral density was not significantly different between groups. Based on clinically significant change, 23 % of the participants in the RTH group reached this value for femoral neck and trochanter bone mineral density (vs 0 % and 6 % of the RTN group, respectively). CONCLUSIONS 24-Weeks of normobaric cyclic hypoxic exposure combined with resistance circuit training has potential to generate positive effects on bone in older adults. TRIAL REGISTRATION NUMBER NCT04281264 (date of registration: February 24, 2020).
Collapse
Affiliation(s)
- Alba Camacho-Cardenosa
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18007 Granada, Spain.
| | - Marta Camacho-Cardenosa
- Clinical Management Unit of Endocrinology and Nutrition - GC17. Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, 14004, Córdoba, Spain.
| | | | - Alejo Leal
- Medical Center Alejo Leal, 10001 Cáceres, Spain.
| | | | - Rafael Timón
- Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|