1
|
Qaiser Z, Khalid N, Mahmood A, Rizvi ZF, Lee SY, Aqeel M. Spatial distribution and impacts of microplastics on potato growth and yield in agroecosystems in Sialkot, Pakistan. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136262. [PMID: 39471612 DOI: 10.1016/j.jhazmat.2024.136262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Microplastic (MP) pollution is a growing concern, yet its impacts on agroecosystems remain poorly understood. This study investigates MP contamination in the agroecosystems of Sialkot, Pakistan, and its potential effects on the growth, physio-biochemical attributes, and yield of potato (Solanum tuberosum L.). Plant and soil samples from 10 diverse agricultural fields were collected and analyzed for MP contamination. FTIR analysis revealed widespread MP presence in the soil across all sites. Fragment, film, and fiber types dominated, with low-density polyethylene (22.42 %), high-density polyethylene (18.05 %), and polystyrene (12.3 %) being the most prevalent polymers. A significant variation in plant growth parameters was observed. The number of tubers per plant also exhibited a significant difference, as evidenced by the decline in potato yield with increasing levels of MP contamination. Potato yield showed a negative correlation with MP contamination levels. The nutrients (Zn, Cu, Ni, and Na) uptake in plant shoots was also observed to be decreased except for Mg and Mn at all sites. This study showed that MPs are contaminating our agricultural lands and they may affect growth and yield of potato. Additional research is needed to understand the underlying mechanisms and develop mitigation strategies to improve agricultural productivity and food security.
Collapse
Affiliation(s)
- Zonaira Qaiser
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan.
| | - Adeel Mahmood
- Department of Environmental Sciences, Government College Women University, Sialkot, Pakistan
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| |
Collapse
|
2
|
Chen Z, Carter LJ, Banwart SA, Pramanik DD, Kay P. Multifaceted effects of microplastics on soil-plant systems: Exploring the role of particle type and plant species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176641. [PMID: 39357762 DOI: 10.1016/j.scitotenv.2024.176641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Microplastics have emerged as a global environmental concern, yet their impact on terrestrial environments, particularly agricultural soils, remains underexplored. Agricultural soils, due to intensive farming, may serve as significant sinks for microplastics. This study investigated the effects of different types of microplastics-polyester microfibers, polyethylene terephthalate microfragments, and polystyrene microspheres-on soil properties and radish growth, while a complementary experiment examined the impact of polyester microfibers on the growth of lettuce and Chinese cabbage. Through both horizontal and vertical comparisons, this research comprehensively evaluated the interactions between microplastic particles and plant species in soil-plant systems. The results showed that polyester microfibers significantly affected soil bulk density, with effects varying based on planting conditions (p < 0.01). Polyethylene terephthalate microfragments and polystyrene microspheres reduced the proportion of small soil macroaggregates under radish cultivation (p < 0.01). Additionally, polystyrene microspheres significantly altered the total organic carbon stock in radish-growing soil, potentially affecting the microclimate (p < 0.01). Interestingly, polyester microfibers promoted lettuce seed germination and significantly enhanced the root biomass of Chinese cabbage (p < 0.05). Overall, the environmental effects of microplastic exposure varied depending on the type of particle and plant species, suggesting that microplastics are not always harmful to soil-plant systems and may even offer benefits in certain scenarios. Given the crucial role of soil-plant systems in terrestrial ecosystems, and their direct connection to food safety, human health, and global change, further research should explore both the positive and negative impacts of microplastics on agricultural practices.
Collapse
Affiliation(s)
- Zhangling Chen
- School of Earth and Environment, University of Leeds, LS2 9JT, United Kingdom; School of Geography, University of Leeds, LS2 9JT, United Kingdom.
| | - Laura J Carter
- School of Geography, University of Leeds, LS2 9JT, United Kingdom
| | - Steven A Banwart
- School of Earth and Environment, University of Leeds, LS2 9JT, United Kingdom
| | - Devlina Das Pramanik
- School of Food Science and Nutrition, University of Leeds, LS2 9JT, United Kingdom; Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Paul Kay
- School of Geography, University of Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
3
|
Shaaban A, Hemida KA, Abd El-Mageed TA, Semida WM, AbuQamar SF, El-Saadony MT, Al-Elwany OAAI, El-Tarabily KA. Incorporation of compost and biochar enhances yield and medicinal compounds in seeds of water-stressed Trigonella foenum-graecum L. plants cultivated in saline calcareous soils. BMC PLANT BIOLOGY 2024; 24:538. [PMID: 38867179 PMCID: PMC11167906 DOI: 10.1186/s12870-024-05182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND The combination of compost and biochar (CB) plays an important role in soil restoration and mitigation strategies against drought stress in plants. In the current study, the impact of CB was determined on the characteristics of saline calcareous soil and the productivity of fenugreek (Trigonella foenum-graecum L.) plants. The field trials examined CB rates (CB0, CB10 and CB20 corresponding to 0, 10, and 20 t ha‒1, respectively) under deficit irrigation [DI0%, DI20%, and DI40% receiving 100, 80, and 60% crop evapotranspiration (ETc), respectively] conditions on growth, seed yield (SY), quality, and water productivity (WP) of fenugreek grown in saline calcareous soils. RESULTS In general, DI negatively affected the morpho-physio-biochemical responses in plants cultivated in saline calcareous soils. However, amendments of CB10 or CB20 improved soil structure under DI conditions. This was evidenced by the decreased pH, electrical conductivity of soil extract (ECe), and bulk density but increased organic matter, macronutrient (N, P, and K) availability, water retention, and total porosity; thus, maintaining better water and nutritional status. These soil modifications improved chlorophyll, tissue water contents, cell membrane stability, photosystem II photochemical efficiency, photosynthetic performance, and nutritional homeostasis of drought-stressed plants. This was also supported by increased osmolytes, non-enzymatic, and enzymatic activities under DI conditions. Regardless of DI regimes, SY was significantly (P ≤ 0.05) improved by 40.0 and 102.5% when plants were treated with CB10 and CB20, respectively, as similarly observed for seed alkaloids (87.0, and 39.1%), trigonelline content (43.8, and 16.7%) and WP (40.9, and 104.5%) over unamended control plants. CONCLUSIONS Overall, the application of organic amendments of CB can be a promising sustainable solution for improving saline calcareous soil properties, mitigating the negative effects of DI stress, and enhancing crop productivity in arid and semi-arid agro-climates.
Collapse
Affiliation(s)
- Ahmed Shaaban
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Khaulood A Hemida
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Wael M Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Omar A A I Al-Elwany
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
4
|
Iqbal B, Khan I, Anwar S, Jalal A, Okla MK, Ahmad N, Alaraidh IA, Tariq M, AbdElgawad H, Li G, Du D. Biochar and saline soil: mitigation strategy by incapacitating the ecological threats to agricultural land. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1269-1279. [PMID: 38318857 DOI: 10.1080/15226514.2024.2310001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Soil salinity caused a widespread detrimental issue that hinders productivity in agriculture and ecological sustainability, while waste-derived soil amendments like biochar have drawn attention for their capacity to act as a mitigating agent, by enhancing the physical and chemical features of soil, and contributing to the recovery of agricultural waste resources. However, the information concerning biochar and salinity which affect the physicochemical characteristics of soils, crop physiology, and growth is limited. To investigate whether biochar mitigates the salinity stress on wheat crop seedlings, we grow them with salinity stress (120 mM), and biochar (20 tons ha-1), and its interactive effects. The soil properties of soil organic carbon (SOC), soil organic matter (SOM), dissolved organic carbon (DOC), and soil available phosphorus (SAP) decreased in the saline soil by 36.71%, 46.97%, 26.31%, and 15.00%, while biochar treatment increased SOC, DOC, and SAP contents by 7.42%, 31.57%, and 15.00%, respectively. On the other hand, dissolved organic nitrogen (DON) contents decreased in all the treatments compared to the control. The root growth traits, SPAD values, leaf nitrogen, photosynthetic parameters, antioxidant enzymes, and reactive oxygen species decreased in the saline treatment while increasing in the biochar and interactive treatment. Thus, these activities resulted in higher leaves and root biomass in the biochar treatment alone and interactive treatment of salinity and biochar. According to principal component analysis, redundancy analysis, and the mantel test, using biochar in conjunction with salinity treatment was found to be more effective than salinity treatment alone. The results of this study suggest that biochar can be used as a sustainable agricultural technique and a means of mitigation agent by lowering soil salinity while increasing the biomass of crops.
Collapse
Affiliation(s)
- Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, People's Republic of China
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, People's Republic of China
| | - Ismail Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, People's Republic of China
| | - Shazma Anwar
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Arshad Jalal
- School of Engineering, Department of Plant Health, Rural Engineering and Soils, São Paulo State University - UNESP-FEIS, São Paulo, Brazil
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Tariq
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, People's Republic of China
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, People's Republic of China
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, People's Republic of China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
5
|
Li G, Tang Y, Lou J, Wang Y, Yin S, Li L, Iqbal B, Lozano YM, Zhao T, Du D. The promoting effects of soil microplastics on alien plant invasion depend on microplastic shape and concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172089. [PMID: 38554966 DOI: 10.1016/j.scitotenv.2024.172089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Both alien plant invasions and soil microplastic pollution have become a concerning threat for terrestrial ecosystems, with consequences on the human well-being. However, our current knowledge of microplastic effects on the successful invasion of plants remains limited, despite numerous studies demonstrating the direct and indirect impacts of microplastics on plant performance. To address this knowledge gap, we conducted a greenhouse experiment involving the mixtures of soil and low-density polyethylene (LDPE) microplastic pellets and fragments at the concentrations of 0, 0.5 % and 2.0 %. Additionally, we included Solidago decurrens (native plant) and S. canadensis (alien invasive plant) as the target plants. Each pot contained an individual of either species, after six-month cultivation, plant biomass and antioxidant enzymes, as well as soil properties including soil moisture, pH, available nutrient, and microbial biomass were measured. Our results indicated that microplastic effects on soil properties and plant growth indices depended on the Solidago species, microplastic shapes and concentrations. For example, microplastics exerted positive effects on soil moisture of the soil with native species but negative effects with invasive species, which were impacted by microplastic shapes and concentrations, respectively. Microplastics significantly impacted catalase (P < 0.05) and superoxide dismutase (P < 0.01), aboveground biomass (P < 0.01), and belowground/aboveground biomass (P < 0.01) of the native species depending on microplastic shapes, but no significant effects on those of the invasive species. Furthermore, microplastics effects on soil properties, nutrient, nutrient ratio, and plant antioxidant enzyme activities contributed to plant biomass differently among these two species. These results suggested that the microplastics exerted a more pronounced impact on native Solidago plants than the invasive ones. This implies that the alien invasive species displays greater resistance to microplastic pollution, potentially promoting their invasion. Overall, our study contributes to a better understanding of the promoting effects of microplastic pollution on plant invasion.
Collapse
Affiliation(s)
- Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Yi Tang
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jiabao Lou
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yanjiao Wang
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Shiyu Yin
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Lianghui Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yudi M Lozano
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany.
| | - Tingting Zhao
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
6
|
Tariq M, Iqbal B, Khan I, Khan AR, Jho EH, Salam A, Zhou H, Zhao X, Li G, Du D. Microplastic contamination in the agricultural soil-mitigation strategies, heavy metals contamination, and impact on human health: a review. PLANT CELL REPORTS 2024; 43:65. [PMID: 38341396 DOI: 10.1007/s00299-024-03162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Microplastic pollution has emerged as a critical global environmental issue due to its widespread distribution, persistence, and potential adverse effects on ecosystems and human health. Although research on microplastic pollution in aquatic environments has gained significant attention. However, a limited literature has summarized the impacts of microplastic pollution the agricultural land and human health. Therefore, In the current review, we have discussed how microplastic(s) affect the microorganisms by ingesting the microplastic present in the soil, alternatively affecting the belowground biotic and abiotic components, which further elucidates the negative effects on the above-ground properties of the crops. In addition, the consumption of these crops in the food chain revealed a potential risk to human health throughout the food chain. Moreover, microplastic pollution has the potential to induce a negative impact on agricultural production and food security by altering the physiochemical properties of the soil, microbial population, nutrient cycling, and plant growth and development. Therefore, we discussed in detail the potential hazards caused by microplastic contamination in the soil and through the consumption of food and water by humans in daily intake. Furthermore, further study is urgently required to comprehend how microplastic pollution negatively affects terrestrial ecosystems, particularly agroecosystems which drastically reduces the productivity of the crops. Our review highlights the urgent need for greater awareness, policy interventions, and technological solutions to address the emerging threat of microplastic pollution in soil and plant systems and mitigation strategies to overcome its potential impacts on human health. Based on existing studies, we have pointed out the research gaps and proposed different directions for future research.
Collapse
Affiliation(s)
- Muhammad Tariq
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Ismail Khan
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ali Raza Khan
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Huan Zhou
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Zhenjiang New District Environmental Monitoring Station Co. Ltd, Zhenjiang, 212132, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
7
|
Iqbal B, Zhao X, Khan KY, Javed Q, Nazar M, Khan I, Zhao X, Li G, Du D. Microplastics meet invasive plants: Unraveling the ecological hazards to agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167756. [PMID: 37832681 DOI: 10.1016/j.scitotenv.2023.167756] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The objective of this study was to assess the combined impact of environmental microplastic pollution and biological invasion which represent critical global eco-environmental challenges. The invasion of Solidago canadensis L. and soil microplastic contamination in the agroecosystem pose severe hazards to soil and plant ecology and human health. Oryza sativa L. (rice) was examined after individual and combined exposure to Solidago canadensis L. invasion (SI) and soil polyethylene microplastic contamination (MPc). Comparing the individual and combination treatments to the control, leaf biomass decreased, with varying changes in carbon, nitrogen, and phosphorus. Antioxidant enzyme activity and reactive oxygen species levels were significantly reduced following SI exposure and increased following the combined treatment (SI × MP). In contrast, ascorbate peroxidase and catalase activities were reduced after the combined treatment. Due to the confluence of various abiotic stressors, the combined treatment had a higher impact on leaf metabolites than the singular SI and MPc treatments. However, in comparison, the combined treatment significantly influenced the metabolic profile. In conclusion, the interaction between SI and MPc resulted in significant metabolic alterations. These changes were characterized by shifts in metabolite pools influenced by antioxidant enzyme activities and nutrient content, ultimately enhancing defense mechanisms within rice crops. Consequently, these stressors threaten the food safety, sustainability, and agricultural output of crops. The co-exposure of invasive plants and microplastics sheds light on the bio-ecological risks associated with microplastics in staple foods and offers valuable insights into the phytotoxicity of invasive plants in the presence of polyethylene microplastics.
Collapse
Affiliation(s)
- Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Xiaoxun Zhao
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Kiran Yasmin Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qaiser Javed
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Mudasir Nazar
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Ismail Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Daolin Du
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
8
|
Tang Y, Li G, Iqbal B, Tariq M, Rehman A, Khan I, Du D. Soil nutrient levels regulate the effect of soil microplastic contamination on microbial element metabolism and carbon use efficiency. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115640. [PMID: 37922780 DOI: 10.1016/j.ecoenv.2023.115640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Microplastics (MPs) are emerging environmental contaminants in soil ecosystems that disrupt the soil carbon (C) pool. Therefore, the response of microbial metabolism to MP-contaminated soil is crucial for soil-C stabilization. We undertook factorial experiments in a greenhouse with three types of soil microplastics with three levels of soil nutrients and undertook soil physiochemical analyses after 60 days. The present study revealed how the presence of degradable polylactic acid (PLA) and non-degradable polyethylene (PE) MPs affects soil microbial nutrient limitation and C use efficiency (CUE) at varying nutrient concentrations. The presence of PLA in soil with low nutrient levels led to a significant increase (29%) in the activities of nitrogen (N)-acquiring enzymes. In contrast, the presence of MPs had no effect on C- and N-acquiring enzymes. The occurrence of PE caused a 41% reduction in microbial C limitation in high-nutrient soils, and microbial nutrient metabolism was limited by the occurrence of MPs in soils amended with nutrients. A strong positive correlation between microbial C and nutrient limitation in the soil indicates that addressing C limitation followed by amendment of soil with MPs could potentially intensify microbial N limitation in soils with varying nutrients. In comparison, the microbial CUE increased by 10% with the application of degradable MPs (PLA) to soils with a low nutrient status. These findings highlight the significant influence of both degradable PLA and non-degradable PE MPs on soil microbial processes and C dynamics. In conclusion, PLA enhances metabolic efficiency in nutrient-rich soils, potentially aiding C utilization, whereas PE reduces microbial C limitation, offering promise for soil C sequestration strategies. Our findings underscore the importance of considering MPs in soil ecosystem studies and in broader sustainability efforts.
Collapse
Affiliation(s)
- Yi Tang
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Guanlin Li
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Babar Iqbal
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Muhammad Tariq
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Abdul Rehman
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Ismail Khan
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Daolin Du
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
9
|
Niu H, Nie Z, Long Y, Guo J, Tan J, Bi J, Yang H. Efficient pyridine biodegradation by Stenotrophomonas maltophilia J2: Degradation performance, mechanism, and immobilized application for wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132220. [PMID: 37549577 DOI: 10.1016/j.jhazmat.2023.132220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Stenotrophomonas maltophilia J2, a highly efficient pyridine-degrading bacterium, was isolated from the aerobic tank of a pesticide-contaminated wastewater treatment plant. The strain J2 demonstrated an impressive pyridine degradation rate of 98.34% ± 0.49% within 72 h, at a pyridine concentration of 1100 mg·L-1, a temperature of 30 °C, a pH of 8.0, and a NaCl concentration of 0.5%. Notably, two new pyridine metabolic intermediates, 1,3-dihydroxyacetone and butyric acid, were discovered, indicating that J2 may degrade pyridine through two distinct metabolic pathways. Furthermore, the immobilized strain J2 was obtained by immobilizing J2 with biochar derived from the stem of Solidago canadensis L. In the pyridine-contaminated wastewater bioremediation experiment, the immobilized strain J2 was able to remove 2000 mg·L-1 pyridine with a 98.66% ± 0.47% degradation rate in 24 h, which was significantly higher than that of the control group (3.17% ± 1.24%), and remained above 90% in subsequent cycles until the 27th cycle. High-throughput sequencing analysis indicated that the J2 +B group had an elevated relative abundance of bacteria and functional genes that could be associated with the degradation of pyridine. The results offer a foundation for the effective use of immobilized strain in the treatment of recalcitrant pyridine-contaminated wastewater.
Collapse
Affiliation(s)
- Hongyu Niu
- College of Resources and Environment, Hunan Agricultural University, 410128 Changsha, China
| | - Zimeng Nie
- School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Yu Long
- College of Resources and Environment, Hunan Agricultural University, 410128 Changsha, China
| | - Jiayuan Guo
- College of Resources and Environment, Hunan Agricultural University, 410128 Changsha, China
| | - Ju Tan
- Changsha Ecological Monitoring Center of Hunan Province, 410001 Changsha, China
| | - Junping Bi
- Changsha Environmental Protection College, 410001 Changsha, China
| | - Haijun Yang
- College of Resources and Environment, Hunan Agricultural University, 410128 Changsha, China.
| |
Collapse
|
10
|
Khan W, Shah S, Ullah A, Ullah S, Amin F, Iqbal B, Ahmad N, Abdel-Maksoud MA, Okla MK, El-Zaidy M, Al-Qahtani WH, Fahad S. Utilizing hydrothermal time models to assess the effects of temperature and osmotic stress on maize (Zea mays L.) germination and physiological responses. BMC PLANT BIOLOGY 2023; 23:414. [PMID: 37679677 PMCID: PMC10483708 DOI: 10.1186/s12870-023-04429-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
The application of germination models in economic crop management makes them extremely useful for predicting seed germination. Hence, we examined the effect of varying water potentials (Ψs; 0. - 0.3, - 0.6, - 0.9, - 1.2 MPa) and temperatures (Ts; 20, 25, 30, 35, 40 °C) on maize germination and enzymatic antioxidant mechanism. We observed that varying Ts and Ψs significantly influenced germination percentage (GP) and germination rate (GR), and other germination parameters, including germination rate index (GRI), germination index (GI), mean germination index (MGI), mean germination time (MGT), coefficient of the velocity of germination (CVG), and germination energy (GE) (p ≤ 0.01). Maximum (87.60) and minimum (55.20) hydro-time constant (θH) were reported at 35 °C and 20 °C, respectively. In addition, base water potential at 50 percentiles was highest at 30 °C (15.84 MPa) and lowest at 20 °C (15.46 MPa). Furthermore, the optimal, low, and ceiling T (To, Tb and Tc, respectively) were determined as 30 °C, 20 °C and 40 °C, respectively. The highest θT1 and θT2 were reported at 40 °C (0 MPa) and 20 °C (- 0.9 MPa), respectively. HTT has a higher value (R2 = 0.43 at 40 °C) at sub-optimal than supra-optimal temperatures (R2 = 0.41 at 40 °C). Antioxidant enzymes, including peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione peroxidase (GPX), increased with decreasing Ψs. In contrast, CAT and POD were higher at 20 °C and 40 °C but declined at 25, 30, and 35 °C. The APX and GPX remained unchanged at 20, 25, 30, and 40 °C but declined at 35 °C. Thus, maintaining enzymatic activity is a protective mechanism against oxidative stress. A decline in germination characteristics may result from energy diverting to anti-stress tools (antioxidant enzymes) necessary for eliminating reactive oxygen species (ROS) to reduce salinity-induced oxidative damage. The parameters examined in this study are easily applicable to simulation models of Z. mays L. germination under extreme environmental conditions characterized by water deficits and temperature fluctuations.
Collapse
Affiliation(s)
- Waqif Khan
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Sumbal Shah
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan
| | - Abd Ullah
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, 830000, Xinjiang, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, Xinjiang, China
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan
| | - Fazal Amin
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212000, China.
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammed K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed El-Zaidy
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Wahidah H Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 270677, 11352, Riyadh, Saudi Arabia
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|