1
|
Zhou Y, Tian L, Wang L, Wu W, Liang B, Xiong W, Zhang L, Li X, Chen J. Bisphenol S exposure interrupted human embryonic stem cell derived cardiomyocytes differentiation through ER-NF-κB/ERK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117576. [PMID: 39729939 DOI: 10.1016/j.ecoenv.2024.117576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
Bisphenol S (BPS) has been put into production as a wide range of Bisphenol A (BPA) alternatives, while little is known regarding its cardiac developmental toxicity. To explore the effect of BPS on cardiomyocyte differentiation and its mechanism, our study established the human embryonic stem cell-cardiomyocyte differentiation model (hESC-CM), which was divided into early period of differentiation (DP1:1-8d), anaphase period of differentiation (DP2:9-16d) and whole stage of differentiation (DP3:1-16d) exposed to human-related levels of BPS. We found that the survival rate of cardiomyocytes was more sensitive to BPS at the early stage of differentiation than at the anaphase stage of differentiation, and exposure to higher than 30 µg/mL BPS throughout the differentiation period decreased the expression of cTnT. BPS may affect cardiomyocyte differentiation by activating ERβ-NF-κB/ERK signaling pathway, and the signaling pathway of each stage might be different. During DP1, 3 µg/mL of BPS may increase the inflammatory effect of cardiomyocytes mainly through the ERβ-NF-κB signaling pathway, thereby inhibiting cell proliferation, and leading to impaired cardiac function in early differentiation. During DP2, BPS may activate the ERβ-ERK signaling pathway, increase cardiomyocyte apoptosis, alter the establishment of the outer matrix, and thus affect myocardial differentiation. However, exposure to BPS throughout the differentiation stage may disrupt the immune response and cell differentiation, which in turn interrupts heart function. The benchmark dose lower confidence limit (BMDL) of the relative expression of cTnT mRNA exposed by BPS during DP3 was the lowest among all the BMDLs of a good fit, with BMDL5 of 1.96 × 10-2 µg/mL, which is lower than the current reported exposure levels of BPS in maternal serum (0.03-0.07 ng/mL) and maternal umbilical cord serum (0.03-0.12 ng/mL).
Collapse
Affiliation(s)
- Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Liang Wang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wenjing Wu
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Baofang Liang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wei Xiong
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
2
|
Cao X, Qin R, Zhang S, Luo W, Qin J, Yan X, Cai F, Liao Q, Yu Y, Zheng J. Bisphenol pollutants bind with human hair keratin: Combining evidence from fluorescence spectroscopy and molecular docking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177533. [PMID: 39542267 DOI: 10.1016/j.scitotenv.2024.177533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Bisphenols, including bisphenol A (BPA) and its analogs such as bisphenol F (BPF), bisphenol S (BPS), tetrabromobisphenol A (TBBPA), tetrachlorobisphenol A (TCBPA) and tetrabromobisphenol S (TBBPS), are typical endocrine disruptors widely used in plastic production. However, until now, the occurrence mechanisms of these bisphenols in hair, a non-invasive material for human biomonitoring, have been inadequately explored. This study employed fluorescence spectroscopy and molecular docking to investigate the interactions between these 6 bisphenols and hair keratin. The findings revealed that these bisphenols quenched keratin's intrinsic fluorescence in a concentration-dependent manner and exhibited a mixed quenching mechanism. Their binding constants to keratin at 308 K range from 6.98 × 102 to 7.24 × 106 M-1, with a spontaneous binding mode observed. Halogenated bisphenols demonstrated a higher binding affinity to keratin compared to non-halogenated bisphenols, with bromobisphenols showing a greater affinity than chlorinated bisphenols. The combined results from fluorescence and molecular docking suggest that hydrogen bonding and hydrophobic interactions are the predominant forces driving the binding of bisphenols to hair keratin. These insights first provide a novel perspective on understanding the mechanisms of small molecular pollutants deposition in hair, marking an important step toward utilizing hair as a biomonitoring tool.
Collapse
Affiliation(s)
- Xue Cao
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, PR China
| | - Ruixin Qin
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Shiyi Zhang
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Weikeng Luo
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jiaxiang Qin
- Kingfa Sci. & Tech. Co., LTD., Guangzhou 510663, PR China
| | - Xiao Yan
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Fengshan Cai
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Qilong Liao
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yunjiang Yu
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jing Zheng
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
3
|
Bozec J, Rousseau-Ralliard D, Jouneau L, Prézelin A, Dahirel M, Richard C, Gelin V, Fournier N, Helies V, Joly T, El Fouikar S, Léandri R, Chavatte-Palmer P, Couturier-Tarrade A. Preconception and/or preimplantation exposure to a mixture of environmental contaminants altered fetoplacental development and placental function in a rabbit model. ENVIRONMENTAL RESEARCH 2024; 262:119829. [PMID: 39179140 DOI: 10.1016/j.envres.2024.119829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Pregnant women are daily exposed to environmental contaminants, including endocrine disruptors that can impact the offspring's health. This study aimed to evaluate the effects of maternal oral exposure to a mixture of contaminants at a dose mimicking women's exposure, during folliculogenesis and/or preimplantation period (FED and ED groups, respectively) on the fetoplacental phenotype in a rabbit model. The mixture (DEHP, pp'DDE, β-HCH, HCB, BDE-47, BPS, PFOS, PFOA) was defined based on data from HELIX and INMA cohorts. FED and ED females or unexposed females (control) were inseminated, their embryos were collected and transferred to unexposed control recipient rabbits at 80 h post-insemination. The effects of maternal FED and ED exposure were evaluated on fetoplacental growth and development by ultrasound, fetoplacental biometry, fetal metabolism, placental structure and function. The results demonstrated that the mixture weakly affected ultrasound measurements, as only placental volume increased significantly in FED vs ED. Analysis of placental structure demonstrated that the volume fraction of the maternal blood space was increased in FED vs control. Pre- and/or periconception exposure did not affect biometric at the end of gestation, but affected FED fetal biochemistry. Plasma triglyceride concentration was reduced compared to control. However, total cholesterol, urea, ASAT and ALAT in fetal blood were affected in both exposed groups. Multiple factor analysis, including biometric, biochemical, and stereological datasets, indicated that the three groups were significantly different. Additionally, several placental genes were differentially expressed between groups, compared two by two, in a sex-specific manner, with more difference in females than in males. The differentially expressed genes were involved in lipid, cholesterol, and drug/xenobiotic metabolism in both sexes. These results indicate that maternal exposure to environmental contaminants during crucial developmental windows only mildly impaired fetoplacental development but disturbed fetal blood biochemistry and placental gene expression with potential long-term effects on offspring phenotype.
Collapse
Affiliation(s)
- Jeanne Bozec
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Audrey Prézelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Michèle Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Valérie Gelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Natalie Fournier
- Lip(Sys)2 - EA 7357, Athérosclérose et Macrophages: Impact des Phospholipides et des Fonctions Mitochondriales sur L'efflux du Cholestérol, Université Paris Saclay, UFR de Pharmacie, 91400, Orsay, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Virginie Helies
- GenPhySE, INRAE, Université de Toulouse, INPT, ENVT, Castanet Tolosan, France
| | - Thierry Joly
- Université de Lyon, VetAgro Sup, UPSP Interaction Cellule Environnement, 69280, Marcy L'Etoile, France; Université de Lyon, ISARA-Lyon, 69007, Lyon, France
| | - Sara El Fouikar
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Roger Léandri
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Médecine de La Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| |
Collapse
|
4
|
Lebachelier de la Riviere ME, Téteau O, Mahé C, Lasserre O, Desmarchais A, Uzbekova S, Papillier P, Tomas D, Labas V, Maillard V, Saint-Dizier M, Binet A, Elis S. Metabolic status is a key factor influencing proteomic changes in ewe granulosa cells induced by chronic BPS exposure. BMC Genomics 2024; 25:1095. [PMID: 39550580 PMCID: PMC11568600 DOI: 10.1186/s12864-024-11034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Bisphenol S (BPS) is the main substitute for bisphenol A (BPA), a well-known plasticiser and endocrine disruptor. BPS disrupts ovarian function in several species. Moreover, a few studies have reported that the effects of BPS might be modulated by the metabolic status, and none have characterised the granulosa cell (GC) proteome after chronic BPS exposure. OBJECTIVES This study aimed to decipher the mechanisms of action of chronic BPS exposure on the proteome of ewe GCs while considering the interaction between a deliberate contrasted metabolism and reproductive function. METHODS Forty ewes were split into two groups with contrasted diets: restricted (R, n = 20) and well-fed (WF, n = 20). The R and WF ewes were subdivided according to the dose of BPS administered through the diet (0-50 µg/kg/day), forming four groups: R0, R50, WF0 and WF50. After 3-month BPS daily exposure, GCs were recovered during the pre-ovulatory stage and proteins were analysed by nano-liquid chromatography coupled with tandem mass spectrometry. RESULTS Chronic exposure to BPS affected the GC proteome differently according to the ewe metabolic status. Fifty-nine out of 958 quantified proteins were differentially abundant between groups and are mainly involved in carbohydrate and lipid pathways. Unsupervised hierarchical clustering of differentially abundant proteins (DAPs) identified four clusters of 34, 6, 5 and 14 proteins according to the BPS exposure and diet interaction. Pairwise comparisons between groups also revealed a strong effect of BPS exposure and diet interaction. Functional analysis of DAPs highlighted that BPS upregulated β-glucuronidase (GUSB; p = 0.002), a protein especially able to deconjugate bisphenol glucuronides (BP-g). Moreover, among unexposed ewes, GUSB was detected only in well-fed ewes. DISCUSSION Conjugation of glucuronides inhibits the oestrogenic activity of bisphenols. Upregulation of GUSB in ewes dosed with BPS would prolong the oestrogenic effects of BPS by deconjugating BPS-g into free BPS. In addition, literature has reported an up-regulation of GUSB in people suffering from obesity. Therefore, people suffering from obesity could be subjected to prolonged and aggravated exposure to BPS. These data highlighted the deleterious effects of BPS and its interaction with metabolic status.
Collapse
Affiliation(s)
| | - Ophélie Téteau
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France
| | - Coline Mahé
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France
| | | | | | | | | | - Daniel Tomas
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France
- PIXANIM, INRAE, Université de Tours, CHU de Tours, Nouzilly, 37380, France
| | - Valérie Labas
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France
- PIXANIM, INRAE, Université de Tours, CHU de Tours, Nouzilly, 37380, France
| | | | | | - Aurélien Binet
- Service de Chirurgie Pédiatrique, CHU Poitiers, Poitiers, France
- CNRS UMR7267, Ecologie et biologiie des interactions, Université de Poitiers, Poitiers, 86000, France
| | - Sebastien Elis
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France.
| |
Collapse
|
5
|
Średnicka P, Roszko M, Emanowicz P, Wójcicki M, Popowski D, Kanabus J, Juszczuk-Kubiak E. Influence of bisphenol A and its analogues on human gut microbiota composition and metabolic activity: Insights from an in vitro model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177323. [PMID: 39489444 DOI: 10.1016/j.scitotenv.2024.177323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Food contamination is a primary route of human exposure to bisphenols (BPs), which are known to affect gut microbiota (GM) and intestinal health. This study comprehensively assessed the impact of bisphenol A (BPA) and three of its substitutes-bisphenol S (BPS), bisphenol F (BPF), and tetramethyl bisphenol F (TMBPF, the monomer of valPure V70) - on the taxonomic and functional profile of human GM using an in vitro model. Human GM was acutely exposed to 1 mM concentrations of these BPs during a 48 h anaerobic cultivation. We first examined the effects of BPA, BPS, BPF, and TMBPF on GM taxonomic and metabolic profiles, mainly focusing on short-chain fatty acids (SCFAs) production. We then evaluated the degradation potential of these BPs by GM and its influence on their estrogenic activity. Finally, we assessed the impact of GM metabolites from BPs-exposed cultures on the viability of intestinal epithelial cells (Caco-2). BPA, BPS, and BPF severely disrupted GM taxonomic composition and metabolite profiles, significantly reducing SCFAs production. In contrast, TMBPF exhibited the least disruptive effects, suggesting it may be a safer alternative. Although the GM did not biotransform the BPs, bioadsorption occurred, with affinity correlating to hydrophobicity in the order of TMBPF > BPA > BPF > BPS. GM reduced the estrogenic activity of BPs primarily through bioadsorption. However, exposure of gut epithelial cells to Post-Culture Supernatants of BPA, BPF, and TMBPF significantly reduced Caco-2 cell viability, indicating the potential formation of harmful GM-derived metabolites and/or a depletion of beneficial GM metabolites.
Collapse
Affiliation(s)
- Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland.
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Dominik Popowski
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland; Natural Products & Food Research and Analysis - Pharmaceutical Technology, Faculty of Pharmacy, University of Antwerp, Universiteitplein 1, Wilrijk, Belgium
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| |
Collapse
|
6
|
García García M, Picó Y, Morales-Suárez-Varela M. Effects of Bisphenol A on the Risk of Developing Obesity. Nutrients 2024; 16:3740. [PMID: 39519574 PMCID: PMC11547795 DOI: 10.3390/nu16213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Every year the global incidence of obesity increases considerably and among the factors that favor it is bisphenol A (BPA), an endocrine disruptor widely used in plastics and omnipresent in many everyday objects. METHODS A total of 19 studies published between 2018 and 2023 that addressed the relationship between BPA exposure and obesity were included in this review in order to better understand its behavior and mechanisms of action. RESULTS The studies reviewed conclude that BPA is an obesogen that alters the function of hormonal receptors, promotes metabolic syndrome, affects certain genes, etc., leading to a greater risk of developing obesity. With important emphasis on the ability to cause epigenetic changes, thus transmitting the effects to offspring when exposure has occurred during critical stages of development such as during gestation or the perinatal period. CONCLUSIONS There is sufficient evidence to show that BPA is a risk factor in the development of obesity. Even so, further research is necessary to exhaustively understand the causal relationship between the two in order to develop prevention measures and avoid possible future adverse effects.
Collapse
Affiliation(s)
- Mónica García García
- Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estelles s/n, 46100 Burjassot, València, Spain;
| | - Yolanda Picó
- Food and Environmental Safety Research Group of the Universitat de València (SAMA-UV), Desertification Research Centre (CIDE) CSIC-GV-UV, CV-315 Km. 10, 7, 46113 Moncada, València, Spain;
- CIBER of Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Av. Monforte de Lemos 3-5 Pabellón 11 Planta 0, 28029 Madrid, Madrid, Spain
| | - María Morales-Suárez-Varela
- Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estelles s/n, 46100 Burjassot, València, Spain;
- CIBER of Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Av. Monforte de Lemos 3-5 Pabellón 11 Planta 0, 28029 Madrid, Madrid, Spain
| |
Collapse
|
7
|
Emanowicz P, Średnicka P, Wójcicki M, Roszko M, Juszczuk-Kubiak E. Mitigating Dietary Bisphenol Exposure Through the Gut Microbiota: The Role of Next-Generation Probiotics in Bacterial Detoxification. Nutrients 2024; 16:3757. [PMID: 39519589 PMCID: PMC11547510 DOI: 10.3390/nu16213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenols, such as bisphenol A and its analogs, which include bisphenol S, bisphenol F, bisphenol AF, and tetramethyl bisphenol F, are chemical contaminants commonly found in food that raise serious health concerns. These xenobiotics can potentially have harmful effects on human health. The gut microbiota plays a crucial role in metabolizing and neutralizing these substances, which is essential for their detoxification and elimination. Probiotic supplementation has been studied for its ability to modulate the gut microbiota's composition and function, enhancing detoxification processes. Next-Generation Probiotics (NGPs) may exhibit better properties than traditional strains and are designed for targeted action on specific conditions, such as obesity. By modulating inflammatory responses and reducing the secretion of pro-inflammatory cytokines, they can significantly improve host health. Research on NGPs' ability to neutralize obesogenic bisphenols remains limited, but their potential makes this a promising area for future exploration. This review aims to understand the mechanisms of the chemical transformation of bisphenol through its interactions with the gut microbiota and the role of probiotics, particularly NGPs, in these processes. Understanding the interplay between bisphenols, gut microbiota, and NGPs may pave the way for strategies to counteract the negative health effects associated with daily and chronic exposure to bisphenols, which is crucial for food safety and consumer health protection.
Collapse
Affiliation(s)
- Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| |
Collapse
|
8
|
Rousseau-Ralliard D, Bozec J, Ouidir M, Jovanovic N, Gayrard V, Mellouk N, Dieudonné MN, Picard-Hagen N, Flores-Sanabria MJ, Jammes H, Philippat C, Couturier-Tarrade A. Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences-The Case of Synthetic Phenols, Parabens, and Phthalates. TOXICS 2024; 12:710. [PMID: 39453131 PMCID: PMC11511413 DOI: 10.3390/toxics12100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Phenols, parabens, and phthalates (PPPs) are suspected or known endocrine disruptors. They are used in consumer products that pregnant women and their progeny are exposed to daily through the placenta, which could affect offspring health. This review aims to compile data from cohort studies and in vitro and in vivo models to provide a summary regarding placental transfer, fetoplacental development, and the predisposition to adult diseases resulting from maternal exposure to PPPs during the gestational period. In humans, using the concentration of pollutants in maternal urine, and taking the offspring sex into account, positive or negative associations have been observed concerning placental or newborn weight, children's BMI, blood pressure, gonadal function, or age at puberty. In animal models, without taking sex into account, alterations of placental structure and gene expression linked to hormones or DNA methylation were related to phenol exposure. At the postnatal stage, pollutants affect the bodyweight, the carbohydrate metabolism, the cardiovascular system, gonadal development, the age of puberty, sex/thyroid hormones, and gamete quality, but these effects depend on the age and sex. Future challenges will be to explore the effects of pollutants in mixtures using models and to identify the early signatures of in utero exposure capable of predicting the health trajectory of the offspring.
Collapse
Affiliation(s)
- Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Jeanne Bozec
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marion Ouidir
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Nicolas Jovanovic
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marie-Noëlle Dieudonné
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Nicole Picard-Hagen
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Maria-José Flores-Sanabria
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Hélène Jammes
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
9
|
He B, Xu HM, Li SW, Zhang YF, Tian JW. Emerging regulatory roles of noncoding RNAs induced by bisphenol a (BPA) and its alternatives in human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124447. [PMID: 38942269 DOI: 10.1016/j.envpol.2024.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Bisphenols (BPs), including BPA, BPF, BPS, and BPAF, are synthetic phenolic organic compounds and endocrine-disrupting chemicals. These organics have been broadly utilized to produce epoxy resins, polycarbonate plastics, and other products. Mounting evidence has shown that BPs, especially BPA, may enter into the human body and participate in the development of human diseases mediated by nuclear hormone receptors. Moreover, BPA may negatively affect human health at the epigenetic level through processes such as DNA methylation and histone acetylation. Recent studies have demonstrated that, as part of epigenetics, noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs), have vital impacts on BP-related diseases, such as reproductive system diseases, nervous system diseases, digestive system diseases, endocrine system diseases, and other diseases. Moreover, based on the bioinformatic analysis, changes in ncRNAs may be relevant to normal activities and functions and BP-induced diseases. Thus, we conducted a meta-analysis to identify more promising ncRNAs as biomarkers and therapeutic targets for BP exposure and relevant human diseases. In this review, we summarize the regulatory functions of ncRNAs induced by BPs in human diseases and latent molecular mechanisms, as well as identify prospective biomarkers and therapeutic targets for BP exposure and upper diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shu-Wei Li
- Department of Neurology, Qingdao Huangdao District Central Hospital, Qingdao 266555, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
10
|
Villalaín J. Bisphenol F and Bisphenol S in a Complex Biomembrane: Comparison with Bisphenol A. J Xenobiot 2024; 14:1201-1220. [PMID: 39311147 PMCID: PMC11417855 DOI: 10.3390/jox14030068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024] Open
Abstract
Bisphenols are a group of endocrine-disrupting chemicals used worldwide for the production of plastics and resins. Bisphenol A (BPA), the main bisphenol, exhibits many unwanted effects. BPA has, currently, been replaced with bisphenol F (BPF) and bisphenol S (BPS) in many applications in the hope that these molecules have a lesser effect on metabolism than BPA. Since bisphenols tend to partition into the lipid phase, their place of choice would be the cellular membrane. In this paper, I carried out molecular dynamics simulations to compare the localization and interactions of BPA, BPF, and BPS in a complex membrane. This study suggests that bisphenols tend to be placed at the membrane interface, they have no preferred orientation inside the membrane, they can be in the monomer or aggregated state, and they affect the biophysical properties of the membrane lipids. The properties of bisphenols can be attributed, at least in part, to their membranotropic effects and to the modulation of the biophysical membrane properties. The data support that both BPF and BPS, behaving in the same way in the membrane as BPA and with the same capacity to accumulate in the biological membrane, are not safe alternatives to BPA.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202 Elche, Alicante, Spain
| |
Collapse
|
11
|
Zhang Q, Li M, Wang P, Lin X, Lai KP, Ding Z. Integrated analysis reveals the immunotoxicity mechanism of BPs on human lymphocytes. Chem Biol Interact 2024; 399:111148. [PMID: 39004390 DOI: 10.1016/j.cbi.2024.111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Bisphenol A (BPA) is a well-documented endocrine-disrupting chemical widely used in plastic products. In addition to its endocrine-disrupting effects, BPA exhibits immunotoxicity. Many countries have banned BPA because of its adverse effects on human health. In recent years, many chemicals such as bisphenol B (BPB), bisphenol E (BPE), bisphenol S (BPS), and bisphenol fluorene (BHPF) have been used to replace BPA. Because these replacement chemicals have chemical structures similar to that of BPA, they may also harm human health. However, their immunotoxicity and the molecular mechanisms underlying their toxicity remain largely unknown. The aim of this study was to investigate the immunotoxicity of BPA and its replacement chemicals, as well as the underlying mechanisms by exposing primary human lymphocytes to BPA and its replacement chemicals. Our results showed that exposure to BPA and its replacement chemicals altered the interleukin (IL) and cytokine production, such as IL-1b, IL-5, IL-6, IL-8, interferon alfa-2b (IFN-a2B), and tumor necrosis factor alpha (TNF-α), in the lymphocytes. Among these, BPA and BHPF caused a greater inhibition. Using comparative transcriptomic analysis, we further investigated the biological processes and signaling pathways altered by BHPF exposure. Our data highlighted alterations in the immune response, T cell function, and cytokine-cytokine receptor interactions in human lymphocytes through the deregulation of gene clusters. In addition, the results of ingenuity pathway analysis demonstrated the inhibition of T lymphocyte function, including differentiation, movement, and infiltration. Our results, for the first time, delineate the mechanisms underlying the immunotoxicity of BHPF in human lymphocytes.
Collapse
Affiliation(s)
- Qiujin Zhang
- Department of Immunology, Guilin Medical University, Guilin, China
| | - Mengzhen Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Ping Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China.
| | - Zhixiang Ding
- Department of Ophthalmology, Affiliated Hospital of Guilin Medical University, Guilin, China.
| |
Collapse
|
12
|
Lința AV, Lolescu BM, Ilie CA, Vlad M, Blidișel A, Sturza A, Borza C, Muntean DM, Crețu OM. Liver and Pancreatic Toxicity of Endocrine-Disruptive Chemicals: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int J Mol Sci 2024; 25:7420. [PMID: 39000526 PMCID: PMC11242905 DOI: 10.3390/ijms25137420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
In recent years, the worldwide epidemic of metabolic diseases, namely obesity, metabolic syndrome, diabetes and metabolic-associated fatty liver disease (MAFLD) has been strongly associated with constant exposure to endocrine-disruptive chemicals (EDCs), in particular, the ones able to disrupt various metabolic pathways. EDCs have a negative impact on several human tissues/systems, including metabolically active organs, such as the liver and pancreas. Among their deleterious effects, EDCs induce mitochondrial dysfunction and oxidative stress, which are also the major pathophysiological mechanisms underlying metabolic diseases. In this narrative review, we delve into the current literature on EDC toxicity effects on the liver and pancreatic tissues in terms of impaired mitochondrial function and redox homeostasis.
Collapse
Affiliation(s)
- Adina V. Lința
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania
| | - Bogdan M. Lolescu
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania
| | - Cosmin A. Ilie
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
- Department of Functional Sciences—Chair of Public Health & Sanitary Management, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Mihaela Vlad
- Department of Internal Medicine II—Chair of Endocrinology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania;
| | - Alexandru Blidișel
- Department of Surgery I—Chair of Surgical Semiotics & Thoracic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania; (A.B.); (O.M.C.)
- Centre for Hepato-Biliary and Pancreatic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania
| | - Adrian Sturza
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
| | - Claudia Borza
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
| | - Danina M. Muntean
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
| | - Octavian M. Crețu
- Department of Surgery I—Chair of Surgical Semiotics & Thoracic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania; (A.B.); (O.M.C.)
- Centre for Hepato-Biliary and Pancreatic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania
| |
Collapse
|
13
|
Useini A, Schwerin IK, Künze G, Sträter N. Structural Studies on the Binding Mode of Bisphenols to PPARγ. Biomolecules 2024; 14:640. [PMID: 38927044 PMCID: PMC11202036 DOI: 10.3390/biom14060640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Bisphenol A (BPA) and bisphenol B (BPB) are widely used in the production of plastics, and their potential adverse health effects, particularly on endocrine disruption and metabolic health, have raised concern. Peroxisome proliferator-activated receptor gamma (PPARγ) plays a pivotal role in metabolic regulation and adipogenesis, making it a target of interest in understanding the development of obesity and associated health impacts. In this study, we employ X-ray crystallography and molecular dynamics (MD) simulations to study the interaction of PPARγ with BPA and BPB. Crystallographic structures reveal the binding of BPA and BPB to the ligand binding domain of PPARγ, next to C285, where binding of partial agonists as well as antagonists and inverse agonists of PPARγ signaling has been previously observed. However, no interaction of BPA and BPB with Y437 in the activation function 2 site is observed, showing that these ligands cannot stabilize the active conformation of helix 12 directly. Furthermore, free energy analyses of the MD simulations revealed that I341 has a large energetic contribution to the BPA and BPB binding modes characterized in this study.
Collapse
Affiliation(s)
- Abibe Useini
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany;
| | - Inken Kaja Schwerin
- Institute for Drug Discovery, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany;
| | - Georg Künze
- Institute for Drug Discovery, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany;
- Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig University, 04105 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany;
| |
Collapse
|
14
|
Chi ZH, Liu L, Zheng J, Tian L, Chevrier J, Bornman R, Obida M, Goodyer CG, Hales BF, Bayen S. Biomonitoring of bisphenol A (BPA) and bisphenol analogues in human milk from South Africa and Canada using a modified QuEChERS extraction method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123730. [PMID: 38458524 DOI: 10.1016/j.envpol.2024.123730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
A sensitive modified QuEChERS extraction method was developed to assess the levels of free and conjugated bisphenols (BPs) in human milk collected between 2018 and 2019 from two regions of South Africa (the Limpopo Province Vhembe district, n = 194; Pretoria, n = 193) and Canada (Montreal, n = 207). Total BPA (free and conjugated) and BPS were the predominant bisphenols detected in samples from Vhembe and Pretoria, whereas total BPS was the predominant bisphenol detected in Montreal samples. The levels of total BPA in samples from Vhembe and Pretoria ranged between < MDL-18.61 and
Collapse
Affiliation(s)
- Zhi Hao Chi
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Jingyun Zheng
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Lei Tian
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | | | | | | | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Grobin A, Roškar R, Trontelj J. The environmental occurrence, fate, and risks of 25 endocrine disruptors in Slovenian waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167245. [PMID: 37742964 DOI: 10.1016/j.scitotenv.2023.167245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Natural hormones, synthetic steroids and bisphenols are among the most active endocrine disruptors (EDs) in the aquatic environment, with great potential for causing adverse effects in aquatic organisms and humans. In this study, a focused group of 25 potent estrogenic and other ED compounds were simultaneously measured in wastewaters (WWs) and receiving surface waters (SWs) before and after wastewater treatment plants (WWTPs), where their removal efficiency was also estimated. Up to 16 of 25 EDs were successfully quantified in SWs and WWs, with bisphenols BPS, BPA, and BPF together with estriol and chlormadinone being the most prevalent with the highest measured concentrations of up to 35 μg/L in WWs and 400 ng/L in SWs. High load and insufficient removal of these substances by WWTPs lead to a significant increase in their concentrations in the receiving SWs downstream, while other sources could be responsible for an important portion of river contamination with EDs. Removal efficiency was very good for most EDs, although only from 0 to 44 % for E2, which shows a need for the improvement of current removal techniques. E2 and EE2 contribute the most to the alarmingly high risks of the total ED estrogenic potential, with the value increased by 36 % in SWs downstream from WWTPs, and the RQ value for the total estrogenic potential in individual SW samples being three orders of magnitude higher than that representing high risk. An additional comprehensive multi-parameter risk assessment determined high risk quotient and priority index values for BPA, E2, BPS and E1 with values of up to 450 in SWs. Our results show a focused insight into the risks associated with an important group of EDs and the role of WWTPs, while further highlighting the importance of regular monitoring of the environmental occurrence and risks of a focused range of EDs.
Collapse
Affiliation(s)
- Andrej Grobin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Jurij Trontelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
16
|
Zhang S, Dai L, Wan Z, Huang Z, Zou M, Guan H. Sex-specific associations of bisphenol A and its substitutes with body fat distribution among US adults: NHANES 2011-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7948-7958. [PMID: 38172318 DOI: 10.1007/s11356-023-31589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Bisphenol A (BPA) and its structural analogs (bisphenol S (BPS) and bisphenol F (BPF)) are widely consumed endocrine disrupting chemicals that may contribute to the etiology of obesity. To date, few studies have directly investigated the sex-related associations between bisphenols and body fat distribution in adults. In this study, we included 2669 participants from the National Health and Nutrition Examination Survey (NHANES) 2011-2016 to evaluate and compare sex-specific differences of the associations of BPA, BPS, and BPF with body fat distribution. We found that there were significant positive correlations between BPS and body fat indices (STFAT [adjustedβ=1.94, 95% CI: (0.24, 3.64)], TAF [0.18 (0.04, 0.32)], SAT [0.15 (0.03, 0.27)], android fat mass [0.20 (0.004, 0.40)], BMI [1.63 (0.61, 2.65)], and WC [3.19 (0.64, 5.73)] in the highest quartiles of BPS), but not in BPA and BPF. Stratified analyses suggested that the significant associations of BPS with body fat indices were stronger in women than men (STFAT [adjustedβ=3.75, 95% CI: (1.04, 6.45) vs. adjustedβ=-0.06, 95% CI: (-2.23, 2.11), P for interaction < 0.001], TAF [ 0.32 (0.09, 0.54) vs. 0.01 (-0.17, 0.19), P for interaction < 0.001], SAT [0.27 (0.09, 0.45) vs. 0.01 (-0.14, 0.16), P for interaction < 0.001], android fat mass [0.41 (0.12, 0.71) vs. -0.02 (-0.28, 0.24), P for interaction < 0.001], gynoid fat mass [0.56 (0.11, 1.01) vs. -0.05 (-0.41, 0.31), P for interaction = 0.002], BMI [2.76 (1.08, 4.44) vs. 0.47 (-0.80, 1.74), P for interaction < 0.001], and WC [5.51 (1.44, 9.58) vs. 0.61 (-2.67, 3.88), P for interaction < 0.001]), and positive associations between BPS with fat distribution were also observed in non-smoking women. Our study indicated that in women, higher concentration of urinary BPS was associated with increased body fat accumulation, except for visceral adipose tissue mass. These findings emphasize the role of environmental BPS exposure in the increasing fat deposits, and confirm the need for more prospective cohort studies on a sex-specific manner.
Collapse
Affiliation(s)
- Shili Zhang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Lingyan Dai
- Global Health Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Ziyu Wan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhiwei Huang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
17
|
Motta G, Thangaraj SV, Padmanabhan V. Developmental Programming: Impact of Prenatal Exposure to Bisphenol A on Senescence and Circadian Mediators in the Liver of Sheep. TOXICS 2023; 12:15. [PMID: 38250971 PMCID: PMC10818936 DOI: 10.3390/toxics12010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Prenatal exposure to endocrine disruptors such as bisphenol A (BPA) plays a critical role in the developmental programming of liver dysfunction that is characteristic of nonalcoholic fatty liver disease (NAFLD). Circadian and aging processes have been implicated in the pathogenesis of NAFLD. We hypothesized that the prenatal BPA-induced fatty-liver phenotype of female sheep is associated with premature hepatic senescence and disruption in circadian clock genes. The expression of circadian rhythm and aging-associated genes, along with other markers of senescence such as telomere length, mitochondrial DNA copy number, and lipofuscin accumulation, were evaluated in the liver tissue of control and prenatal BPA groups. Prenatal BPA exposure significantly elevated the expression of aging-associated genes GLB1 and CISD2 and induced large magnitude differences in the expression of other aging genes-APOE, HGF, KLOTHO, and the clock genes PER2 and CLOCK-in the liver; the other senescence markers remained unaffected. Prenatal BPA-programmed aging-related transcriptional changes in the liver may contribute to pathological changes in liver function, elucidating the involvement of aging genes in the pathogenesis of liver steatosis.
Collapse
Affiliation(s)
| | | | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48105, USA; (G.M.); (S.V.T.)
| |
Collapse
|
18
|
Gonkowski S, Tzatzarakis M, Vakonaki E, Meschini E, Rytel L. Exposure assessment to bisphenol A (BPA) and its analogues bisphenol S (BPS) and bisphenol F (BPF) in wild boars by hair analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167076. [PMID: 37714361 DOI: 10.1016/j.scitotenv.2023.167076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Bisphenols are widely used in various branches of industry for the production of plastics. They penetrate to the natural environment and thus living organisms. As endocrine disruptors, bisphenols have adverse effects on various internal organs and systems. Contrary to humans, the knowledge of the exposure of wild terrestrial mammals to bisphenols is extremely limited. Therefore, this study for the first time assessed the exposure level of wild boars to three bisphenols commonly used in industry (i.e. bisphenol A - BPA, bisphenol S - BPS and bisphenol F - BPF) using hair sample analysis in liquid chromatography-mass spectrometry (LC-MS). The presence of BPA and/or BPS has been noted in the samples collected from >80 % of animals included in the study (n = 54), while the presence of BPF was not found in any sample. At least one of the bisphenols was present in every sample tested. Mean concentrations of BPA and BPS in the hair of wild boars were 151.40 ± 135.10 pg/mg dry weight (dw.) and 29.40 ± 36.97 pg./mg dw, respectively. Concentrations of BPA and BPS in females were statistically higher than in males (p < 0.05). Moreover, statistically significantly higher concentration levels of BPA (and not BPS) in the areas with higher degree of industrialization and higher human population density were also found. This is the first study concerning the use of hair samples to assess the exposure of wild terrestrial mammals to bisphenols. The obtained results show that an analysis of the hair may be a useful tool of biomonitoring bisphenols in wild animals. The presence of BPA and BPS in wild boar hair in relatively high concentration also suggests that these substances may have an influence on the health status not only in humans and aquatic animals, but also in wild terrestrial mammals. However, many aspects connected with this issue are not clear and require further study.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Elena Meschini
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Liliana Rytel
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 14, 10-718 Olsztyn, Poland.
| |
Collapse
|
19
|
Štefunková N, Greifová H, Jambor T, Tokárová K, Zuščíková L, Bažány D, Massányi P, Capcarová M, Lukáč N. Comparison of the Effect of BPA and Related Bisphenols on Membrane Integrity, Mitochondrial Activity, and Steroidogenesis of H295R Cells In Vitro. Life (Basel) 2023; 14:3. [PMID: 38276253 PMCID: PMC10821247 DOI: 10.3390/life14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Bisphenol A (BPA) is an endocrine-disruptive chemical that is widely utilized in the production of polycarbonate plastic and epoxy resin, which are used to make a wide range of consumer products, food and drink containers, and medical equipment. When the potential risk of BPA emerged, it was substituted by allegedly less harmful substitutes such as bisphenols S, F, B, and AF. However, evidence suggests that all bisphenols can have endocrine-disruptive effects, while the extent of these effects is unknown. This study aimed to determine effect of BPA, BPAF, BPB, BPF, and BPS on viability and steroidogenesis in human adrenocortical carcinoma cell line in vitro. The cytotoxicity of bisphenols was shown to be considerable at higher doses. However, at low concentrations, it improved viability as well as steroid hormone secretion, indicating that bisphenols have a biphasic, hormetic effect in biological systems. The results are consistent with the hypothesis that bisphenols selectively inhibit some steroidogenic enzymes. These findings suggest that bisphenols have the potential to disrupt cellular steroidogenesis in humans, but substantially more detailed and systematic research is needed to gain a better understanding of the risks associated with bisphenols and their endocrine-disrupting effect on humans and wildlife.
Collapse
Affiliation(s)
- Nikola Štefunková
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia (P.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee H, Park J, Park K. Mixture Effects of Bisphenol A and Its Structural Analogs on Estrogen Receptor Transcriptional Activation. TOXICS 2023; 11:986. [PMID: 38133387 PMCID: PMC10747781 DOI: 10.3390/toxics11120986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Bisphenol A (BPA) exposure has been widely linked to endocrine-disrupting effects. Recently, many substitutes for BPA have been developed as safe structural analogs. However, they have still been reported to have similar adverse effects. The current study evaluated the effects of bisphenol A and eight structural analogs on the transcription of estrogen receptor alpha (ERα). The effects of binary and ternary mixtures prepared from different combinations of BPA analogs were also evaluated for transcription activity. The measured data of the mixtures were compared to the predicted data obtained by the full logistic model, and the model deviation ratio (MDR) was calculated to determine whether the effects were synergistic, antagonistic, or additive. Overall, the results suggest that the effect of bisphenol compound are additive in binary and ternary mixtures.
Collapse
Affiliation(s)
| | | | - Kwangsik Park
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
21
|
Jiang VS, Calafat AM, Williams PL, Chavarro JE, Ford JB, Souter I, Hauser R, Mínguez-Alarcón L. Temporal trends in urinary concentrations of phenols, phthalate metabolites and phthalate replacements between 2000 and 2017 in Boston, MA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165353. [PMID: 37437643 PMCID: PMC10543552 DOI: 10.1016/j.scitotenv.2023.165353] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Endocrine disrupting chemicals (EDCs) can adversely affect human health and are ubiquitously found in everyday products. We examined temporal trends in urinary concentrations of EDCs and their replacements. Urinary concentrations of 11 environmental phenols, 15 phthalate metabolites, phthalate replacements such as two di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) metabolites, and triclocarban were quantified using isotope-dilution tandem mass spectrometry. This ecological study included 996 male and 819 female patients who were predominantly White/Caucasian (83 %) with an average age of 35 years and a BMI of 25.5 kg/m2 seeking fertility treatment in Boston, MA, USA. Patients provided a total of 6483 urine samples (median = 2, range = 1-30 samples per patient) between 2000 and 2017. Over the study period, we observed significant decreases (% per year) in urinary concentrations of traditional phenols, parabens, and phthalates such as bisphenol A (β: -6.3, 95 % CI: -7.2, -5.4), benzophenone-3 (β: -6.5, 95 % CI: -1.1, -18.9), parabens ((β range:-5.4 to -14.2), triclosan (β: -18.8, 95 % CI: -24, -13.6), dichlorophenols (2.4-dichlorophenol β: -6.6, 95 % CI: -8.8, -4.3); 2,5-dichlorophenol β: -13.6, 95 % CI: -17, -10.3), di(2-ethylhexyl) phthalate metabolites (β range: -11.9 to -22.0), and other phthalate metabolites including mono-ethyl, mono-n-butyl, and mono-methyl phthalate (β range: -0.3 to -11.5). In contrast, we found significant increases in urinary concentrations of environmental phenol replacements including bisphenol S (β: 3.9, 95 % CI: 2.7, 7.6) and bisphenol F (β: 6, 95 % CI: 1.8, 10.3), DINCH metabolites (cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester [MHiNCH] β: 20, 95 % CI: 17.8, 22.2; monocarboxyisooctyl phthalate [MCOCH] β: 16.2, 95 % CI: 14, 18.4), and newer phthalate replacements such as mono-3-carboxypropyl phthalate, monobenzyl phthalate, mono-2-ethyl-5-carboxypentyl phthalate and di-isobutyl phthalate metabolites (β range = 5.3 to 45.1), over time. Urinary MHBP concentrations remained stable over the study period. While the majority of biomarkers measured declined over time, concentrations of several increased, particularly replacement chemicals that are studied.
Collapse
Affiliation(s)
- Victoria S Jiang
- Division of Reproductive Endocrinology and Infertility, Vincent Department of Obstetrics & Gynecology, Massachusetts General Hospital/Harvard Medical School; 55 Fruit Street, Suite 10A, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, USA
| | - Paige L Williams
- Departments of Epidemiology and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Departments of Biostatistics and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA
| | - Jorge E Chavarro
- Departments of Epidemiology and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Departments of Nutrition and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, 75 Francis St, Boston, MA, USA
| | - Jennifer B Ford
- Departments of Environmental Health and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA
| | - Irene Souter
- Division of Reproductive Endocrinology and Infertility, Vincent Department of Obstetrics & Gynecology, Massachusetts General Hospital/Harvard Medical School; 55 Fruit Street, Suite 10A, Boston, MA, USA
| | - Russ Hauser
- Division of Reproductive Endocrinology and Infertility, Vincent Department of Obstetrics & Gynecology, Massachusetts General Hospital/Harvard Medical School; 55 Fruit Street, Suite 10A, Boston, MA, USA; Departments of Epidemiology and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Departments of Environmental Health and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA
| | - Lidia Mínguez-Alarcón
- Departments of Environmental Health and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, 75 Francis St, Boston, MA, USA.
| |
Collapse
|
22
|
Russo C, Maugeri A, Albergamo A, Dugo G, Navarra M, Cirmi S. Protective Effects of a Red Grape Juice Extract against Bisphenol A-Induced Toxicity in Human Umbilical Vein Endothelial Cells. TOXICS 2023; 11:391. [PMID: 37112618 PMCID: PMC10145567 DOI: 10.3390/toxics11040391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 06/19/2023]
Abstract
Human exposure to bisphenol A (BPA) occurs through the ingestion of contaminated food and water, thus leading to endothelial dysfunction, the first signal of atherosclerosis. Vitis vinifera L. (grape) juice is well known for its health-promoting properties, due to its numerous bioactive compounds among which are polyphenols. The aim of this study was to evaluate the protective effect of a red grape juice extract (RGJe) against the endothelial damage induced by BPA in human umbilical vein endothelial cells (HUVECs) as an in vitro model of endothelial dysfunction. Our results showed that RGJe treatment counteracted BPA-induced cell death and apoptosis in HUVECs, blocking caspase 3 and modulating p53, Bax, and Bcl-2. Moreover, RGJe demonstrated antioxidant properties in abiotic tests and in vitro, where it reduced BPA-induced reactive oxygen species as well as restored mitochondrial membrane potential, DNA integrity, and nitric oxide levels. Furthermore, RGJe reduced the increase of chemokines (IL-8, IL-1β, and MCP-1) and adhesion molecules (VCAM-1, ICAM-1, and E-selectin), caused by BPA exposure, involved in the primary phase of atheromatous plaque formation. Overall, our results suggest that RGJe prevents BPA-induced vascular damage modulating specific intracellular mechanisms, along with protecting cells, owing to its antioxidant capability.
Collapse
Affiliation(s)
- Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (S.C.)
| | - Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences, University of Messina, 98100 Messina, Italy; (A.A.); (G.D.)
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy
| | - Giacomo Dugo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences, University of Messina, 98100 Messina, Italy; (A.A.); (G.D.)
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (S.C.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (S.C.)
| |
Collapse
|
23
|
Critical Overview on Endocrine Disruptors in Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054537. [PMID: 36901966 PMCID: PMC10003192 DOI: 10.3390/ijms24054537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Diabetes mellitus is a major public health problem in all countries due to its high human and economic burden. Major metabolic alterations are associated with the chronic hyperglycemia that characterizes diabetes and causes devastating complications, including retinopathy, kidney failure, coronary disease and increased cardiovascular mortality. The most common form is type 2 diabetes (T2D) accounting for 90 to 95% of the cases. These chronic metabolic disorders are heterogeneous to which genetic factors contribute, but so do prenatal and postnatal life environmental factors including a sedentary lifestyle, overweight, and obesity. However, these classical risk factors alone cannot explain the rapid evolution of the prevalence of T2D and the high prevalence of type 1 diabetes in particular areas. Among environmental factors, we are in fact exposed to a growing amount of chemical molecules produced by our industries or by our way of life. In this narrative review, we aim to give a critical overview of the role of these pollutants that can interfere with our endocrine system, the so-called endocrine-disrupting chemicals (EDCs), in the pathophysiology of diabetes and metabolic disorders.
Collapse
|