1
|
Baber MA, Crist CM, Devolve NL, Patrone JD. Tyrosinase Inhibitors: A Perspective. Molecules 2023; 28:5762. [PMID: 37570734 PMCID: PMC10420840 DOI: 10.3390/molecules28155762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Due to its integral role in the biosynthesis of melanin in all kingdoms of life, tyrosinase has become an extremely important target for inhibition in several sectors of research including agricultural and cosmetic research. Inhibitors of tyrosinase have made it to the market in the cosmetics industry, but their use has been limited due to conflicting efficacy and potential toxicity, which has led to several small molecules being removed from the market. Undaunted, researchers have continued to pursue tyrosinase inhibitors with varying degrees of success. These pursuits have built an impressive and rich library of research. This review is intended to provide a perspective of the past twenty years (2003-2023) of research on tyrosinase inhibitors by highlighting exemplar molecules and developments.
Collapse
Affiliation(s)
- Mason A. Baber
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48209, USA;
| | - Cole M. Crist
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
| | - Noah L. Devolve
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| | - James D. Patrone
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| |
Collapse
|
2
|
A Novel Soy Isoflavone Derivative, 3′-Hydroxyglycitin, with Potent Antioxidant and Anti-α-Glucosidase Activity. PLANTS 2022; 11:plants11172202. [PMID: 36079584 PMCID: PMC9460358 DOI: 10.3390/plants11172202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
This study demonstrated the enzymatic hydroxylation of glycitin to 3′-hydroxyglycitin, confirming the structure by mass and nucleic magnetic resonance spectral analyses. The bioactivity assays further revealed that the new compound possessed over 100-fold higher 1,1-diphenyl-2-picrylhydrazine free-radical scavenging activity than the original glycitin, although its half-time of stability was 22.3 min. Furthermore, the original glycitin lacked anti-α-glucosidase activity, whereas the low-toxic 3′-hydroxyglycitin displayed a 10-fold higher anti-α-glucosidase activity than acarbose, a standard clinical antidiabetic drug. The inhibition mode of 3′-hydroxyglycitin was noncompetitive, with a Ki value of 0.34 mM. These findings highlight the potential use of the new soy isoflavone 3′-hydroxyglycitin in biotechnology industries in the future.
Collapse
|
3
|
Das A, Banik BK. Advances in heterocycles as DNA intercalating cancer drugs. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The insertion of a molecule between the bases of DNA is known as intercalation. A molecule is able to interact with DNA in different ways. DNA intercalators are generally aromatic, planar, and polycyclic. In chemotherapeutic treatment, to suppress DNA replication in cancer cells, intercalators are used. In this article, we discuss the anticancer activity of 10 intensively studied DNA intercalators as drugs. The list includes proflavine, ethidium bromide, doxorubicin, dactinomycin, bleomycin, epirubicin, mitoxantrone, ellipticine, elinafide, and echinomycin. Considerable structural diversities are seen in these molecules. Besides, some examples of the metallo-intercalators are presented at the end of the chapter. These molecules have other crucial properties that are also useful in the treatment of cancers. The successes and limitations of these molecules are also presented.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Ding N, Xu H, Zong S, Gong Y, Hao Y, Tang X, Li Z. Detection of Tyrosinase in Real Food Samples and Living Cells by a Novel Near-Infrared Fluorescence Probe. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1994-2000. [PMID: 33529018 DOI: 10.1021/acs.jafc.0c07882] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new near-infrared fluorescence probe was developed and applied to the fluorescence detection of tyrosinase in real food samples and living cells. The probe (E)-2-(2-(6-((3-hydroxybenzyloxy)carbonylamino)-2,3-dihydro-1H-xanthen-4-yl)vinyl)-3,3-dimethyl-1-propyl-3H-indolium (1) was designed and synthesized by coupling 3-hydroxybenzyl alcohol via carbamate bond with an amino hemicyanine skeleton, based on the high anti-interference ability of 3-hydroxybenzyl alcohol to reactive oxygen species and its binding affinity to tyrosinase. Compared with the existing tyrosinase probes, the proposed probe exhibits superior analytical performance, such as high selectivity, high sensitivity, superior spatiotemporal sampling ability, fluorescence signal switching at 706 nm, and low detection limit of 0.36 U mL-1. More importantly, the probe has been successfully used to monitor tyrosinase in the browning of apple slices for the first time, and the results indicated that the strongest fluorescence intensity could be achieved at 2.5 h to realize precise visual recognition of tyrosinase. Notably, the probe determined tyrosinase in real food samples (apple, banana, cheese, and red wine) with a stable average recovery range of 95.7-108.3% and has been successfully used to monitor tyrosinase in the living B16 cells. The superior properties of the probe make it of great potential use in food nutritional value evaluation and clinical diagnosis of melanin-related diseases.
Collapse
Affiliation(s)
- Ning Ding
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun 130021, China
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Hui Xu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shan Zong
- Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yubao Gong
- Department of Orthopedics, The First Hospital of Jilin University, Changchun 130021, China
| | - Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaojie Tang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
5
|
Chang TS, Wang TY, Yang SY, Kao YH, Wu JY, Chiang CM. Potential Industrial Production of a Well-Soluble, Alkaline-Stable, and Anti-Inflammatory Isoflavone Glucoside from 8-Hydroxydaidzein Glucosylated by Recombinant Amylosucrase of Deinococcus geothermalis. Molecules 2019; 24:molecules24122236. [PMID: 31208027 PMCID: PMC6631725 DOI: 10.3390/molecules24122236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
8-Hydroxydaidzein (8-OHDe), an ortho-hydroxylation derivative of soy isoflavone daidzein isolated from some fermented soybean foods, has been demonstrated to possess potent anti-inflammatory activity. However, the isoflavone aglycone is poorly soluble and unstable in alkaline solutions. To improve the aqueous solubility and stability of the functional isoflavone, 8-OHDe was glucosylated with recombinant amylosucrase of Deinococcus geothermalis (DgAS) with industrial sucrose, instead of expensive uridine diphosphate-glucose (UDP-glucose). One major product was produced from the biotransformation, and identified as 8-OHDe-7-α-glucoside, based on mass and nuclear magnetic resonance spectral analyses. The aqueous solubility and stability of the isoflavone glucoside were determined, and the results showed that the isoflavone glucoside was almost 4-fold more soluble and more than six-fold higher alkaline-stable than 8-OHDe. In addition, the anti-inflammatory activity of 8-OHDe-7-α-glucoside was also determined by the inhibition of lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. The results showed that 8-OHDe-7-α-glucoside exhibited significant and dose-dependent inhibition on the production of nitric oxide, with an IC50 value of 173.2 µM, which remained 20% of the anti-inflammatory activity of 8-OHDe. In conclusion, the well-soluble and alkaline-stable 8-OHDe-7-α-glucoside produced by recombinant DgAS with a cheap substrate, sucrose, as a sugar donor retains moderate anti-inflammatory activity, and could be used in industrial applications in the future.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan.
| | - Szu-Yi Yang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Yu-Han Kao
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen County 892, Taiwan.
| | - Chien-Min Chiang
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, No. 60, Sec. 1, Erh-Jen Rd., Jen-Te District, Tainan 71710, Taiwan.
| |
Collapse
|
6
|
Production of New Isoflavone Glucosides from Glycosylation of 8-Hydroxydaidzein by Glycosyltransferase from Bacillus subtilis ATCC 6633. Catalysts 2018. [DOI: 10.3390/catal8090387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
8-Hydroxydaidzein (8-OHDe) has been proven to possess some important bioactivities; however, the low aqueous solubility and stability of 8-OHDe limit its pharmaceutical and cosmeceutical applications. The present study focuses on glycosylation of 8-OHDe to improve its drawbacks in solubility and stability. According to the results of phylogenetic analysis with several identified flavonoid-catalyzing glycosyltransferases (GTs), three glycosyltransferase genes (BsGT110, BsGT292 and BsGT296) from the genome of the Bacillus subtilis ATCC 6633 strain were cloned and expressed in Escherichia coli. The three BsGTs were then purified and the glycosylation activity determined toward 8-OHDe. The results showed that only BsGT110 possesses glycosylation activity. The glycosylated metabolites were then isolated with preparative high-performance liquid chromatography and identified as two new isoflavone glucosides, 8-OHDe-7-O-β-glucoside and8-OHDe-8-O-β-glucoside, whose identity was confirmed by mass spectrometry and nuclear magnetic resonance spectroscopy. The aqueous solubility of 8-OHDe-7-O-β-glucoside and 8-OHDe-8-O-β-glucoside is 9.0- and 4.9-fold, respectively, higher than that of 8-OHDe. Moreover, more than 90% of the initial concentration of the two 8-OHDe glucoside derivatives remained after 96 h of incubation in 50 mM of Tris buffer at pH 8.0. In contrast, the concentration of 8-OHDe decreased to 0.8% of the initial concentration after 96 h of incubation. The two new isoflavone glucosides might have potential in pharmaceutical and cosmeceutical applications.
Collapse
|
7
|
Lee CC, Dudonné S, Kim JH, Kim JS, Dubé P, Kim JE, Desjardins Y, Park JHY, Lee KW, Lee CY. A major daidzin metabolite 7,8,4'-trihydroxyisoflavone found in the plasma of soybean extract-fed rats attenuates monocyte-endothelial cell adhesion. Food Chem 2018; 240:607-614. [PMID: 28946319 DOI: 10.1016/j.foodchem.2017.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022]
Abstract
Among many functional foods and their phytochemicals, ingestion of soybean (Glycine max) is highly correlated to reduced risk of cardiovascular diseases. Validation of potential health benefits of functional foods requires information about the bioavailability and metabolism of bioactive compounds. In this context, several phase I and II metabolites of isoflavones were target-analyzed in the plasma of rats acutely supplemented with soybean embryo extract. A daidzein metabolite, 7,8,4'-trihydroxyisoflavone (7,8,4'-THI), was found to have the highest average area under curve value (574.3±112.8). Therefore, its potential prevention effect on atherosclerosis was investigated using monocyte-endothelial cell adhesion assay. Different from its precursor daidzein or daidzin, 7,8,4'-THI attenuated adhesion of THP-1 monocytes to tumor necrosis factor-alpha (TNF-α) stimulated human umbilical vein endothelial cells (HUVECs). In addition, 7,8,4'-THI significantly downregulated TNF-α stimulated the expression of vascular cell adhesion molecule-1 and monocyte chemotactic protein-1 and phosphorylation of IκB kinase and IκBα involved in the initiation of atherosclerosis in HUVECs. Therefore, 7,8,4'-THI, a highly bioavailable hydroxylated isoflavone metabolite, has potential anti-atherosclerotic effect via inhibiting monocyte-endothelial adhesion.
Collapse
Affiliation(s)
- Charles C Lee
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Boulevard Hochelaga, Québec, QC G1V0A6, Canada.
| | - Jong Hun Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| | - Ji Seung Kim
- Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Pascal Dubé
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Boulevard Hochelaga, Québec, QC G1V0A6, Canada.
| | - Jong-Eun Kim
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Boulevard Hochelaga, Québec, QC G1V0A6, Canada.
| | - Jung Han Yoon Park
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| | - Ki Won Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chang Yong Lee
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
8
|
Safety and Efficacy of Dextran-Rosmarinic Acid Conjugates as Innovative Polymeric Antioxidants in Skin Whitening: What Is the Evidence? COSMETICS 2017. [DOI: 10.3390/cosmetics4030028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Hagiwara K, Okura M, Sumikawa Y, Hida T, Kuno A, Horio Y, Yamashita T. Biochemical effects of the flavanol-rich lychee fruit extract on the melanin biosynthesis and reactive oxygen species. J Dermatol 2017; 43:1174-1183. [PMID: 26970333 DOI: 10.1111/1346-8138.13326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/11/2016] [Indexed: 12/11/2022]
Abstract
An ingredient of fruit polyphenol, resveratrol, is known to have an inhibitory effect on melanogenesis. In order to examine the functional differences between resveratrol and other fruit polyphenols, we compared biochemical effects of a resveratrol-free polyphenol, flavanol-rich lychee fruit extract (FRLFE), with other phenolic compounds including resveratrol. FRLFE as well as hydroquinone and resveratrol suppressed growth of B16F1 melanoma cells more significantly than rhododendrol or arbutin. Resveratrol suppressed mushroom tyrosinase at the lowest concentration (23.0 μmol/L) among the compounds tested. FRLFE and hydroquinone suppressed tyrosinase at almost the same concentration (half maximal inhibitory concentration [IC50 ], 83.5 and 94.6 μmol/L, respectively), which was higher than rhododendrol, ascorbic acid and arbutin (IC50 , 245, 345 and 421 μmol/L, respectively). Western blot analysis revealed that although resveratrol decreased expressions of tyrosinase and tyrosinase-related protein 1, FRLFE did not affect their expressions. Both FRLFE and resveratrol suppressed antimycin A-mediated reactive oxygen species (ROS) production in melanocytic cells. Resveratrol-mediated ROS suppression was inhibited by nicotinamide, a SIRT1 inhibitor. However, FRLFE-mediated suppression was not affected by nicotinamide. Moreover, FRLFE directly decreased superoxide in vitro, as detected by superoxide dismutase-like scavenging activity assay. These results suggest that FRLFE can protect melanocytes from cytotoxicity caused by an excess amount of melanin and ROS in a different manner from resveratrol.
Collapse
Affiliation(s)
- Kazuya Hagiwara
- Department of Dermatology, and Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masae Okura
- Department of Dermatology, and Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuyuki Sumikawa
- Department of Dermatology, and Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tokimasa Hida
- Department of Dermatology, and Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiyuki Horio
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiharu Yamashita
- Department of Dermatology, and Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
10
|
Hsu KD, Chen HJ, Wang CS, Lum CC, Wu SP, Lin SP, Cheng KC. Extract of Ganoderma formosanum Mycelium as a Highly Potent Tyrosinase Inhibitor. Sci Rep 2016; 6:32854. [PMID: 27611175 PMCID: PMC5017506 DOI: 10.1038/srep32854] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/15/2016] [Indexed: 02/05/2023] Open
Abstract
In this study, the inhibitory effect of Ganoderma formosanum mycelium extracts on tyrosinase, the central regulatory enzyme being responsible for cutaneous pigmentation, was investigated in both cell-free and cellular enzymatic systems, as well as in phenotype-based zebrafish model. Bioassay-guided purification indicated that the ethyl acetate fraction of G. fromosanum mycelium ethanolic extract (GFE-EA) demonstrated the highest inhibition toward cell-free tyrosinase (IC50 = 118.26 ± 13.34 ppm). The secreted and intracellular melanin of B16-F10 cells were reduced by GFE-EA through suppression of tyrosinase activity (IC50 = 102.27 ± 9.49 ppm) and its protein expression. Moreover, GFE-EA decreased surface pigmentation level of zebrafish via down-regulation of tyrosinase activity. Most of all, there is no significant difference in morphology and mortality between control and GFE-EA treated groups. Not only does GFE-EA exhibit similar depigmenting efficacy to kojic acid with lower dosage (approximately one-seventh of dose), but show less toxicity to zebrafish. It is worth noting that GFE-EA is extracted from mycelium, which subverts the general concept that mycelium lacks certain bioactivities possessed by fruit bodies. Altogether, it would appear that GFE-EA has great potential for application in the cosmetics industry.
Collapse
Affiliation(s)
- Kai-Di Hsu
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Hong-Jhang Chen
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Shin Wang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Chin Lum
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Shu-Pei Wu
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Shin-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.,Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Lu TM, Ko HH, Ng LT, Hsieh YP. Free-Radical-Scavenging, Antityrosinase, and Cellular Melanogenesis Inhibitory Activities of Synthetic Isoflavones. Chem Biodivers 2016; 12:963-79. [PMID: 26080742 DOI: 10.1002/cbdv.201400208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Indexed: 11/11/2022]
Abstract
In this study, we examined the potential of synthetic isoflavones for application in cosmeceuticals. Twenty-five isoflavones were synthesized and their capacities of free-radical-scavenging and mushroom tyrosinase inhibition, as well as their impact on cell viability of B16F10 murine melanoma cells and HaCaT human keratinocytes were evaluated. Isoflavones that showed significant mushroom tyrosinase inhibitory activities were further studied on reduction of cellular melanin formation and antityrosinase activities in B16F10 melanocytes in vitro. Among the isoflavones tested, 6-hydroxydaidzein (2) was the strongest scavenger of both ABTS(.+) and DPPH(.) radicals with SC50 values of 11.3 ± 0.3 and 9.4 ± 0.1 μM, respectively. Texasin (20) exhibited the most potent inhibition of mushroom tyrosinase (IC50 14.9 ± 4.5 μM), whereas retusin (17) showed the most efficient inhibition both of cellular melanin formation and antityrosinase activity in B16F10 melanocytes, respectively. In summary, both retusin (17) and texasin (20) exhibited potent free-radical-scavenging capacities as well as efficient inhibition of cellular melanogenesis, suggesting that they are valuable hit compounds with potential for advanced cosmeceutical development.
Collapse
Affiliation(s)
- Tzy-Ming Lu
- Department of Pharmacy, Tajen University, No. 20 Wei-Xin Rd., Yanpu, Pingtung 907, Taiwan, ROC, (phone: +886-8-7624002 ext. 2727; fax: +886-8-7625308). ,
| | - Horng-Huey Ko
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Yen-Pin Hsieh
- Department of Pharmacy, Fooyin University Hospital, Pingtung 917, Taiwan, ROC
| |
Collapse
|
12
|
Nasr Bouzaiene N, Chaabane F, Sassi A, Chekir-Ghedira L, Ghedira K. Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci 2015; 144:80-5. [PMID: 26656314 DOI: 10.1016/j.lfs.2015.11.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/23/2015] [Accepted: 11/28/2015] [Indexed: 11/18/2022]
Abstract
AIMS In this study, we have investigated the effects of apigenin-7-glucoside, genkwanin and naringenin, on mouse melanoma B16F10 cell proliferation. Influence of these natural products on percentage cell distribution in cycle phases and melanogenesis was also studied. MAIN METHODS Cell viability was determined at various periods using the MTT assay, whereas effects of tested compounds on progression through the cell cycle were analyzed by flow cytometry. In addition, amounts of melanin and tyrosinase were measured spectrophotometrically at 475 nm. Besides, the mechanism involved on the death route induced by the tested molecules was evaluated using the bis-benzimide trihydrochloride coloration method (Hoechst 33258). KEY FINDINGS Apigenin-7-glucoside, genkwanin and naringenin exhibited significant anti-proliferative activity against B16F10 melanoma cells after 24 and 48 h of incubation. Furthermore, apigenin-7-glucoside, genkwanin and naringenin provoked an increase of subG0/G1, S and G2/M phase cell proportion with a significant decrease of cell proportion in G0/G1 phases. The results evaluated using Hoechst 33,258, confirm that the percentage of B16F10 cells observed in the sub G0/G1 phase were undergoing apoptosis. Moreover, apigenin-7-glucoside and naringenin revealed an ability to enhance melanogenesis synthesis and tyrosinase activity of B16F10 melanoma cells. Whereas genkwanin induces a decrease of melanin synthesis by inhibiting tyrosinase activity. SIGNIFICANCE Our results promote the introduction of genkwanin in cosmetic preparations, as skin whitening agent, whereas apigenin-7-glucoside and naringenin should be introduced into cosmetic products as natural tanning agents.
Collapse
Affiliation(s)
- Nouha Nasr Bouzaiene
- Unit of Bioactive and Natural Substances and Biotechnology UR12ES12, Faculty of Pharmacy, University of Monastir, Avicenne Street, Monastir 5000, Tunisia; Laboratory of Cellular and Molecular Biology, Faculty of Dental Medicine, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Fadwa Chaabane
- Unit of Bioactive and Natural Substances and Biotechnology UR12ES12, Faculty of Pharmacy, University of Monastir, Avicenne Street, Monastir 5000, Tunisia; Laboratory of Cellular and Molecular Biology, Faculty of Dental Medicine, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Aicha Sassi
- Unit of Bioactive and Natural Substances and Biotechnology UR12ES12, Faculty of Pharmacy, University of Monastir, Avicenne Street, Monastir 5000, Tunisia; Laboratory of Cellular and Molecular Biology, Faculty of Dental Medicine, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Leila Chekir-Ghedira
- Unit of Bioactive and Natural Substances and Biotechnology UR12ES12, Faculty of Pharmacy, University of Monastir, Avicenne Street, Monastir 5000, Tunisia; Laboratory of Cellular and Molecular Biology, Faculty of Dental Medicine, University of Monastir, Avicenne Street, Monastir 5000, Tunisia.
| | - Kamel Ghedira
- Unit of Bioactive and Natural Substances and Biotechnology UR12ES12, Faculty of Pharmacy, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| |
Collapse
|
13
|
Chiang CM, Ding HY, Tsai YT, Chang TS. Production of Two Novel Methoxy-Isoflavones from Biotransformation of 8-Hydroxydaidzein by Recombinant Escherichia coli Expressing O-Methyltransferase SpOMT2884 from Streptomyces peucetius. Int J Mol Sci 2015; 16:27816-23. [PMID: 26610478 PMCID: PMC4661928 DOI: 10.3390/ijms161126070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/17/2023] Open
Abstract
Biotransformation of 8-hydroxydaidzein by recombinant Escherichia coli expressing O-methyltransferase (OMT) SpOMT2884 from Streptomyces peucetius was investigated. Two metabolites were isolated and identified as 7,4′-dihydroxy-8-methoxy-isoflavone (1) and 8,4′-dihydroxy-7-methoxy-isoflavone (2), based on mass, 1H-nuclear magnetic resonance (NMR) and 13C-NMR spectrophotometric analysis. The maximum production yields of compound (1) and (2) in a 5-L fermenter were 9.3 mg/L and 6.0 mg/L, respectively. The two methoxy-isoflavones showed dose-dependent inhibitory effects on melanogenesis in cultured B16 melanoma cells under non-toxic conditions. Among the effects, compound (1) decreased melanogenesis to 63.5% of the control at 25 μM. This is the first report on the 8-O-methylation activity of OMT toward isoflavones. In addition, the present study also first identified compound (1) with potent melanogenesis inhibitory activity.
Collapse
Affiliation(s)
- Chien-Min Chiang
- Department of Biotechnology, Chia Nan University of Pharmacy & Science, No. 60, Sec. 1, Erh-Jen Rd., Jen-Te District, Tainan 71710, Taiwan.
| | - Hsiou-Yu Ding
- Department of Cosmetics Science, Chia Nan University of Pharmacy & Science, No. 60, Sec. 1, Erh-Jen Rd., Jen-Te District, Tainan 71710, Taiwan.
| | - Ya-Ting Tsai
- Department of Biological Sciences and Technology, National University of Tainan, No. 33, Sec. 2, Shu-Lin St., Tainan 70005, Taiwan.
| | - Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, No. 33, Sec. 2, Shu-Lin St., Tainan 70005, Taiwan.
| |
Collapse
|
14
|
Fermented broth in tyrosinase- and melanogenesis inhibition. Molecules 2014; 19:13122-35. [PMID: 25255749 PMCID: PMC6271004 DOI: 10.3390/molecules190913122] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 01/16/2023] Open
Abstract
Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed.
Collapse
|
15
|
In Vitroandin VivoMelanogenesis Inhibition by Biochanin A fromTrifolium pratense. Biosci Biotechnol Biochem 2014; 75:914-8. [DOI: 10.1271/bbb.100878] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Chang TS. Isolation, bioactivity, and production of ortho-hydroxydaidzein and ortho-hydroxygenistein. Int J Mol Sci 2014; 15:5699-716. [PMID: 24705463 PMCID: PMC4013590 DOI: 10.3390/ijms15045699] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/18/2014] [Accepted: 03/27/2014] [Indexed: 12/18/2022] Open
Abstract
Daidzein and genistein are two major components of soy isoflavones. They exist abundantly in plants and possess multiple bioactivities. In contrast, ortho-hydroxydaidzein (OHD) and ortho-hydroxygenistein (OHG), including 6-hydroxydaidzein (6-OHD), 8-hydroxydaidzein (8-OHD), 3'-hydroxydaidzein (3'-OHD), 6-hydroxygenistein (6-OHG), 8-hydroxygenistein (8-OHG), and 3'-hydroxygenistein (3'-OHG), are rarely found in plants. Instead, they are usually isolated from fermented soybean foods or microbial fermentation broth feeding with soybean meal. Accordingly, the bioactivity of OHD and OHG has been investigated less compared to that of soy isoflavones. Recently, OHD and OHG were produced by genetically engineering microorganisms through gene cloning of cytochrome P450 (CYP) enzyme systems. This success opens up bioactivity investigation and industrial applications of OHD and OHG in the future. This article reviews isolation of OHD and OHG from non-synthetic sources and production of the compounds by genetically modified microorganisms. Several bioactivities, such as anticancer and antimelanogenesis-related activities, of OHD and OHG, are also discussed.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Science and Technology, National University of Tainan, 33 Sec. 2 Su-Lin St., Tainan 702, Taiwan.
| |
Collapse
|
17
|
Seo MH, Kim BN, Kim KR, Lee KW, Lee CH, Oh DK. Production of 8-hydroxydaidzein from soybean extract by Aspergillus oryzae KACC 40247. Biosci Biotechnol Biochem 2013; 77:1245-50. [PMID: 23748754 DOI: 10.1271/bbb.120899] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aspergillus oryzae KACC 40247 was selected from among 60 fungal strains as an effective 7,8,4'-trihydroxyisoflavone (8-hydroxydaidzein)-producing fungus. The optimal culture conditions for production by this strain in a 7-L fermentor were found to be 30 °C, pH 6, and 300 rpm. Under these conditions, A. oryzae KACC 40247 produced 62 mg/L of 8-hydroxydaidzein from soybean extract in 30 h, with a productivity of 2.1 mg/L/h. These are the highest production and productivity for 8-hydroxydaidzein ever reported. To increase production, several concentrations of daidzin and of daidzein as precursor were added at several culture times. The optimal addition time and concentration for daidzin were 12 h and 1,248 mg/L, and those for daidzein were 12 h and 254 mg/L respectively. Maximum production and productivity for 8-hydroxydaidzein with the addition of daidzein were 95 mg/L and 3.2 mg/L/h respectively, and those with the addition of daidzin were 160 mg/L and 4.4 mg/L/h respectively.
Collapse
Affiliation(s)
- Min-Ho Seo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Chang TS, Chao SY, Chen YC. Production of ortho-hydroxydaidzein derivatives by a recombinant strain of Pichia pastoris harboring a cytochrome P450 fusion gene. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Chen YM, Shih TW, Chiu CP, Pan TM, Tsai TY. Effects of lactic acid bacteria-fermented soy milk on melanogenesis in B16F0 melanocytes. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
20
|
A potential daidzein derivative enhances cytotoxicity of epirubicin on human colon adenocarcinoma Caco-2 cells. Int J Mol Sci 2012; 14:158-76. [PMID: 23344026 PMCID: PMC3565256 DOI: 10.3390/ijms14010158] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022] Open
Abstract
In this study, we evaluated the effects of 8-hydroxydaidzein (8HD), an isoflavone isolated from fermented soy germ koji, and epirubicin (Epi), an antineoplastic agent, on the production of reactive oxygen species (ROS). We subsequently correlated the ROS levels to the anticancer mechanisms of Epi and 8HD in human colon adenocarcinoma Caco-2 cells. 8HD enhanced cytotoxicity of Epi and generated a synergistic effect. Epi and/or 8HD treatments increased the hydrogen peroxide and superoxide levels. Combined treatment markedly decreased mRNA expression levels of multidrug resistance protein 1 (MDR1), MDR-associated protein (MRP) 1, and MRP2. 8HD significantly intensified Epi intracellular accumulation in Caco-2 cells. 8HD and/or Epi-induced apoptosis, as indicated by the reduced mitochondrial membrane potential and increased sub-G1 phase in cell cycle. Moreover, 8HD and Epi significantly enhanced the mRNA expressions of Bax, p53, caspases-3, -8, and -9. To our best knowledge, this study verifies for the first time that 8HD effectively circumvents MDR in Caco-2 cells through the ROS-dependent inhibition of efflux transporters and p53-mediated activation of both death receptor and mitochondrial pathways of apoptosis. Our findings of 8HD shed light on the future search for potential biotransformed isoflavones to intensify the cytotoxicity of anticancer drugs through simultaneous reversal of pump and nonpump resistance.
Collapse
|
21
|
Chen YS, Lee SM, Lin CC, Liu CY, Wu MC, Shi WL. Kinetic study on the tyrosinase and melanin formation inhibitory activities of carthamus yellow isolated from Carthamus tinctorius L. J Biosci Bioeng 2012; 115:242-5. [PMID: 23063243 DOI: 10.1016/j.jbiosc.2012.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 11/24/2022]
Abstract
Carthamus yellow (CY) is the major component of the yellow pigments of Carthamus tinctorius L. CY has been extensively used as a natural color additive for food and cosmetics. Here, our results demonstrate that carthamus yellow reduced the activity of mushroom tyrosinase in a dose-dependent manner with a half maximal inhibitory concentration (IC(50)) value of approximately 1.01 ± 0.03 mg/mL. A kinetic study of carthamus yellow on tyrosinase exhibited a mode of competitive inhibition with a Ki of 0.607 mg/mL. Moreover, cell viability analysis indicated that carthamus yellow used at concentrations of 1.0-4.0 mg/mL had no cytotoxicity in B16F10 melanoma cells. Melanin content analysis showed that melanin production in B16F10 melanoma cells treated with 4 mg/mL carthamus yellow can decrease to 82.3 ± 0.4% of the levels of melanin production of untreated cells. Thus, carthamus yellow has the potential to become a useful skin-whitening agent in the future.
Collapse
Affiliation(s)
- Yi-Shyan Chen
- Department of Cosmetic Science, Providence University, No. 200 Sec. 7 Taiwan Boulevard, Shalu, Taichung, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
22
|
Chang TS, Chao SY, Ding HY. Melanogenesis inhibition by homoisoflavavone sappanone A from Caesalpinia sappan. Int J Mol Sci 2012; 13:10359-10367. [PMID: 22949866 PMCID: PMC3431864 DOI: 10.3390/ijms130810359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 11/24/2022] Open
Abstract
Homoisoflavanone, sappanone A, was isolated from Caesalpinia sappan and proven to dose-dependently inhibit both melanogenesis and cellular tyrosinase activity via repressing tyrosinase gene expression in mouse B16 melanoma cells. To our knowledge, sappanone A is the first homoisoflavanone to be discovered with melanogenesis inhibitory activity. Our results give a new impetus to the future search for other homoisoflavanone melanogenesis inhibitors.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, 33 sec. 2 Su-Lin St., Tainan 700, Taiwan; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (T.-S.C.); (H.-Y.D.); Tel.: +886-6-2602137 (T.-S.C.); +886-6-2664911 (H.-Y.D.); Fax: +886-6-2602137 (T.-S.C.); +886-6-2670324 (H.-Y.D.)
| | - Shih-Yu Chao
- Department of Biological Sciences and Technology, National University of Tainan, 33 sec. 2 Su-Lin St., Tainan 700, Taiwan; E-Mail:
| | - Hsiou-Yu Ding
- Institute of Cosmetics Science, Chia Nan University of Pharmacy and Science, 60 sec. 1 Erh-Jen RD, Jen-Te, Tainan 717, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (T.-S.C.); (H.-Y.D.); Tel.: +886-6-2602137 (T.-S.C.); +886-6-2664911 (H.-Y.D.); Fax: +886-6-2602137 (T.-S.C.); +886-6-2670324 (H.-Y.D.)
| |
Collapse
|
23
|
Inhibitory effects of autolysate of Leuconostoc mesenteroides isolated from kimoto on melanogenesis. J Biosci Bioeng 2012; 114:424-8. [PMID: 22906413 DOI: 10.1016/j.jbiosc.2012.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 05/18/2012] [Accepted: 05/22/2012] [Indexed: 02/04/2023]
Abstract
We investigated the inhibitory effects of the autolysate of Leuconostoc mesenteroides, a lactic acid bacterium isolated from sake mash, on melanogenesis in B16F0 murine melanoma cells and a human skin model. The autolysate: induced a decrease in melanin content in B16F0 murine melanoma cells and a 17%, 36%, 41% and 58% decrease in the human skin model by the application of 0.125, 1.25, 6.25, and 12.5 mg/tissue in total; decreased tyrosinase activity to 71%, 46% and 29% of control in B16F0 cells with 0.1, 0.2 and 0.4 mg/ml-medium respectively, but did not inhibit tyrosinase activity under cell-free conditions; decreased amount of tyrosinase in a dose-dependent manner from 74% with 0.1 mg/ml to 33% with 0.4 mg/ml; and decreased amount of tyrosinase mRNA to 80-90% with 0.2-0.4 mg/ml-medium. As the decrease in tyrosinase mRNA levels could not fully account for the reduction in protein, we suggest that the autolysate had post-transcriptional effects rather than transcription inhibition. Our results indicate that the autolysate of L. mesenteroides has potential therapeutic use as an effective anti-melanogenic agent.
Collapse
|
24
|
Goh MJ, Park JS, Bae JH, Kim DH, Kim HK, Na YJ. Effects of ortho-dihydroxyisoflavone derivatives from Korean fermented soybean paste on melanogenesis in B16 melanoma cells and human skin equivalents. Phytother Res 2012; 26:1107-12. [PMID: 22162275 DOI: 10.1002/ptr.3682] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/13/2011] [Accepted: 09/18/2011] [Indexed: 11/07/2022]
Abstract
In this study we investigated the inhibitory effects and possible mechanisms of action of 8'-hydroxydaidzein and 3'-hydroxydaidzein, two ortho-dihydroxyisoflavone derivatives from Korean fermented soybean paste, on melanogenesis in B16 murine melanoma cells. The two hydroxydaidzeins reduced melanin synthesis comparably to treatment with kojic acid, a proven whitening agent, in B16 melanoma cells. Furthermore, when in vitro human skin equivalents were treated with the hydroxydaidzeins, the levels of melanogenesis were significantly reduced relative to a kojic acid control. The RT-PCR results demonstrated that depigmentation was due to transcriptional repression of several melanogenesis genes, including microphthalmia-associated transcription factor (MITF), by the hydroxydaidzeins. The immunoblotting results confirmed that diminution of MITF expression subsequently decreased expression of tyrosinase, and tyrosinase-related proteins 1 and 2. Cumulatively, these results suggest that hydroxydaidzeins would be potent attenuators of melanin synthesis as well as effective inhibitors of hyperpigmentation in human skin.
Collapse
Affiliation(s)
- Myeong-Jin Goh
- Skin Research Institute, AmorePacific R&D Center, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | |
Collapse
|
25
|
MUÑOZ-MUÑOZ J, GARCIA-MOLINA F, ROS E, TUDELA J, GARCÍA-CANOVAS F, RODRIGUEZ-LOPEZ J. PROOXIDANT AND ANTIOXIDANT ACTIVITIES OF ROSMARINIC ACID. J Food Biochem 2012. [DOI: 10.1111/j.1745-4514.2011.00639.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Muñoz-Muñoz JL, Berna J, Garcia-Molina F, Garcia-Ruiz PA, Tudela J, Rodriguez-Lopez JN, Garcia-Canovas F. Unravelling the suicide inactivation of tyrosinase: A discrimination between mechanisms. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2011.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Muñoz-Muñoz JL, Garcia-Molina F, Berna J, Garcia-Ruiz PA, Varon R, Tudela J, Rodriguez-Lopez JN, Garcia-Canovas F. Kinetic characterisation of o-aminophenols and aromatic o-diamines as suicide substrates of tyrosinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:647-55. [PMID: 22342555 DOI: 10.1016/j.bbapap.2012.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/15/2022]
Abstract
We study the suicide inactivation of tyrosinase acting on o-aminophenols and aromatic o-diamines and compare the results with those obtained for the corresponding o-diphenols. The catalytic constants follow the order aromatic o-diamines<o-aminophenols<o-diphenols, which agrees with the view that the transfer of the proton to the peroxide group of the oxy-tyrosinase form is the slowest step in the catalytic cycle. As regards the apparent inactivation constant, it remains within the same order of magnitude, although slightly lower in the case of the aromatic o-diamines and o-aminophenols than o-diphenols: o-diamines<o-aminophenols<o-diphenols. The efficiency of the second nucleophilic attack of substrate on CuA seems to be the determining factor in the bifurcation of the inactivation and catalytic pathways. This attack is more efficient in o-diamines (where it attacks a nitrogen atom) than in o-aminophenols and o-diphenols (where it attacks an oxygen atom), favouring the catalytic pathway and slowing down the inactivation pathway. The inactivation step is the slowest of the whole process. The values of r, the number of turnovers that 1mol of enzyme carries out before being inactivated, follows the order aromatic o-diamines<o-aminophenols<o-diphenols. As regards the Michaelis constants, that of the o-diamines is slightly lower than that of the o-diphenols, while that of the o-aminophenols is slightly greater than that observed for the o-diphenols. As a consequence of the above, the inactivation efficiency, λ(max)/K(m)(S), follows this order: o-diphenols>o-aminophenols>aromatic o-diamines.
Collapse
Affiliation(s)
- Jose Luis Muñoz-Muñoz
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia,Espinardo, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Melanin biosynthesis inhibitory effects of calycosin-7-O-β-d-glucoside isolated from astragalus (Astragalus membranaceus). Food Sci Biotechnol 2011. [DOI: 10.1007/s10068-011-0205-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
29
|
Chang TS, Lin VCH. Melanogenesis inhibitory activity of two generic drugs: cinnarizine and trazodone in mouse B16 melanoma cells. Int J Mol Sci 2011; 12:8787-96. [PMID: 22272104 PMCID: PMC3257101 DOI: 10.3390/ijms12128787] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 11/26/2011] [Accepted: 11/28/2011] [Indexed: 11/16/2022] Open
Abstract
More than 200 generic drugs were screened to identify the inhibitory activity on melanogenesis in mouse B16 melanoma cells. Cinnarizine and trazodone were identified as melanogenesis inhibitors. The inhibitory effects of the two drugs on cell survival, melanogenesis, and tyrosinase activity were investigated. The results showed that both cinnarizine and trazodone inhibited melanogenesis in B16 cells by a dose-dependent manner at the non-cytotoxic concentrations. Based on the results of the present study, seeking new melanogenesis inhibitors from generic drugs is an alternative approach to developing new depigmenting agents in cosmeceuticals. Moreover, cinnarizine and trazodone were proven to be good candidates as skin-whitening agents for treatment of skin hyperpigmentation.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Science and Technology, National University of Tainan, 33 Sec. 2 Su-Lin St., Tainan 71702, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +886-6-2602137
| | - Victor Chia-Hsiang Lin
- Department of Urology, E-Da Hospital, Kaohsiung 84001, Taiwan; E-Mail:
- The PhD Program of Biotechnology, Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| |
Collapse
|
30
|
Study on the stability of deoxyArbutin in an anhydrous emulsion system. Int J Mol Sci 2011; 12:5946-54. [PMID: 22016637 PMCID: PMC3189761 DOI: 10.3390/ijms12095946] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/01/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022] Open
Abstract
The skin-whitening agent, deoxyArbutin, is a potent tyrosinase inhibitor that is safer than hydroquinone and arbutin. However, it is thermolabile in aqueous solutions, where it decomposes to hydroquinone. Pharmaceutical and cosmetic emulsions are normally oil-in-water (o/w) or water-in-oil (w/o) systems; however, emulsions can be formulated with no aqueous phase to produce an anhydrous emulsion system. An anhydrous emulsion system could offer a stable vehicle for compounds that are sensitive to hydrolysis or oxidation. Therefore, to enhance the stability of deoxyArbutin in formulations, we chose the polyol-in-silicone, anhydrous emulsion system as the basic formulation for investigation. The quantity of deoxyArbutin and the accumulation of hydroquinone in both hydrous and anhydrous emulsions at various temperatures were analyzed through an established high performance liquid chromatographic (HPLC) method. The results indicated that water increased the decomposition of deoxyArbutin in the formulations and that the polyol-in-silicone, oil-based, anhydrous emulsion system provided a relatively stable surrounding for the deoxyArbutin that delayed its degradation at 25 °C and 45 °C. Moreover, the composition of the inner hydrophilic phase, containing different amounts of glycerin and propylene glycol, affected the stability of deoxyArbutin. Thus, these results will be beneficial when using deoxyArbutin in cosmetics and medicines in the future.
Collapse
|
31
|
Evaluation of in vitro and in vivo depigmenting activity of raspberry ketone from Rheum officinale. Int J Mol Sci 2011; 12:4819-35. [PMID: 21954327 PMCID: PMC3179134 DOI: 10.3390/ijms12084819] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/21/2011] [Indexed: 02/01/2023] Open
Abstract
Melanogenesis inhibition by raspberry ketone (RK) from Rheum officinale was investigated both in vitro in cultivated murine B16 melanoma cells and in vivo in zebrafish and mice. In B16 cells, RK inhibited melanogenesis through a post-transcriptional regulation of tyrosinase gene expression, which resulted in down regulation of both cellular tyrosinase activity and the amount of tyrosinase protein, while the level of tyrosinase mRNA transcription was not affected. In zebrafish, RK also inhibited melanogenesis by reduction of tyrosinase activity. In mice, application of a 0.2% or 2% gel preparation of RK applied to mouse skin significantly increased the degree of skin whitening within one week of treatment. In contrast to the widely used flavoring properties of RK in perfumery and cosmetics, the skin-whitening potency of RK has been demonstrated in the present study. Based on our findings reported here, RK would appear to have high potential for use in the cosmetics industry.
Collapse
|
32
|
Ding HY, Chang TS, Shen HC, Tai SSK. Murine tyrosinase Inhibitors from Cynanchum bungei and evaluation of in vitro and in vivo depigmenting activity. Exp Dermatol 2011; 20:720-4. [DOI: 10.1111/j.1600-0625.2011.01302.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Muñoz-Muñoz JL, Garcia-Molina F, Arribas E, Garcia-Ruíz PA, Tudela J, Garcia-Cánovas F, Rodríguez-López JN. Suicide inactivation of tyrosinase in its action on tetrahydropterines. J Enzyme Inhib Med Chem 2011; 26:728-33. [DOI: 10.3109/14756366.2010.548811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jose Luis Muñoz-Muñoz
- Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, E-30100, Espinardo, Murcia, Spain,
| | - Francisco Garcia-Molina
- Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, E-30100, Espinardo, Murcia, Spain,
| | - Enrique Arribas
- Departamento de Física Aplicada, Escuela Politécnica Superior de Albacete, Universidad de Castilla la Mancha, Avda, España s/n, Campus Universitario, E-02071, Albacete, Spain
| | - Pedro Antonio Garcia-Ruíz
- QCBA: Grupo de Química de Carbohidratos y Biotecnología de Alimentos, Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100, Espinardo, Murcia, Spain
| | - Jose Tudela
- Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, E-30100, Espinardo, Murcia, Spain,
| | - Francisco Garcia-Cánovas
- Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, E-30100, Espinardo, Murcia, Spain,
| | - Jose Neptuno Rodríguez-López
- Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, E-30100, Espinardo, Murcia, Spain,
| |
Collapse
|
34
|
Chang TS, Lin JJ. Inhibitory effect of danazol on melanogenesis in mouse B16 melanoma cells. Arch Pharm Res 2010; 33:1959-65. [PMID: 21191761 DOI: 10.1007/s12272-010-1211-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/01/2010] [Accepted: 05/02/2010] [Indexed: 10/18/2022]
Abstract
In the present study, more than 200 generic drugs were screened to verify their applicability as a skin-lightening agent using mouse B16 melanoma cells. Of the numerous agents, danazol was found to inhibit melanogenesis in B16 cells in a dose-dependent manner with an IC(50) value of 9.3 μM. In addition, danazol reduced cellular tyrosinase activity in B16 cells but did not directly inhibit the murine tyrosinase activity in the cell-free system. Western blotting analysis confirmed that danazol downregulated the levels of tyrosinase protein in B16 cells, and reverse-transcription polymerase chain reaction (RT-PCR) analysis revealed that danazol did not downregulate the levels of tyrosinase mRNA in the cells. These results indicate that danazol inhibits melanogenesis in B16 cells via reducing the tyrosinase activity by post-transcriptional regulation.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Science and Technology, National University of Tainan, Tainan 700, Taiwan.
| | | |
Collapse
|
35
|
Yang CH, Chen YS, Lai JS, Hong WWL, Lin CC. Determination of the thermodegradation of deoxyArbutin in aqueous solution by high performance liquid chromatography. Int J Mol Sci 2010; 11:3977-87. [PMID: 21152314 PMCID: PMC2996804 DOI: 10.3390/ijms11103977] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/30/2010] [Accepted: 10/13/2010] [Indexed: 11/16/2022] Open
Abstract
Tyrosinase is the key and rate-limiting enzyme responsible for the conversion of tyrosine into melanin. Competitive inhibition of tyrosinase enzymatic activity results in decreased or absent melanin synthesis by melanocytes in human skin. DeoxyArbutin (4-[(tetrahydro-2H-pyran-2-yl)oxy]phenol), a novel skin whitening agent, was synthesized through the removal of hydroxyl groups from the glucose side-chain of arbutin. DeoxyArbutin not only shows greater inhibition of tyrosinase activity but is also safer than hydroquinone and arbutin. Hence, deoxyArbutin is a potential skin whitening agent for cosmetics and depigmenting drugs; however, stability of this compound under some conditions remains a problem. The lack of stability poses developmental and practical difficulties for the use of deoxyArbutin in cosmetics and medicines. Improving the thermostability of deoxyArbutin is an important issue for its development. In this research, we established an analytical procedure to verify the amount of deoxyArbutin in solutions using a high performance liquid chromatographic (HPLC) method. The results indicate that this novel skin whitening agent is a thermolabile compound in aqueous solutions. Additionally, the rate constant for thermodegradation (k) and the half-life (t(1/2)) of deoxyArbutin were determined and can be used to understand the thermodegradation kinetics of deoxyArbutin. This information can aid in the application of deoxyArbutin for many future uses.
Collapse
Affiliation(s)
- Chao-Hsun Yang
- Department of Cosmetic Science, Providence University, 200 Chung-Chi Road, Shalu, Taichung, 43301, Taiwan; E-Mails: (C.-H.Y.); (Y.-S.C.); (J.-S.L.)
| | - Yi-Shyan Chen
- Department of Cosmetic Science, Providence University, 200 Chung-Chi Road, Shalu, Taichung, 43301, Taiwan; E-Mails: (C.-H.Y.); (Y.-S.C.); (J.-S.L.)
| | - Jeng-Shiow Lai
- Department of Cosmetic Science, Providence University, 200 Chung-Chi Road, Shalu, Taichung, 43301, Taiwan; E-Mails: (C.-H.Y.); (Y.-S.C.); (J.-S.L.)
| | - Willy W. L. Hong
- R&D Department, Denjelly Co., Ltd., 60 Jiabei 2nd St., Jhunan, Miaoli, 35058, Taiwan; E-Mail: (W.W.L.H.)
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, 200 Chung-Chi Road, Shalu, Taichung, 43301, Taiwan; E-Mails: (C.-H.Y.); (Y.-S.C.); (J.-S.L.)
- * Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-4-26328001 ext. 15409; Fax: +886-4-26311167
| |
Collapse
|
36
|
Muñoz-Muñoz JL, Garcia-Molina F, Varon R, Garcia-Ruíz PA, Tudela J, Garcia-Cánovas F, Rodríguez-López JN. Suicide inactivation of the diphenolase and monophenolase activities of tyrosinase. IUBMB Life 2010; 62:539-47. [PMID: 20552645 DOI: 10.1002/iub.348] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The suicide inactivation mechanism of tyrosinase acting on its phenolic substrates has been studied. Kinetic analysis of the proposed mechanism during the transition phase provides explicit analytical expressions for the concentrations of o-quinone versus time. The electronic, steric, and hydrophobic effects of the phenolic substrates influence the enzymatic reaction, increasing the catalytic speed by three orders of magnitude and the inactivation by one order of magnitude. To explain this suicide inactivation, we propose a mechanism in which the enzymatic form oxy-tyrosinase is responsible for the inactivation. In this mechanism, the rate constant of the reaction would be directly related with the strength of the nucleophilic attack of the C-1 hydroxyl group, which depends on the chemical shift of the carbon C-1 (delta(1)) obtained by (13)C-NMR. The suicide inactivation would occur if the C-2 hydroxyl group transferred the proton to the protonated peroxide, which would again act as a general base. In this case, the coplanarity between the copper atom, the oxygen of the C-1 and the ring would only permit the oxidation/reduction of one copper atom, giving rise to copper (0), hydrogen peroxide, and an o-quinone, which would be released, thus inactivating the enzyme. One possible application of this property could be the use of these suicide substrates as skin depigmenting agents.
Collapse
Affiliation(s)
- Jose Luis Muñoz-Muñoz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biologia, Universidad de Murcia, Espinardo, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|