1
|
Wen P, Sun Z, Yang D, Li J, Li Z, Zhao M, Wang D, Gou F, Wang J, Dai Y, Zhao D, Yang L. Irisin regulates oxidative stress and mitochondrial dysfunction through the UCP2-AMPK pathway in prion diseases. Cell Death Dis 2025; 16:66. [PMID: 39900919 PMCID: PMC11790890 DOI: 10.1038/s41419-025-07390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
Prion diseases are a group of fatal neurodegenerative disorders characterized by the abnormal folding of cellular prion proteins into pathogenic forms. The development of these diseases is intricately linked to oxidative stress and mitochondrial dysfunction. Irisin, an endogenous myokine, has demonstrated considerable neuroprotective potential due to its antioxidative properties. However, the protective effects of irisin against prion diseases have yet to be clarified. Our findings indicate that treatment with exogenous irisin can mitigate the apoptosis induced by PrP106-126. Additionally, irisin significantly reduces oxidative stress and alleviates the mitochondrial dysfunction triggered by PrP106-126. Furthermore, irisin treatment targets uncoupling protein 2 (UCP2) and activates the AMPK-Nrf2 pathway, substantially improving oxidative stress and mitochondrial dysfunction in N2a cells induced by PrP106-126. These results suggest that irisin represents a novel and promising therapeutic approach for treating prion diseases.
Collapse
Affiliation(s)
- Pei Wen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dongming Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhiping Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengyang Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - DongDong Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuexin Dai
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Corsaro A, Dellacasagrande I, Tomanelli M, Pagano A, Barbieri F, Thellung S, Florio T. The expression of pro-prion, a transmembrane isoform of the prion protein, leads to the constitutive activation of the canonical Wnt/β-catenin pathway to sustain the stem-like phenotype of human glioblastoma cells. Cancer Cell Int 2024; 24:426. [PMID: 39716276 DOI: 10.1186/s12935-024-03581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Cellular prion protein (PrPC) is a widely expressed membrane-anchored glycoprotein, which has been associated with the development and progression of several types of human malignancies, controlling cancer stem cell activity. However, the different molecular mechanisms regulated by PrPC in normal and tumor cells have not been characterized yet. METHODS To assess the role of PrPC in patient-derived glioblastoma stem cell (GSC)-enriched cultures, we generated cell lines in which PrPC was either overexpressed or down-regulated and investigated, in 2D and 3D cultures, its role in cell proliferation, migration, and invasion. We evaluated the role of PrPC in supporting GSC stemness and the intracellular signaling involved using qRT-PCR, immunocytofluorescence, and Western blot. RESULTS Stable PrPC down-regulation leads to a significant reduction of GSC proliferation, migration, and invasiveness. These effects were associated with the inhibition of the expression of stemness genes and overexpression of differentiation markers. At molecular level PrPC down-regulation caused a significant inhibition of Wnt/β-catenin pathway, through a reduced expression of Wnt and Frizzled ligand/receptor subtypes, resulting in the inhibition of β-catenin transcriptional activity, as demonstrated by the reduced expression of its target genes. The specificity of PrPC in these effects was demonstrated by rescuing the phenotype and the biological activity of PrPC down-regulated GSCs by re-expressing the protein. To get insights into the distinct mechanisms by which PrPC regulates proliferation in GSCs, but not in normal astrocytes, we analyzed structural features of PrPC in glioma stem cells and astrocytes using Western blot and immunofluorescence techniques. Using Pi-PLC, an enzyme that cleaves GPI anchors, we show that, in GSCs, PrP is retained within the plasma membrane in an immature Pro-PrP isoform whereas in astrocytes, it is expressed in its mature PrPC form, anchored on the extracellular face of the plasma membrane. CONCLUSIONS The persistence of Pro-PrP in GSCs is an altered cellular mechanism responsible of the aberrant, constitutive activation of Wnt/β-catenin pathway, which contributes to glioblastoma malignant features. Thus, the activity of Pro-PrP may represent a targetable vulnerability in glioblastoma cells, offering a novel approach for differentiating and eradicating glioblastoma stem cells.
Collapse
Affiliation(s)
- Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Irene Dellacasagrande
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Michele Tomanelli
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Aldo Pagano
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
3
|
Zhao M, Li J, Li Z, Yang D, Wang D, Sun Z, Wen P, Gou F, Dai Y, Ji Y, Li W, Zhao D, Yang L. SIRT1 Regulates Mitochondrial Damage in N2a Cells Treated with the Prion Protein Fragment 106-126 via PGC-1α-TFAM-Mediated Mitochondrial Biogenesis. Int J Mol Sci 2024; 25:9707. [PMID: 39273653 PMCID: PMC11395710 DOI: 10.3390/ijms25179707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondrial damage is an early and key marker of neuronal damage in prion diseases. As a process involved in mitochondrial quality control, mitochondrial biogenesis regulates mitochondrial homeostasis in neurons and promotes neuron health by increasing the number of effective mitochondria in the cytoplasm. Sirtuin 1 (SIRT1) is a NAD+-dependent deacetylase that regulates neuronal mitochondrial biogenesis and quality control in neurodegenerative diseases via deacetylation of a variety of substrates. In a cellular model of prion diseases, we found that both SIRT1 protein levels and deacetylase activity decreased, and SIRT1 overexpression and activation significantly ameliorated mitochondrial morphological damage and dysfunction caused by the neurotoxic peptide PrP106-126. Moreover, we found that mitochondrial biogenesis was impaired, and SIRT1 overexpression and activation alleviated PrP106-126-induced impairment of mitochondrial biogenesis in N2a cells. Further studies in PrP106-126-treated N2a cells revealed that SIRT1 regulates mitochondrial biogenesis through the PGC-1α-TFAM pathway. Finally, we showed that resveratrol resolved PrP106-126-induced mitochondrial dysfunction and cell apoptosis by promoting mitochondrial biogenesis through activation of the SIRT1-dependent PGC-1α/TFAM signaling pathway in N2a cells. Taken together, our findings further describe SIRT1 regulation of mitochondrial biogenesis and improve our understanding of mitochondria-related pathogenesis in prion diseases. Our findings support further investigation of SIRT1 as a potential target for therapeutic intervention of prion diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.)
| |
Collapse
|
4
|
Chauhan R, Navale GR, Saini S, Panwar A, Kukreti P, Saini R, Roy P, Ghosh K. Modulating the aggregation of human prion protein PrP 106-126 by an indole-based cyclometallated palladium complex. Dalton Trans 2024; 53:11995-12006. [PMID: 38963284 DOI: 10.1039/d4dt00704b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The spontaneous aggregation of infectious or misfolded forms of prion protein is known to be responsible for neurotoxicity in brain cells, which ultimately leads to the progression of prion disorders. Bovine spongiform encephalopathy (BSE) in animals and Creutzfeldt-Jakob disease (CJD) in humans are glaring examples in this regard. Square-planar complexes with labile ligands and indole-based compounds are found to be efficiently inhibitory against protein aggregation. Herein, we report the synthesis of an indole-based cyclometallated palladium complex. The ligand and complex were characterized by various spectroscopic techniques such as UV-visible, NMR, IR, and HRMS. The molecular structure of the complex was confirmed by single-crystal X-ray crystallography. The interaction of the complex with PrP106-126 was studied using UV-visible spectroscopy, CD spectroscopy, MALDI-TOF MS, and molecular docking. The inhibition effects of the complex on the PrP106-126 aggregation, fibrillization and amyloid formation phenomena were analysed through the ThT assay, CD, TEM and AFM. The effect of the complex on the aggregation process of PrP106-126 was determined kinetically through the ThT assay. The complex presented high binding affinity with the peptide and influenced the peptide's conformation and aggregation in different modes of binding. Furthermore, the MTT assay on neuronal HT-22 cells showed considerable protective properties of the complex against PrP106-126-mediated cytotoxicity. These findings suggest that the compound influences peptide aggregation in different ways, and the anti-aggregation action is primarily associated with the metal's physicochemical properties and the reactivity rather than the ligand. As a result, we propose that this compound be investigated as a potential therapeutic molecule in metallopharmaceutical research to treat prion disease (PD).
Collapse
Affiliation(s)
- Rahul Chauhan
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Abhishek Panwar
- Department of Chemistry, National Institute of Technology Manipur, Langol 795004, India
| | - Prashant Kukreti
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Rajat Saini
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
5
|
Pasala C, Sharma S, Roychowdhury T, Moroni E, Colombo G, Chiosis G. N-Glycosylation as a Modulator of Protein Conformation and Assembly in Disease. Biomolecules 2024; 14:282. [PMID: 38540703 PMCID: PMC10968129 DOI: 10.3390/biom14030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 05/01/2024] Open
Abstract
Glycosylation, a prevalent post-translational modification, plays a pivotal role in regulating intricate cellular processes by covalently attaching glycans to macromolecules. Dysregulated glycosylation is linked to a spectrum of diseases, encompassing cancer, neurodegenerative disorders, congenital disorders, infections, and inflammation. This review delves into the intricate interplay between glycosylation and protein conformation, with a specific focus on the profound impact of N-glycans on the selection of distinct protein conformations characterized by distinct interactomes-namely, protein assemblies-under normal and pathological conditions across various diseases. We begin by examining the spike protein of the SARS virus, illustrating how N-glycans regulate the infectivity of pathogenic agents. Subsequently, we utilize the prion protein and the chaperone glucose-regulated protein 94 as examples, exploring instances where N-glycosylation transforms physiological protein structures into disease-associated forms. Unraveling these connections provides valuable insights into potential therapeutic avenues and a deeper comprehension of the molecular intricacies that underlie disease conditions. This exploration of glycosylation's influence on protein conformation effectively bridges the gap between the glycome and disease, offering a comprehensive perspective on the therapeutic implications of targeting conformational mutants and their pathologic assemblies in various diseases. The goal is to unravel the nuances of these post-translational modifications, shedding light on how they contribute to the intricate interplay between protein conformation, assembly, and disease.
Collapse
Affiliation(s)
- Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Elisabetta Moroni
- The Institute of Chemical Sciences and Technologies (SCITEC), Italian National Research Council (CNR), 20131 Milano, Italy; (E.M.); (G.C.)
| | - Giorgio Colombo
- The Institute of Chemical Sciences and Technologies (SCITEC), Italian National Research Council (CNR), 20131 Milano, Italy; (E.M.); (G.C.)
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
6
|
Mahbub NU, Islam MM, Hong ST, Chung HJ. Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: consequences for neurodegeneration. Front Cell Infect Microbiol 2024; 14:1348279. [PMID: 38435303 PMCID: PMC10904658 DOI: 10.3389/fcimb.2024.1348279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal behavior of α-synuclein and prion proteins is the hallmark of Parkinson's disease (PD) and prion illnesses, respectively, being complex neurological disorders. A primary cause of protein aggregation, brain injury, and cognitive loss in prion illnesses is the misfolding of normal cellular prion proteins (PrPC) into an infectious form (PrPSc). Aggregation of α-synuclein causes disruptions in cellular processes in Parkinson's disease (PD), leading to loss of dopamine-producing neurons and motor symptoms. Alteration in the composition or activity of gut microbes may weaken the intestinal barrier and make it possible for prions to go from the gut to the brain. The gut-brain axis is linked to neuroinflammation; the metabolites produced by the gut microbiota affect the aggregation of α-synuclein, regulate inflammation and immunological responses, and may influence the course of the disease and neurotoxicity of proteins, even if their primary targets are distinct proteins. This thorough analysis explores the complex interactions that exist between the gut microbiota and neurodegenerative illnesses, particularly Parkinson's disease (PD) and prion disorders. The involvement of the gut microbiota, a complex collection of bacteria, archaea, fungi, viruses etc., in various neurological illnesses is becoming increasingly recognized. The gut microbiome influences neuroinflammation, neurotransmitter synthesis, mitochondrial function, and intestinal barrier integrity through the gut-brain axis, which contributes to the development and progression of disease. The review delves into the molecular mechanisms that underlie these relationships, emphasizing the effects of microbial metabolites such as bacterial lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs) in regulating brain functioning. Additionally, it looks at how environmental influences and dietary decisions affect the gut microbiome and whether they could be risk factors for neurodegenerative illnesses. This study concludes by highlighting the critical role that the gut microbiota plays in the development of Parkinson's disease (PD) and prion disease. It also provides a promising direction for future research and possible treatment approaches. People afflicted by these difficult ailments may find hope in new preventive and therapeutic approaches if the role of the gut microbiota in these diseases is better understood.
Collapse
Affiliation(s)
- Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Rivai B, Umar AK. Neuroprotective compounds from marine invertebrates. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:71. [DOI: 10.1186/s43088-023-00407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/22/2023] [Indexed: 09/01/2023] Open
Abstract
Abstract
Background
Neuroinflammation is a key pathological feature of a wide variety of neurological disorders, including Parkinson’s, multiple sclerosis, Alzheimer’s, and Huntington’s disease. While current treatments for these disorders are primarily symptomatic, there is a growing interest in developing new therapeutics that target the underlying neuroinflammatory processes.
Main body
Marine invertebrates, such as coral, sea urchins, starfish, sponges, and sea cucumbers, have been found to contain a wide variety of biologically active compounds that have demonstrated potential therapeutic properties. These compounds are known to target various key proteins and pathways in neuroinflammation, including 6-hydroxydopamine (OHDH), caspase-3 and caspase-9, p-Akt, p-ERK, p-P38, acetylcholinesterase (AChE), amyloid-β (Aβ), HSF-1, α-synuclein, cellular prion protein, advanced glycation end products (AGEs), paraquat (PQ), and mitochondria DJ-1.
Short conclusion
This review focuses on the current state of research on the neuroprotective effects of compounds found in marine invertebrates and the potential therapeutic implications of these findings for treating neuroinflammatory disorders. We also discussed the challenges and limitations of using marine-based compounds as therapeutics, such as sourcing and sustainability concerns, and the need for more preclinical and clinical studies to establish their efficacy and safety.
Graphical abstract
Collapse
|
8
|
Guadagno AH, Medina SH. The manifold role of octapeptide repeats in prion protein assembly. Pept Sci (Hoboken) 2023; 115:e24303. [PMID: 37153755 PMCID: PMC10162500 DOI: 10.1002/pep2.24303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Prion protein misfolding is associated with fatal neurodegenerative disorders such as kuru, Creutzfeldt-Jakob disease, and several animal encephalopathies. While the C-terminal 106-126 peptide has been well studied for its role in prion replication and toxicity, the octapeptide repeat (OPR) sequence found within the N-terminal domain has been relatively under explored. Recent findings that the OPR has both local and long-range effects on prion protein folding and assembly, as well as its ability to bind and regulate transition metal homeostasis, highlights the important role this understudied region may have in prion pathologies. This review attempts to collate this knowledge to advance a deeper understanding on the varied physiologic and pathologic roles the prion OPR plays, and connect these findings to potential therapeutic modalities focused on OPR-metal binding. Continued study of the OPR will not only elucidate a more complete mechanistic model of prion pathology, but may enhance knowledge on other neurodegenerative processes underlying Alzheimer's, Parkinson's, and Huntington's diseases.
Collapse
Affiliation(s)
- Amy H. Guadagno
- Nanomedicine, Intercollegiate Degree Program, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott H. Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
9
|
Muacevic A, Adler JR, Nigh G, McCullough PA. A Potential Role of the Spike Protein in Neurodegenerative Diseases: A Narrative Review. Cureus 2023; 15:e34872. [PMID: 36788995 PMCID: PMC9922164 DOI: 10.7759/cureus.34872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Human prion protein and prion-like protein misfolding are widely recognized as playing a causal role in many neurodegenerative diseases. Based on in vitro and in vivo experimental evidence relating to prion and prion-like disease, we extrapolate from the compelling evidence that the spike glycoprotein of SARS-CoV-2 contains extended amino acid sequences characteristic of a prion-like protein to infer its potential to cause neurodegenerative disease. We propose that vaccine-induced spike protein synthesis can facilitate the accumulation of toxic prion-like fibrils in neurons. We outline various pathways through which these proteins could be expected to distribute throughout the body. We review both cellular pathologies and the expression of disease that could become more frequent in those who have undergone mRNA vaccination. Specifically, we describe the spike protein's contributions, via its prion-like properties, to neuroinflammation and neurodegenerative diseases; to clotting disorders within the vasculature; to further disease risk due to suppressed prion protein regulation in the context of widely prevalent insulin resistance; and to other health complications. We explain why these prion-like characteristics are more relevant to vaccine-related mRNA-induced spike proteins than natural infection with SARS-CoV-2. We note with an optimism an apparent loss of prion-like properties among the current Omicron variants. We acknowledge that the chain of pathological events described throughout this paper is only hypothetical and not yet verified. We also acknowledge that the evidence we usher in, while grounded in the research literature, is currently largely circumstantial, not direct. Finally, we describe the implications of our findings for the general public, and we briefly discuss public health recommendations we feel need urgent consideration. An earlier version of this article was previously posted to the Authorea preprint server on August 16, 2022.
Collapse
|
10
|
Public Health progression and related challenges. GLOBAL HEALTH JOURNAL 2023. [DOI: 10.1016/j.glohj.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
11
|
Prions: a threat to health security and the need for effective medical countermeasures. GLOBAL HEALTH JOURNAL 2023. [DOI: 10.1016/j.glohj.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
12
|
Halder P, Mitra P. Human prion protein: exploring the thermodynamic stability and structural dynamics of its pathogenic mutants. J Biomol Struct Dyn 2022; 40:11274-11290. [PMID: 34338141 DOI: 10.1080/07391102.2021.1957715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Human familial prion diseases are known to be associated with different single-point mutants of the gene coding for prion protein with a primary focus at several locations of the globular domain. We have identified 12 different single-point pathogenic mutants of human prion protein (HuPrP) with the help of extensive perturbations/mutation technique at multiple locations of HuPrP sequence related to potentiality towards conformational disorders. Among these, some of the mutants include pathogenic variants that corroborate well with the literature reported proteins while majority include some unique single-point mutants that are either not explicitly studied early or studied for variants with different residues at the specific position. Primarily, our study sheds light on the unfolding mechanism of the above mentioned mutants in depth. Besides, we could identify some mutants under investigation that demonstrates not only unfolding of the helical structures but also extension and generation of the β-sheet structures and or simultaneously have highly exposed hydrophobic surface which is assumed to be linked with the production of aggregate/fibril structures of the prion protein. Among the identified mutants, Q212E needs special attention due to its maximum exposure of hydrophobic core towards solvent and E200Q is found to be important due to its maximum extent of β-content. We are also able to identify different respective structural conformations of the proteins according to their degree of structural unfolding and those conformations can be extracted and further studied in detail. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Puspita Halder
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
13
|
Sinha Ray S, Dutta D, Dennys C, Powers S, Roussel F, Lisowski P, Glažar P, Zhang X, Biswas P, Caporale JR, Rajewsky N, Bickle M, Wein N, Bellen HJ, Likhite S, Marcogliese PC, Meyer KC. Mechanisms of IRF2BPL-related disorders and identification of a potential therapeutic strategy. Cell Rep 2022; 41:111751. [PMID: 36476864 DOI: 10.1016/j.celrep.2022.111751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/23/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
The recently discovered neurological disorder NEDAMSS is caused by heterozygous truncations in the transcriptional regulator IRF2BPL. Here, we reprogram patient skin fibroblasts to astrocytes and neurons to study mechanisms of this newly described disease. While full-length IRF2BPL primarily localizes to the nucleus, truncated patient variants sequester the wild-type protein to the cytoplasm and cause aggregation. Moreover, patient astrocytes fail to support neuronal survival in coculture and exhibit aberrant mitochondria and respiratory dysfunction. Treatment with the small molecule copper ATSM (CuATSM) rescues neuronal survival and restores mitochondrial function. Importantly, the in vitro findings are recapitulated in vivo, where co-expression of full-length and truncated IRF2BPL in Drosophila results in cytoplasmic accumulation of full-length IRF2BPL. Moreover, flies harboring heterozygous truncations of the IRF2BPL ortholog (Pits) display progressive motor defects that are ameliorated by CuATSM treatment. Our findings provide insights into mechanisms involved in NEDAMSS and reveal a promising treatment for this severe disorder.
Collapse
Affiliation(s)
- Shrestha Sinha Ray
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Cassandra Dennys
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Samantha Powers
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Florence Roussel
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Pawel Lisowski
- The Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Department of Psychiatry, Charité - Universitätmedizin Berlin, Berlin, Germany; Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Magdalenka, Poland
| | - Petar Glažar
- The Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Xiaojin Zhang
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Pipasha Biswas
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Joseph R Caporale
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Nikolaus Rajewsky
- The Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Marc Bickle
- Roche Institute for Translational Bioengineering, Basel, Switzerland
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shibi Likhite
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Kathrin C Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Muacevic A, Adler JR. Mitogen Activated Protein Kinase (MAPK) Activation, p53, and Autophagy Inhibition Characterize the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein Induced Neurotoxicity. Cureus 2022; 14:e32361. [PMID: 36514706 PMCID: PMC9733976 DOI: 10.7759/cureus.32361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and prions use common pathogenic pathways to induce toxicity in neurons. Infectious prions rapidly activate the p38 mitogen activated protein kinase (MAPK) pathway, and SARS-CoV-2 spike proteins rapidly activate both the p38 MAPK and c-Jun NH2-terminal kinase (JNK) pathways through toll-like receptor signaling, indicating the potential for similar neurotoxicity, causing prion and prion-like disease. In this review, we analyze the roles of autophagy inhibition, molecular mimicry, elevated intracellular p53 levels and reduced Wild-type p53-induced phosphatase 1 (Wip1) and dual-specificity phosphatase (DUSP) expression in neurons in the disease process. The pathways induced by the spike protein via toll-like receptor activation induce both the upregulation of PrPC (the normal isoform of the prion protein, PrP) and the expression of β amyloid. Through the spike-protein-dependent elevation of p53 levels via β amyloid metabolism, increased PrPC expression can lead to PrP misfolding and impaired autophagy, generating prion disease. We conclude that, according to the age of the spike protein-exposed patient and the state of their cellular autophagy activity, excess sustained activity of p53 in neurons may be a catalytic factor in neurodegeneration. An autoimmune reaction via molecular mimicry likely also contributes to neurological symptoms. Overall results suggest that neurodegeneration is in part due to the intensity and duration of spike protein exposure, patient advanced age, cellular autophagy activity, and activation, function and regulation of p53. Finally, the neurologically damaging effects can be cumulatively spike-protein dependent, whether exposure is by natural infection or, more substantially, by repeated mRNA vaccination.
Collapse
|
15
|
Thellung S, Corsaro A, Dellacasagrande I, Nizzari M, Zambito M, Florio T. Proteostasis unbalance in prion diseases: Mechanisms of neurodegeneration and therapeutic targets. Front Neurosci 2022; 16:966019. [PMID: 36148145 PMCID: PMC9485628 DOI: 10.3389/fnins.2022.966019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/05/2022] [Indexed: 01/18/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are progressive neurodegenerative disorders of the central nervous system that affect humans and animals as sporadic, inherited, and infectious forms. Similarly to Alzheimer's disease and other neurodegenerative disorders, any attempt to reduce TSEs' lethality or increase the life expectancy of affected individuals has been unsuccessful. Typically, the onset of symptoms anticipates the fatal outcome of less than 1 year, although it is believed to be the consequence of a decades-long process of neuronal death. The duration of the symptoms-free period represents by itself a major obstacle to carry out effective neuroprotective therapies. Prions, the infectious entities of TSEs, are composed of a protease-resistant protein named prion protein scrapie (PrPSc) from the prototypical TSE form that afflicts ovines. PrPSc misfolding from its physiological counterpart, cellular prion protein (PrPC), is the unifying pathogenic trait of all TSEs. PrPSc is resistant to intracellular turnover and undergoes amyloid-like fibrillation passing through the formation of soluble dimers and oligomers, which are likely the effective neurotoxic entities. The failure of PrPSc removal is a key pathogenic event that defines TSEs as proteopathies, likewise other neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease, characterized by alteration of proteostasis. Under physiological conditions, protein quality control, led by the ubiquitin-proteasome system, and macroautophagy clears cytoplasm from improperly folded, redundant, or aggregation-prone proteins. There is evidence that both of these crucial homeostatic pathways are impaired during the development of TSEs, although it is still unclear whether proteostasis alteration facilitates prion protein misfolding or, rather, PrPSc protease resistance hampers cytoplasmic protein quality control. This review is aimed to critically analyze the most recent advancements in the cause-effect correlation between PrPC misfolding and proteostasis alterations and to discuss the possibility that pharmacological restoring of ubiquitin-proteasomal competence and stimulation of autophagy could reduce the intracellular burden of PrPSc and ameliorate the severity of prion-associated neurodegeneration.
Collapse
Affiliation(s)
- Stefano Thellung
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Irene Dellacasagrande
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Mario Nizzari
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Martina Zambito
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- *Correspondence: Tullio Florio
| |
Collapse
|
16
|
PINK1-parkin-mediated neuronal mitophagy deficiency in prion disease. Cell Death Dis 2022; 13:162. [PMID: 35184140 PMCID: PMC8858315 DOI: 10.1038/s41419-022-04613-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
A persistent accumulation of damaged mitochondria is part of prion disease pathogenesis. Normally, damaged mitochondria are cleared via a major pathway that involves the E3 ubiquitin ligase parkin and PTEN-induced kinase 1 (PINK1) that together initiate mitophagy, recognize and eliminate damaged mitochondria. However, the precise mechanisms underlying mitophagy in prion disease remain largely unknown. Using prion disease cell models, we observed PINK1-parkin-mediated mitophagy deficiency in which parkin depletion aggravated blocked mitochondrial colocalization with LC3-II-labeled autophagosomes, and significantly increased mitochondrial protein levels, which led to inhibited mitophagy. Parkin overexpression directly induced LC3-II colocalization with mitochondria and alleviated defective mitophagy. Moreover, parkin-mediated mitophagy was dependent on PINK1, since PINK1 depletion blocked mitochondrial Parkin recruitment and reduced optineurin and LC3-II proteins levels, thus inhibiting mitophagy. PINK1 overexpression induced parkin recruitment to the mitochondria, which then stimulated mitophagy. In addition, overexpressed parkin and PINK1 also protected neurons from apoptosis. Furthermore, we found that supplementation with two mitophagy-inducing agents, nicotinamide mononucleotide (NMN) and urolithin A (UA), significantly stimulated PINK1-parkin-mediated mitophagy. However, compared with NMN, UA could not alleviate prion-induced mitochondrial fragmentation and dysfunction, and neuronal apoptosis. These findings show that PINK1-parkin-mediated mitophagy defects lead to an accumulation of damaged mitochondria, thus suggesting that interventions that stimulate mitophagy may be potential therapeutic targets for prion diseases.
Collapse
|
17
|
Guerra-Vázquez CM, Martínez-Ávila M, Guajardo-Flores D, Antunes-Ricardo M. Punicic Acid and Its Role in the Prevention of Neurological Disorders: A Review. Foods 2022; 11:252. [PMID: 35159404 PMCID: PMC8834450 DOI: 10.3390/foods11030252] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Millions of people worldwide are affected by neurodegenerative diseases (NDs). NDs are characterized by progressive damage and death of nerve cells accompanied by high levels of inflammatory biomarkers and oxidative stress conditions. Punicic acid, the main bioactive component of pomegranate (Punica granatum) seed oil, is an omega-5 isomer of conjugated α-linoleic acid that has shown strong anti-oxidative and anti-inflammatory effects that contributes towards its positive effect against a wide arrange of diseases. Punicic acid decreases oxidative damage and inflammation by increasing the expression of peroxisome proliferator-activated receptors. In addition, it can reduce beta-amyloid deposits formation and tau hyperphosphorylation by increasing the expression of GLUT4 protein and the inhibition of calpain hyperactivation. Microencapsulated pomegranate, with high levels of punicic acid, increases antioxidant PON1 activity in HDL. Likewise, encapsulated pomegranate formulations with high levels of punicic acid have shown an increase in the antioxidant PON1 activity in HDL. Because of the limited brain permeability of punicic acid, diverse delivery formulations have been developed to enhance the biological activity of punicic acid in the brain, diminishing neurological disorders symptoms. Punicic acid is an important nutraceutical compound in the prevention and treatment of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease.
Collapse
Affiliation(s)
| | | | | | - Marilena Antunes-Ricardo
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey C.P. 64849, NL, Mexico; (C.M.G.-V.); (M.M.-Á.); (D.G.-F.)
| |
Collapse
|
18
|
The Role of Cellular Prion Protein in Promoting Stemness and Differentiation in Cancer. Cancers (Basel) 2021; 13:cancers13020170. [PMID: 33418999 PMCID: PMC7825291 DOI: 10.3390/cancers13020170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Aside from its well-established role in prion disorders, in the last decades the significance of cellular prion protein (PrPC) expression in human cancers has attracted great attention. An extensive body of work provided evidence that PrPC contributes to tumorigenesis by regulating tumor growth, differentiation, and resistance to conventional therapies. In particular, PrPC over-expression has been related to the acquisition of a malignant phenotype of cancer stem cells (CSCs) in a variety of solid tumors, encompassing pancreatic ductal adenocarcinoma, osteosarcoma, breast, gastric, and colorectal cancers, and primary brain tumors as well. According to consensus, increased levels of PrPC endow CSCs with self-renewal, proliferative, migratory, and invasive capacities, along with increased resistance to anti-cancer agents. In addition, increasing evidence demonstrates that PrPc also participates in multi-protein complexes to modulate the oncogenic properties of CSCs, thus sustaining tumorigenesis. Therefore, strategies aimed at targeting PrPC and/or PrPC-organized complexes could be a promising approach for anti-cancer therapy. Abstract Cellular prion protein (PrPC) is seminal to modulate a variety of baseline cell functions to grant homeostasis. The classic role of such a protein was defined as a chaperone-like molecule being able to rescue cell survival. Nonetheless, PrPC also represents the precursor of the deleterious misfolded variant known as scrapie prion protein (PrPSc). This variant is detrimental in a variety of prion disorders. This multi-faceted role of PrP is greatly increased by recent findings showing how PrPC in its folded conformation may foster tumor progression by acting at multiple levels. The present review focuses on such a cancer-promoting effect. The manuscript analyzes recent findings on the occurrence of PrPC in various cancers and discusses the multiple effects, which sustain cancer progression. Within this frame, the effects of PrPC on stemness and differentiation are discussed. A special emphasis is provided on the spreading of PrPC and the epigenetic effects, which are induced in neighboring cells to activate cancer-related genes. These detrimental effects are further discussed in relation to the aberrancy of its physiological and beneficial role on cell homeostasis. A specific paragraph is dedicated to the role of PrPC beyond its effects in the biology of cancer to represent a potential biomarker in the follow up of patients following surgical resection.
Collapse
|
19
|
Thellung S, Corsaro A, Bosio AG, Zambito M, Barbieri F, Mazzanti M, Florio T. Emerging Role of Cellular Prion Protein in the Maintenance and Expansion of Glioma Stem Cells. Cells 2019; 8:cells8111458. [PMID: 31752162 PMCID: PMC6912268 DOI: 10.3390/cells8111458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular prion protein (PrPC) is a membrane-anchored glycoprotein representing the physiological counterpart of PrP scrapie (PrPSc), which plays a pathogenetic role in prion diseases. Relatively little information is however available about physiological role of PrPC. Although PrPC ablation in mice does not induce lethal phenotypes, impairment of neuronal and bone marrow plasticity was reported in embryos and adult animals. In neurons, PrPC stimulates neurite growth, prevents oxidative stress-dependent cell death, and favors antiapoptotic signaling. However, PrPC activity is not restricted to post-mitotic neurons, but promotes cell proliferation and migration during embryogenesis and tissue regeneration in adult. PrPC acts as scaffold to stabilize the binding between different membrane receptors, growth factors, and basement proteins, contributing to tumorigenesis. Indeed, ablation of PrPC expression reduces cancer cell proliferation and migration and restores cell sensitivity to chemotherapy. Conversely, PrPC overexpression in cancer stem cells (CSCs) from different tumors, including gliomas—the most malignant brain tumors—is predictive for poor prognosis, and correlates with relapses. The mechanisms of the PrPC role in tumorigenesis and its molecular partners in this activity are the topic of the present review, with a particular focus on PrPC contribution to glioma CSCs multipotency, invasiveness, and tumorigenicity.
Collapse
Affiliation(s)
- Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Alessia G. Bosio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Martina Zambito
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Michele Mazzanti
- Dipartimento di Bioscienze, Università di Milano, 20133 Milano, Italy
- Correspondence: (T.F.); (M.M.); Tel.: +39-01-0353-8806 (T.F.); +39-02-5031-4958 (M.M.)
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (T.F.); (M.M.); Tel.: +39-01-0353-8806 (T.F.); +39-02-5031-4958 (M.M.)
| |
Collapse
|
20
|
Dagan B, Oren O, Banerjee V, Taube R, Papo N. A hyperthermophilic protein G variant engineered via directed evolution prevents the formation of toxic SOD1 oligomers. Proteins 2019; 87:738-747. [PMID: 31017342 DOI: 10.1002/prot.25700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by selective death of motor neurons in the brainstem, motor cortex, and spinal cord, leading to muscle atrophy and eventually to death. It is currently held that various oligomerization-inducing mutations in superoxide dismutase 1 (SOD1), an amyloid-forming protein, may be implicated in the familial form of this fast-progressing highly lethal neurodegenerative disease. A possible therapeutic approach could therefore lie in developing inhibitors to SOD1 mutants. By screening a focused mutagenesis library, mutated randomly in specific "stability patch" positions of the B1 domain of protein G (HTB1), we previously identified low affinity inhibitors of aggregation of SOD1G93A and SOD1G85R mutants. Herein, with the aim to generate a more potent inhibitor with higher affinity to SOD1 mutants, we employed an unbiased, random mutagenesis approach covering the entire sequence space of HTB1 to optimize as yet undefined positions for improved interactions with SOD1. Using affinity maturation screens in yeast, we identified a variant, which we designated HTB1M3 , that bound strongly to SOD1 misfolded mutants but not to wild-type SOD1. In-vitro aggregation assays indicated that in the presence of HTB1M3 misfolded SOD1 assembled into oligomeric species that were not toxic to NSC-34 neuronal cells. In addition, when NSC-34 cells were exposed to misfolded SOD1 mutants, either soluble or preaggregated, in the presence of HTB1M3 , this inhibitor prevented the prion-like propagation of SOD1 from one neuronal cell to another by blocking the penetration of SOD1 into the neuronal cells.
Collapse
Affiliation(s)
- Bar Dagan
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ofek Oren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Victor Banerjee
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
| |
Collapse
|
21
|
Thellung S, Corsaro A, Nizzari M, Barbieri F, Florio T. Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity. Int J Mol Sci 2019; 20:ijms20040901. [PMID: 30791416 PMCID: PMC6412775 DOI: 10.3390/ijms20040901] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this review is to critically analyze promises and limitations of pharmacological inducers of autophagy against protein misfolding-associated neurodegeneration. Effective therapies against neurodegenerative disorders can be developed by regulating the “self-defense” equipment of neurons, such as autophagy. Through the degradation and recycling of the intracellular content, autophagy promotes neuron survival in conditions of trophic factor deprivation, oxidative stress, mitochondrial and lysosomal damage, or accumulation of misfolded proteins. Autophagy involves the activation of self-digestive pathways, which is different for dynamics (macro, micro and chaperone-mediated autophagy), or degraded material (mitophagy, lysophagy, aggrephagy). All neurodegenerative disorders share common pathogenic mechanisms, including the impairment of autophagic flux, which causes the inability to remove the neurotoxic oligomers of misfolded proteins. Pharmacological activation of autophagy is typically achieved by blocking the kinase activity of mammalian target of rapamycin (mTOR) enzymatic complex 1 (mTORC1), removing its autophagy suppressor activity observed under physiological conditions; acting in this way, rapamycin provided the first proof of principle that pharmacological autophagy enhancement can induce neuroprotection through the facilitation of oligomers’ clearance. The demand for effective disease-modifying strategies against neurodegenerative disorders is currently stimulating the development of a wide number of novel molecules, as well as the re-evaluation of old drugs for their pro-autophagic potential.
Collapse
Affiliation(s)
- Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Mario Nizzari
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
| |
Collapse
|
22
|
Pagano K, Galante D, D'Arrigo C, Corsaro A, Nizzari M, Florio T, Molinari H, Tomaselli S, Ragona L. Effects of Prion Protein on Aβ42 and Pyroglutamate-Modified AβpΕ3-42 Oligomerization and Toxicity. Mol Neurobiol 2018; 56:1957-1971. [PMID: 29981054 DOI: 10.1007/s12035-018-1202-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 11/24/2022]
Abstract
Soluble Aβ oligomers are widely recognized as the toxic forms responsible for triggering AD, and Aβ receptors are hypothesized to represent the first step in a neuronal cascade leading to dementia. Cellular prion protein (PrP) has been reported as a high-affinity binder of Aβ oligomers. The interactions of PrP with both Aβ42 and the highly toxic N-truncated pyroglutamylated species (AβpE3-42) are here investigated, at a molecular level, by means of ThT fluorescence, NMR and TEM. We demonstrate that soluble PrP binds both Aβ42 and AβpE3-42, preferentially interacting with oligomeric species and delaying fibril formation. Residue level analysis of Aβ42 oligomerization process reveals, for the first time, that PrP is able to differently interact with the forming oligomers, depending on the aggregation state of the starting Aβ42 sample. A distinct behavior is observed for Aβ42 1-30 region and C-terminal residues, suggesting that PrP protects Aβ42 N-tail from entangling on the mature NMR-invisible fibril, consistent with the hypothesis that Aβ42 N-tail is the locus of interaction with PrP. PrP/AβpE3-42 interactions are here reported for the first time. All interaction data are validated and complemented by cellular tests performed on Wt and PrP-silenced neuronal cell lines, clearly showing PrP dependent Aβ oligomer cell internalization and toxicity. The ability of soluble PrP to compete with membrane-anchored PrP for binding to Aβ oligomers bears relevance for studies of druggable pathways.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan, Italy
| | | | | | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical research (CEBR), University of Genoa, Genoa, Italy
| | - Mario Nizzari
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical research (CEBR), University of Genoa, Genoa, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical research (CEBR), University of Genoa, Genoa, Italy
| | | | - Simona Tomaselli
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan, Italy.
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan, Italy.
| |
Collapse
|
23
|
Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget 2018; 7:38638-38657. [PMID: 27229535 PMCID: PMC5122417 DOI: 10.18632/oncotarget.9575] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype.
Collapse
|
24
|
Thellung S, Scoti B, Corsaro A, Villa V, Nizzari M, Gagliani MC, Porcile C, Russo C, Pagano A, Tacchetti C, Cortese K, Florio T. Pharmacological activation of autophagy favors the clearing of intracellular aggregates of misfolded prion protein peptide to prevent neuronal death. Cell Death Dis 2018; 9:166. [PMID: 29416016 PMCID: PMC5833808 DOI: 10.1038/s41419-017-0252-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
According to the “gain-of-toxicity mechanism”, neuronal loss during cerebral proteinopathies is caused by accumulation of aggregation-prone conformers of misfolded cellular proteins, although it is still debated which aggregation state actually corresponds to the neurotoxic entity. Autophagy, originally described as a variant of programmed cell death, is now emerging as a crucial mechanism for cell survival in response to a variety of cell stressors, including nutrient deprivation, damage of cytoplasmic organelles, or accumulation of misfolded proteins. Impairment of autophagic flux in neurons often associates with neurodegeneration during cerebral amyloidosis, suggesting a role in clearing neurons from aggregation-prone misfolded proteins. Thus, autophagy may represent a target for innovative therapies. In this work, we show that alterations of autophagy progression occur in neurons following in vitro exposure to the amyloidogenic and neurotoxic prion protein-derived peptide PrP90-231. We report that the increase of autophagic flux represents a strategy adopted by neurons to survive the intracellular accumulation of misfolded PrP90-231. In particular, PrP90-231 internalization in A1 murine mesencephalic neurons occurs in acidic structures, showing electron microscopy hallmarks of autophagosomes and autophagolysosomes. However, these structures do not undergo resolution and accumulate in cytosol, suggesting that, in the presence of PrP90-231, autophagy is activated but its progression is impaired; the inability to clear PrP90-231 via autophagy induces cytotoxicity, causing impairment of lysosomal integrity and cytosolic diffusion of hydrolytic enzymes. Conversely, the induction of autophagy by pharmacological blockade of mTOR kinase or trophic factor deprivation restored autophagy resolution, reducing intracellular PrP90-231 accumulation and neuronal death. Taken together, these data indicate that PrP90-231 internalization induces an autophagic defensive response in A1 neurons, although incomplete and insufficient to grant survival; the pharmacological enhancement of this process exerts neuroprotection favoring the clearing of the internalized peptide and could represents a promising neuroprotective tool for neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Stefano Thellung
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Beatrice Scoti
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Valentina Villa
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Mario Nizzari
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Maria Cristina Gagliani
- Section of Human Anatomy, Department of Experimental Medicine (DIMES), School of Medicine, University of Genova, Genova, Italy
| | - Carola Porcile
- Department of Health Sciences, University of Molise, Campobasso, Italy
| | - Claudio Russo
- Department of Health Sciences, University of Molise, Campobasso, Italy
| | - Aldo Pagano
- Section of Human Anatomy, Department of Experimental Medicine (DIMES), School of Medicine, University of Genova, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genova, Italy
| | - Carlo Tacchetti
- Centro Imaging Sperimentale, IRCCS Istituto Scientifico San Raffaele, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Katia Cortese
- Section of Human Anatomy, Department of Experimental Medicine (DIMES), School of Medicine, University of Genova, Genova, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.
| |
Collapse
|
25
|
Different Molecular Mechanisms Mediate Direct or Glia-Dependent Prion Protein Fragment 90-231 Neurotoxic Effects in Cerebellar Granule Neurons. Neurotox Res 2017; 32:381-397. [PMID: 28540665 DOI: 10.1007/s12640-017-9749-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022]
Abstract
Glia over-stimulation associates with amyloid deposition contributing to the progression of central nervous system neurodegenerative disorders. Here we analyze the molecular mechanisms mediating microglia-dependent neurotoxicity induced by prion protein (PrP)90-231, an amyloidogenic polypeptide corresponding to the protease-resistant portion of the pathological prion protein scrapie (PrPSc). PrP90-231 neurotoxicity is enhanced by the presence of microglia within neuronal culture, and associated to a rapid neuronal [Ca++] i increase. Indeed, while in "pure" cerebellar granule neuron cultures, PrP90-231 causes a delayed intracellular Ca++ entry mediated by the activation of NMDA receptors; when neuron and glia are co-cultured, a transient increase of [Ca++] i occurs within seconds after treatment in both granule neurons and glial cells, then followed by a delayed and sustained [Ca++] i raise, associated with the induction of the expression of inducible nitric oxide synthase and phagocytic NADPH oxidase. [Ca++] i fast increase in neurons is dependent on the activation of multiple pathways since it is not only inhibited by the blockade of voltage-gated channel activity and NMDA receptors but also prevented by the inhibition of nitric oxide and PGE2 release from glial cells. Thus, Ca++ homeostasis alteration, directly induced by PrP90-231 in cerebellar granule cells, requires the activation of NMDA receptors, but is greatly enhanced by soluble molecules released by activated glia. In glia-enriched cerebellar granule cultures, the activation of inducible nitric oxide (iNOS) and NADPH oxidase represents the main mechanism of toxicity since their pharmacological inhibition prevented PrP90-231 neurotoxicity, whereas NMDA blockade by D(-)-2-amino-5-phosphonopentanoic acid is ineffective; conversely, in pure cerebellar granule cultures, NMDA blockade but not iNOS inhibition strongly reduced PrP90-231 neurotoxicity. These data indicate that amyloidogenic peptides induce neurotoxic signals via both direct neuron interaction and glia activation through different mechanisms responsible of calcium homeostasis disruption in neurons and potentiating each other: the activation of excitotoxic pathways via NMDA receptors and the release of radical species that establish an oxidative milieu.
Collapse
|
26
|
Linden R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Front Mol Neurosci 2017; 10:77. [PMID: 28373833 PMCID: PMC5357658 DOI: 10.3389/fnmol.2017.00077] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
The prion glycoprotein (PrPC) is mostly located at the cell surface, tethered to the plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding of PrPC is associated with the transmissible spongiform encephalopathies (TSEs), whereas its normal conformer serves as a receptor for oligomers of the β-amyloid peptide, which play a major role in the pathogenesis of Alzheimer’s Disease (AD). PrPC is highly expressed in both the nervous and immune systems, as well as in other organs, but its functions are controversial. Extensive experimental work disclosed multiple physiological roles of PrPC at the molecular, cellular and systemic levels, affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory mechanisms, among others. Often each such process has been heralded as the bona fide function of PrPC, despite restricted attention paid to a selected phenotypic trait, associated with either modulation of gene expression or to the engagement of PrPC with a single ligand. In contrast, the GPI-anchored prion protein was shown to bind several extracellular and transmembrane ligands, which are required to endow that protein with the ability to play various roles in transmembrane signal transduction. In addition, differing sets of those ligands are available in cell type- and context-dependent scenarios. To account for such properties, we proposed that PrPC serves as a dynamic platform for the assembly of signaling modules at the cell surface, with widespread consequences for both physiology and behavior. The current review advances the hypothesis that the biological function of the prion protein is that of a cell surface scaffold protein, based on the striking similarities of its functional properties with those of scaffold proteins involved in the organization of intracellular signal transduction pathways. Those properties are: the ability to recruit spatially restricted sets of binding molecules involved in specific signaling; mediation of the crosstalk of signaling pathways; reciprocal allosteric regulation with binding partners; compartmentalized responses; dependence of signaling properties upon posttranslational modification; and stoichiometric requirements and/or oligomerization-dependent impact on signaling. The scaffold concept may contribute to novel approaches to the development of effective treatments to hitherto incurable neurodegenerative diseases, through informed modulation of prion protein-ligand interactions.
Collapse
Affiliation(s)
- Rafael Linden
- Laboratory of Neurogenesis, Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Villa V, Thellung S, Bajetto A, Gatta E, Robello M, Novelli F, Tasso B, Tonelli M, Florio T. Novel celecoxib analogues inhibit glial production of prostaglandin E2, nitric oxide, and oxygen radicals reverting the neuroinflammatory responses induced by misfolded prion protein fragment 90-231 or lipopolysaccharide. Pharmacol Res 2016; 113:500-514. [PMID: 27667770 DOI: 10.1016/j.phrs.2016.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/05/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022]
Abstract
We tested the efficacy of novel cyclooxygenase 2 (COX-2) inhibitors in counteracting glia-driven neuroinflammation induced by the amyloidogenic prion protein fragment PrP90-231 or lipopolysaccharide (LPS). In search for molecules with higher efficacy than celecoxib, we focused our study on its 2,3-diaryl-1,3-thiazolidin-4-one analogues. As experimental models, we used the immortalized microglial cell line N9, rat purified microglial primary cultures, and mixed cultures of astrocytes and microglia. Microglia activation in response to PrP90-231 or LPS was characterized by growth arrest, morphology changes and the production of reactive oxygen species (ROS). Moreover, PrP90-231 treatment caused the overexpression of the inducible nitric oxide synthase (iNOS) and COX-2, with the consequent nitric oxide (NO), and prostaglandin E2 (PGE2) accumulation. These effects were challenged by different celecoxib analogues, among which Q22 (3-[4-(sulfamoyl)phenyl]-2-(4-tolyl)thiazolidin-4-one) inhibited microglia activation more efficiently than celecoxib, lowering both iNOS and COX-2 activity and reducing ROS release. During neurodegenerative diseases, neuroinflammation induced by amyloidogenic peptides causes the activation of both astrocytes and microglia with these cell populations mutually regulating each other. Thus the effects of PrP90-231 and LPS were also studied on mixed glial cultures containing astrocytes and microglia. PrP90-231 treatment elicited different responses in the co-cultures induced astrocyte proliferation and microglia growth arrest, resulting in a differential ability to release proinflammatory molecules with the production of NO and ROS mainly attributable on microglia, while COX-2 expression was induced also in astrocytes. Q22 effects on both NO and PGE2 secretion were more significant in the mixed glial cultures than in purified microglia, demonstrating Q22 ability to revert the functional interaction between astrocytes and microglia. These results demonstrate that Q22 is a powerful drug able to revert glial neuroinflammatory responses and might represent a lead to explore the chemical space around celecoxib frameworks to design even more effective agents, paving the way to novel approaches to contrast the neuroinflammation-dependent toxicity.
Collapse
Affiliation(s)
- Valentina Villa
- Laboratory of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genoa, Italy
| | - Stefano Thellung
- Laboratory of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genoa, Italy
| | - Adriana Bajetto
- Laboratory of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genoa, Italy
| | - Elena Gatta
- Department of Physics, University of Genova, Genoa, Italy
| | - Mauro Robello
- Department of Physics, University of Genova, Genoa, Italy
| | - Federica Novelli
- Department of Pharmacy, University of Genova, 16132 Genoa, Italy
| | - Bruno Tasso
- Department of Pharmacy, University of Genova, 16132 Genoa, Italy
| | - Michele Tonelli
- Department of Pharmacy, University of Genova, 16132 Genoa, Italy
| | - Tullio Florio
- Laboratory of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genoa, Italy.
| |
Collapse
|
28
|
Milisav I, Šuput D, Ribarič S. Unfolded Protein Response and Macroautophagy in Alzheimer's, Parkinson's and Prion Diseases. Molecules 2015; 20:22718-56. [PMID: 26694349 PMCID: PMC6332363 DOI: 10.3390/molecules201219865] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Proteostasis are integrated biological pathways within cells that control synthesis, folding, trafficking and degradation of proteins. The absence of cell division makes brain proteostasis susceptible to age-related changes and neurodegeneration. Two key processes involved in sustaining normal brain proteostasis are the unfolded protein response and autophagy. Alzheimer’s disease (AD), Parkinson’s disease (PD) and prion diseases (PrDs) have different clinical manifestations of neurodegeneration, however, all share an accumulation of misfolded pathological proteins associated with perturbations in unfolded protein response and macroautophagy. While both the unfolded protein response and macroautophagy play an important role in the prevention and attenuation of AD and PD progression, only macroautophagy seems to play an important role in the development of PrDs. Macroautophagy and unfolded protein response can be modulated by pharmacological interventions. However, further research is necessary to better understand the regulatory pathways of both processes in health and neurodegeneration to be able to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
- Faculty of Health Sciences, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenija.
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
| | - Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
29
|
Yuan Z, Yang L, Chen B, Zhu T, Hassan MF, Yin X, Zhou X, Zhao D. Protein misfolding cyclic amplification induces the conversion of recombinant prion protein to PrP oligomers causing neuronal apoptosis. J Neurochem 2015; 133:722-9. [DOI: 10.1111/jnc.13098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/12/2015] [Accepted: 03/15/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Zhen Yuan
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Lifeng Yang
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Baian Chen
- Department of Laboratory Animal Science; School of Basic Medical Science; Capital Medical University; Beijing China
| | - Ting Zhu
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Mohammad Farooque Hassan
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Xiaomin Yin
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Deming Zhao
- State Key Laboratories for Agrobiotechnology; Key Lab of Animal Epidemiology and Zoonosis; Ministry of Agriculture; National Animal Transmissible Spongiform Encephalopathy Laboratory; College of Veterinary Medicine; China Agricultural University; Beijing China
| |
Collapse
|
30
|
Lee S, Kim HJ. Prion-like Mechanism in Amyotrophic Lateral Sclerosis: are Protein Aggregates the Key? Exp Neurobiol 2014; 24:1-7. [PMID: 25792864 PMCID: PMC4363329 DOI: 10.5607/en.2015.24.1.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022] Open
Abstract
ALS is a fatal adult-onset motor neuron disease. Motor neurons in the cortex, brain stem and spinal cord gradually degenerate in ALS patients, and most ALS patients die within 3~5 years of disease onset due to respiratory failure. The major pathological hallmark of ALS is abnormal accumulation of protein inclusions containing TDP-43, FUS or SOD1 protein. Moreover, the focality of clinical onset and regional spreading of neurodegeneration are typical features of ALS. These clinical data indicate that neurodegeneration in ALS is an orderly propagating process, which seems to share the signature of a seeded self-propagation with pathogenic prion proteins. In vitro and cell line experimental evidence suggests that SOD1, TDP-43 and FUS form insoluble fibrillar aggregates. Notably, these protein fibrillar aggregates can act as seeds to trigger the aggregation of native counterparts. Collectively, a self-propagation mechanism similar to prion replication and spreading may underlie the pathology of ALS. In this review, we will briefly summarize recent evidence to support the prion-like properties of major ALS-associated proteins and discuss the possible therapeutic strategies for ALS based on a prion-like mechanism.
Collapse
Affiliation(s)
- Shynrye Lee
- Korea Brain Research Institute, Research Division, Daegu 700-010, Korea
| | - Hyung-Jun Kim
- Korea Brain Research Institute, Research Division, Daegu 700-010, Korea
| |
Collapse
|
31
|
Celecoxib Inhibits Prion Protein 90-231-Mediated Pro-inflammatory Responses in Microglial Cells. Mol Neurobiol 2014; 53:57-72. [PMID: 25404089 DOI: 10.1007/s12035-014-8982-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/03/2014] [Indexed: 12/21/2022]
Abstract
Activation of microglia is a central event in the atypical inflammatory response occurring during prion encephalopathies. We report that the prion protein fragment encompassing amino acids 90-231 (PrP90-231), a model of the neurotoxic activity of the pathogenic prion protein (PrP(Sc)), causes activation of both primary microglia cultures and N9 microglial cells in vitro. This effect was characterized by cell proliferation arrest and induction of a secretory phenotype, releasing prostaglandin E2 (PGE2) and nitric oxide (NO). Conditioned medium from PrP90-231-treated microglia induced in vitro cytotoxicity of A1 mesencephalic neurons, supporting the notion that soluble mediators released by activated microglia contributes to the neurodegeneration during prion diseases. The neuroinflammatory role of COX activity, and its potential targeting for anti-prion therapies, was tested measuring the effects of ketoprofen and celecoxib (preferential inhibitors of COX1 and COX2, respectively) on PrP90-231-induced microglial activation. Celecoxib, but not ketoprofen significantly reverted the growth arrest as well as NO and PGE2 secretion induced by PrP90-231, indicating that PrP90-231 pro-inflammatory response in microglia is mainly dependent on COX2 activation. Taken together, these data outline the importance of microglia in the neurotoxicity occurring during prion diseases and highlight the potentiality of COX2-selective inhibitors to revert microglia as adjunctive pharmacological approach to contrast the neuroinflammation-dependent neurotoxicity.
Collapse
|
32
|
Agostini F, Cirillo D, Livi CM, Delli Ponti R, Tartaglia GG. ccSOL omics: a webserver for solubility prediction of endogenous and heterologous expression in Escherichia coli. Bioinformatics 2014; 30:2975-7. [PMID: 24990610 PMCID: PMC4184263 DOI: 10.1093/bioinformatics/btu420] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Summary: Here we introduce ccSOL omics, a webserver for large-scale calculations of protein solubility. Our method allows (i) proteome-wide predictions; (ii) identification of soluble fragments within each sequences; (iii) exhaustive single-point mutation analysis. Results: Using coil/disorder, hydrophobicity, hydrophilicity, β-sheet and α-helix propensities, we built a predictor of protein solubility. Our approach shows an accuracy of 79% on the training set (36 990 Target Track entries). Validation on three independent sets indicates that ccSOL omics discriminates soluble and insoluble proteins with an accuracy of 74% on 31 760 proteins sharing <30% sequence similarity. Availability and implementation:ccSOL omics can be freely accessed on the web at http://s.tartaglialab.com/page/ccsol_group. Documentation and tutorial are available at http://s.tartaglialab.com/static_files/shared/tutorial_ccsol_omics.html. Contact:gian.tartaglia@crg.es Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Federico Agostini
- Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Davide Cirillo
- Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Carmen Maria Livi
- Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Riccardo Delli Ponti
- Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
33
|
Kim SG, Lee HM, Ryou C. Parameters that affect macromolecular self-assembly of prion protein. Protein J 2014; 33:243-52. [PMID: 24671413 DOI: 10.1007/s10930-014-9556-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Amyloidogenesis of prion protein (PrP) is closely associated with the pathobiology of prion diseases. To understand details on formation of PrP amyloids, we investigated various conditions that influence the process in vitro, using full length and truncated recombinant PrP. Disrupted agitation and fluctuated temperature resulted in prolongation of lag phase during PrP amyloid formation. With the same conditions and material for the assay, fluorescence microplate readers of different manufacturers, which are assumed to have incongruent level of mechanical performance, demonstrated variations for the length of lag phase and the level of fluorescence detection. Presence of preformed amyloid seeds accelerated PrP amyloid formation. Similarly, recombinant proteins of different species affected effectual generation of amyloids. This process was also influenced by the concentrations and truncation of recombinant PrP. By investigating several conditions to perform PrP amyloid formation assay, our study addresses the factors that determine how much and how rapidly PrP amyloids are formed.
Collapse
Affiliation(s)
- Seon-Gu Kim
- Department of Biology, College of Arts and Sciences, University of Kentucky, 675 Rose St., Lexington, KY, 40506, USA
| | | | | |
Collapse
|
34
|
Wang X, Zhang B, Zhao C, Wang Y, He L, Cui M, Zhu X, Du W. Inhibition of human prion neuropeptide PrP106-126 aggregation by hexacoordinated ruthenium complexes. J Inorg Biochem 2013; 128:1-10. [DOI: 10.1016/j.jinorgbio.2013.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 11/24/2022]
|
35
|
Llorens F, Ansoleaga B, Garcia-Esparcia P, Zafar S, Grau-Rivera O, López-González I, Blanco R, Carmona M, Yagüe J, Nos C, Del Río JA, Gelpí E, Zerr I, Ferrer I. PrP mRNA and protein expression in brain and PrP(c) in CSF in Creutzfeldt-Jakob disease MM1 and VV2. Prion 2013; 7:383-93. [PMID: 24047819 DOI: 10.4161/pri.26416] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Creutzfeldt-Jakob disease (CJD) is a heterogenic neurodegenerative disorder associated with abnormal post-translational processing of cellular prion protein (PrP(c)). CJD displays distinctive clinical and pathological features which correlate with the genotype at the codon 129 (methionine or valine: M or V respectively) in the prion protein gene and with size of the protease-resistant core of the abnormal prion protein PrP(sc) (type 1: 20/21 kDa and type 2: 19 kDa). MM1 and VV2 are the most common sporadic CJD (sCJD) subtypes. PrP mRNA expression levels in the frontal cortex and cerebellum are reduced in sCJD in a form subtype-dependent. Total PrP protein levels and PrP(sc) levels in the frontal cortex and cerebellum accumulate differentially in sCJD MM1 and sCJD VV2 with no relation between PrP(sc) deposition and spongiform degeneration and neuron loss, but with microgliosis, and IL6 and TNF-α response. In the CSF, reduced PrP(c), the only form present in this compartment, occurs in sCJD MM1 and VV2. PrP mRNA expression is also reduced in the frontal cortex in advanced stages of Alzheimer disease, Lewy body disease, progressive supranuclear palsy, and frontotemporal lobe degeneration, but PrP(c) levels in brain varies from one disease to another. Reduced PrP(c) levels in CSF correlate with PrP mRNA expression in brain, which in turn reflects severity of degeneration in sCJD.
Collapse
Affiliation(s)
- Franc Llorens
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain; Department of Neurology; Clinical Dementia Center and DZNE; University Medical School; Georg-August University; Göttingen, Germany
| | - Belén Ansoleaga
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Paula Garcia-Esparcia
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Saima Zafar
- Department of Neurology; Clinical Dementia Center and DZNE; University Medical School; Georg-August University; Göttingen, Germany
| | - Oriol Grau-Rivera
- CJD-Unit and Alzheimer disease and Other Cognitive Disorders Unit; Department of Neurology; Hospital Clínic; Barcelona, Spain
| | - Irene López-González
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Rosi Blanco
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Margarita Carmona
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Jordi Yagüe
- CJD-Unit and Alzheimer disease and Other Cognitive Disorders Unit; Department of Neurology; Hospital Clínic; Barcelona, Spain; Department of Immunology; Hospital Clinic; Barcelona, Spain
| | - Carlos Nos
- General Subdirectorate of Surveillance and Response to Emergencies in Public Health; Department of Public Health in Catalonia; Barcelona, Spain
| | - José Antonio Del Río
- CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain; Molecular and Cellular Neurobiotechnology; Catalonian Institute for Bioengineering (IBEC); Parc Científic de Barcelona; Barcelona, Spain; Department of Cell Biology; University of Barcelona; Barcelona, Spain
| | - Ellen Gelpí
- Neurological Tissue Bank of the Biobanc-Hospital; Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); Barcelona, Spain
| | - Inga Zerr
- Department of Neurology; Clinical Dementia Center and DZNE; University Medical School; Georg-August University; Göttingen, Germany
| | - Isidre Ferrer
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| |
Collapse
|