1
|
Kaščáková B, Koutská A, Burdová M, Havlíčková P, Kutá Smatanová I. Revealing protein structures: crystallization of protein-ligand complexes - co-crystallization and crystal soaking. FEBS Open Bio 2024. [PMID: 39428257 DOI: 10.1002/2211-5463.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Protein crystallogenesis represents a key step in X-ray crystallography studies that employ co-crystallization and ligand soaking for investigating ligand binding to proteins. Co-crystallization is a method that enables the precise determination of binding positions, although it necessitates a significant degree of optimization. The utilization of microseeding can facilitate a reduction in sample requirements and accelerate the co-crystallization process. Ligand soaking is the preferred method due to its simplicity; however, it requires careful control of soaking conditions to ensure the successful integration of the ligands. This research protocol details the procedures for co-crystallization and soaking to achieve protein-ligand complex formation, which is essential for advancing drug discovery. Additionally, a simple protocol for demonstrating soaking for educational purposes is described.
Collapse
Affiliation(s)
- Barbora Kaščáková
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
| | - Anna Koutská
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
| | - Michaela Burdová
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
| | - Petra Havlíčková
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
| | - Ivana Kutá Smatanová
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
| |
Collapse
|
2
|
D'Ordine AM, Jogl G, Sedivy JM. Identification and characterization of small molecule inhibitors of the LINE-1 retrotransposon endonuclease. Nat Commun 2024; 15:3883. [PMID: 38719805 PMCID: PMC11078990 DOI: 10.1038/s41467-024-48066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
The long interspersed nuclear element-1 (LINE-1 or L1) retrotransposon is the only active autonomously replicating retrotransposon in the human genome. L1 harms the cell by inserting new copies, generating DNA damage, and triggering inflammation. Therefore, L1 inhibition could be used to treat many diseases associated with these processes. Previous research has focused on inhibition of the L1 reverse transcriptase due to the prevalence of well-characterized inhibitors of related viral enzymes. Here we present the L1 endonuclease as another target for reducing L1 activity. We characterize structurally diverse small molecule endonuclease inhibitors using computational, biochemical, and biophysical methods. We also show that these inhibitors reduce L1 retrotransposition, L1-induced DNA damage, and inflammation reinforced by L1 in senescent cells. These inhibitors could be used for further pharmacological development and as tools to better understand the life cycle of this element and its impact on disease processes.
Collapse
Affiliation(s)
- Alexandra M D'Ordine
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
3
|
Hafeez S, Zafar Paracha R, Adnan F. Designing of fragment based inhibitors with improved activity against E. coli AmpC β-lactamase compared to the conventional antibiotics. Saudi J Biol Sci 2024; 31:103884. [PMID: 38125736 PMCID: PMC10730856 DOI: 10.1016/j.sjbs.2023.103884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
One of the most common primary resistance mechanism of multi-drug resistant (MDR) Gram negative pathogenic bacteria to combat β-lactam antibiotics, such as penicillins, cephalosporins and carbapenems is the generation of β- lactamases. The uropathogenic E. coli is mostly getting multi-drug resistance due to the synthesis of AmpC β-lactamases and therefore new antibiotics and inhibitors are needed to treat the evolving infections. The current study was designed for targetting AmpC β-lactamase of E. coli using molecular docking based virtual screening, linking fragments for designing novel compounds and binding mode analysis using molecular dynamic simulation with target protein. The FCH group all-purpose fragment library consisting of 9388 fragments has been screened against AmpC β-lactamase protein of E. coli and the antibiotics and anti-infectives used in treatment of Urinary tract Infections (UTIs) were also screened with AmpC β-lactamase protein. Among the 9388 fragments, 339 fragment candidates were selected and linked with cefepime antibiotic having maximum binding affinity for AmpC target protein. Computational analysis of interactions as well as molecular dynamics (MD) simulations were also conducted for identifying the most promising ligand-pocket complexes from docking investigations to comprehend their thermodynamic properties and verify the docking outcomes as well. Overall, the linked complexes (LCs) showed good binding interactions with AmpC β-lactamase. Interestingly, our fragment-based LCs remained relatively stable in comparison with cefepime antibiotic. Moreover, S12 fragment linked complex remained the most stable during 50 ns with remarkable number of interactions indicating it as promising candidate in novel lead discovery against MDR E. coli infections.
Collapse
Affiliation(s)
- Sidrah Hafeez
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Fazal Adnan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
4
|
Bührmann M, Kallepu S, Warmuth JD, Wiese JN, Ehrt C, Vatheuer H, Hiller W, Seitz C, Levy L, Czodrowski P, Sievers S, Müller MP, Rauh D. Fragtory: Pharmacophore-Focused Design, Synthesis, and Evaluation of an sp 3-Enriched Fragment Library. J Med Chem 2023; 66:6297-6314. [PMID: 37130057 DOI: 10.1021/acs.jmedchem.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fragment-based drug discovery has played an important role in medicinal chemistry and pharmaceutical research. Despite numerous demonstrated successes, the limited diversity and overrepresentation of planar, sp2-rich structures in commercial libraries often hamper the full potential of this approach. Hence, the thorough design of screening libraries inevitably determines the probability for meaningful hits and subsequent structural elaboration. Against this background, we present the generation of an exclusive fragment library based on iterative entry nomination by a specifically designed computational workflow: "Fragtory". Following a pharmacophore diversity-driven approach, we used Fragtory in an interdisciplinary academic setting to guide both tailored synthesis efforts and the implementation of in-house compounds to build a curated 288-member library of sp3-enriched fragments. Subsequent NMR screens against a model protein and hit validation by protein crystallography led to the identification of structurally novel ligands that were further characterized by isothermal titration calorimetry, demonstrating the applicability of our experimental approach.
Collapse
Affiliation(s)
- Mike Bührmann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), Dortmund 44227, Germany
| | - Shivakrishna Kallepu
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Jonas D Warmuth
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Jan N Wiese
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Christiane Ehrt
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Helge Vatheuer
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Carina Seitz
- Max Planck Institute of Molecular Physiology, Compound Management and Screening Center (COMAS), Otto-Hahn-Strasse 11/15, Dortmund 44227, Germany
| | - Laura Levy
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), Dortmund 44227, Germany
- Taros Chemicals GmbH & Co. KG, Emil-Figge-Strasse 76a, Dortmund 44227, Germany
| | - Paul Czodrowski
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Sonja Sievers
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), Dortmund 44227, Germany
- Max Planck Institute of Molecular Physiology, Compound Management and Screening Center (COMAS), Otto-Hahn-Strasse 11/15, Dortmund 44227, Germany
| | - Matthias P Müller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), Dortmund 44227, Germany
| |
Collapse
|
5
|
Vester K, Metz A, Huber S, Loll B, Wahl MC. Conformation-dependent ligand hot spots in the spliceosomal RNA helicase BRR2. Acta Crystallogr D Struct Biol 2023; 79:304-317. [PMID: 36974964 PMCID: PMC10071561 DOI: 10.1107/s2059798323001778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/26/2023] [Indexed: 03/29/2023] Open
Abstract
The conversion of hits to leads in drug discovery involves the elaboration of chemical core structures to increase their potency. In fragment-based drug discovery, low-molecular-weight compounds are tested for protein binding and are subsequently modified, with the tacit assumption that the binding mode of the original hit will be conserved among the derivatives. However, deviations from binding mode conservation are rather frequently observed, but potential causes of these alterations remain incompletely understood. Here, two crystal forms of the spliceosomal RNA helicase BRR2 were employed as a test case to explore the consequences of conformational changes in the target protein on the binding behaviour of fragment derivatives. The initial fragment, sulfaguanidine, bound at the interface between the two helicase cassettes of BRR2 in one crystal form. Second-generation compounds devised by structure-guided docking were probed for their binding to BRR2 in a second crystal form, in which the original fragment-binding site was altered due to a conformational change. While some of the second-generation compounds retained binding to parts of the original site, others changed to different binding pockets of the protein. A structural bioinformatics analysis revealed that the fragment-binding sites correspond to predicted binding hot spots, which strongly depend on the protein conformation. This case study offers an example of extensive binding-mode changes during hit derivatization, which are likely to occur as a consequence of multiple binding hot spots, some of which are sensitive to the flexibility of the protein.
Collapse
Affiliation(s)
- Karen Vester
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Alexander Metz
- Drug Design Group, Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Simon Huber
- Drug Design Group, Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Bernhard Loll
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Markus C. Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein Strasse 15, 12489 Berlin, Germany
| |
Collapse
|
6
|
Moinul M, Khatun S, Amin SA, Jha T, Gayen S. Recent trends in fragment-based anticancer drug design strategies against different targets: A mini-review. Biochem Pharmacol 2022; 206:115301. [DOI: 10.1016/j.bcp.2022.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
7
|
Bon M, Bilsland A, Bower J, McAulay K. Fragment-based drug discovery-the importance of high-quality molecule libraries. Mol Oncol 2022; 16:3761-3777. [PMID: 35749608 PMCID: PMC9627785 DOI: 10.1002/1878-0261.13277] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022] Open
Abstract
Fragment-based drug discovery (FBDD) is now established as a complementary approach to high-throughput screening (HTS). Contrary to HTS, where large libraries of drug-like molecules are screened, FBDD screens involve smaller and less complex molecules which, despite a low affinity to protein targets, display more 'atom-efficient' binding interactions than larger molecules. Fragment hits can, therefore, serve as a more efficient start point for subsequent optimisation, particularly for hard-to-drug targets. Since the number of possible molecules increases exponentially with molecular size, small fragment libraries allow for a proportionately greater coverage of their respective 'chemical space' compared with larger HTS libraries comprising larger molecules. However, good library design is essential to ensure optimal chemical and pharmacophore diversity, molecular complexity, and physicochemical characteristics. In this review, we describe our views on fragment library design, and on what constitutes a good fragment from a medicinal and computational chemistry perspective. We highlight emerging chemical and computational technologies in FBDD and discuss strategies for optimising fragment hits. The impact of novel FBDD approaches is already being felt, with the recent approval of the covalent KRASG12C inhibitor sotorasib highlighting the utility of FBDD against targets that were long considered undruggable.
Collapse
Affiliation(s)
- Marta Bon
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| | - Alan Bilsland
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| | - Justin Bower
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| | - Kirsten McAulay
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| |
Collapse
|
8
|
Tiemann M, Nawrotzky E, Schmieder P, Wehrhan L, Bergemann S, Martos V, Song W, Arkona C, Keller BG, Rademann J. A Formylglycine-Peptide for the Site-Directed Identification of Phosphotyrosine-Mimetic Fragments. Chemistry 2022; 28:e202201282. [PMID: 35781901 PMCID: PMC9804470 DOI: 10.1002/chem.202201282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 01/05/2023]
Abstract
Discovery of protein-binding fragments for precisely defined binding sites is an unmet challenge to date. Herein, formylglycine is investigated as a molecular probe for the sensitive detection of fragments binding to a spatially defined protein site . Formylglycine peptide 3 was derived from a phosphotyrosine-containing peptide substrate of protein tyrosine phosphatase PTP1B by replacing the phosphorylated amino acid with the reactive electrophile. Fragment ligation with formylglycine occurred in situ in aqueous physiological buffer. Structures and kinetics were validated by NMR spectroscopy. Screening and hit validation revealed fluorinated and non-fluorinated hit fragments being able to replace the native phosphotyrosine residue. The formylglycine probe identified low-affinity fragments with high spatial resolution as substantiated by molecular modelling. The best fragment hit, 4-amino-phenyl-acetic acid, was converted into a cellularly active, nanomolar inhibitor of the protein tyrosine phosphatase SHP2.
Collapse
Affiliation(s)
- Markus Tiemann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Eric Nawrotzky
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Peter Schmieder
- Leibniz Institute of Molecular Pharmacology (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Leon Wehrhan
- Department of Biology, Chemistry, PharmacyInstitute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Silke Bergemann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Vera Martos
- Leibniz Institute of Molecular Pharmacology (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Wei Song
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Christoph Arkona
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Bettina G. Keller
- Department of Biology, Chemistry, PharmacyInstitute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jörg Rademann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| |
Collapse
|
9
|
Furka Á. Forty years of combinatorial technology. Drug Discov Today 2022; 27:103308. [PMID: 35760283 DOI: 10.1016/j.drudis.2022.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
Combinatorial technology has been facilitating the synthesis and screening of large molecular libraries containing millions of organic compounds ever since its introduction 40 years ago. It has changed the paradigms of pharmaceutical research from focusing on single compounds to focusing on immense collections of compounds. It inspired the development of dynamic combinatorial libraries, fragment-based drug discovery and virtual library screening. Combinatorial technology was revitalized by the development of DNA encoding. Amplification of DNA oligomers plus next-generation sequencing has made it possible to successfully screen billions of compounds in a single process.
Collapse
Affiliation(s)
- Árpád Furka
- Eötvös Loránd University Budapest Hungary, 1077 Rozsa u. 23-25, Budapest, Hungary.
| |
Collapse
|
10
|
Togre NS, Vargas AM, Bhargavi G, Mallakuntla MK, Tiwari S. Fragment-Based Drug Discovery against Mycobacteria: The Success and Challenges. Int J Mol Sci 2022; 23:10669. [PMID: 36142582 PMCID: PMC9500838 DOI: 10.3390/ijms231810669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022] Open
Abstract
The emergence of drug-resistant mycobacteria, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria (NTM), poses an increasing global threat that urgently demands the development of new potent anti-mycobacterial drugs. One of the approaches toward the identification of new drugs is fragment-based drug discovery (FBDD), which is the most ingenious among other drug discovery models, such as structure-based drug design (SBDD) and high-throughput screening. Specialized techniques, such as X-ray crystallography, nuclear magnetic resonance spectroscopy, and many others, are part of the drug discovery approach to combat the Mtb and NTM global menaces. Moreover, the primary drawbacks of traditional methods, such as the limited measurement of biomolecular toxicity and uncertain bioavailability evaluation, are successfully overcome by the FBDD approach. The current review focuses on the recognition of fragment-based drug discovery as a popular approach using virtual, computational, and biophysical methods to identify potent fragment molecules. FBDD focuses on designing optimal inhibitors against potential therapeutic targets of NTM and Mtb (PurC, ArgB, MmpL3, and TrmD). Additionally, we have elaborated on the challenges associated with the FBDD approach in the identification and development of novel compounds. Insights into the applications and overcoming the challenges of FBDD approaches will aid in the identification of potential therapeutic compounds to treat drug-sensitive and drug-resistant NTMs and Mtb infections.
Collapse
Affiliation(s)
| | | | | | | | - Sangeeta Tiwari
- Department of Biological Sciences & Border Biomedical Research Centre, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
11
|
Ibrahim MA, Yamasaki T, Furukawa K, Yamasaki K. Fragment-Based Drug Discovery for Trypanosoma brucei Glycosylphosphatidylinositol-Specific Phospholipase C through Biochemical and WaterLOGSY-NMR Methods. J Biochem 2022; 171:619-629. [PMID: 35191956 DOI: 10.1093/jb/mvac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
Glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) of Trypanosoma brucei, the causative protozoan parasite of African trypanosomiasis, is a membrane-bound enzyme essential for antigenic variation, because it catalyses the release of the membrane-bound form of variable surface glycoproteins. Here, we performed a fragment-based drug discovery of TbGPI-PLC inhibitors using a combination of enzymatic inhibition assay and water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR experiment. The TbGPI-PLC was cloned and over-expressed using an Escherichia coli expression system followed by purification using three-phase partitioning and gel filtration. Subsequently, the inhibitory activity of 873 fragment compounds against the recombinant TbGPI-PLC led to the identification of 66 primary hits. These primary hits were subjected to the WaterLOGSY NMR experiment where 10 fragment hits were confirmed to directly bind to the TbGPI-PLC. These included benzothiazole, chlorobenzene, imidazole, indole, pyrazol and quinolinone derivatives. Molecular docking simulation indicated that six of them share a common binding site, which corresponds to the catalytic pocket. The present study identified chemically diverse fragment hits that could directly bind and inhibit the TbGPI-PLC activity which constructed a framework for fragment optimisation or linking towards the design of novel drugs for African trypanosomiasis.
Collapse
Affiliation(s)
- Mohammed Auwal Ibrahim
- Biomedical Research Institute, and Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 3058566, Japan.,Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna 800001, Nigeria
| | - Tomoko Yamasaki
- Biomedical Research Institute, and Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 3058566, Japan
| | - Koji Furukawa
- Biomedical Research Institute, and Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 3058566, Japan
| | - Kazuhiko Yamasaki
- Biomedical Research Institute, and Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 3058566, Japan
| |
Collapse
|
12
|
Sui S, Mulichak A, Kulathila R, McGee J, Filiatreault D, Saha S, Cohen A, Song J, Hung H, Selway J, Kirby C, Shrestha OK, Weihofen W, Fodor M, Xu M, Chopra R, Perry SL. A capillary-based microfluidic device enables primary high-throughput room-temperature crystallographic screening. J Appl Crystallogr 2021; 54:1034-1046. [PMID: 34429718 PMCID: PMC8366422 DOI: 10.1107/s1600576721004155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/18/2021] [Indexed: 11/10/2022] Open
Abstract
A novel capillary-based microfluidic strategy to accelerate the process of small-molecule-compound screening by room-temperature X-ray crystallography using protein crystals is reported. The ultra-thin microfluidic devices are composed of a UV-curable polymer, patterned by cleanroom photolithography, and have nine capillary channels per chip. The chip was designed for ease of sample manipulation, sample stability and minimal X-ray background. 3D-printed frames and cassettes conforming to SBS standards are used to house the capillary chips, providing additional mechanical stability and compatibility with automated liquid- and sample-handling robotics. These devices enable an innovative in situ crystal-soaking screening workflow, akin to high-throughput compound screening, such that quantitative electron density maps sufficient to determine weak binding events are efficiently obtained. This work paves the way for adopting a room-temperature microfluidics-based sample delivery method at synchrotron sources to facilitate high-throughput protein-crystallography-based screening of compounds at high concentration with the aim of discovering novel binding events in an automated manner.
Collapse
Affiliation(s)
- Shuo Sui
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Anne Mulichak
- IMCA-CAT, Argonne National Laboratory, Lemont, IL, USA
| | | | - Joshua McGee
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Sarthak Saha
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Aina Cohen
- Macromolecular Crystallography Group, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA
| | - Jinhu Song
- Macromolecular Crystallography Group, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA
| | | | - Jonathan Selway
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Christina Kirby
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Om K. Shrestha
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Michelle Fodor
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Mei Xu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Rajiv Chopra
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
13
|
Sprenger J, Lawson CL, von Wachenfeldt C, Lo Leggio L, Carey J. Crystal structures of Val58Ile tryptophan repressor in a domain-swapped array in the presence and absence of L-tryptophan. Acta Crystallogr F Struct Biol Commun 2021; 77:215-225. [PMID: 34196612 PMCID: PMC8248821 DOI: 10.1107/s2053230x21006142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/14/2021] [Indexed: 11/12/2022] Open
Abstract
The crystal structures of domain-swapped tryptophan repressor (TrpR) variant Val58Ile before and after soaking with the physiological ligand L-tryptophan (L-Trp) indicate that L-Trp occupies the same location in the domain-swapped form as in native dimeric TrpR and makes equivalent residue contacts. This result is unexpected because the ligand binding-site residues arise from three separate polypeptide chains in the domain-swapped form. This work represents the first published structure of a domain-swapped form of TrpR with L-Trp bound. The presented structures also show that the protein amino-terminus, whether or not it bears a disordered extension of about 20 residues, is accessible in the large solvent channels of the domain-swapped crystal form, as in the structures reported previously in this form for TrpR without N-terminal extensions. These findings inspire the exploration of L-Trp analogs and N-terminal modifications as labels to orient guest proteins that cannot otherwise be crystallized in the solvent channels of crystalline domain-swapped TrpR hosts for potential diffraction analysis.
Collapse
Affiliation(s)
- Janina Sprenger
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
| | - Catherine L. Lawson
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jannette Carey
- Chemistry Department, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
14
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
15
|
Panter F, Bader CD, Müller R. Synergizing the potential of bacterial genomics and metabolomics to find novel antibiotics. Chem Sci 2021; 12:5994-6010. [PMID: 33995996 PMCID: PMC8098685 DOI: 10.1039/d0sc06919a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic development based on natural products has faced a long lasting decline since the 1970s, while both the speed and the extent of antimicrobial resistance (AMR) development have been severely underestimated. The discovery of antimicrobial natural products of bacterial and fungal origin featuring new chemistry and previously unknown mode of actions is increasingly challenged by rediscovery issues. Natural products that are abundantly produced by the corresponding wild type organisms often featuring strong UV signals have been extensively characterized, especially the ones produced by extensively screened microbial genera such as streptomycetes. Purely synthetic chemistry approaches aiming to replace the declining supply from natural products as starting materials to develop novel antibiotics largely failed to provide significant numbers of antibiotic drug leads. To cope with this fundamental issue, microbial natural products science is being transformed from a 'grind-and-find' study to an integrated approach based on bacterial genomics and metabolomics. Novel technologies in instrumental analytics are increasingly employed to lower detection limits and expand the space of detectable substance classes, while broadening the scope of accessible and potentially bioactive natural products. Furthermore, the almost exponential increase in publicly available bacterial genome data has shown that the biosynthetic potential of the investigated strains by far exceeds the amount of detected metabolites. This can be judged by the discrepancy between the number of biosynthetic gene clusters (BGC) encoded in the genome of each microbial strain and the number of secondary metabolites actually detected, even when considering the increased sensitivity provided by novel analytical instrumentation. In silico annotation tools for biosynthetic gene cluster classification and analysis allow fast prioritization in BGC-to-compound workflows, which is highly important to be able to process the enormous underlying data volumes. BGC prioritization is currently accompanied by novel molecular biology-based approaches to access the so-called orphan BGCs not yet correlated with a secondary metabolite. Integration of metabolomics, in silico genomics and molecular biology approaches into the mainstream of natural product research will critically influence future success and impact the natural product field in pharmaceutical, nutritional and agrochemical applications and especially in anti-infective research.
Collapse
Affiliation(s)
- Fabian Panter
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy, Saarland University Campus E8 1 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig Germany
- Helmholtz International Lab for Anti-infectives Campus E8 1 66123 Saarbrücken Germany
| | - Chantal D Bader
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy, Saarland University Campus E8 1 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy, Saarland University Campus E8 1 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig Germany
- Helmholtz International Lab for Anti-infectives Campus E8 1 66123 Saarbrücken Germany
| |
Collapse
|
16
|
Wienen‐Schmidt B, Oebbeke M, Ngo K, Heine A, Klebe G. Two Methods, One Goal: Structural Differences between Cocrystallization and Crystal Soaking to Discover Ligand Binding Poses. ChemMedChem 2021; 16:292-300. [PMID: 33029876 PMCID: PMC7821316 DOI: 10.1002/cmdc.202000565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/02/2020] [Indexed: 11/10/2022]
Abstract
In lead optimization, protein crystallography is an indispensable tool to analyze drug binding. Binding modes and non-covalent interaction inventories are essential to design follow-up synthesis candidates. Two protocols are commonly applied to produce protein-ligand complexes: cocrystallization and soaking. Because of its time and cost effectiveness, soaking is the more popular method. Taking eight ligand hinge binders of protein kinase A, we demonstrate that cocrystallization is superior. Particularly for flexible proteins, such as kinases, and larger ligands cocrystallization captures more reliable the correct binding pose and induced protein adaptations. The geometrical discrepancies between soaking and cocrystallization appear smaller for fragment-sized ligands. For larger flexible ligands that trigger conformational changes of the protein, soaking can be misleading and underestimates the number of possible polar interactions due to inadequate, highly impaired positions of protein amino-acid side and main chain atoms. Thus, if applicable cocrystallization should be the gold standard to study protein-ligand complexes.
Collapse
Affiliation(s)
- Barbara Wienen‐Schmidt
- Institut für Pharmazeutische ChemiePhilipps-Universität MarburgMarbacher Weg 635032MarburgGermany
| | - Matthias Oebbeke
- Institut für Pharmazeutische ChemiePhilipps-Universität MarburgMarbacher Weg 635032MarburgGermany
| | - Khang Ngo
- Institut für Pharmazeutische ChemiePhilipps-Universität MarburgMarbacher Weg 635032MarburgGermany
| | - Andreas Heine
- Institut für Pharmazeutische ChemiePhilipps-Universität MarburgMarbacher Weg 635032MarburgGermany
| | - Gerhard Klebe
- Institut für Pharmazeutische ChemiePhilipps-Universität MarburgMarbacher Weg 635032MarburgGermany
| |
Collapse
|
17
|
Hanzawa H, Shimada T, Takahashi M, Takahashi H. Revisiting biomolecular NMR spectroscopy for promoting small-molecule drug discovery. JOURNAL OF BIOMOLECULAR NMR 2020; 74:501-508. [PMID: 32306215 DOI: 10.1007/s10858-020-00314-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Recently, there has been increasing interest in new modalities such as therapeutic antibodies and gene therapy at a number of pharmaceutical companies. Moreover, in small-molecule drug discovery at such companies, efforts have focused on hard-to-drug targets such as inhibiting protein-protein interactions. Biomolecular NMR spectroscopy has been used in drug discovery in a variety of ways, such as for the reliable detection of binding and providing three-dimensional structural information for structure-based drug design. The advantages of using NMR spectroscopy have been known for decades (Jahnke in J Biomol NMR 39:87-90, (2007); Gossert and Jahnke in Prog Nucl Magn Reson Spectrosc 97:82-125, (2016)). For tackling hard-to-drug targets and increasing the success in discovering drug molecules, in-depth analysis of drug-target protein interactions performed by biophysical methods will be more and more essential. Here, we review the advantages of NMR spectroscopy as a key technology of biophysical methods and also discuss issues such as using cutting-edge NMR spectrometers and increasing the demand of utilizing conformational dynamics information for promoting small-molecule drug discovery.
Collapse
Affiliation(s)
- Hiroyuki Hanzawa
- Structure-Based Drug Design Group, Organic Synthesis Department, Daiichi Sankyo RD Novare Co., Ltd, 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan.
| | - Takashi Shimada
- Structure-Based Drug Design Group, Organic Synthesis Department, Daiichi Sankyo RD Novare Co., Ltd, 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Mizuki Takahashi
- Structure-Based Drug Design Group, Organic Synthesis Department, Daiichi Sankyo RD Novare Co., Ltd, 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Hideo Takahashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
18
|
Štadániová R, Sahulčík M, Doháňošová J, Moncol J, Janotka Ľ, Šimoničová K, Messingerová L, Fischer R. Synthesis of 1,2,3-Triazoles Bearing a 4-Hydroxyisoxazolidine Moiety from 4,5-Unsubstituted 2,3-Dihydroisoxazoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Radka Štadániová
- Institute of Organic Chemistry; Catalysis and Petrochemistry; Slovak University of Technology in Bratislava; Radlinského 9 81237 Bratislava Slovak Republic
| | - Michal Sahulčík
- Institute of Organic Chemistry; Catalysis and Petrochemistry; Slovak University of Technology in Bratislava; Radlinského 9 81237 Bratislava Slovak Republic
| | - Jana Doháňošová
- Central Laboratories; Slovak University of Technology in Bratislava; Radlinského 9 81237 Bratislava Slovak Republic
| | - Ján Moncol
- Institute of Inorganic Chemistry; Technology and Materials; Slovak University of Technology in Bratislava; Radlinského 9 81237 Bratislava Slovak Republic
| | - Ľuboš Janotka
- Institute of Molecular Physiology and Genetics; Centre of Biosciences; Slovak Academy of Sciences; Dúbravská cesta 9 84505 Bratislava 4 Slovak Republic
| | - Kristína Šimoničová
- Institute of Molecular Physiology and Genetics; Centre of Biosciences; Slovak Academy of Sciences; Dúbravská cesta 9 84505 Bratislava 4 Slovak Republic
| | - Lucia Messingerová
- Institute of Molecular Physiology and Genetics; Centre of Biosciences; Slovak Academy of Sciences; Dúbravská cesta 9 84505 Bratislava 4 Slovak Republic
- Institute of Biochemistry and Microbiology; Slovak University of Technology in Bratislava; Radlinského 9 81237 Bratislava Slovak Republic
| | - Róbert Fischer
- Institute of Organic Chemistry; Catalysis and Petrochemistry; Slovak University of Technology in Bratislava; Radlinského 9 81237 Bratislava Slovak Republic
| |
Collapse
|
19
|
Lawrence JM, Orlans J, Evans G, Orville AM, Foadi J, Aller P. High-throughput in situ experimental phasing. Acta Crystallogr D Struct Biol 2020; 76:790-801. [PMID: 32744261 PMCID: PMC7397491 DOI: 10.1107/s2059798320009109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/03/2020] [Indexed: 11/10/2022] Open
Abstract
In this article, a new approach to experimental phasing for macromolecular crystallography (MX) at synchrotrons is introduced and described for the first time. It makes use of automated robotics applied to a multi-crystal framework in which human intervention is reduced to a minimum. Hundreds of samples are automatically soaked in heavy-atom solutions, using a Labcyte Inc. Echo 550 Liquid Handler, in a highly controlled and optimized fashion in order to generate derivatized and isomorphous crystals. Partial data sets obtained on MX beamlines using an in situ setup for data collection are processed with the aim of producing good-quality anomalous signal leading to successful experimental phasing.
Collapse
Affiliation(s)
- Joshua M. Lawrence
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Julien Orlans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i); Institut National des Sciences Appliquées de Lyon (INSA Lyon); Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - James Foadi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
20
|
Kirsch P, Hartman AM, Hirsch AKH, Empting M. Concepts and Core Principles of Fragment-Based Drug Design. Molecules 2019; 24:molecules24234309. [PMID: 31779114 PMCID: PMC6930586 DOI: 10.3390/molecules24234309] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
In this review, a general introduction to fragment-based drug design and the underlying concepts is given. General considerations and methodologies ranging from library selection/construction over biophysical screening and evaluation methods to in-depth hit qualification and subsequent optimization strategies are discussed. These principles can be generally applied to most classes of drug targets. The examples given for fragment growing, merging, and linking strategies at the end of the review are set in the fields of enzyme-inhibitor design and macromolecule–macromolecule interaction inhibition. Building upon the foundation of fragment-based drug discovery (FBDD) and its methodologies, we also highlight a few new trends in FBDD.
Collapse
Affiliation(s)
- Philine Kirsch
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| | - Alwin M. Hartman
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anna K. H. Hirsch
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
- Correspondence: ; Tel.: +49-681-988-062-031
| |
Collapse
|
21
|
Marchand JR, Caflisch A. In silico fragment-based drug design with SEED. Eur J Med Chem 2018; 156:907-917. [PMID: 30064119 DOI: 10.1016/j.ejmech.2018.07.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/11/2018] [Accepted: 07/15/2018] [Indexed: 12/13/2022]
Abstract
We report on two fragment-based drug design protocols, SEED2XR and ALTA, which start by high-throughput docking. SEED2XR is a two-stage protocol for fragment-based drug design. The first stage is in silico and consists of the automatic docking of 103-104 fragments using SEED, which requires about 1 s per fragment. SEED is a docking software developed specifically for fragment docking and binding energy evaluation by a force field with implicit solvent. In the second stage of SEED2XR, the 10-102 fragments with the most favorable predicted binding energies are validated by protein X-ray crystallography. The recent applications of SEED2XR to bromodomains demonstrate that the whole SEED2XR protocol can be carried out in about a week of working time, with hit rates ranging from 10% to 40%. Information on fragment-target interactions generated by the SEED2XR protocol or directly from SEED docking has been used for the discovery of hundreds of hits. ALTA is a computational protocol for screening which identifies candidate ligands that preserve the interactions between the optimal SEED fragments and the protein target. Medicinal chemistry optimization of ligands predicted by ALTA has resulted in pre-clinical candidates for protein kinases and bromodomains. The high-throughput, very low cost, sustainability, and high hit rate of the SEED-based protocols, unreachable by purely experimental techniques, make them perfectly suitable for both academic and industrial drug discovery research.
Collapse
Affiliation(s)
- Jean-Rémy Marchand
- Department of Biochemistry, University of Zürich, CH-8057, Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, CH-8057, Zürich, Switzerland.
| |
Collapse
|
22
|
Chilingaryan Z, Headey SJ, Lo ATY, Xu ZQ, Otting G, Dixon NE, Scanlon MJ, Oakley AJ. Fragment-Based Discovery of Inhibitors of the Bacterial DnaG-SSB Interaction. Antibiotics (Basel) 2018; 7:E14. [PMID: 29470422 PMCID: PMC5872125 DOI: 10.3390/antibiotics7010014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/30/2022] Open
Abstract
In bacteria, the DnaG primase is responsible for synthesis of short RNA primers used to initiate chain extension by replicative DNA polymerase(s) during chromosomal replication. Among the proteins with which Escherichia coli DnaG interacts is the single-stranded DNA-binding protein, SSB. The C-terminal hexapeptide motif of SSB (DDDIPF; SSB-Ct) is highly conserved and is known to engage in essential interactions with many proteins in nucleic acid metabolism, including primase. Here, fragment-based screening by saturation-transfer difference nuclear magnetic resonance (STD-NMR) and surface plasmon resonance assays identified inhibitors of the primase/SSB-Ct interaction. Hits were shown to bind to the SSB-Ct-binding site using 15N-¹H HSQC spectra. STD-NMR was used to demonstrate binding of one hit to other SSB-Ct binding partners, confirming the possibility of simultaneous inhibition of multiple protein/SSB interactions. The fragment molecules represent promising scaffolds on which to build to discover new antibacterial compounds.
Collapse
Affiliation(s)
- Zorik Chilingaryan
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Stephen J Headey
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Allen T Y Lo
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Martin J Scanlon
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Aaron J Oakley
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
23
|
Kulp JL, Cloudsdale IS, Kulp JL, Guarnieri F. Hot-spot identification on a broad class of proteins and RNA suggest unifying principles of molecular recognition. PLoS One 2017; 12:e0183327. [PMID: 28837642 PMCID: PMC5570288 DOI: 10.1371/journal.pone.0183327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023] Open
Abstract
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition.
Collapse
Affiliation(s)
- John L. Kulp
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Ian S. Cloudsdale
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
| | - John L. Kulp
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
| | - Frank Guarnieri
- PAKA Pulmonary Pharmaceuticals, Acton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Mello JDFRE, Gomes RA, Vital-Fujii DG, Ferreira GM, Trossini GHG. Fragment-based drug discovery as alternative strategy to the drug development for neglected diseases. Chem Biol Drug Des 2017; 90:1067-1078. [PMID: 28547936 DOI: 10.1111/cbdd.13030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/12/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022]
Abstract
Neglected diseases (NDs) affect large populations and almost whole continents, representing 12% of the global health burden. In contrast, the treatment available today is limited and sometimes ineffective. Under this scenery, the Fragment-Based Drug Discovery emerged as one of the most promising alternatives to the traditional methods of drug development. This method allows achieving new lead compounds with smaller size of fragment libraries. Even with the wide Fragment-Based Drug Discovery success resulting in new effective therapeutic agents against different diseases, until this moment few studies have been applied this approach for NDs area. In this article, we discuss the basic Fragment-Based Drug Discovery process, brief successful ideas of general applications and show a landscape of its use in NDs, encouraging the implementation of this strategy as an interesting way to optimize the development of new drugs to NDs.
Collapse
Affiliation(s)
- Juliana da Fonseca Rezende E Mello
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Renan Augusto Gomes
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Drielli Gomes Vital-Fujii
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Glaucio Monteiro Ferreira
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-graduação em Toxicologia e Análises Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Henrique Goulart Trossini
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-graduação em Toxicologia e Análises Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Proteintemplat-gesteuerte Fragmentligationen - von der molekularen Erkennung zur Wirkstofffindung. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 129:7464-7485. [PMID: 32313319 PMCID: PMC7159557 DOI: 10.1002/ange.201610372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/10/2017] [Indexed: 12/28/2022]
Abstract
AbstractProteintemplat‐gesteuerte Fragmentligationen sind ein neuartiges Konzept zur Unterstützung der Wirkstofffindung und können dazu beitragen, die Wirksamkeit von Proteinliganden zu verbessern. Es handelt sich dabei um chemische Reaktionen zwischen niedermolekularen Verbindungen (“Fragmenten”), die die Oberfläche eines Proteins als Reaktionsgefäß verwenden, um die Bildung eines Proteinliganden mit erhöhter Bindungsaffinität zu katalysieren. Die Methode nutzt die molekulare Erkennung kleiner reaktiver Fragmente durch die Proteine sowohl zur Assemblierung der Liganden als auch zur Identifizierung bioaktiver Fragmentkombinationen. Chemische Synthese und Bioassay werden dabei in einem Schritt vereint. Dieser Aufsatz diskutiert die biophysikalischen Grundlagen der reversiblen und irreversiblen Fragmentligationen und gibt einen Überblick über die Methoden, mit denen die durch das Proteintemplat gebildeten Ligationsprodukte detektiert werden können. Der chemische Reaktionsraum und aktuelle Anwendungen wie auch die Bedeutung dieses Konzeptes für die Wirkstofffindung werden erörtert.
Collapse
Affiliation(s)
- Mike Jaegle
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Ee Lin Wong
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Carolin Tauber
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Eric Nawrotzky
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Christoph Arkona
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Jörg Rademann
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| |
Collapse
|
26
|
Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery. Angew Chem Int Ed Engl 2017; 56:7358-7378. [PMID: 28117936 PMCID: PMC7159684 DOI: 10.1002/anie.201610372] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/10/2017] [Indexed: 12/14/2022]
Abstract
Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules ("fragments") utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed.
Collapse
Affiliation(s)
- Mike Jaegle
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Ee Lin Wong
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Carolin Tauber
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Eric Nawrotzky
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Christoph Arkona
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Jörg Rademann
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| |
Collapse
|
27
|
Ferreira RJ, Bonito CA, Ferreira MJU, dos Santos DJ. About P-glycoprotein: a new drugable domain is emerging from structural data. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ricardo J. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Cátia A. Bonito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| | - Maria José U. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Daniel J.V.A. dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| |
Collapse
|
28
|
Pearce NM, Bradley AR, Krojer T, Marsden BD, Deane CM, von Delft F. Partial-occupancy binders identified by the Pan-Dataset Density Analysis method offer new chemical opportunities and reveal cryptic binding sites. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:032104. [PMID: 28345007 PMCID: PMC5336473 DOI: 10.1063/1.4974176] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Crystallographic fragment screening uses low molecular weight compounds to probe the protein surface and although individual protein-fragment interactions are high quality, fragments commonly bind at low occupancy, historically making identification difficult. However, our new Pan-Dataset Density Analysis method readily identifies binders missed by conventional analysis: for fragment screening data of lysine-specific demethylase 4D (KDM4D), the hit rate increased from 0.9% to 10.6%. Previously unidentified fragments reveal multiple binding sites and demonstrate: the versatility of crystallographic fragment screening; that surprisingly large conformational changes are possible in crystals; and that low crystallographic occupancy does not by itself reflect a protein-ligand complex's significance.
Collapse
Affiliation(s)
| | - Anthony R Bradley
- Structural Genomics Consortium, University of Oxford , Oxford OX3 7DQ, United Kingdom
| | - Tobias Krojer
- Structural Genomics Consortium, University of Oxford , Oxford OX3 7DQ, United Kingdom
| | | | - Charlotte M Deane
- Department of Statistics, University of Oxford , 24-29 St Giles, Oxford OX1 3LB, United Kingdom
| | | |
Collapse
|
29
|
Jaegle M, Steinmetzer T, Rademann J. Protein-Templated Formation of an Inhibitor of the Blood Coagulation Factor Xa through a Background-Free Amidation Reaction. Angew Chem Int Ed Engl 2017; 56:3718-3722. [PMID: 28199769 PMCID: PMC5363247 DOI: 10.1002/anie.201611547] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Indexed: 11/16/2022]
Abstract
Protein‐templated reactions enable the target‐guided formation of protein ligands from reactive fragments, ideally with no background reaction. Herein, we investigate the templated formation of amides. A nucleophilic fragment that binds to the coagulation factor Xa was incubated with the protein and thirteen differentially activated dipeptides. The protein induced a non‐catalytic templated reaction for the phenyl and trifluoroethyl esters; the latter was shown to be a completely background‐free reaction. Starting from two fragments with millimolar affinity, a 29 nm superadditive inhibitor of factor Xa was obtained. The fragment ligation reaction was detected with high sensitivity by an enzyme activity assay and by mass spectrometry. The reaction progress and autoinhibition of the templated reaction by the formed ligation product were determined, and the structure of the protein–inhibitor complex was elucidated.
Collapse
Affiliation(s)
- Mike Jaegle
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195, Berlin, Germany
| | - Torsten Steinmetzer
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Chemie, Marbacher Weg 6, 35037, Marburg, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195, Berlin, Germany
| |
Collapse
|
30
|
Jaegle M, Steinmetzer T, Rademann J. Proteintemplat‐gesteuerte Bildung eines Inhibitors des Koagulationsfaktors Xa durch eine Amidierung ohne Hintergrundreaktion. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mike Jaegle
- Medizinische Chemie Institut für Pharmazie Freie Universität Berlin Königin-Luise-Straße 2+4 14195 Berlin Deutschland
| | - Torsten Steinmetzer
- Philipps-Universität Marburg Fachbereich Pharmazie Institut für Pharmazeutische Chemie Marbacher Weg 6 35037 Marburg Deutschland
| | - Jörg Rademann
- Medizinische Chemie Institut für Pharmazie Freie Universität Berlin Königin-Luise-Straße 2+4 14195 Berlin Deutschland
| |
Collapse
|
31
|
Miller MS, Maheshwari S, McRobb FM, Kinzler KW, Amzel LM, Vogelstein B, Gabelli SB. Identification of allosteric binding sites for PI3Kα oncogenic mutant specific inhibitor design. Bioorg Med Chem 2017; 25:1481-1486. [PMID: 28129991 DOI: 10.1016/j.bmc.2017.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
PIK3CA, the gene that encodes the catalytic subunit of phosphatidylinositol 3-kinase α (PI3Kα), is frequently mutated in breast and other types of cancer. A specific inhibitor that targets the mutant forms of PI3Kα could maximize treatment efficiency while minimizing side-effects. Herein we describe the identification of novel binding pockets that may provide an opportunity for the design of mutant selective inhibitors. Using a fragment-based approach, we screened a library of 352 fragments (MW<300Da) for binding to PI3Kα by X-ray crystallography. Five novel binding pockets were identified, each providing potential opportunities for inhibitor design. Of particular interest was a binding pocket near Glu542, which is located in one of the two most frequently mutated domains.
Collapse
Affiliation(s)
- Michelle S Miller
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Sweta Maheshwari
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Fiona M McRobb
- Schrödinger, Inc., 120 West 45th Street, New York, NY 10036, United States
| | - Kenneth W Kinzler
- Ludwig Center and Howard Hughes Medical Institutions, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - L Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Bert Vogelstein
- Ludwig Center and Howard Hughes Medical Institutions, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
32
|
Ma R, Wang P, Wu J, Ruan K. Process of Fragment-Based Lead Discovery-A Perspective from NMR. Molecules 2016; 21:molecules21070854. [PMID: 27438813 PMCID: PMC6273320 DOI: 10.3390/molecules21070854] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022] Open
Abstract
Fragment-based lead discovery (FBLD) has proven fruitful during the past two decades for a variety of targets, even challenging protein–protein interaction (PPI) systems. Nuclear magnetic resonance (NMR) spectroscopy plays a vital role, from initial fragment-based screening to lead generation, because of its power to probe the intrinsically weak interactions between targets and low-molecular-weight fragments. Here, we review the NMR FBLD process from initial library construction to lead generation. We describe technical aspects regarding fragment library design, ligand- and protein-observed screening, and protein–ligand structure model generation. For weak binders, the initial hit-to-lead evolution can be guided by structural information retrieved from NMR spectroscopy, including chemical shift perturbation, transferred pseudocontact shifts, and paramagnetic relaxation enhancement. This perspective examines structure-guided optimization from weak fragment screening hits to potent leads for challenging PPI targets.
Collapse
Affiliation(s)
- Rongsheng Ma
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Pengchao Wang
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Jihui Wu
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Ke Ruan
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| |
Collapse
|
33
|
Poklar Ulrih N. Analytical techniques for the study of polyphenol–protein interactions. Crit Rev Food Sci Nutr 2015; 57:2144-2161. [DOI: 10.1080/10408398.2015.1052040] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia, Ljubljana, Slovenia
| |
Collapse
|
34
|
Bradley AR, Wall ID, von Delft F, Green DVS, Deane CM, Marsden BD. WONKA: objective novel complex analysis for ensembles of protein-ligand structures. J Comput Aided Mol Des 2015; 29:963-73. [PMID: 26387008 PMCID: PMC4621702 DOI: 10.1007/s10822-015-9866-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/04/2015] [Indexed: 01/16/2023]
Abstract
WONKA is a tool for the systematic analysis of an ensemble of protein-ligand structures. It makes the identification of conserved and unusual features within such an ensemble straightforward. WONKA uses an intuitive workflow to process structural co-ordinates. Ligand and protein features are summarised and then presented within an interactive web application. WONKA's power in consolidating and summarising large amounts of data is described through the analysis of three bromodomain datasets. Furthermore, and in contrast to many current methods, WONKA relates analysis to individual ligands, from which we find unusual and erroneous binding modes. Finally the use of WONKA as an annotation tool to share observations about structures is demonstrated. WONKA is freely available to download and install locally or can be used online at http://wonka.sgc.ox.ac.uk.
Collapse
Affiliation(s)
- A R Bradley
- SGC, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, OX1 TG, UK
| | - I D Wall
- Computational & Structural Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - F von Delft
- SGC, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
- Department of Biochemistry, University of Johannesburg, Aukland Park, 2006, South Africa
| | - D V S Green
- Computational & Structural Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - C M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, OX1 TG, UK
| | - B D Marsden
- SGC, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK.
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK.
| |
Collapse
|
35
|
Satoh M, Saburi H, Tanaka T, Matsuura Y, Naitow H, Shimozono R, Yamamoto N, Inoue H, Nakamura N, Yoshizawa Y, Aoki T, Tanimura R, Kunishima N. Multiple binding modes of a small molecule to human Keap1 revealed by X-ray crystallography and molecular dynamics simulation. FEBS Open Bio 2015. [PMID: 26199865 PMCID: PMC4506958 DOI: 10.1016/j.fob.2015.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Keap1 is useful target for the design of drugs that regulate the response to oxidative stresses. We determined two complex crystal structures of Keap1 with a small molecule ligand. The ligand binds to Keap1 so as to mimic the physiological substrate Nrf2. From molecular dynamics simulation results, the binding modes observed may be atypical in solution. Key residues for ligand binding are common between crystal and MD structures.
Keap1 protein acts as a cellular sensor for oxidative stresses and regulates the transcription level of antioxidant genes through the ubiquitination of a corresponding transcription factor, Nrf2. A small molecule capable of binding to the Nrf2 interaction site of Keap1 could be a useful medicine. Here, we report two crystal structures, referred to as the soaking and the cocrystallization forms, of the Kelch domain of Keap1 with a small molecule, Ligand1. In these two forms, the Ligand1 molecule occupied the binding site of Keap1 so as to mimic the ETGE motif of Nrf2, although the mode of binding differed in the two forms. Because the Ligand1 molecule mediated the crystal packing in both the forms, the influence of crystal packing on the ligand binding was examined using a molecular dynamics (MD) simulation in aqueous conditions. In the MD structures from the soaking form, the ligand remained bound to Keap1 for over 20 ns, whereas the ligand tended to dissociate in the cocrystallization form. The MD structures could be classified into a few clusters that were related to but distinct from the crystal structures, indicating that the binding modes observed in crystals might be atypical of those in solution. However, the dominant ligand recognition residues in the crystal structures were commonly used in the MD structures to anchor the ligand. Therefore, the present structural information together with the MD simulation will be a useful basis for pharmaceutical drug development.
Collapse
Affiliation(s)
- Mikiya Satoh
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Hajime Saburi
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Tomoyuki Tanaka
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshinori Matsuura
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hisashi Naitow
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Rieko Shimozono
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Naoyoshi Yamamoto
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Hideki Inoue
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Noriko Nakamura
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Yoshitaka Yoshizawa
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Takumi Aoki
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Ryuji Tanimura
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555, Japan
| | - Naoki Kunishima
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Corresponding author. Tel.: +81 791 58 2937; fax: +81 791 58 2917.
| |
Collapse
|
36
|
Teplitsky E, Joshi K, Ericson DL, Scalia A, Mullen JD, Sweet RM, Soares AS. High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density. J Struct Biol 2015; 191:49-58. [PMID: 26027487 DOI: 10.1016/j.jsb.2015.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 11/30/2022]
Abstract
We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. A fragment mini-library was screened to observe two known lysozyme ligands using both co-crystallization and soaking. A similar approach was used to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5nL of each component.
Collapse
Affiliation(s)
- Ella Teplitsky
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA; Department of Biochemistry and Cell Biology, Stony Brook University, NY 11794-5215, USA
| | - Karan Joshi
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA; Department of Electronics and Electrical Communication Engineering, PEC University of Technology, Chandigarh, India
| | - Daniel L Ericson
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA; Department of Biomedical Engineering, University at Buffalo, SUNY, 12 Capen Hall, Buffalo, NY 14260, USA
| | - Alexander Scalia
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA; Department of Biological Sciences, 4400 Vestal Parkway East, Binghamton University, NY 13902, USA
| | - Jeffrey D Mullen
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA; Physics Department, University of Oregon, Eugene, OR 97403-1274, USA
| | - Robert M Sweet
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Alexei S Soares
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| |
Collapse
|
37
|
Helliwell JR, Mitchell EP. Synchrotron radiation macromolecular crystallography: science and spin-offs. IUCRJ 2015; 2:283-91. [PMID: 25866664 PMCID: PMC4392420 DOI: 10.1107/s205225251402795x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/22/2014] [Indexed: 05/11/2023]
Abstract
A current overview of synchrotron radiation (SR) in macromolecular crystallography (MX) instrumentation, methods and applications is presented. Automation has been and remains a central development in the last decade, as have the rise of remote access and of industrial service provision. Results include a high number of Protein Data Bank depositions, with an increasing emphasis on the successful use of microcrystals. One future emphasis involves pushing the frontiers of using higher and lower photon energies. With the advent of X-ray free-electron lasers, closely linked to SR developments, the use of ever smaller samples such as nanocrystals, nanoclusters and single molecules is anticipated, as well as the opening up of femtosecond time-resolved diffraction structural studies. At SR sources, a very high-throughput assessment for the best crystal samples and the ability to tackle just a few micron and sub-micron crystals will become widespread. With higher speeds and larger detectors, diffraction data volumes are becoming long-term storage and archiving issues; the implications for today and the future are discussed. Together with the rise of the storage ring to its current pre-eminence in MX data provision, the growing tendency of central facility sites to offer other centralized facilities complementary to crystallography, such as cryo-electron microscopy and NMR, is a welcome development.
Collapse
Affiliation(s)
- John R. Helliwell
- School of Chemistry, University of Manchester, Brunswick Street, Manchester M13 9PL, England
| | - Edward P. Mitchell
- ESRF, 71 avenue des Martyrs, 38000 Grenoble, France
- Faculty of Natural Sciences, Keele University, Staffordshire ST5 5BG, England
| |
Collapse
|
38
|
Szőllősi E, Bobok A, Kiss L, Vass M, Kurkó D, Kolok S, Visegrády A, Keserű GM. Cell-based and virtual fragment screening for adrenergic α2C receptor agonists. Bioorg Med Chem 2015; 23:3991-9. [PMID: 25648685 DOI: 10.1016/j.bmc.2015.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/21/2014] [Accepted: 01/07/2015] [Indexed: 12/21/2022]
Abstract
Fragment-based drug discovery has emerged as an alternative to conventional lead identification and optimization strategies generally supported by biophysical detection techniques. Membrane targets like G protein-coupled receptors (GPCRs), however, offer challenges in lack of generic immobilization or stabilization methods for the dynamic, membrane-bound supramolecular complexes. Also modeling of different functional states of GPCRs proved to be a challenging task. Here we report a functional cell-based high concentration screening campaign for the identification of adrenergic α2C receptor agonists compared with the virtual screening of the same ligand set against an active-like homology model of the α2C receptor. The conventional calcium mobilization-based assay identified active fragments with a similar incidence to several other reported fragment screens on GPCRs. 16 out of 3071 screened fragments turned out as specific ligands of α2C, two of which were identified by virtual screening as well and several of the hits possessed surprisingly high affinity and ligand efficiency. Our results indicate that in vitro biological assays can be utilized in the fragment hit identification process for GPCR targets.
Collapse
Affiliation(s)
- Edit Szőllősi
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Amrita Bobok
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - László Kiss
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Márton Vass
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Dalma Kurkó
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Sándor Kolok
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | | | - György M Keserű
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| |
Collapse
|
39
|
Fechner P, Bleher O, Ewald M, Freudenberger K, Furin D, Hilbig U, Kolarov F, Krieg K, Leidner L, Markovic G, Proll G, Pröll F, Rau S, Riedt J, Schwarz B, Weber P, Widmaier J. Size does matter! Label-free detection of small molecule-protein interaction. Anal Bioanal Chem 2014; 406:4033-51. [PMID: 24817356 DOI: 10.1007/s00216-014-7834-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
Abstract
This review is focused on methods for detecting small molecules and, in particular, the characterisation of their interaction with natural proteins (e.g. receptors, ion channels). Because there are intrinsic advantages to using label-free methods over labelled methods (e.g. fluorescence, radioactivity), this review only covers label-free techniques. We briefly discuss available techniques and their advantages and disadvantages, especially as related to investigating the interaction between small molecules and proteins. The reviewed techniques include well-known and widely used standard analytical methods (e.g. HPLC-MS, NMR, calorimetry, and X-ray diffraction), newer and more specialised analytical methods (e.g. biosensors), biological systems (e.g. cell lines and animal models), and in-silico approaches.
Collapse
Affiliation(s)
- Peter Fechner
- Biametrics GmbH, Auf der Morgenstelle 18, 72076, Tübingen, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yin X, Scalia A, Leroy L, Cuttitta CM, Polizzo GM, Ericson DL, Roessler CG, Campos O, Ma MY, Agarwal R, Jackimowicz R, Allaire M, Orville AM, Sweet RM, Soares AS. Hitting the target: fragment screening with acoustic in situ co-crystallization of proteins plus fragment libraries on pin-mounted data-collection micromeshes. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1177-89. [PMID: 24816088 PMCID: PMC4014116 DOI: 10.1107/s1399004713034603] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/24/2013] [Indexed: 11/17/2022]
Abstract
Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component.
Collapse
Affiliation(s)
- Xingyu Yin
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, NY 11794-5215, USA
- Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Alexander Scalia
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biological Sciences, Binghamton University, 4400 Vestal Parkway East, NY 13902, USA
| | - Ludmila Leroy
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- CAPES Foundation, Ministry of Education of Brazil, 70040-020 Brasilia-DF, Brazil
- Universidade Federal de Minas Gerais, 6627 Av. Antonio Carlos, 31270-901 Belo Horizonte-MG, Brazil
| | - Christina M. Cuttitta
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Center for Developmental Neuroscience and Department of Biology, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA
| | - Gina M. Polizzo
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- St Joseph’s College, 155 West Roe Boulevard, East Patchogue, NY 11772, USA
| | - Daniel L. Ericson
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biomedical Engineering, University at Buffalo, SUNY, 12 Capen Hall, Buffalo, NY 14260, USA
| | - Christian G. Roessler
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Olven Campos
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biological Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33414, USA
| | - Millie Y. Ma
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Comsewogue High School, 565 Bicycle Path, Port Jefferson Station, NY 11776, USA
| | - Rakhi Agarwal
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Rick Jackimowicz
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Marc Allaire
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Allen M. Orville
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Robert M. Sweet
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Alexei S. Soares
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| |
Collapse
|
41
|
Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW. Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer 2014; 14:248-62. [PMID: 24622521 DOI: 10.1038/nrc3690] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Historically, targeting protein-protein interactions with small molecules was not thought possible because the corresponding interfaces were considered mostly flat and featureless and therefore 'undruggable'. Instead, such interactions were targeted with larger molecules, such as peptides and antibodies. However, the past decade has seen encouraging breakthroughs through the refinement of existing techniques and the development of new ones, together with the identification and exploitation of unexpected aspects of protein-protein interaction surfaces. In this Review, we describe some of the latest techniques to discover modulators of protein-protein interactions and how current drug discovery approaches have been adapted to successfully target these interfaces.
Collapse
Affiliation(s)
- Tracy L Nero
- Australian Cancer Research Foundation Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Craig J Morton
- Australian Cancer Research Foundation Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Jessica K Holien
- Australian Cancer Research Foundation Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Jerome Wielens
- 1] Australian Cancer Research Foundation Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia. [2] Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | - Michael W Parker
- 1] Australian Cancer Research Foundation Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia. [2] Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
42
|
Yin Z, Whittell LR, Wang Y, Jergic S, Liu M, Harry EJ, Dixon NE, Beck JL, Kelso MJ, Oakley AJ. Discovery of lead compounds targeting the bacterial sliding clamp using a fragment-based approach. J Med Chem 2014; 57:2799-806. [PMID: 24592885 DOI: 10.1021/jm500122r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial sliding clamp (SC), also known as the DNA polymerase III β subunit, is an emerging antibacterial target that plays a central role in DNA replication, serving as a protein-protein interaction hub with a common binding pocket to recognize linear motifs in the partner proteins. Here, fragment-based screening using X-ray crystallography produced four hits bound in the linear-motif-binding pocket of the Escherichia coli SC. Compounds structurally related to the hits were identified that inhibited the E. coli SC and SC-mediated DNA replication in vitro. A tetrahydrocarbazole derivative emerged as a promising lead whose methyl and ethyl ester prodrug forms showed minimum inhibitory concentrations in the range of 21-43 μg/mL against representative Gram-negative and Gram-positive bacteria species. The work demonstrates the utility of a fragment-based approach for identifying bacterial sliding clamp inhibitors as lead compounds with broad-spectrum antibacterial activity.
Collapse
Affiliation(s)
- Zhou Yin
- School of Chemistry and Centre for Medical and Molecular Bioscience, University of Wollongong , Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Parker LJ, Taruya S, Tsuganezawa K, Ogawa N, Mikuni J, Honda K, Tomabechi Y, Handa N, Shirouzu M, Yokoyama S, Tanaka A. Kinase crystal identification and ATP-competitive inhibitor screening using the fluorescent ligand SKF86002. ACTA ACUST UNITED AC 2014; 70:392-404. [PMID: 24531473 DOI: 10.1107/s1399004713028654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/17/2013] [Indexed: 11/10/2022]
Abstract
The small kinase inhibitor SKF86002 lacks intrinsic fluorescence but becomes fluorescent upon binding to the ATP-binding sites of p38 mitogen-activated protein kinase (p38α). It was found that co-crystals of this compound with various kinases were distinguishable by their strong fluorescence. The co-crystals of SKF86002 with p38α, Pim1, ASK1, HCK and AMPK were fluorescent. Addition of SKF86002, which binds to the ATP site, to the co-crystallization solution of HCK promoted protein stability and thus facilitated the production of crystals that otherwise would not grow in the apo form. It was further demonstrated that the fluorescence of SKF86002 co-crystals can be applied to screen for candidate kinase inhibitors. When a compound binds competitively to the ATP-binding site of a kinase crystallized with SKF86002, it displaces the fluorescent SKF86002 and the crystal loses its fluorescence. Lower fluorescent signals were reported after soaking SKF86002-Pim1 and SKF86002-HCK co-crystals with the inhibitors quercetin, a quinazoline derivative and A-419259. Determination of the SKF86002-Pim1 and SKF86002-HCK co-crystal structures confirmed that SKF86002 interacts with the ATP-binding sites of Pim1 and HCK. The structures of Pim1-SKF86002 crystals soaked with the inhibitors quercetin and a quinazoline derivative and of HCK-SKF86002 crystals soaked with A-419259 were determined. These structures were virtually identical to the deposited crystal structures of the same complexes. A KINOMEscan assay revealed that SKF86002 binds a wide variety of kinases. Thus, for a broad range of kinases, SKF86002 is useful as a crystal marker, a crystal stabilizer and a marker to identify ligand co-crystals for structural analysis.
Collapse
Affiliation(s)
- Lorien J Parker
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shigenao Taruya
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Keiko Tsuganezawa
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Naoko Ogawa
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Junko Mikuni
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Keiko Honda
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yuri Tomabechi
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Noriko Handa
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Akiko Tanaka
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
44
|
Abstract
Crystallography is a major tool for structure-driven drug design, as it allows knowledge of the 3D structure of protein targets and protein-ligand complexes. However, the route for crystal structure determination involves many steps, some of which may hamper its high-throughput use. Recent efforts have produced significant advances in experimental and computational tools and protocols. They include automatic crystallization tools, faster data collection devices, more efficient phasing methods and improved ligand-fitting procedures. The timescales of drug-discovery processes have been also reduced by using a fragment-based screening approach. Herein, the achievements in protein crystallography over the last 5 years are reviewed, and advantages and disadvantages of the fragment-based approaches to drug discovery that make use of x-ray crystallography as a primary screening method are examined. In particular, in some detail, five recent case studies pertaining to the development of new hits or leads in relevant therapeutic areas, such as cancer, immune response, inflammation, metabolic syndrome and neurology are described.
Collapse
|
45
|
Grøftehauge MK, Therkelsen MØ, Taaning R, Skrydstrup T, Morth JP, Nissen P. Identifying ligand-binding hot spots in proteins using brominated fragments. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1060-5. [PMID: 23989163 PMCID: PMC3758163 DOI: 10.1107/s1744309113018551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/04/2013] [Indexed: 11/10/2022]
Abstract
High-quality crystals of Thermus thermophilus EF-Tu in the GTP-bound conformation at 1.7-2.7 Å resolution were used to test 18 small organic molecules, all brominated for confident identification in the anomalous difference maps. From this relatively small collection, it was possible to identify a small molecule bound in the functionally important tRNA CCA-end binding pocket. The antibiotic GE2270 A is known to interact with the same pocket in EF-Tu and to disrupt the association with tRNA. Bromide could be located from peaks in the anomalous map in data truncated to very low resolution without refining the structure. Considering the speed with which diffraction data can be collected today, it is proposed that it is worthwhile to collect the extra data from fragment screens while crystals are at hand to increase the knowledge of biological function and drug binding in an experimental structural context.
Collapse
Affiliation(s)
| | - Martin Ø. Therkelsen
- Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Rolf Taaning
- Center for Insoluble Protein Structures (inSPIN), Department of Chemistry and the Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Troels Skrydstrup
- Center for Insoluble Protein Structures (inSPIN), Department of Chemistry and the Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - J. Preben Morth
- Centre for Molecular Medicine Norway, University of Oslo, Forskningsparken, 0349 Oslo, Norway
| | - Poul Nissen
- Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| |
Collapse
|