1
|
Minigaliyeva IA, Klinova SV, Sutunkova MP, Ryabova YV, Valamina IE, Shelomentsev IG, Shtin TN, Bushueva TV, Protsenko YL, Balakin AA, Lisin RV, Kuznetsov DA, Katsnelson BA, Toropova LV. On the Mechanisms of the Cardiotoxic Effect of Lead Oxide Nanoparticles. Cardiovasc Toxicol 2024; 24:49-61. [PMID: 38108959 PMCID: PMC10838250 DOI: 10.1007/s12012-023-09814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
Lead compounds are one of the most common pollutants of the workplace air and the environment. In the occupational setting, the sources of their emission, including in nanoscale form, are various technological processes associated with lead smelting and handling of non-ferrous metals and their alloys, the production of copper and batteries. Both lead poisoning and lead exposure without obvious signs of poisoning have a detrimental effect on the cardiovascular system. The purpose of this research was to investigate the mechanisms of the cardiotoxic effect of lead oxide nanoparticles (PbO NPs). The toxicological experiment involved male albino rats subchronically exposed to PbO NPs (49.6 ± 16.0 nm in size) instilled intraperitoneally in a suspension. We then assessed post-exposure hematological and biochemical parameters of blood and urine, histological and ultrastructural changes in cardiomyocytes, and non-invasively recorded electrocardiograms and blood pressure parameters in the rodents. Myocardial contractility was studied on isolated preparations of cardiac muscles. We established that PbO NPs induced oxidative stress and damage to the ultrastructure of cardiomyocytes, and decreased efficiency of the contractile function of the myocardium and blood pressure parameters. We also revealed such specific changes in the organism of the exposed rats as anemia, hypoxia, and hypocalcemia.
Collapse
Affiliation(s)
- Ilzira A Minigaliyeva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, Yekaterinburg, Russian Federation, 620000
| | - Svetlana V Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Marina P Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Yuliya V Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, Yekaterinburg, Russian Federation, 620000
| | - Irene E Valamina
- Ural State Medical University, Yekaterinburg, Russian Federation, 620109
| | - Ivan G Shelomentsev
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Tatiana N Shtin
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Tatiana V Bushueva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Yuri L Protsenko
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation, 620049
| | - Alexander A Balakin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation, 620049
| | - Ruslan V Lisin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation, 620049
| | - Daniil A Kuznetsov
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation, 620049
| | - Boris A Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Liubov V Toropova
- Laboratory of Mathematical Modeling of Physical and Chemical Processes in Multiphase Media, Ural Federal University, Yekaterinburg, Russian Federation, 620000.
- Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität-Jena, 07743, Jena, Germany.
| |
Collapse
|
2
|
Carotenuto R, Tussellino M, Fusco S, Benvenuto G, Formiggini F, Avallone B, Motta CM, Fogliano C, Netti PA. Adverse Effect of Metallic Gold and Silver Nanoparticles on Xenopus laevis Embryogenesis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2488. [PMID: 37686995 PMCID: PMC10489621 DOI: 10.3390/nano13172488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Exposure to metal nanoparticles is potentially harmful, particularly when occurring during embryogenesis. In this study, we tested the effects of commercial AuNPs and AgNPs, widely used in many fields for their features, on the early development of Xenopus laevis, an anuran amphibian key model species in toxicity testing. Through the Frog Embryo Teratogenesis Assay-Xenopus test (FETAX), we ascertained that both nanoparticles did not influence the survival rate but induced morphological anomalies like modifications of head and branchial arch cartilages, depigmentation of the dorsal area, damage to the intestinal brush border, and heart rate alteration. The expression of genes involved in the early pathways of embryo development was also modified. This study suggests that both types of nanoparticles are toxic though nonlethal, thus indicating that their use requires attention and further study to better clarify their activity in animals and, more importantly, in humans.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | - Sabato Fusco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy
| | | | - Fabio Formiggini
- Center for Advanced Biomaterials for Health Care (IIT@CRIB), Italian Institute of Technology, 80125 Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, 80125 Naples, Italy
| |
Collapse
|
3
|
Abdel Aal SM, Mohammed MZ, Abdelrahman AA, Samy W, Abdelaal GMM, Deraz RH, Abdelrahman SA. Histological and biochemical evaluation of the effects of silver nanoparticles (AgNps) versus titanium dioxide nanoparticles (TiO 2NPs) on rat parotid gland. Ultrastruct Pathol 2023; 47:339-363. [PMID: 37132546 DOI: 10.1080/01913123.2023.2205924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
The unlimited use of nanoparticles (NPs) results in toxic impacts on different tissues. The current study aimed to compare the adverse effects of AgNPs and TiO2NPs on the parotid gland of adult male albino rats as regards the histopathological, immunohistochemical, and biochemical changes, exploring the possible underlying mechanisms and the degree of improvement after cessation of administration. Fifty-four adult male albino rats were divided into control group (I), AgNPs-injected group (II), and TiO2NPs-injected group (III). We measured the levels of tumor necrosis factor-alpha (TNF-α) and interleukin (IL-6) in the serum, and levels of MDA and GSH in parotid tissue homogenate. Quantitative real-time polymerase-chain reaction (qRT-PCR) was used to measure the expression levels of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1-α), nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), mouse double minute 2 (MDM2), Caspase-3 Col1a1, and Occludin. Parotid tissue sections were examined by light microscope (Hematoxylin & Eosin and Mallory trichrome stains), electron microscope, and immunohistochemical examination of CD68 and anti-caspase-3 antibodies. Both NPs severely affected the acinar cells and damaged the tight junction between them by enhancing expression of the inflammatory cytokines, inducing oxidative stress, and disturbing the expression levels of the studied genes. They also stimulated fibrosis, acinar cell apoptosis, and inflammatory cells infiltration in parotid tissue. TiO2NPs effects were less severe than AgNPs. Cessation of exposure to both NPs, ameliorated the biochemical and structural findings with more improvement in TiO2NPs withdrawal. In conclusion: AgNPs and TiO2NPs adversely affected the parotid gland, but TiO2NPs were less toxic than AgNPs.
Collapse
Affiliation(s)
- Sara M Abdel Aal
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Maha Z Mohammed
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A Abdelrahman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Samy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghadeer M M Abdelaal
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Raghda H Deraz
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa A Abdelrahman
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Gao W, Lai JCK, Leung SW. Co-Culturing Rat Dorsal Root Ganglion Neurons With Rat Schwann Cells Protects Them Against the Cytotoxic Effects of Silver and Gold Nanoparticles. Int J Toxicol 2023; 42:4-18. [PMID: 36308016 DOI: 10.1177/10915818221133508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Previous studies using monotypic nerve cell cultures have shown that nanoparticles induced neurotoxic effects on nerve cells. Interactions between neurons and Schwann cells may protect against the neurotoxicity of nanoparticles. In this study, we developed a co-culture model consisting of immortalized rat dorsal root ganglion (DRG) neurons and rat Schwann cells and employed it to investigate our hypothesis that co-culturing DRG neurons with Schwann cells imparts protection on them against neurotoxicity induced by silver or gold nanoparticles. Our results indicated that neurons survived better in co-cultures when they were exposed to these nanoparticles at the higher concentrations compared to when they were exposed to these nanoparticles at the same concentrations in monotypic cultures. Synapsin I expression was increased in DRG neurons when they were co-cultured with Schwann cells and treated with or without nanoparticles. Glial fibrillary acidic protein (GFAP) expression was increased in Schwann cells when they were co-cultured with DRG neurons and treated with nanoparticles. Furthermore, we found co-culturing with Schwann cells stimulated neurofilament polymerization in DRG neurons and produced the morphological differentiation. Silver nanoparticles induced morphological disorganization in monotypic cultures. However, there were more cells displaying normal morphology in co-cultures than in monotypic cultures. All of these results suggested that co-culturing DRG neurons with Schwann cells imparted some protection on them against neurotoxicity induced by silver or gold nanoparticles, and altering the expression of neurofilament-L, synapsin I, and GFAP could account for the phenomenon of protection in co-cultures.
Collapse
Affiliation(s)
- Wenjuan Gao
- Department of Civil & Environmental Engineering, College of Science & Engineering, 6640Idaho State University, Pocatello, ID, USA
| | - James C K Lai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Division of Health Sciences, 6640Idaho State University, Pocatello, ID, USA
| | - Solomon W Leung
- Department of Civil & Environmental Engineering, College of Science & Engineering, 6640Idaho State University, Pocatello, ID, USA
| |
Collapse
|
5
|
Khafaga AF, Fouda MMG, Alwan AB, Abdelsalam NR, Taha AE, Atta MS, Dosoky WM. Silver-Silica nanoparticles induced dose-dependent modulation of histopathological, immunohistochemical, ultrastructural, proinflammatory, and immune status of broiler chickens. BMC Vet Res 2022; 18:365. [PMID: 36195872 PMCID: PMC9531355 DOI: 10.1186/s12917-022-03459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Silver nanoparticles (AgNPs) are a powerful disinfectant, but little information is available on their potential use as a growth promoter and the safety margin of this. In this study, 480 1-day-old Cobb chicks were assigned to one control and three treated groups. The treated groups were supplemented with silver-doped silica nanoparticles (SiO2@AgNPs) at three dietary levels (8, 16, and 20 mg/kg diet) for 35 days. The results revealed no significant changes in the growth performance and oxidative parameters, and in most of the hematological and biochemical parameters among the control and treated groups. In contrast, dose-dependent adverse effects were exerted on the histopathological structure and immunohistochemical expression of CD45 in liver, kidneys, and lymphoid organs (spleen, bursa, and thymus). In addition, the relative weight of lymphoid organs and the serum levels of immunoglobulins M and G were significantly diminished. Moreover, the gene expression of proinflammatory cytokines (IL-β1 and TNF-α) and the ultrastructural morphology in breast muscle showed significant dose-dependent alterations. It could be concluded that the dietary supplementation of SiO2@AgNPs at a level of 8 mg/kg diet or more has dose-dependent proinflammatory and immunosuppressive effects on broiler chickens.
Collapse
Affiliation(s)
- Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758 Egypt
| | - Moustafa M. G. Fouda
- Pretreatment and Finishing of Cellulose Based Textiles, Textile Research and Technology Institute (TRT), National Research Center, 33 El-Buhouth St, Dokki, Giza, 12311 Egypt
| | - Ali B. Alwan
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758 Egypt
| | - Mustafa S. Atta
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Waleed M. Dosoky
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| |
Collapse
|
6
|
Arya SS, Rookes JE, Cahill DM, Lenka SK. Reduced Genotoxicity of Gold Nanoparticles With Protein Corona in Allium cepa. Front Bioeng Biotechnol 2022; 10:849464. [PMID: 35449594 PMCID: PMC9016219 DOI: 10.3389/fbioe.2022.849464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
Increased usage of gold nanoparticles (AuNPs) in biomedicine, biosensing, diagnostics and cosmetics has undoubtedly facilitated accidental and unintentional release of AuNPs into specific microenvironments. This is raising serious questions concerning adverse effects of AuNPs on off-target cells, tissues and/or organisms. Applications utilizing AuNPs will typically expose the nanoparticles to biological fluids such as cell serum and/or culture media, resulting in the formation of protein corona (PC) on the AuNPs. Evidence for PC altering the toxicological signatures of AuNPs is well studied in animal systems. In this report, we observed significant genotoxicity in Allium cepa root meristematic cells (an off-target bioindicator) treated with high concentrations (≥100 µg/ml) of green-synthesized vanillin capped gold nanoparticles (VAuNPs). In contrast, protein-coated VAuNPs (PC-VAuNPs) of similar concentrations had negligible genotoxic effects. This could be attributed to the change in physicochemical characteristics due to surface functionalization of proteins on VAuNPs and/or differential bioaccumulation of gold ions in root cells. High elemental gold accumulation was evident from µ-XRF mapping in VAuNPs-treated roots compared to treatment with PC-VAuNPs. These data infer that the toxicological signatures of AuNPs are influenced by the biological route that they follow to reach off-target organisms such as plants. Hence, the current findings highlight the genotoxic risk associated with AuNPs, which, due to the enhanced utility, are emerging as new pollutants. As conflicting observations on the toxicity of green-synthesized AuNPs are increasingly reported, we recommend that detailed studies are required to investigate the changes in the toxicological signatures of AuNPs, particularly before and after their interaction with biological media and systems.
Collapse
Affiliation(s)
- Sagar S Arya
- The Energy and Resources Institute, TERI-Deakin Nanobiotechnology Centre, Gurugram, India.,School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | - James E Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | - Sangram K Lenka
- The Energy and Resources Institute, TERI-Deakin Nanobiotechnology Centre, Gurugram, India
| |
Collapse
|
7
|
Fouda MMG, Dosoky WM, Radwan NS, Abdelsalam NR, Taha AE, Khafaga AF. Oral administration of silver nanoparticles-adorned starch as a growth promotor in poultry: Immunological and histopathological study. Int J Biol Macromol 2021; 187:830-839. [PMID: 34331979 DOI: 10.1016/j.ijbiomac.2021.07.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022]
Abstract
Silver nanoparticles (AgNPs) have recently emerged as promising growth promoters and immune-lifting agents in the poultry industry. This study investigated the potential impact of AgNP supplementation in the drinking water (DW) of broiler chickens during the fattening period. AgNPs were produced through chemical reduction using starch as a reducing and stabilizing agent. Different concentrations (1-5 ppm) of AgNPs were prepared and added to the DW of five different groups of chickens. Results confirmed efficient and safe application of AgNPs in DW at concentrations up to 2 ppm in term of growth performance (body weight, body weight gain, and feed conversion ratio) and hematological parameters. However, higher concentrations (3-5 ppm) induced dose-dependent mild-to-moderate adverse effects on hematological, biochemical, and oxidative parameters (MDA, TAC, and GSH-px). While growth performance, gene expression of fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA),and insulin-like growth factor (IGF1) in muscle, histopathological and immunohistochemical evaluation of liver, kidney, spleen, bursa, and thymus, and ultrastructural analysis of breast muscle were not significantly affected, even at high concentrations of AgNPs. Therefore, supplementation of AgNPs up to 2 ppm in the DW of broilers is promising.
Collapse
Affiliation(s)
- Moustafa M G Fouda
- Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Industries Research Division, National Research Center, 33 El- Behooth St, Dokki, Giza, 12311, Egypt.
| | - Waleed M Dosoky
- Department of Animal and Fish Production, Faculty of Agriculture Saba Basha, University of Alexandria, 21531 Alexandria, Egypt
| | - Nagy S Radwan
- Department of Agricultural Botany, Faculty of Agriculture, Saba Basha, Alexandria University, 21531, Alexandria, Egypt
| | - Nader R Abdelsalam
- Department of Agricultural Botany, Faculty of Agriculture, Saba Basha, Alexandria University, 21531, Alexandria, Egypt.
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, 22758 Edfina, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, 22758 Edfina, Egypt.
| |
Collapse
|
8
|
Dietary supplementation of silver-silica nanoparticles promotes histological, immunological, ultrastructural, and performance parameters of broiler chickens. Sci Rep 2021; 11:4166. [PMID: 33603060 PMCID: PMC7892842 DOI: 10.1038/s41598-021-83753-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Silver nanoparticles (AgNPs) have been used as a promising alternative to antibiotics in poultry feed. In this study, silver-doped silica nanoparticles (SiO2@AgNPs) were prepared in powder form, using starch, via the chemical reduction method and sol-gel technique followed by full characterization. SiO2@AgNPs were added to the poultry diet at three doses (2, 4, and 8 mg/kg diet). The safety of the oral dietary supplementation was estimated through the evaluation of the growth performance and hematological, biochemical, and oxidative parameters of birds. Moreover, the immunohistochemical examination of all body organs was also performed. Results of this study showed that SiO2@AgNPs have no negative effects on the growth performance and hematological, biochemical, and oxidative parameters of birds. Moreover, the immunohistochemical examination revealed the minimum inflammatory reactions and lymphoid depletion under a dose level of 8 mg/kg. In conclusion, SiO2@AgNPs could be considered as a promising and safe nano-growth promoter in broilers when added to poultry diet under a dose level of 4 mg/kg diet.
Collapse
|
9
|
Filip GA, Florea A, Olteanu D, Clichici S, David L, Moldovan B, Cenariu M, Scrobota I, Potara M, Baldea I. Biosynthesis of silver nanoparticles using Sambucus nigra L. fruit extract for targeting cell death in oral dysplastic cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111974. [PMID: 33812602 DOI: 10.1016/j.msec.2021.111974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
The study aims to evaluate the impact of silver nanoparticles, phytosynthesized with polyphenols from Sambucus nigra L. (SN) fruit extract (AgSN), on dysplastic oral keratinocytes (DOK) and human gingival fibroblasts (HGF) in terms of cell viability and apoptosis. The morphology and ultrastructure of treated cells as well as the mechanisms involved in cell death induction were investigated in DOK cultures. The structure of AgSN was studied by using the appropriate analysis tools such as UV-Vis, transmission electron microscopy, Raman spectroscopy, dynamic light scattering (DLS) and zeta potential assessment. DOK and HGF were treated either with silver nanoparticles capped with Sambucus nigra L. extract or with SN extract. Untreated cells were used as controls. Viability was determined by MTS assay. Transmission electronic microscopy (TEM) was used to evaluate the intracellular localization of the nanoparticles at 4 and 24 h. Annexin V-FITC/propidium iodide staining and the expressions of p53, BAX, BCL2, NFkB, phosphorylated NFkB (pNFkB), pan AKT, pan phosphoAKT, LC3B and ɣH2AX were evaluated to quantify the cell death. ELISA measurements of TNF-α and TRAIL was used for the study of the inflammatory response. Oxidative stress damage induced by nanoparticles was assessed by the malondialdehyde (MDA) level. Silver nanoparticles stimulated HGF proliferation and significantly diminished DOK viability at doses higher than 20 μg/ml. TEM analysis demonstrated the internalization of silver nanoparticles and showed ultrastructural changes of cells such as the appearance of vacuoles, autophagosomes, endosomes. AgSN inhibited the pro-survival molecules and regulators of apoptosis, diminished oxidative stress and inflammation and induced cell death through various mechanisms: necrosis, autophagy and DNA lesions. SN extract had antioxidant and anti-inflammatory effect and increased the DNA lesions and autophagy in DOK cells. Silver nanoparticles protected the normal cells and induced cell death in dysplastic cells by different mechanisms thus offering beneficial effects in the treatment of oral dysplasia.
Collapse
Affiliation(s)
- Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Olteanu
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Luminita David
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Bianca Moldovan
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, Cluj-Napoca, Romania.
| | - Mihai Cenariu
- Department of Animal Reproduction, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Ioana Scrobota
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
10
|
Baldea I, Florea A, Olteanu D, Clichici S, David L, Moldovan B, Cenariu M, Achim M, Suharoschi R, Danescu S, Vulcu A, Filip GA. Effects of silver and gold nanoparticles phytosynthesized with Cornus mas extract on oral dysplastic human cells. Nanomedicine (Lond) 2020; 15:55-75. [PMID: 31868110 DOI: 10.2217/nnm-2019-0290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Oral cancer is highly aggressive due to difficult diagnosis, therapy resistance and increasing frequency; thus finding prevention therapies is very important. Aim: This study evaluates the use of gold and silver nanoparticles (NPs), phyto-synthesized with Cornus mas extract against oral dysplastic lesions. Methods: NPs were characterized by UV-Vis, Fourier-transform infrared spectroscopy, transmission electron microscopy, x-ray diffraction and laser Doppler microelectrophoresis. Biological testing employed two human oral cell lines: gingival fibroblasts and dysplastic keratinocytes and evaluated viability, cell death mechanisms and cellular uptake. Results: NPs induced selective toxic effects against dysplastic cells. p53/BAX/BCL2 activation and PI3K/AKT inhibition led to cell death through necrosis and apoptosis. NPs also induced antioxidant and anti-inflammatory effects. Conclusion: NPs of gold and silver showed promising beneficial effects in the therapy of oral dysplasia.
Collapse
Affiliation(s)
- Ioana Baldea
- Department of Physiology, 'Iuliu Hatieganu' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell & Molecular Biology, 'Iuliu Hatieganu' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Diana Olteanu
- Department of Physiology, 'Iuliu Hatieganu' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, 'Iuliu Hatieganu' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Luminita David
- Faculty of Chemistry & Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Bianca Moldovan
- Faculty of Chemistry & Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Animal Reproduction, University of Agricultural Sciences & Veterinary Medicine, Cluj-Napoca, Romania
| | - Marcela Achim
- Department of Pharmaceutical Technology & Biopharmaceutics, Iuliu Hatieganu University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Faculty of Food Science & Technology, University of Agricultural Sciences & Veterinary Medicine, Cluj-Napoca, Romania
| | - Sorina Danescu
- Department of Dermatology, 'Iuliu Hatieganu' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Adriana Vulcu
- National Institute for Research & Development of Isotopic & Molecular Technologies, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, 'Iuliu Hatieganu' University of Medicine & Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Sutunkova MP, Minigalieva IA, Klinova SV, Panov VG, Gurvich VB, Privalova LI, Sakhautdinova RR, Shur VY, Shishkina EV, Shtin TN, Riabova JV, Katsnelson BA. Some data on the comparative and combined toxic activity of nanoparticles containing lead and cadmium with special attention to their vasotoxicity. Nanotoxicology 2020; 15:205-222. [PMID: 33186499 DOI: 10.1080/17435390.2020.1845410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Moderate subchronic intoxication was induced in rats by repeated intraperitoneal injections of PbO (49.6 ± 16.0 nm) and/or CdO (57.0 ± 13.0 nm) nanoparticles (NP) three times a week during 6 weeks. In particular, there was a reduction in arterial blood pressure and in blood concentrations of a number of factors controlling vasoconstriction and vasodilation, particularly of endothelin 1 (ET-1). This toxic effect was attenuated with a bioprotective complex administered in the background. The study confirmed as well that the combined binary action typology varies depending on which effect it is estimated by.
Collapse
Affiliation(s)
- Marina P Sutunkova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Svetlana V Klinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia.,Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Larisa I Privalova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Renata R Sakhautdinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir Ya Shur
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Ekaterina V Shishkina
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Tatiana N Shtin
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Julia V Riabova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| |
Collapse
|
12
|
Taghyan SA, Messiry HE, Zainy MAE. Evaluation of the toxic effect of silver nanoparticles and the possible protective effect of ascorbic acid on the parotid glands of albino rats: An in vivo study. Toxicol Ind Health 2020; 36:446-453. [PMID: 32546121 DOI: 10.1177/0748233720933071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study aimed to evaluate the toxic effect of silver nanoparticles (AgNPs) on the parotid glands (PGs) of albino rats histologically and ultrastructurally and assess the possible protective effect of ascorbic acid as an antioxidant. Thirty male albino rats weighing between 150 mg and 200 mg were divided into three groups: the control group (C1) contained 10 rats that received 2 mg/kg (body weight (bw)) of aqueous nitrate buffer by intraperitoneal (IP) injection daily for 28 days; the AgNPs group contained 10 rats that received 2 mg/kg (bw) IP AgNPs daily for 28 days; and the AgNPs-vitamin C group contained 10 albino rats that received 2 mg/kg (bw) AgNPs IP daily for 28 days with oral administration of 100 mg/kg (bw) vitamin C in drinking water daily for 28 days. The PG acinar and ductal cells of the AgNPs group showed signs of toxicity and degeneration characterized as pleomorphic nuclei, binucleation, cytoplasmic vacuolations, and stagnated secretion in the ductal lumen. In addition to degenerated mitochondria, dilated rough endoplasmic reticulum and lysosomes were filled with AgNPs (p < 0.001). The AgNPs-vitamin C group showed significantly less degenerative changes histologically and ultrastructurally compared to the AgNPs group (p = 0.002). AgNPs produced significant toxic effects on the PG of albino rats, presumably through the generation of reactive oxygen species and toxic ion release, and administration of vitamin C was shown effective in decreasing these toxic effects.
Collapse
Affiliation(s)
- Salma Awad Taghyan
- Department of Oral Biology, Faculty of Dentistry, 120633The British University in Egypt, Cairo, Egypt
| | - Hend El Messiry
- Department of Oral Biology, Faculty of Dentistry, 496068Ain Shams University, Cairo, Egypt
| | - Medhat Ahmed El Zainy
- Department of Oral Biology, Faculty of Dentistry, 496068Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Mo F, Li H, Li Y, Cui W, Wang M, Li Z, Chai R, Wang H. Toxicity of Ag + on microstructure, biochemical activities and genic material of Trifolium pratense L. seedlings with special reference to phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110499. [PMID: 32208213 DOI: 10.1016/j.ecoenv.2020.110499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/16/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
The objective of this research was to evaluate Ag+ toxicity in Trifolium pratense L. seedlings subjected to increasing doses of Ag+ by determining photosynthetic pigment and malondialdehyde (MDA) contents, microstructure and hereditary substance alterations, changes in activities of antioxidase-superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) as well as the content of total Ag absorbed in vivo with evaluation of root growth. Doses of approximately 80 mg L-1 Ag+ severely affected photosynthetic efficiency in Trifolium pratense L. seedlings promoted by damages in photosynthetic apparatus evidenced by downward trend in photosynthetic pigment contents and obvious chlorosis. Alterations in enzymatic activity, lipid peroxidation, genic material damage and the presence of Ag+in vivo had impacted on photosynthetic machinery as well. A hormesis effect was observed at 60 mg L-1 Ag+ for the photosynthetic pigments and antioxidase for Trifolium pratense L. seedlings. Tissue changes (i.e., roots, stems and leaves) observed in fluorescence microscope with obvious chlorosis, roots blackening and formation of agglomerated black particles, were related to the lesion promoted by excessive ROS in vivo. Asynchronous change of antioxidase activity corresponded to the alteration in the MDA content, indicating the synchronization in the elimination of ROS. The changes occurred in RAPD profiles of treated samples following Ag+ toxicity containing loss of normal bands, appearance of new bands and variation in band intensity compared to the normal plants with a dose-dependent effect. On average, the roots of Trifolium pratense L. immobilized 92.20% of the total Ag absorbed as a metal exclusion response. Root growth was significantly sensitive to Ag+ stress with obvious hormesis, which corresponded to the changes in Ag uptake, demonstrating the functional alterations in plants. To sum up, we suggest that modulating the genotype of Trifolium pratense L. seedlings to bear higher proportion of pollutants is conducive to contamination site treatment.
Collapse
Affiliation(s)
- Fan Mo
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Weina Cui
- Institute of Applied Ecology, Chinese Academy of Sciences Shenyang Branch, Shenyang, 110819, China.
| | - Mingshuai Wang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China; School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Rui Chai
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Hongxuan Wang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| |
Collapse
|
14
|
Hadrup N, Sharma AK, Loeschner K, Jacobsen NR. Pulmonary toxicity of silver vapours, nanoparticles and fine dusts: A review. Regul Toxicol Pharmacol 2020; 115:104690. [PMID: 32474071 DOI: 10.1016/j.yrtph.2020.104690] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
Silver is used in a wide range of products, and during their production and use, humans may be exposed through inhalation. Therefore, it is critical to know the concentration levels at which adverse effects may occur. In rodents, inhalation of silver nanoparticles has resulted in increased silver in the lungs, lymph nodes, liver, kidney, spleen, ovaries, and testes. Reported excretion pathways of pulmonary silver are urinary and faecal excretion. Acute effects in humans of the inhalation of silver include lung failure that involved increased heart rate and decreased arterial blood oxygen pressure. Argyria-a blue-grey discoloration of skin due to deposited silver-was observed after pulmonary exposure in 3 individuals; however, the presence of silver in the discolorations was not tested. Argyria after inhalation seems to be less likely than after oral or dermal exposure. Repeated inhalation findings in rodents have shown effects on lung function, pulmonary inflammation, bile duct hyperplasia, and genotoxicity. In our evaluation, the range of NOAEC values was 0.11-0.75 mg/m3. Silver in the ionic form is likely more toxic than in the nanoparticle form but that difference could reflect their different biokinetics. However, silver nanoparticles and ions have a similar pattern of toxicity, probably reflecting that the effect of silver nanoparticles is primarily mediated by released ions. Concerning genotoxicity studies, we evaluated silver to be positive based on studies in mammalian cells in vitro and in vivo when considering various exposure routes. Carcinogenicity data are absent; therefore, no conclusion can be provided on this endpoint.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, DK, 2100, Copenhagen, Denmark.
| | - Anoop K Sharma
- Division for Risk Assessment and Nutrition, Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Denmark
| | - Katrin Loeschner
- Division for Food Technology, Research Group for Nano-Bio Science, National Food Institute, Technical University of Denmark, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, DK, 2100, Copenhagen, Denmark.
| |
Collapse
|
15
|
Minigaliyeva IA, Sutunkova MP, Gurvich VB, Bushueva TV, Klinova SV, Solovyeva SN, Chernyshov IN, Valamina IE, Shur VY, Shishkina EV, Makeyev OH, Panov VG, Privalova LI, Katsnelson BA. An overview of experiments with lead-containing nanoparticles performed by the Ekaterinburg nanotoxicological research team. Nanotoxicology 2020; 14:788-806. [PMID: 32396411 DOI: 10.1080/17435390.2020.1762132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Over the past few years, the Ekaterinburg (Russia) interdisciplinary nanotoxicological research team has carried out a series of investigations using different in vivo and in vitro experimental models in order to elucidate the cytotoxicity and organ-systemic and organism-level toxicity of lead-containing nanoparticles (NP) acting separately or in combinations with some other metallic NPs. The authors claim that their many-sided experience in this field is unique and that some of their important results have been obtained for the first time. This paper is an overview of the team's previous publications in different journals. It is suggested to be used as a compact scientific base for assessing health risks associated not only with the production and usage of engineered lead-containing NPs but also with their inevitable by-production as toxic air pollutants in the metallurgy of lead, copper or their alloys and in soldering operations.
Collapse
Affiliation(s)
- Ilzira A Minigaliyeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Tatiana V Bushueva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Svetlana V Klinova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Svetlana N Solovyeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ivan N Chernyshov
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Irene E Valamina
- The Central Research Laboratory, Ural Medical University, Ekaterinburg, Russia
| | - Vladimir Y Shur
- The Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russia
| | | | - Oleg H Makeyev
- The Central Research Laboratory, Ural Medical University, Ekaterinburg, Russia
| | - Vladimir G Panov
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.,The Institute of Industrial Ecology, Russian Academy of Sciences - Urals Branch, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Boris A Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
16
|
Sutunkova MP, Solovyeva SN, Chernyshov IN, Klinova SV, Gurvich VB, Shur VY, Shishkina EV, Zubarev IV, Privalova LI, Katsnelson BA. Manifestation of Systemic Toxicity in Rats after a Short-Time Inhalation of Lead Oxide Nanoparticles. Int J Mol Sci 2020; 21:ijms21030690. [PMID: 31973040 PMCID: PMC7038071 DOI: 10.3390/ijms21030690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022] Open
Abstract
Outbred female rats were exposed to inhalation of lead oxide nanoparticle aerosol produced right then and there at a concentration of 1.30 ± 0.10 mg/m3 during 5 days for 4 h a day in a nose-only setup. A control group of rats were sham-exposed in parallel under similar conditions. Even this short-time exposure of a relatively low level was associated with nanoparticles retention demonstrable by transmission electron microscopy in the lungs and the olfactory brain. Some impairments were found in the organism’s status in the exposed group, some of which might be considered lead-specific toxicological outcomes (in particular, increase in reticulocytes proportion, in δ-aminolevulinic acid (δ-ALA) urine excretion, and the arterial hypertension’s development).
Collapse
Affiliation(s)
- Marina P. Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Svetlana N. Solovyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Ivan N. Chernyshov
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Svetlana V. Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Vladimir B. Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Vladimir Ya. Shur
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Ekaterina V. Shishkina
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Ilya V. Zubarev
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Larisa I. Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Boris A. Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
- Correspondence: ; Tel.: +7-343-253-04-21; Fax: +7-343-371-77-40
| |
Collapse
|
17
|
Klinova SV, Minigalieva IA, Privalova LI, Valamina IE, Makeyev OH, Shuman EA, Korotkov AA, Panov VG, Sutunkova MP, Ryabova JV, Bushueva TV, Shtin TN, Gurvich VB, Katsnelson BA. Further verification of some postulates of the combined toxicity theory: New animal experimental data on separate and joint adverse effects of lead and cadmium. Food Chem Toxicol 2019; 136:110971. [PMID: 31751644 DOI: 10.1016/j.fct.2019.110971] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 01/10/2023]
Abstract
Outbred male rats were repeatedly injected intraperitoneally two-level sub-lethal doses of lead acetate and/or cadmium chloride solutions 3 times a week during 6 weeks. The animals developed explicit, even if moderate, subchronic intoxication characterized by a large number of indices, both common to both metals (including increased DNA fragmentation coefficient) and lead-specific. Special attention was paid to hemodynamic and electrocardiographic effects. The combined action of lead and cadmium was modeled with the help of the Response Surface Methodology to obtain additional support for the previously substantiated postulates of combined toxicity's typological ambiguity. This is dependent on which particular effect comes under consideration, on its level, and on the acting dose ratio. For one and the same toxic combination, the type of combined toxic action can vary from synergistic to contra-directional. In particular, the actions of lead and cadmium on blood pressure were found to be opposite in direction. Furthermore, it is shown once again that the systemic toxic effects of a metal combination, its in vivo genotoxicity included, can be more or less attenuated by background administration of a theoretically justified composition of biologically active agents.
Collapse
Affiliation(s)
- Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Irene E Valamina
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str, Ekaterinburg, 620109, Russia
| | - Oleg H Makeyev
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Eugene A Shuman
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Artem A Korotkov
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Vladimir G Panov
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str, Ekaterinburg, 620990, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Julia V Ryabova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Tatiana V Bushueva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Tatiana N Shtin
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia.
| |
Collapse
|
18
|
Sutunkova MP, Solovyeva SN, Minigalieva IA, Gurvich VB, Valamina IE, Makeyev OH, Shur VY, Shishkina EV, Zubarev IV, Saatkhudinova RR, Klinova SV, Tsaregorodtseva АE, Korotkov AV, Shuman EА, Privalova LI, Katsnelson BA. Toxic Effects of Low-Level Long-Term Inhalation Exposures of Rats to Nickel Oxide Nanoparticles. Int J Mol Sci 2019; 20:ijms20071778. [PMID: 30974874 PMCID: PMC6479379 DOI: 10.3390/ijms20071778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 01/22/2023] Open
Abstract
Rats were exposed to nickel oxide nanoparticles (NiO-NP) inhalation at 0.23 ± 0.01 mg/m3 for 4 h a day 5 times a week for up to 10 months. The rat organism responded to this impact with changes in cytological and some biochemical characteristics of the bronchoalveolar lavage fluid along with a paradoxically little pronounced pulmonary pathology associated with a rather low chronic retention of nanoparticles in the lungs. There were various manifestations of systemic toxicity, including damage to the liver and kidneys; a likely allergic syndrome as indicated by some cytological signs; transient stimulation of erythropoiesis; and penetration of nickel into the brain from the nasal mucous membrane along the olfactory pathway. Against a picture of mild to moderate chronic toxicity of nickel, its in vivo genotoxic effect assessed by the degree of DNA fragmentation in nucleated blood cells (the RAPD test) was pronounced, tending to increasing with the length of the exposure period. When rats were given orally, in parallel with the toxic exposure, a set of innocuous substances with differing mechanisms of expected bioprotective action, the genotoxic effect of NiO-NPs was found to be substantially attenuated.
Collapse
Affiliation(s)
- Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| | - Svetlana N Solovyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| | - Irene E Valamina
- The Ural State Medical University; 17 Klyuchevskaya Str., 620109 Ekaterinburg, Russia.
| | - Oleg H Makeyev
- The Ural State Medical University; 17 Klyuchevskaya Str., 620109 Ekaterinburg, Russia.
| | - Vladimir Ya Shur
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia.
| | - Ekaterina V Shishkina
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia.
| | - Ilya V Zubarev
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia.
| | - Renata R Saatkhudinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| | | | - Artem V Korotkov
- The Ural State Medical University; 17 Klyuchevskaya Str., 620109 Ekaterinburg, Russia.
| | - Eugene А Shuman
- The Ural State Medical University; 17 Klyuchevskaya Str., 620109 Ekaterinburg, Russia.
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| |
Collapse
|
19
|
Opris R, Toma V, Olteanu D, Baldea I, Baciu AM, Lucaci FI, Berghian-Sevastre A, Tatomir C, Moldovan B, Clichici S, David L, Florea A, Filip GA. Effects of silver nanoparticles functionalized with Cornus mas L. extract on architecture and apoptosis in rat testicle. Nanomedicine (Lond) 2019; 14:275-299. [DOI: 10.2217/nnm-2018-0193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To assess ultrastructural changes, alterations in matrix metalloproteinase activity and apoptosis induced by silver nanoparticles (AgNPs) in the rat testicle. Materials & methods: For 45 days, two groups of animals received different doses of AgNPs (0.8 and 1.5 mg/kg b.w.), and a control group was given the buffer used as vehicle for AgNPs. At 7 and 15 days post-treatment, transmission electron microscopy, TUNEL assay, evaluation of NFkB, pNFkB, p53, Bcl-2 and Nrf2 expressions were performed on the removed testes. Results: Transmission electron microscopy revealed severe ultrastructural changes of interstitial tissue and seminiferous epithelium sustained by positive signal for apoptosis. The promatrix metalloproteinase-2 activity and NFkB, Bcl-2 expressions were increased, mainly at 7 days. Conclusion: AgNPs induced severe cell lesions identified even a long time after the exposure.
Collapse
Affiliation(s)
- Razvan Opris
- Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, 1–3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Vlad Toma
- Department of Molecular Biology & Biotechnology, Faculty of Biology & Geology, ‘Babes-Bolyai’ University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Department of Biochemistry & Experimental Biology, Institute of Biological Research, 48 Republicii Street, branch of NIRDBS Bucharest, 400015 Cluj-Napoca, Romania
- Department of Molecular & Biomolecular Physics, NIRD for Isotopic & Molecular Technologies, 101 Donath Street, 400293 Cluj-Napoca, Romania
| | - Diana Olteanu
- Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, 1–3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, 1–3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Alina Mihaela Baciu
- Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, 1–3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Florica Imre Lucaci
- Physico-Chemical Analysis Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, ‘Babes-Bolyai’ University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Alexandra Berghian-Sevastre
- Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, 1–3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Corina Tatomir
- Departments of Radiobiology & Tumour Biology, ‘Ion Chiricuta’ Oncology Institute, 34-36 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Bianca Moldovan
- Department of Chemistry, Faculty of Chemistry & Chemical Engineering, ‘Babes-Bolyai’ University, 11. Arany Janos, 400028 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, 1–3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Luminita David
- Department of Chemistry, Faculty of Chemistry & Chemical Engineering, ‘Babes-Bolyai’ University, 11. Arany Janos, 400028 Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell & Molecular Biology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy 6, Louis Pasteur Street, 400349, Cluj Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, 1–3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| |
Collapse
|
20
|
Zhurkov VS, Savostikova ON, Yurchenko VV, Krivtsova EK, Kovalenko MA, Murav’eva LV, Alekseeva AV, Belyaeva NN, Mikhailova RI, Sycheva LP. Features of the Mutagenic and Cytotoxic Effects of Nanosilver and Silver Sulfate in Mice. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s1995078017060143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Minigalieva IA, Katsnelson BA, Privalova LI, Sutunkova MP, Gurvich VB, Shur VY, Shishkina EV, Valamina IE, Makeyev OH, Panov VG, Varaksin AN, Bushueva TV, Sakhautdinova RR, Klinova SV, Solovyeva SN, Meshtcheryakova EY. Combined Subchronic Toxicity of Aluminum (III), Titanium (IV) and Silicon (IV) Oxide Nanoparticles and Its Alleviation with a Complex of Bioprotectors. Int J Mol Sci 2018. [PMID: 29534019 PMCID: PMC5877698 DOI: 10.3390/ijms19030837] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stable suspensions of metal/metalloid oxide nanoparticles (MeO-NPs) obtained by laser ablation of 99.99% pure elemental aluminum, titanium or silicon under a layer of deionized water were used separately, or in three binary combinations, or in a ternary combination to induce subchronic intoxications in rats. To this end, the MeO-NPs were repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks before measuring a large number of functional, biochemical, morphological and cytological indices for the organism’s status. In many respects, the Al2O3-NP was found to be the most toxic species alone and the most dangerous component of the combinations studied. Mathematical modeling with the help of the Response Surface Methodology showed that, as well as in the case of any other binary toxic combinations previously investigated by us, the organism’s response to a simultaneous exposure to any two of the MeO-NP species under study was characterized by a complex interaction between all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which outcome this type was estimated for and on effect and dose levels. With any third MeO-NP species acting in the background, the type of combined toxicity displayed by the other two remained virtually the same or changed significantly, becoming either more or less unfavorable. Various harmful effects produced by the (Al2O3-NP + TiO2-NP + SiO2-NP)-combination, including its genotoxicity, were substantially attenuated by giving the rats per os during the entire exposure period a complex of innocuous bioactive substances expected to increase the organism’s antitoxic resistance.
Collapse
Affiliation(s)
- Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir Y Shur
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg 620000, Russia.
| | - Ekaterina V Shishkina
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg 620000, Russia.
| | - Irene E Valamina
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| | - Oleg H Makeyev
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| | - Vladimir G Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia.
| | - Anatoly N Varaksin
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia.
| | - Tatiana V Bushueva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Renata R Sakhautdinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Svetlana N Solovyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Ekaterina Y Meshtcheryakova
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| |
Collapse
|
22
|
Sutunkova MP, Privalova LI, Minigalieva IA, Gurvich VB, Panov VG, Katsnelson BA. The most important inferences from the Ekaterinburg nanotoxicology team's animal experiments assessing adverse health effects of metallic and metal oxide nanoparticles. Toxicol Rep 2018; 5:363-376. [PMID: 29854606 PMCID: PMC5977416 DOI: 10.1016/j.toxrep.2018.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
During 2009-2017 we have studied nanoparticles of elemental silver or gold and of iron, copper, nickel, manganese, lead, zinc, aluminium and titanium oxides (Me-NPs) using, in most cases, a single low-dose intratracheal instillation 24 h before the bronchoalveolar lavage to obtain a fluid for cytological and biochemical assessment and, in all cases, repeated intraperitoneal injections in non-lethal doses to induce subchronic intoxications assessed by a lot of toxicodynamic and toxicokinetic features. We have also studied the same effects for a number of relevant combinations of these Me-NPs and have revealed some important patterns of their combined toxicity. Besides, we have carried out long-term inhalation experiments with Fe2O3, NiO and amorphous SiO2 nano-aerosols. We have demonstrated that Me-NPs are much more noxious as compared with their fine micrometric counterparts although the physiological mechanisms of their elimination from the lungs proved to be highly active. Even if water-insoluble, Me-NPs are significantly solubilized in some biological milieus in vitro and in vivo, which may explain some important peculiarities of their toxicity. At the same time, the in situ cytotoxicity, organ-systemic toxicity and in vivo genotoxicity of Me-NPs strongly depends on specific mechanisms characteristic of a particular metal. For some of the Me-NPs studied, we have proposed standards of presumably safe concentrations in workplace air. Along with this, we have proved that the adverse effects of Me-NPs could be significantly alleviated by background or preliminary administration of adequately composed combinations of some bioprotectors.
Collapse
Affiliation(s)
- Marina P. Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Larisa I. Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Ilzira A. Minigalieva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Vladimir B. Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Vladimir G. Panov
- Institute of Industrial Ecology of Ural Branch of Russian Academy of Science, Ekaterinburg, 620990, Russia
| | - Boris A. Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| |
Collapse
|
23
|
Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1-12. [DOI: 10.1016/j.nano.2017.08.011] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/25/2017] [Accepted: 08/16/2017] [Indexed: 11/25/2022]
|
24
|
Dumková J, Smutná T, Vrlíková L, Le Coustumer P, Večeřa Z, Dočekal B, Mikuška P, Čapka L, Fictum P, Hampl A, Buchtová M. Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs. Part Fibre Toxicol 2017; 14:55. [PMID: 29268755 PMCID: PMC5740755 DOI: 10.1186/s12989-017-0236-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Lead is well known environmental pollutant, which can cause toxic effects in multiple organ systems. However, the influence of lead oxide nanoparticles, frequently emitted to the environment by high temperature technological processes, is still concealed. Therefore, we investigate lead oxide nanoparticle distribution through the body upon their entry into lungs and determine the microscopic and ultramicroscopic changes caused by the nanoparticles in primary and secondary target organs. METHODS Adult female mice (ICR strain) were continuously exposed to lead oxide nanoparticles (PbO-NPs) with an average concentration approximately 106 particles/cm3 for 6 weeks (24 h/day, 7 days/week). At the end of the exposure period, lung, brain, liver, kidney, spleen, and blood were collected for chemical, histological, immunohistochemical and electron microscopic analyses. RESULTS Lead content was found to be the highest in the kidney and lungs, followed by the liver and spleen; the smallest content of lead was found in brain. Nanoparticles were located in all analysed tissues and their highest number was found in the lung and liver. Kidney, spleen and brain contained lower number of nanoparticles, being about the same in all three organs. Lungs of animals exposed to lead oxide nanoparticles exhibited hyperaemia, small areas of atelectasis, alveolar emphysema, focal acute catarrhal bronchiolitis and also haemostasis with presence of siderophages in some animals. Nanoparticles were located in phagosomes or formed clusters within cytoplasmic vesicles. In the liver, lead oxide nanoparticle exposure caused hepatic remodeling with enlargement and hydropic degeneration of hepatocytes, centrilobular hypertrophy of hepatocytes with karyomegaly, areas of hepatic necrosis, occasional periportal inflammation, and extensive accumulation of lipid droplets. Nanoparticles were accumulated within mitochondria and peroxisomes forming aggregates enveloped by an electron-dense mitochondrial matrix. Only in some kidney samples, we observed areas of inflammatory infiltrates around renal corpuscles, tubules or vessels in the cortex. Lead oxide nanoparticles were dispersed in the cytoplasm, but not within cell organelles. There were no significant morphological changes in the spleen as a secondary target organ. Thus, pathological changes correlated with the amount of nanoparticles found in cells rather than with the concentration of lead in a given organ. CONCLUSIONS Sub-chronic exposure to lead oxide nanoparticles has profound negative effects at both cellular and tissue levels. Notably, the fate and arrangement of lead oxide nanoparticles were dependent on the type of organs.
Collapse
Affiliation(s)
- J Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - T Smutná
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - L Vrlíková
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - P Le Coustumer
- Bordeaux University, UF STE, Allée G. Saint-Hilaire, 33615, Pessac Cedex, France
- UMR 5254 IPREM, CNRS/UPPA, Technopole Hélioparc, 2 av P. Angot, 64053, Pau Cedex9, France
- EA 4592 Georessources & Environnement/ Bordeaux Montaigne University-IPNB ENSEGID, Allée F. Daguin, 33615, Pessac Cedex, France
| | - Z Večeřa
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - B Dočekal
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - P Mikuška
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - L Čapka
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - P Fictum
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 612 42, Brno, Czech Republic
| | - A Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - M Buchtová
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00, Brno, Czech Republic.
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
25
|
Roda E, Barni S, Milzani A, Dalle-Donne I, Colombo G, Coccini T. Single Silver Nanoparticle Instillation Induced Early and Persisting Moderate Cortical Damage in Rat Kidneys. Int J Mol Sci 2017; 18:ijms18102115. [PMID: 28994738 PMCID: PMC5666797 DOI: 10.3390/ijms18102115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022] Open
Abstract
The potential toxic effects of silver nanoparticles (AgNPs), administered by a single intratracheal instillation (i.t), was assessed in a rat model using commercial physico-chemical characterized nanosilver. Histopathological changes, overall toxic response and oxidative stress (kidney and plasma protein carbonylation), paralleled by ultrastructural observations (TEM), were evaluated to examine renal responses 7 and 28 days after i.t. application of a low AgNP dose (50 µg/rat), compared to an equivalent dose of ionic silver (7 µg AgNO3/rat). The AgNPs caused moderate renal histopathological and ultrastructural alteration, in a region-specific manner, being the cortex the most affected area. Notably, the bulk AgNO3, caused similar adverse effects with a slightly more marked extent, also triggering apoptotic phenomena. Specifically, 7 days after exposure to both AgNPs and AgNO3, dilatation of the intercapillary and peripheral Bowman’s space was observed, together with glomerular shrinkage. At day 28, these effects still persisted after both treatments, accompanied by an additional injury involving the vascular component of the mesangium, with interstitial micro-hemorrhages. Neither AgNPs nor AgNO3 induced oxidative stress effects in kidneys and plasma, at either time point. The AgNP-induced moderate renal effects indicate that, despite their benefits, novel AgNPs employed in consumer products need exhaustive investigation to ensure public health safety.
Collapse
Affiliation(s)
- Elisa Roda
- Laboratory of Clinical & Experimental Toxicology and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, ICS Maugeri SpA-Benefit Corporation, IRCCS Pavia, via Maugeri 10, 27100 Pavia, Italy.
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cell Biology and Neurobiology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Sergio Barni
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cell Biology and Neurobiology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Aldo Milzani
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| | - Isabella Dalle-Donne
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| | - Graziano Colombo
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| | - Teresa Coccini
- Laboratory of Clinical & Experimental Toxicology and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, ICS Maugeri SpA-Benefit Corporation, IRCCS Pavia, via Maugeri 10, 27100 Pavia, Italy.
| |
Collapse
|
26
|
Kharlamov AN, Feinstein JA, Cramer JA, Boothroyd JA, Shishkina EV, Shur V. Plasmonic photothermal therapy of atherosclerosis with nanoparticles: long-term outcomes and safety in NANOM-FIM trial. Future Cardiol 2017. [PMID: 28644056 DOI: 10.2217/fca-2017-0009] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM The safety options in nanomedicine raise an issue of the optimal niche at the real-world clinical practice. METHODS This is an observational prospective cohort analysis of the 5-year clinical outcomes at the intention-to-treat population (nano vs ferro vs stenting; n = 180) of NANOM first-in-man trial (NCT01270139). RESULTS Mortality (6 vs 9 vs 10 cases of cardiac death in groups, p < 0.05), major adverse cardiovascular events (14.3 vs 20.9 vs 22.9%, p = 0.04), late thrombosis (2 vs 4 vs 6, p < 0.05) and target lesion revascularization (3.8 vs 4.8 vs 5.7%, p = 0.04) were significantly higher in ferro group and stent control at 60 months. CONCLUSION NANOM first-in-man trial demonstrates high safety with better rate of mortality, major adverse cardiovascular events and target lesion revascularization at the long-term follow-up if compare with stent XIENCE V.
Collapse
Affiliation(s)
- Alexander N Kharlamov
- Department of Interventional Cardiovascular Biomedicine, De Haar Research Foundation, Handelsplein 15, Rotterdam 3071PR, The Netherlands.,Departments of Science & Interventional Cardiology, Ural Institute of Cardiology, 8th March Street, 78A, Yekaterinburg 620144, Russia
| | - John A Feinstein
- Department of Interventional Cardiovascular Biomedicine, De Haar Research Foundation, Handelsplein 15, Rotterdam 3071PR, The Netherlands
| | - John A Cramer
- Department of Interventional Cardiovascular Biomedicine, De Haar Research Foundation, Handelsplein 15, Rotterdam 3071PR, The Netherlands
| | - John A Boothroyd
- Department of Interventional Cardiovascular Biomedicine, De Haar Research Foundation, Handelsplein 15, Rotterdam 3071PR, The Netherlands
| | - Ekaterina V Shishkina
- Ural Center of Modern Nanotechnologies, School of Natural Sciences & Mathematics, Ural Federal University, Yekaterinburg 620000, Russia
| | - Vladimir Shur
- Ural Center of Modern Nanotechnologies, School of Natural Sciences & Mathematics, Ural Federal University, Yekaterinburg 620000, Russia
| |
Collapse
|
27
|
Fewtrell L, Majuru B, Hunter PR. A re-assessment of the safety of silver in household water treatment: rapid systematic review of mammalian in vivo genotoxicity studies. Environ Health 2017; 16:66. [PMID: 28633660 PMCID: PMC5477731 DOI: 10.1186/s12940-017-0279-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Despite poor evidence of their effectiveness, colloidal silver and silver nanoparticles are increasingly being promoted for treating potentially contaminated drinking water in low income countries. Recently, however, concerns have been raised about the possible genotoxicity of particulate silver. OBJECTIVES The goal of this paper was to review the published mammalian in vivo genotoxicity studies using silver micro and nanoparticles. METHODS SCOPUS and Medline were searched using the following search string: ("DNA damage" OR genotox* OR Cytotox* OR Embryotox*) AND (silver OR AgNP). Included papers were any mammalian in vivo experimental studies investigating genotoxicity of silver particles. Studies were quality assessed using the ToxRTool. RESULTS 16 relevant papers were identified. There were substantial variations in study design including the size of silver particles, animal species, target organs, silver dose, route of administration and the method used to detect genotoxicity. Thus, it was not possible to produce a definitive pooled result. Nevertheless, most studies showed evidence of genotoxicity unless using very low doses. We also identified one human study reporting evidence of "severe DNA damage" in silver jewellery workers occupationally exposed to silver particles. CONCLUSIONS With the available evidence it is not possible to be definitive about risks to human health from oral exposure to silver particulates. However, the balance of evidence suggests that there should be concerns especially when considering the evidence from jewellery workers. There is an urgent need to determine whether people exposed to particulate silver as part of drinking water treatment have evidence of DNA damage.
Collapse
Affiliation(s)
- Lorna Fewtrell
- Centre for Research into Environment and Health, University of Aberystwyth, Aberystwyth, UK
| | - Batsirai Majuru
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ UK
| | - Paul R. Hunter
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ UK
| |
Collapse
|
28
|
Sutunkova MP, Solovyeva SN, Katsnelson BA, Gurvich VB, Privalova LI, Minigalieva IA, Slyshkina TV, Valamina IE, Makeyev OH, Shur VY, Zubarev IV, Kuznetsov DK, Shishkina EV. A paradoxical response of the rat organism to long-term inhalation of silica-containing submicron (predominantly nanoscale) particles of a collected industrial aerosol at realistic exposure levels. Toxicology 2017; 384:59-68. [PMID: 28450064 DOI: 10.1016/j.tox.2017.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/22/2017] [Accepted: 04/21/2017] [Indexed: 01/15/2023]
Abstract
While engineered SiO2 nanoparticle toxicity is being widely investigated, mostly on cell lines or in acute animal experiments, the practical importance of as well as the theoretical interest in industrial condensation aerosols with a high SiO2 particle content seems to be neglected. That is why, to the best of our knowledge, long-term inhalation exposure to nano-SiO2 has not been undertaken in experimental nanotoxicology studies. To correct this data gap, female white rats were exposed for 3 or 6 months 5 times a week, 4h a day to an aerosol containing predominantly submicron (nanoscale included) particles of amorphous silica at an exposure concentration of 2.6±0.6 or 10.6±2.1mg/m3. This material had been collected from the flue-gas ducts of electric ore smelting furnaces that were producing elemental silicon, subsequently sieved through a<2μm screen and redispersed to feed a computerized "nose only" inhalation system. In an auxiliary experiment using a single-shot intratracheal instillation of these particles, it was shown that they induced a pulmonary cell response comparable with that of a highly cytotoxic and fibrogenic quartz powder, namely DQ12. However, in long-term inhalation tests, the aerosol studied proved to be of very low systemic toxicity and negligible pulmonary fibrogenicity. This paradox may be explained by a low SiO2 retention in the lungs and other organs due to the relatively high solubility of these nanoparticles. nasal penetration of nanoparticles into the brain as well as their genotoxic action were found in the same experiment, results that make one give a cautious overall assessment of this aerosol as an occupational or environmental hazard.
Collapse
Affiliation(s)
- Marina P Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Svetlana N Solovyeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Boris A Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.
| | - Vladimir B Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Tatyana V Slyshkina
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Irene E Valamina
- The Central Research Laboratory of the Ural Medical University, Ekaterinburg, Russia
| | - Oleg H Makeyev
- The Central Research Laboratory of the Ural Medical University, Ekaterinburg, Russia
| | - Vladimir Ya Shur
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| | - Ilya V Zubarev
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| | - Dmitry K Kuznetsov
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| | - Ekaterina V Shishkina
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
29
|
Minigalieva IA, Katsnelson BA, Panov VG, Privalova LI, Varaksin AN, Gurvich VB, Sutunkova MP, Shur VY, Shishkina EV, Valamina IE, Zubarev IV, Makeyev OH, Meshtcheryakova EY, Klinova SV. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology 2017; 380:72-93. [PMID: 28212817 DOI: 10.1016/j.tox.2017.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 11/28/2022]
Abstract
Stable suspensions of metal oxide nanoparticles (Me-NPs) obtained by laser ablation of 99.99% pure copper, zinc or lead under a layer of deionized water were used separately, in three binary combinations and a triple combination in two independent experiments on rats. In one of the experiments the rats were instilled with Me-NPs intratracheally (i.t.) (for performing a broncho-alveolar lavage in 24h to estimate the cytological and biochemical indices of the response of the lower airways), while in the other, Me-NPs were repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks (for estimating the accumulation of corresponding metals in the blood and their excretion with urine and feces and for assessing subchronic intoxication by a large number of functional and morphological indices). Mathematical description of the results from both experiments with the help of the Response Surface Methodology has shown that, as well as in the case of any other binary toxic combinations previously investigated by us, the response of the organism to a simultaneous exposure to any two of the Me-NPs under study is characterized by complex interactions between all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which effect it is estimated for as well as on the levels of the effect and dose. With any third Me-NP species acting in the background, the type of combined toxicity displayed by the other two may change significantly (as in the earlier described case of a triple combination of soluble metal salts). It is shown that various harmful effects produced by CuO-NP+ZnO-NP+PbO-NP combination may be substantially attenuated by giving rats per os a complex of innocuous bioactive substances theoretically expected to provide a protective integral and/or metal-specific effect during one month before i.t. instillation or during the entire period of i.p. injections.
Collapse
Affiliation(s)
- Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia.
| | - Vladimir G Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Anatoly N Varaksin
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Vladimir Ya Shur
- School of Natural Sciences and Mathematics, The Ural Federal University, Ekaterinburg, Russia
| | - Ekaterina V Shishkina
- School of Natural Sciences and Mathematics, The Ural Federal University, Ekaterinburg, Russia
| | - Irene E Valamina
- The Central Research Laboratory of the Ural Medical University, Ekaterinburg, Russia
| | - Ilya V Zubarev
- School of Natural Sciences and Mathematics, The Ural Federal University, Ekaterinburg, Russia
| | - Oleg H Makeyev
- The Central Research Laboratory of the Ural Medical University, Ekaterinburg, Russia
| | | | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| |
Collapse
|
30
|
Katsnelson BA, Privalova LI, Sutunkova MP, Minigalieva IA, Gurvich VB, Shur VY, Shishkina EV, Makeyev OH, Valamina IE, Varaksin AN, Panov VG. Experimental Research into Metallic and Metal Oxide Nanoparticle Toxicity In Vivo. BIOACTIVITY OF ENGINEERED NANOPARTICLES 2017. [DOI: 10.1007/978-981-10-5864-6_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
In vivo distribution of nanosilver in the rat: The role of ions and de novo-formed secondary particles. Food Chem Toxicol 2016; 97:327-335. [DOI: 10.1016/j.fct.2016.08.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/19/2016] [Accepted: 08/10/2016] [Indexed: 12/26/2022]
|
32
|
Sutunkova MP, Katsnelson BA, Privalova LI, Gurvich VB, Konysheva LK, Shur VY, Shishkina EV, Minigalieva IA, Solovjeva SN, Grebenkina SV, Zubarev IV. On the contribution of the phagocytosis and the solubilization to the iron oxide nanoparticles retention in and elimination from lungs under long-term inhalation exposure. Toxicology 2016; 363-364:19-28. [PMID: 27424278 DOI: 10.1016/j.tox.2016.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/06/2016] [Accepted: 07/12/2016] [Indexed: 01/20/2023]
Abstract
The aim of our study was to test a hypothesis according to which the pulmonary clearance vs. retention of metal oxide nanoparticles (NPs) is controlled not only by physiological mechanisms but also by their solubilization which in some cases may even prevail. Airborne Fe2O3 NPs with the mean diameter of 14±4nm produced by sparking from 99.99% pure iron rods were fed into a nose-only exposure tower. Rats were exposed to these NPs for 4h a day, 5days a week during 3, 6 or 10 months at the mean concentration of 1.14±0.01mg/m(3). NPs collected from the air exhausted from the exposure tower proved insoluble in water but dissolved markedly in the cell free broncho-alveolar lavage fluid supernatant and in the sterile bovine blood serum. The Fe2O3 content of the lungs and lung-associated lymph nodes was measured by the Electron Paramagnetic Resonance (EPR) spectroscopy. We found a relatively low but significant pulmonary accumulation of Fe2O3, gradually increasing with time. Besides, we obtained TEM-images of nanoparticles within alveolocytes and the myelin sheaths of brain fibers associated with ultrastructural damage. We have developed a multicompartmental system model describing the toxicokinetics of inhaled nanoparticles after their deposition in the lower airways as a process controlled by their (a) high ability to penetrate through the alveolar membrane; (b) active endocytosis; (c) in vivo dissolution. To conclude, both experimental data and the identification of the system model confirmed our initial hypothesis and demonstrated that, as concerns iron oxide NPs of the dimensions used, the dissolution-depending mechanisms proved to be dominant.
Collapse
Affiliation(s)
- M P Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - B A Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia.
| | - L I Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - V B Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - L K Konysheva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - V Ya Shur
- The Ural Center for Shared Use "Modern Nanotechnology", Ural Federal University, Ekaterinburg, Russia
| | - E V Shishkina
- The Ural Center for Shared Use "Modern Nanotechnology", Ural Federal University, Ekaterinburg, Russia
| | - I A Minigalieva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - S N Solovjeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - S V Grebenkina
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - I V Zubarev
- The Ural Center for Shared Use "Modern Nanotechnology", Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
33
|
Dumkova J, Vrlikova L, Vecera Z, Putnova B, Docekal B, Mikuska P, Fictum P, Hampl A, Buchtova M. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs. Int J Mol Sci 2016; 17:ijms17060874. [PMID: 27271611 PMCID: PMC4926408 DOI: 10.3390/ijms17060874] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO) nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level.
Collapse
Affiliation(s)
- Jana Dumkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic.
| | - Lucie Vrlikova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.
| | - Zbynek Vecera
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic.
| | - Barbora Putnova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.
| | - Bohumil Docekal
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic.
| | - Pavel Mikuska
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic.
| | - Petr Fictum
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic.
| | - Ales Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic.
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.
- Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic.
| |
Collapse
|
34
|
Some patterns of metallic nanoparticles' combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. Food Chem Toxicol 2015; 86:351-64. [PMID: 26607108 DOI: 10.1016/j.fct.2015.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/09/2015] [Accepted: 11/14/2015] [Indexed: 01/22/2023]
Abstract
Stable suspensions of NiO and/or Mn3O4 nanoparticles with a mean diameter of 16.7 ± 8.2 nm and 18.4 ± 5.4 nm, respectively, prepared by laser ablation of 99.99% pure metals in de-ionized water were repeatedly injected IP to rats at a dose of 0.50 mg or 0.25 mg 3 times a week up to 18 injections, either separately or in different combinations. Many functional indices as well as histological features of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The accumulation of Ni and Mn in these organs was measured with the help of AES and EPR methods. Both metallic nanoparticles proved adversely bio-active, but those of Mn3O4 were found to be more noxious in most of the non-specific toxicity manifestations. Moreover, they induced a more marked damaging effect in the neurons of the caudate nucleus and hippocampus which may be considered an experimental correlate of manganese-induced parkinsonism. Mathematical analysis based on the Response Surface Methodology (RSM) revealed a diversity of combined toxicity types depending not only on particular effects these types are assessed for but on their level as well. The prognostic power of the RSM model proved satisfactory.
Collapse
|
35
|
Minigalieva IA, Katsnelson BA, Privalova LI, Sutunkova MP, Gurvich VB, Shur VY, Shishkina EV, Valamina IE, Makeyev OH, Panov VG, Varaksin AN, Grigoryeva EV, Meshtcheryakova EY. Attenuation of Combined Nickel(II) Oxide and Manganese(II, III) Oxide Nanoparticles' Adverse Effects with a Complex of Bioprotectors. Int J Mol Sci 2015; 16:22555-83. [PMID: 26393577 PMCID: PMC4613324 DOI: 10.3390/ijms160922555] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/29/2022] Open
Abstract
Stable suspensions of NiO and Mn₃O₄ nanoparticles (NPs) with a mean (±s.d.) diameter of 16.7±8.2 and 18.4±5.4 nm, respectively, purposefully prepared by laser ablation of 99.99% pure nickel or manganese in de-ionized water, were repeatedly injected intraperitoneally (IP) to rats at a dose of 2.5 mg/kg 3 times a week up to 18 injections, either alone or in combination. A group of rats was injected with this combination with the background oral administration of a "bio-protective complex" (BPC) comprising pectin, vitamins A, C, E, glutamate, glycine, N-acetylcysteine, selenium, iodide and omega-3 PUFA, this composition having been chosen based on mechanistic considerations and previous experience. After the termination of injections, many functional and biochemical indices and histopathological features (with morphometric assessment) of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The Ni and Mn content of these organs was measured with the help of the atomic emission and electron paramagnetic resonance spectroscopies. We obtained blood leukocytes for performing the RAPD (Random Amplified Polymorphic DNA) test. Although both metallic NPs proved adversely bio-active in many respects considered in this study, Mn₃O₄-NPs were somewhat more noxious than NiO-NPs as concerns most of the non-specific toxicity manifestations and they induced more marked damage to neurons in the striatum and the hippocampus, which may be considered an experimental correlate of the manganese-induced Parkinsonism. The comparative solubility of the Mn₃O₄-NPs and NiO-NPs in a biological medium is discussed as one of the factors underlying the difference in their toxicokinetics and toxicities. The BPC has attenuated both the organ-systemic toxicity and the genotoxicity of Mn₃O₄-NPs in combination with NiO-NPs.
Collapse
Affiliation(s)
- Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir Y Shur
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg 620000, Russia.
| | - Ekaterina V Shishkina
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg 620000, Russia.
| | - Irene E Valamina
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| | - Oleg H Makeyev
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| | - Vladimir G Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia.
| | - Anatoly N Varaksin
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia.
| | - Ekaterina V Grigoryeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Ekaterina Y Meshtcheryakova
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| |
Collapse
|
36
|
Katsnelson BA, Privalova LI, Sutunkova MP, Minigalieva IA, Gurvich VB, Shur VY, Makeyev OH, Valamina IE, Grigoryeva EV. Is it possible to enhance the organism's resistance to toxic effects of metallic nanoparticles? Toxicology 2015; 337:79-82. [PMID: 26364982 DOI: 10.1016/j.tox.2015.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Boris A Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.
| | - Larisa I Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir Y Shur
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Oleg H Makeyev
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Irina E Valamina
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ekaterina V Grigoryeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
37
|
Huo L, Chen R, Zhao L, Shi X, Bai R, Long D, Chen F, Zhao Y, Chang YZ, Chen C. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials 2015; 61:307-15. [DOI: 10.1016/j.biomaterials.2015.05.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/16/2015] [Indexed: 01/16/2023]
|
38
|
Katsnelson BA, Privalova LI, Sutunkova MP, Gurvich VB, Loginova NV, Minigalieva IA, Kireyeva EP, Shur VY, Shishkina EV, Beikin YB, Makeyev OH, Valamina IE. Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview). Int J Nanomedicine 2015; 10:3013-29. [PMID: 25945048 PMCID: PMC4406262 DOI: 10.2147/ijn.s80843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The purpose of this paper is to overview and summarize previously published results of our experiments on white rats exposed to either a single intratracheal instillation or repeated intraperitoneal injections of silver, gold, iron oxide, copper oxide, nickel oxide, and manganese oxide nanoparticles (NPs) in stable water suspensions without any chemical additives. Based on these results and some corroborating data of other researchers we maintain that these NPs are much more noxious on both cellular and systemic levels as compared with their 1 μm or even submicron counterparts. However, within the nanometer range the dependence of systemic toxicity on particle size is intricate and non-unique due to complex and often contra-directional relationships between the intrinsic biological aggressiveness of the specific NPs, on the one hand, and complex mechanisms that control their biokinetics, on the other. Our data testify to the high activity of the pulmonary phagocytosis of NPs deposited in airways. This fact suggests that safe levels of exposure to airborne NPs are possible in principle. However, there are no reliable foundations for establishing different permissible exposure levels for particles of different size within the nanometric range. For workroom air, such permissible exposure levels of metallic NP can be proposed at this stage, even if tentatively, based on a sufficiently conservative approach of decreasing approximately tenfold the exposure limits officially established for respective micro-scale industrial aerosols. It was shown that against the background of adequately composed combinations of some bioactive agents (comprising pectin, multivitamin-multimineral preparations, some amino acids, and omega-3 polyunsaturated fatty acid) the systemic toxicity and even genotoxicity of metallic NPs could be markedly attenuated. Therefore we believe that, along with decreasing NP-exposures, enhancing organisms’ resistance to their adverse action with the help of such bioprotectors can prove an efficient auxiliary tool of health risk management in occupations connected with them.
Collapse
Affiliation(s)
- Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Nadezhda V Loginova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ekaterina P Kireyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir Y Shur
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg, Russia
| | - Ekaterina V Shishkina
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg, Russia
| | - Ya B Beikin
- The City Clinical Diagnostics Centre, Ekaterinburg, Russia
| | | | | |
Collapse
|
39
|
Yang K, Song Q. Styryl ether formation from benzyl alcohols under transition-metal-free basic DMSO conditions. Org Biomol Chem 2015; 13:2267-72. [DOI: 10.1039/c4ob02358g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A phenol-catalyzed aerobic oxidative styryl ether formation method was developed with benzyl alcohol under basic DMSO.
Collapse
Affiliation(s)
- Kai Yang
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering
- Huaqiao University
- Xiamen
- China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering
- Huaqiao University
- Xiamen
- China
| |
Collapse
|
40
|
Kim JE, Lee J, Jang M, Kwak MH, Go J, Kho EK, Song SH, Sung JE, Lee J, Hwang DY. Accelerated healing of cutaneous wounds using phytochemically stabilized gold nanoparticle deposited hydrocolloid membranes. Biomater Sci 2015. [DOI: 10.1039/c4bm00390j] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rapid healing of dermatological wounds is of vital importance in preventing infection and reducing post-treatment side-effects.
Collapse
|
41
|
Privalova LI, Katsnelson BA, Loginova NV, Gurvich VB, Shur VY, Beikin YB, Sutunkova MP, Minigalieva IA, Shishkina EV, Pichugova SV, Tulakina LG, Beljayeva SV. Some characteristics of free cell population in the airways of rats after intratracheal instillation of copper-containing nano-scale particles. Int J Mol Sci 2014; 15:21538-53. [PMID: 25421246 PMCID: PMC4264240 DOI: 10.3390/ijms151121538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/12/2014] [Indexed: 12/19/2022] Open
Abstract
We used stable water suspensions of copper oxide particles with mean diameter 20 nm and of particles containing copper oxide and element copper with mean diameter 340 nm to assess the pulmonary phagocytosis response of rats to a single intratracheal instillation of these suspensions using optical, transmission electron, and semi-contact atomic force microscopy and biochemical indices measured in the bronchoalveolar lavage fluid. Although both nano and submicron ultrafine particles were adversely bioactive, the former were found to be more toxic for lungs as compared with the latter while evoking more pronounced defense recruitment of alveolar macrophages and especially of neutrophil leukocytes and more active phagocytosis. Based on our results and literature data, we consider both copper solubilization and direct contact with cellular organelles (mainly, mitochondria) of persistent particles internalized by phagocytes as probable mechanisms of their cytotoxicity.
Collapse
Affiliation(s)
- Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Nadezhda V Loginova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir Y Shur
- The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg 620000, Russia.
| | - Yakov B Beikin
- The City Clinical Diagnostics Centre, 28 Dekabristov Str., Ekaterinburg 620142, Russia.
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Ekaterina V Shishkina
- The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg 620000, Russia.
| | - Svetlana V Pichugova
- The City Clinical Diagnostics Centre, 28 Dekabristov Str., Ekaterinburg 620142, Russia.
| | - Ludmila G Tulakina
- The City Clinical Diagnostics Centre, 28 Dekabristov Str., Ekaterinburg 620142, Russia.
| | - Svetlana V Beljayeva
- The City Clinical Diagnostics Centre, 28 Dekabristov Str., Ekaterinburg 620142, Russia.
| |
Collapse
|
42
|
Manufactured nanomaterials: categorization and approaches to hazard assessment. Arch Toxicol 2014; 88:2191-211. [PMID: 25326817 DOI: 10.1007/s00204-014-1383-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
Nanotechnology offers enormous potential for technological progress. Fortunately, early and intensive efforts have been invested in investigating toxicology and safety aspects of this new technology. However, despite there being more than 6,000 publications on nanotoxicology, some key questions still have to be answered and paradigms need to be challenged. Here, we present a view on the field of nanotoxicology to stimulate the discussion on major knowledge gaps and the critical appraisal of concepts or dogma. First, in the ongoing debate as to whether nanoparticles may harbour a specific toxicity due to their size, we support the view that there is at present no evidence of 'nanospecific' mechanisms of action; no step-change in hazard was observed so far for particles below 100 nm in one dimension. Therefore, it seems unjustified to consider all consumer products containing nanoparticles a priori as hazardous. Second, there is no evidence so far that fundamentally different biokinetics of nanoparticles would trigger toxicity. However, data are sparse whether nanoparticles may accumulate to an extent high enough to cause chronic adverse effects. To facilitate hazard assessment, we propose to group nanomaterials into three categories according to the route of exposure and mode of action, respectively: Category 1 comprises nanomaterials for which toxicity is mediated by the specific chemical properties of its components, such as released ions or functional groups on the surface. Nanomaterials belonging to this category have to be evaluated on a case-by-case basis, depending on their chemical identity. Category 2 focuses on rigid biopersistent respirable fibrous nanomaterials with a specific geometry and high aspect ratio (so-called WHO fibres). For these fibres, hazard assessment can be based on the experiences with asbestos. Category 3 focuses on respirable granular biodurable particles (GBP) which, after inhalation, may cause inflammation and secondary mutagenicity that may finally lead to lung cancer. After intravenous, oral or dermal exposure, nanoscaled GBPs investigated apparently did not show 'nanospecific' effects so far. Hazard assessment of GBPs may be based on the knowledge available for granular particles. In conclusion, we believe the proposed categorization system will facilitate future hazard assessments.
Collapse
|
43
|
Modeling in vitro cellular responses to silver nanoparticles. J Toxicol 2014; 2014:852890. [PMID: 25541583 PMCID: PMC4206931 DOI: 10.1155/2014/852890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 01/22/2023] Open
Abstract
Engineered nanoparticles (NPs) have been widely demonstrated to induce toxic effects to various cell types. In vitro cell exposure systems have high potential for reliable, high throughput screening of nanoparticle toxicity, allowing focusing on particular pathways while excluding unwanted effects due to other cells or tissue dosimetry. The work presented here involves a detailed biologically based computational model of cellular interactions with NPs; it utilizes measurements performed in human cell culture systems in vitro, to develop a mechanistic mathematical model that can support analysis and prediction of in vivo effects of NPs. The model considers basic cellular mechanisms including proliferation, apoptosis, and production of cytokines in response to NPs. This new model is implemented for macrophages and parameterized using in vitro measurements of changes in cellular viability and mRNA levels of cytokines: TNF, IL-1b, IL-6, IL-8, and IL-10. The model includes in vitro cellular dosimetry due to nanoparticle transport and transformation. Furthermore, the model developed here optimizes the essential cellular parameters based on in vitro measurements, and provides a "stepping stone" for the development of more advanced in vivo models that will incorporate additional cellular and NP interactions.
Collapse
|
44
|
Rehbock C, Jakobi J, Gamrad L, van der Meer S, Tiedemann D, Taylor U, Kues W, Rath D, Barcikowski S. Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1523-41. [PMID: 25247135 PMCID: PMC4168911 DOI: 10.3762/bjnano.5.165] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/07/2014] [Indexed: 05/15/2023]
Abstract
Due to the abundance of nanomaterials in medical devices and everyday products, toxicological effects related to nanoparticles released from these materials, e.g., by mechanical wear, are a growing matter of concern. Unfortunately, appropriate nanoparticles required for systematic toxicological evaluation of these materials are still lacking. Here, the ubiquitous presence of surface ligands, remaining from chemical synthesis are a major drawback as these organic residues may cause cross-contaminations in toxicological studies. Nanoparticles synthesized by pulsed laser ablation in liquid are a promising alternative as this synthesis route provides totally ligand-free nanoparticles. The first part of this article reviews recent methods that allow the size control of laser-fabricated nanoparticles, focusing on laser post irradiation, delayed bioconjugation and in situ size quenching by low salinity electrolytes. Subsequent or parallel applications of these methods enable precise tuning of the particle diameters in a regime from 4-400 nm without utilization of any artificial surface ligands. The second paragraph of this article highlights the recent progress concerning the synthesis of composition controlled alloy nanoparticles by laser ablation in liquids. Here, binary and ternary alloy nanoparticles with totally homogeneous elemental distribution could be fabricated and the composition of these particles closely resembled bulk implant material. Finally, the model AuAg was used to systematically evaluate composition related toxicological effects of alloy nanoparticles. Here Ag(+) ion release is identified as the most probable mechanism of toxicity when recent toxicological studies with gametes, mammalian cells and bacteria are considered.
Collapse
Affiliation(s)
- Christoph Rehbock
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| | - Jurij Jakobi
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| | - Lisa Gamrad
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| | - Selina van der Meer
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| | - Daniela Tiedemann
- Institute for Farm Animal Genetics, Friedrich-Loeffler-Institut, Höltystr. 10, 31535 Neustadt, Germany
| | - Ulrike Taylor
- Institute for Farm Animal Genetics, Friedrich-Loeffler-Institut, Höltystr. 10, 31535 Neustadt, Germany
| | - Wilfried Kues
- Institute for Farm Animal Genetics, Friedrich-Loeffler-Institut, Höltystr. 10, 31535 Neustadt, Germany
| | - Detlef Rath
- Institute for Farm Animal Genetics, Friedrich-Loeffler-Institut, Höltystr. 10, 31535 Neustadt, Germany
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| |
Collapse
|
45
|
Privalova LI, Katsnelson BA, Loginova NV, Gurvich VB, Shur VY, Valamina IE, Makeyev OH, Sutunkova MP, Minigalieva IA, Kireyeva EP, Rusakov VO, Tyurnina AE, Kozin RV, Meshtcheryakova EY, Korotkov AV, Shuman EA, Zvereva AE, Kostykova SV. Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors. Int J Mol Sci 2014; 15:12379-406. [PMID: 25026171 PMCID: PMC4139849 DOI: 10.3390/ijms150712379] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 12/27/2022] Open
Abstract
In the copper metallurgy workplace air is polluted with condensation aerosols, which a significant fraction of is presented by copper oxide particles<100 nm. In the scientific literature, there is a lack of their in vivo toxicity characterization and virtually no attempts of enhancing organism's resistance to their impact. A stable suspension of copper oxide particles with mean (±SD) diameter 20±10 nm was prepared by laser ablation of pure copper in water. It was being injected intraperitoneally to rats at a dose of 10 mg/kg (0.5 mg per mL of deionized water) three times a week up to 19 injections. In parallel, another group of rats was so injected with the same suspension against the background of oral administration of a "bio-protective complex" (BPC) comprising pectin, a multivitamin-multimineral preparation, some amino acids and fish oil rich in ω-3 PUFA. After the termination of injections, many functional and biochemical indices for the organism's status, as well as pathological changes of liver, spleen, kidneys, and brain microscopic structure were evaluated for signs of toxicity. In the same organs we have measured accumulation of copper while their cells were used for performing the Random Amplification of Polymorphic DNA (RAPD) test for DNA fragmentation. The same features were assessed in control rats infected intraperitoneally with water with or without administration of the BPC. The copper oxide nanoparticles proved adversely bio-active in all respects considered in this study, their active in vivo solubilization in biological fluids playing presumably an important role in both toxicokinetics and toxicodynamics. The BPC proposed and tested by us attenuated systemic and target organs toxicity, as well as genotoxicity of this substance. Judging by experimental data obtained in this investigation, occupational exposures to nano-scale copper oxide particles can present a significant health risk while the further search for its management with the help of innocuous bioprotectors seems to be justified.
Collapse
Affiliation(s)
- Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Nadezhda V Loginova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Vladimir Y Shur
- The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg 630000, Russia.
| | - Irene E Valamina
- Central Research Laboratory, the Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 630109, Russia.
| | - Oleg H Makeyev
- Central Research Laboratory, the Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 630109, Russia.
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Ekaterina P Kireyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Vadim O Rusakov
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Anastasia E Tyurnina
- The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg 630000, Russia.
| | - Roman V Kozin
- The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg 630000, Russia.
| | - Ekaterina Y Meshtcheryakova
- Central Research Laboratory, the Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 630109, Russia.
| | - Artem V Korotkov
- Central Research Laboratory, the Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 630109, Russia.
| | - Eugene A Shuman
- Central Research Laboratory, the Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 630109, Russia.
| | - Anastasia E Zvereva
- Central Research Laboratory, the Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 630109, Russia.
| | - Svetlana V Kostykova
- Central Research Laboratory, the Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 630109, Russia.
| |
Collapse
|
46
|
Katsnelson BA, Privalova LI, Gurvich VB, Kuzmin SV, Kireyeva EP, Minigalieva IA, Sutunkova MP, Loginova NV, Malykh OL, Yarushin SV, Soloboyeva JI, Kochneva NI. Enhancing Population’s Resistance to Toxic Exposures as an Auxilliary Tool of Decreasing Environmental and Occupational Health Risks (a Self-Overview). ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jep.2014.514137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Lee TY, Liu MS, Huang LJ, Lue SI, Lin LC, Kwan AL, Yang RC. Bioenergetic failure correlates with autophagy and apoptosis in rat liver following silver nanoparticle intraperitoneal administration. Part Fibre Toxicol 2013; 10:40. [PMID: 23958063 PMCID: PMC3765627 DOI: 10.1186/1743-8977-10-40] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/14/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Deposition and accumulation of silver nanoparticles (Ag-nps) in the liver have been shown to induce hepatotoxicity in animal studies. The hepatotoxicity may include oxidative stress, abnormalities in energy metabolism, and cell death. Studies have indicated that autophagy is an intracellular event involving balance of energy, nutrients, and turnover of subcellular organelles. The present study was undertaken to test the hypothesis that autophagy plays a role in mediating hepatotoxicity in animal after exposure to Ag-nps. Focus was placed on interrelationship between energy metabolism, autophagy, apoptosis and hepatic dysfunction. METHODS Sprague Dawley rats were intraperitoneally injected with Ag-nps (10-30 nm in diameter) at concentration of 500 mg kg(-1). All animals were sacrificed on days 1, 4, 7, 10 and 30 after exposure and blood and liver tissues were collected for further studies. RESULTS Uptake of Ag-nps was quite prompt and not proportional to the blood Ag concentration. Declination of ATP (-64% in days 1) and autophagy (determined by LC3-II protein expression and morphological evaluation) increased and peaked on the first day. The ATP content remained at low level even though the autophagy has been activated. Apoptosis (based on caspase-3 protein expression and TUNEL-positive cells staining) began to rise sigmoidally at days 1 and 4, reached a peak level at day 7, and remained at the same levels during days 7-30 post exposure. Meanwhile, autophagy exhibited a gradual decrease from days 1-10 and the decrease at day 30 was statistically significant as compared to day 0 (sham group). Inflammatory reaction (histopathological evaluation) was found at day 10 and preceded to an advanced degree at day 30 when liver function was impaired. CONCLUSIONS These results indicate that following Ag-nps administration, autophagy was induced; however, failure to preserve autophagy compounded with energy reduction led to apoptosis and the eventual impairment of liver function. The study provides an in-vivo evidence of hepatotoxicity by continuous exposure of Ag-nps in rats.
Collapse
|
48
|
Katsnelson BA, Degtyareva TD, Privalova LI, Minigaliyeva IA, Slyshkina TV, Ryzhov VV, Beresneva OY. Attenuation of subchronic formaldehyde inhalation toxicity with oral administration of glutamate, glycine and methionine. Toxicol Lett 2013; 220:181-6. [PMID: 23660335 DOI: 10.1016/j.toxlet.2013.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 01/01/2023]
Abstract
Inhalation exposure of outbred female white rats (initial age about 4 months) to formaldehyde vapours (12.8 ± 0.69 mg/m(3)) 4h per day, 5 days per week during 10 weeks induced statistically significant changes in some indices characterizing differential WBC count, functional status of the central nervous system and liver, redox and porphyrin metabolisms, bone marrow micronuclei count as well as free amino acid spectrum of the blood serum. The development of intoxication was accompanied by increased urinary excretion of formaldehyde, formic acid and methanol. Daily oral administration of glutamate (150-180 mg), glycine (12 mg) and methionine (50mg) in combination rendered all of the formaldehyde's toxic effects reduced. This administration also caused a significant increase in the ratio between the rates of excretion of formic acid and non-metabolized formaldehyde. This shift supposedly reflects activation of oxidative detoxifying biotransformation of formaldehyde. Taking into consideration that the combination of amino acids used in this study proved innocuous in protectively effective doses, the administration in this combination may be recommended to humans exposed to high levels of formaldehyde in workplace or ambient air.
Collapse
Affiliation(s)
- Boris A Katsnelson
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | | | | | | | | | | | | |
Collapse
|