1
|
Kaur S, Grewal SK, Taggar GK, Bhardwaj RD. Methylglyoxal metabolism is altered during defence response in pigeonpea ( Cajanus cajan (L.) Millsp.) against the spotted pod borer ( Maruca vitrata). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23155. [PMID: 38266279 DOI: 10.1071/fp23155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
Pigeonpea (Cajanus cajan ) production can be affected by the spotted pod borer (Maruca vitrata ). Here, we identified biochemical changes in plant parts of pigeonpea after M. vitrata infestation. Two pigeonpea genotypes (AL 1747, moderately resistant; and MN 1, susceptible) were compared for glyoxalase and non-glyoxalase enzyme systems responsible for methylglyoxal (MG) detoxification, γ-glutamylcysteine synthetase (γ-GCS), glutathione-S-transferase (GST) and glutathione content in leaves, flowers and pods under control and insect-infested conditions. MN 1 had major damage due to M. vitrata infestation compared to AL 1747. Lower accumulation of MG in AL 1747 was due to higher activities of enzymes of GSH-dependent (glyoxylase I, glyoxylase II), GSH-independent (glyoxalase III) pathway, and enzyme of non-glyoxalase pathway (methylglyoxal reductase, MGR), which convert MG to lactate. Decreased glyoxylase enzymes and MGR activities in MN 1 resulted in higher accumulation of MG. Higher lactate dehydrogenase (LDH) activity in AL 1747 indicates utilisation of MG detoxification pathway. Higher glutathione content in AL 1747 genotype might be responsible for efficient working of MG detoxification pathway under insect infestation. Higher activity of γ-GCS in AL 1747 maintains the glutathione pool, necessary for the functioning of glyoxylase pathway to carry out the detoxification of MG. Higher activities of GST and GPX in AL 1747 might be responsible for detoxification of toxic products that accumulates following insect infestation, and elevated activities of glyoxylase and non-glyoxylase enzyme systems in AL 1747 after infestation might be responsible for reducing reactive cabanoyl stress. Our investigation will help the future development of resistant cultivars.
Collapse
Affiliation(s)
- Sukhmanpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Satvir Kaur Grewal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Gaurav Kumar Taggar
- Pulses Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Rachana D Bhardwaj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
2
|
Woo JR, Choi DH, Hamza MT, Doh KO, Lee CY, Choo YS, Lee S, Kim JG, Bunch H, Seu YB. Gene Expression Analyses of Mutant Flammulina velutipes (Enokitake Mushroom) with Clogging Phenomenon. MYCOBIOLOGY 2022; 50:366-373. [PMID: 36404905 PMCID: PMC9645268 DOI: 10.1080/12298093.2022.2121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Regulation of proper gene expression is important for cellular and organismal survival, maintenance, and growth. Abnormal gene expression, even for a single critical gene, can thwart cellular integrity and normal physiology to cause diseases, aging, and death. Therefore, gene expression profiling serves as a powerful tool to understand the pathology of diseases and to cure them. In this study, the difference in gene expression in Flammulina velutipes was compared between the wild type (WT) mushroom and the mutant one with clogging phenomenon. Differentially expressed transcripts were screened to identify the candidate genes responsible for the mutant phenotype using the DNA microarray analysis. A total of 88 genes including 60 upregulated and 28 downregulated genes were validated using the real-time quantitative PCR analysis. In addition, proteomic differences between the WT and mutant mushroom were analyzed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Interestingly, the genes identified by these genomic and proteomic analyses were involved in stress response, translation, and energy/sugar metabolism, including HSP70, elongation factor 2, and pyruvate kinase. Together, our data suggest that the aberrant expression of these genes attributes to the mutant clogging phenotype. We propose that these genes can be targeted to foster normal growth in F. velutipes.
Collapse
Affiliation(s)
- Ju-Ri Woo
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Doo-Ho Choi
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammed Taofiq Hamza
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Chang-Yoon Lee
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Yeon-Sik Choo
- Department of Biology, College of National Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sangman Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Guk Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Heeyoun Bunch
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Bae Seu
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Li Y, Feng Y, Lü Q, Yan D, Liu Z, Zhang X. Comparative Proteomic Analysis of Plant-Pathogen Interactions in Resistant and Susceptible Poplar Ecotypes Infected with Botryosphaeria dothidea. PHYTOPATHOLOGY 2019; 109:2009-2021. [PMID: 31369364 DOI: 10.1094/phyto-12-18-0452-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Poplar are important forestry species in China, but the Botryosphaeria dothidea pathogen causes serious economic losses worldwide. To identify candidate B. dothidea resistance proteins and explore the molecular mechanisms involved in poplar-pathogen interactions, proteomic responses of stem samples from resistant and susceptible poplar ecotypes to B. dothidea were investigated using nanoflow liquid chromatography-tandem mass spectrometry with label-free quantitative analysis. We identified 588 proteins, divided into 21 biological process categories including 48 oxidoreductases, 72 hydrolytic enzymes, 80 metabolic enzymes, and 29 proteins of unknown function. Differential proteome analysis revealed large differences between resistant Populus tomentosa Carr and susceptible Populus beijingensis Hsu ecotypes before and after inoculation. Among 102 identified proteins, 22 were highly upregulated in the resistant genotype but downregulated in the susceptible genotype. Proteins induced in P. tomentosa Carr in response to B. dothidea are associated with plant defenses including oxidoreductase activity (catalase, isocitrate dehydrogenase, and superoxide dismutase), phenylpropanoid biosynthesis and phenylalanine metabolism (alcohol dehydrogenase), photosynthesis (ATP synthase subunit alpha, ATP synthase gamma chain, photosystem I P700 chlorophyll a apoprotein A2, photosystem II CP47 chlorophyll apoprotein), carbon fixation (pyruvate kinase, triosephosphate isomerase, malic enzyme, phosphoglycerate kinase, ribulose-1,5-bisphosphate carboxylase, and ribulose bisphosphate carboxylase small chain), and glycolysis/gluconeogenesis (fructose-bisphosphate aldolase). Kyoto Encyclopedia of Genes and Genomes pathway analysis identified 168 proteins related to metabolic pathways, 41 proteins related to the biosynthesis of phenylpropanoids, and 36 proteins related to the biosynthesis of plant hormones, the biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid, and photosynthesis in response to B. dothidea. Our findings provide insight into plant-pathogen interactions in resistant and susceptible poplar ecotypes infected with B. dothidea and could assist the development of novel strategies for fighting poplar canker disease.
Collapse
Affiliation(s)
- Yongxia Li
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Quan Lü
- Key Laboratory of Forest Protection, State Forestry Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Donghui Yan
- Key Laboratory of Forest Protection, State Forestry Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhenyu Liu
- College of Plant Protection, Shandong Agricultural University, Tai-an 271018, China
| | - Xingyao Zhang
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Li T, Cheng X, Wang Y, Yin X, Li Z, Liu R, Liu G, Wang Y, Xu Y. Genome-wide analysis of glyoxalase-like gene families in grape (Vitis vinifera L.) and their expression profiling in response to downy mildew infection. BMC Genomics 2019; 20:362. [PMID: 31072302 PMCID: PMC6509763 DOI: 10.1186/s12864-019-5733-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/24/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The glyoxalase system usually comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII). This system converts cytotoxic methylglyoxal (MG) into non-toxic D-lactate in the presence of reduced glutathione (GSH) in two enzymatic steps. Recently, a novel type of glyoxalase III (GLYIII) activity has observed in Escherichia coli that can detoxify MG into D-lactate directly, in one step, without a cofactor. Investigation of the glyoxalase enzymes of a number of plant species shows the importance of their roles in response both to abiotic and to biotic stresses. Until now, glyoxalase gene families have been identified in the genomes of four plants, Arabidopsis, Oryza sativa, Glycine max and Medicago truncatula but no similar study has been done with the grapevine Vitis vinifera L. RESULTS In this study, four GLYI-like, two GLYII-like and three GLYIII-like genes are identified from the genome database of grape. All these genes were analysed in detail, including their chromosomal locations, phylogenetic relationships, exon-intron distributions, protein domain organisations and the presence of conserved binding sites. Using quantitative real-time PCR analysis (qRT-PCR), the expression profiles of these genes were analysed in different tissues of grape, and also when under infection stress from downy mildew (Plasmopara viticola). The study reveals that most VvGLY-like genes had higher expressions in stem, leaf, tendril and ovule but lower expressions in the flower. In addition, most of the VvGLY-like gene members were P. viticola responsive with high expressions 6-12 h and 96-120 h after inoculation. However, VvGLYI-like1 was highly expressed 48 h after inoculation, similar to VvPR1 and VvNPR1 which are involved in the defence response. CONCLUSIONS This study identified the GLYI-like, GLYII-like and GLYIII-like full gene families of the grapevine. Based on a phylogenetic analysis and the presence of conserved binding sites, we speculate that these glyoxalase-like genes in grape encode active glyoxalases. Moreover, our study provides a basis for discussing the roles of VvGLYI-like, VvGLYII-like and VvGLYIII-like genes in grape's response to downy mildew infection. Our results shed light on the selection of candidate genes for downy mildew tolerance in grape and lay the foundation for further functional investigations of these glyoxalase genes.
Collapse
Affiliation(s)
- Tiemei Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Yuting Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Xiao Yin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Zhiqian Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Ruiqi Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Guotian Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| |
Collapse
|
5
|
Gupta MK, Vadde R, Gouda G, Donde R, Kumar J, Behera L. Computational approach to understand molecular mechanism involved in BPH resistance in Bt- rice plant. J Mol Graph Model 2019; 88:209-220. [PMID: 30743158 DOI: 10.1016/j.jmgm.2019.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/05/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
In silico approach was utilised to identify differentially expressed key hub genes during BPH infestation on Bt rice plant, under laboratory conditions. Re-analysis of GSE74745 data with in-house R scripts and STRING database reveals that only 5 key hub genes, namely Os05g0176100, Os06g0683200, Os07g0208500, Os07g0252400 and Os07g0424400, belonging to cellulose synthase family, are differentially expressed and have confidence score ≥0.9 among themselves. Conserve domain analysis of all proteins encoded via these 5 key hub genes reveals that they have a common cellulose synthase domain, in which "Plant-Conserved Region" (PCR) is highly conserved. After binding with other domains of cellulose synthase proteins or other accessory proteins, like sucrose synthase, PCR serves as a metabolic channel to deliver UDP-Glucose, which is the main substrate for cellulose synthesis, into the active site of cellulose synthase and initiate cellulose synthesis. Simulation study of recently solved topological model of PCR [PDB ID: 5JNP] and molecular docking studies of PCR with UDP-glucose reveals that, during BPH infestation, in nearby phloem tissue where BPH suck sap, there is an increase interaction of UDP-glucose with PCR and other accessory proteins which in turn increases both the stability of PCR and the production of cellulose, finally causing callose deposition at that site and hence causing longer nymphal developmental period and lower fertility of BPH infested on Bt rice. In near future, these differentially identified 5 hub genes could be possible targets for controlling BPH infestation in rice plant under field conditions and increasing rice yield globally.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa, 516003, Andhra Pradesh, India
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa, 516003, Andhra Pradesh, India
| | - Gayatri Gouda
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Ravindra Donde
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Jitendra Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Lambodar Behera
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India.
| |
Collapse
|
6
|
Zhang X, Yin F, Xiao S, Jiang C, Yu T, Chen L, Ke X, Zhong Q, Cheng Z, Li W. Proteomic analysis of the rice (Oryza officinalis) provides clues on molecular tagging of proteins for brown planthopper resistance. BMC PLANT BIOLOGY 2019; 19:30. [PMID: 30658570 PMCID: PMC6339371 DOI: 10.1186/s12870-018-1622-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/27/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Among various pests, the brown planthopper (BPH) that damages rice is the major destructive pests. Understanding resistance mechanisms is a critical step toward effective control of BPH. This study investigates the proteomics of BPH interactions with three rice cultivars: the first resistant (PR) to BPH, the second susceptible (PS), and the third hybrid (HR) between the two, in order to understand mechanisms of BPH resistance in rice. RESULTS Over 4900 proteins were identified from these three rice cultivars using iTRAQ proteomics study. A total of 414, 425 and 470 differentially expressed proteins (DEPs) were detected from PR, PS and HR, respectively, after BPH infestation. Identified DEPs are mainly enriched in categories related with biosynthesis of secondary metabolites, carbon metabolism, and glyoxylate and dicarboxylate metabolism. A two-component response regulator protein (ORR22) may participate in the early signal transduction after BPH infestation. In the case of the resistant rice cultivar (PR), 6 DEPs, i.e. two lipoxygenases (LOXs), a lipase, two dirigent proteins (DIRs) and an Ent-cassa-12,15-diene synthase (OsDTC1) are related to inheritable BPH resistance. A heat shock protein (HSP20) may take part in the physiological response to BPH infestation, making it a potential target for marker-assisted selection (MAS) of rice. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed eight genes encoding various metabolic proteins involved in BPH resistance. During grain development the expressions of these genes varied at the transcriptional and translational levels. CONCLUSIONS This study provides comprehensive details of key proteins under compatible and incompatible interactions during BPH infestation, which will be useful for further investigation of the molecular basis of rice resistance to BPH and for breeding BPH-resistant rice cultivars.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Fuyou Yin
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Suqin Xiao
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Chunmiao Jiang
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Tengqiong Yu
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Ling Chen
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Xue Ke
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Qiaofang Zhong
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Zaiquan Cheng
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Weijiao Li
- Faculty of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan People’s Republic of China
| |
Collapse
|
7
|
Gupta BK, Sahoo KK, Ghosh A, Tripathi AK, Anwar K, Das P, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL. Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. PLANT, CELL & ENVIRONMENT 2018; 41:1186-1200. [PMID: 28425127 DOI: 10.1111/pce.12968] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 05/05/2023]
Abstract
Crop plants face a multitude of diverse abiotic and biotic stresses in the farmers' fields. Although there now exists a considerable knowledge of the underlying mechanisms of response to individual stresses, the crosstalk between response pathways to various abiotic and biotic stresses remains enigmatic. Here, we investigated if the cytotoxic metabolite methylglyoxal (MG), excess of which is generated as a common consequence of many abiotic and biotic stresses, may serve as a key molecule linking responses to diverse stresses. For this, we generated transgenic rice plants overexpressing the entire two-step glyoxalase pathway for MG detoxification. Through assessment of various morphological, physiological and agronomic parameters, we found that glyoxalase-overexpression imparts tolerance towards abiotic stresses like salinity, drought and heat and also provides resistance towards damage caused by the sheath blight fungus (Rhizoctonia solani) toxin phenylacetic acid. We show that the mechanism of observed tolerance of the glyoxalase-overexpressing plants towards these diverse abiotic and biotic stresses involves improved MG detoxification and reduced oxidative damage leading to better protection of chloroplast and mitochondrial ultrastructure and maintained photosynthetic efficiency under stress conditions. Together, our findings indicate that MG may serve as a key link between abiotic and biotic stress response in plants.
Collapse
Affiliation(s)
- Brijesh K Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Khirod K Sahoo
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ajit Ghosh
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Amit K Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanka Das
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anil K Singh
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir K Sopory
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
8
|
Blasi ÉAR, Buffon G, Rativa AGS, Lopes MCB, Berger M, Santi L, Lavallée-Adam M, Yates JR, Schwambach J, Beys-da-Silva WO, Sperotto RA. High infestation levels of Schizotetranychus oryzae severely affects rice metabolism. JOURNAL OF PLANT PHYSIOLOGY 2017; 219:100-111. [PMID: 29096082 DOI: 10.1016/j.jplph.2017.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 05/03/2023]
Abstract
High levels of Schizotetranychus oryzae phytophagous mite infestation on rice leaves can severely affect productivity. Physiological characterization showed that S. oryzae promotes a decrease in chlorophyll concentration and the establishment of a senescence process in rice leaves. Late-infested leaves also present high levels of superoxide radical and hydrogen peroxide accumulation, along with high levels of membrane integrity loss, which is indicative of cell death. To better understand the rice molecular responses to high levels of mite infestation, we employed the Multidimensional Protein Identification Technology (MudPIT) approach to identify differentially expressed proteins. We identified 83 and 88 proteins uniquely present in control and late-infested leaves, respectively, along with 11 and one proteins more abundant in control and late-infested leaves, respectively. S. oryzae infestation induces a decreased abundance of proteins related to translation, protease inhibition, and photosynthesis. On the other hand, infestation caused increased abundance of proteins involved in protein modification and degradation. Our results also suggest that S. oryzae infestation interferes with intracellular transport, DNA structure maintenance, and amino acid and lipid metabolism in rice leaves. Proteomic data were positively correlated with enzymatic assays and RT-qPCR analysis. Our findings describe the protein expression patterns of late-infested rice leaves and suggest several targets which could be tested in future biotechnological approaches aiming to avoid the population increase of phytophagous mite in rice plants.
Collapse
Affiliation(s)
- Édina A R Blasi
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), University of Taquari Valley - UNIVATES, Lajeado, RS, Brazil
| | - Giseli Buffon
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), University of Taquari Valley - UNIVATES, Lajeado, RS, Brazil
| | - Angie G S Rativa
- Centro de Ciências Biológicas e da Saúde (CCBS), University of Taquari Valley - UNIVATES, Lajeado, RS, Brazil
| | - Mara C B Lopes
- Setor de Melhoramento Genético, Instituto Rio Grandense do Arroz (IRGA), Cachoeirinha, RS, Brazil
| | - Markus Berger
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (CPE - HCPA/UFRGS), Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (CPE - HCPA/UFRGS), Porto Alegre, RS, Brazil
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joséli Schwambach
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Walter O Beys-da-Silva
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (CPE - HCPA/UFRGS), Porto Alegre, RS, Brazil
| | - Raul A Sperotto
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), University of Taquari Valley - UNIVATES, Lajeado, RS, Brazil; Centro de Ciências Biológicas e da Saúde (CCBS), University of Taquari Valley - UNIVATES, Lajeado, RS, Brazil.
| |
Collapse
|
9
|
Dong Y, Fang X, Yang Y, Xue GP, Chen X, Zhang W, Wang X, Yu C, Zhou J, Mei Q, Fang W, Yan C, Chen J. Comparative Proteomic Analysis of Susceptible and Resistant Rice Plants during Early Infestation by Small Brown Planthopper. FRONTIERS IN PLANT SCIENCE 2017; 8:1744. [PMID: 29089949 PMCID: PMC5651024 DOI: 10.3389/fpls.2017.01744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/25/2017] [Indexed: 05/29/2023]
Abstract
The small brown planthopper (Laodelphax striatellus Fallén, Homoptera, Delphacidae-SBPH) is one of the major destructive pests of rice (Oryza sativa L.). Understanding on how rice responds to SBPH infestation will contribute to developing strategies for SBPH control. However, the response of rice plant to SBPH is poorly understood. In this study, two contrasting rice genotypes, Pf9279-4 (SBPH-resistant) and 02428 (SBPH-susceptible), were used for comparative analysis of protein profiles in the leaf sheath of rice plants in responses to SBPH infestation. One hundred and thirty-two protein spots that were differentially expressed between the resistant and susceptible rice lines were identified with significant intensity differences (≥2-fold, P < 0.05) at 0, 6, and 12 h after SBPH infestation. Protein expression profile analysis in the leaf sheath of SBPH-resistant and SBPH-susceptible rice lines after SBPH infestation showed that proteins induced by SBPH feeding were involved mainly in stress response, photosynthesis, protein metabolic process, carbohydrate metabolic process, energy metabolism, cell wall-related proteins, amino acid metabolism and transcriptional regulation. Gene expression analysis of 24 differentially expressed proteins (DEPs) showed that more than 50% DEPs were positively correlated with their mRNA levels. Analysis of some physiological indexes mainly involved in the removal of oxygen reactive species showed that the levels of superoxide dismutase (SOD) and glutathione (GSH) were considerably higher in Pf9279-4 than 02428 during SBPH infestation. The catalase (CAT) activity and hydroxyl radical inhibition were lower in Pf9279-4 than 02428. Analysis of enzyme activities indicates that Pf9279-4 rice plants defend against SBPH through the activation of the pathway of the salicylic acid (SA)-dependent systemic acquired resistance. In conclusion, this study provides some insights into the molecular networks involved on cellular and physiological responses to SBPH infestation.
Collapse
Affiliation(s)
- Yan Dong
- Agricultural Insect Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xianping Fang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and Hunan Provincial Key Laboratory of Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Yong Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Gang-Ping Xue
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - Xian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Weilin Zhang
- Plant Genetic Engineering Laboratory, College of Plant Protection, Zhejiang Normal University, Jinhua, China
| | - Xuming Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chulang Yu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiong Mei
- Plant Pathogens Laboratory, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wang Fang
- Institute of Biotechnology, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Chengqi Yan
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Chen
- Agricultural Insect Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Zeng W, Sun Z, Cai Z, Chen H, Lai Z, Yang S, Tang X. Proteomic analysis by iTRAQ-MRM of soybean resistance to Lamprosema Indicate. BMC Genomics 2017; 18:444. [PMID: 28587595 PMCID: PMC5461738 DOI: 10.1186/s12864-017-3825-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 05/28/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Lamprosema indicate is a major leaf feeding insect pest to soybean, which has caused serious yield losses in central and southern China. To explore the defense mechanisms of soybean resistance to Lamprosema indicate, a highly resistant line (Gantai-2-2) and a highly susceptible line (Wan 82-178) were exposed to Lamprosema indicate larval feedings for 0 h and 48 h, and the differential proteomic analyses of these two lines were carried out. RESULTS The results showed that 31 differentially expressed proteins (DEPs) were identified in the Gantai-2-2 when comparing 48 h feeding with 0 h feeding, and 53 DEPs were identified in the Wan 82-178. 28 DEPs were identified when comparing Gantai-2-2 with Wan 82-178 at 0 h feeding. The bioinformatic analysis results showed that most of the DEPs were associated with ribosome, linoleic acid metabolism, flavonoid biosynthesis, phenylpropanoid biosynthesis, peroxisome, stilbenoid, diarylheptanoid and gingerol biosynthesis, glutathione metabolism, pant hormone signal transduction, and flavone and flavonol biosynthesis, as well as other resistance related metabolic pathways. The MRM analysis showed that the iTRAQ results were reliable. CONCLUSIONS According to the analysis of the DEPs results, the soybean defended or resisted the Lamprosema indicate damage by the induction of a synthesis of anti-digestive proteins which inhibit the growth and development of insects, reactive oxygen species scavenging, signaling pathways, secondary metabolites synthesis, and so on.
Collapse
Affiliation(s)
- Weiying Zeng
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zudong Sun
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zhaoyan Cai
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Huaizhu Chen
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zhenguang Lai
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Shouzhen Yang
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Xiangmin Tang
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| |
Collapse
|
11
|
Liu X, Zhou H, Zhao J, Hua H, He Y. Identification of the secreted watery saliva proteins of the rice brown planthopper, Nilaparvata lugens (Stål) by transcriptome and Shotgun LC-MS/MS approach. JOURNAL OF INSECT PHYSIOLOGY 2016; 89:60-9. [PMID: 27080912 DOI: 10.1016/j.jinsphys.2016.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 05/26/2023]
Abstract
The rice brown planthopper, Nilaparvata lugens (Stål), a major rice insect pest in Asia, is a vascular bundle-feeder that ejects gelling and watery saliva during the feeding process. Although major proteins in the salivary glands of N. lugens have been identified using 2D PAGE, very little is known about the secreted saliva of this insect. In this study, we identified the major proteins in the secreted watery saliva of N. lugens, via collecting from a sucrose diet that adult planthoppers had fed upon through a membrane of stretched parafilm, and using shotgun LC-MS/MS analysis with reference to transcriptome database of salivary glands of N. lugens. A total of 107 proteins were identified in the watery saliva of N. lugens, over 80% of which showed significant similarity to known proteins. When annotated by the Blast2GO suite, 29 proteins had catalytic activity and 24 proteins were binding proteins. The saliva enzymes included oxidoreductases, hydrolases, phosphatases, peptidases (proteases), kinases, transferases, and lyases. Binding proteins in N. lugens watery saliva included ATP-binding, lipophorin, calcium-binding, actin-binding and DNA-, RNA-, and chromatin-binding proteins. Other non-enzymatic proteins, such as ubiquitins, heat shock proteins, ribosomal proteins, and immunoglobulin proteins were also found in N. lugens watery saliva. This is the first study to identify, characterize and list the proteins in watery saliva of N. lugens, which might be involved in planthopper-rice interactions.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyu Zhou
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhao
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongxia Hua
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueping He
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Buffon G, Blasi ÉAR, Adamski JM, Ferla NJ, Berger M, Santi L, Lavallée-Adam M, Yates JR, Beys-da-Silva WO, Sperotto RA. Physiological and Molecular Alterations Promoted by Schizotetranychus oryzae Mite Infestation in Rice Leaves. J Proteome Res 2015; 15:431-46. [PMID: 26667653 DOI: 10.1021/acs.jproteome.5b00729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Infestation of phytophagous mite Schizotetranychus oryzae in rice causes critical yield losses. To better understand this interaction, we employed Multidimensional Protein Identification Technology (MudPIT) approach to identify differentially expressed proteins. We detected 18 and 872 unique proteins in control and infested leaves, respectively, along with 32 proteins more abundant in control leaves. S. oryzae infestation caused decreased abundance of proteins related to photosynthesis (mostly photosystem II-related), carbon assimilation and energy production, chloroplast detoxification, defense, and fatty acid and gibberellin synthesis. On the contrary, infestation caused increased abundance of proteins involved in protein modification and degradation, gene expression at the translation level, protein partitioning to different organelles, lipid metabolism, actin cytoskeleton remodeling, and synthesis of jasmonate, amino acid, and molecular chaperones. Our results also suggest that S. oryzae infestation promotes cell-wall remodeling and interferes with ethylene biosynthesis in rice leaves. Proteomic data were positively correlated with enzymatic assays and RT-qPCR analysis. Our findings describe the protein expression patterns of infested rice leaves and suggest that the acceptor side of PSII is probably the major damaged target in the photosynthetic apparatus. These data will be useful in future biotechnological approaches aiming to induce phytophagous mite resistance in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mathieu Lavallée-Adam
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | |
Collapse
|
13
|
Truong DH, Bauwens J, Delaplace P, Mazzucchelli G, Lognay G, Francis F. Proteomic analysis of Arabidopsis thaliana (L.) Heynh responses to a generalist sucking pest (Myzus persicae Sulzer). PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1210-7. [PMID: 26153342 DOI: 10.1111/plb.12363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/01/2015] [Indexed: 05/24/2023]
Abstract
Herbivorous insects can cause severe cellular changes to plant foliage following infestations, depending on feeding behaviour. Here, a proteomic study was conducted to investigate the influence of green peach aphid (Myzus persicae Sulzer) as a polyphagous pest on the defence response of Arabidopsis thaliana (L.) Heynh after aphid colony establishment on the host plant (3 days). Analysis of about 574 protein spots on 2-DE gels revealed 31 differentially expressed protein spots. Twenty out of these 31 differential proteins were selected for analysis by mass spectrometry. In 12 of the 20 analysed spots, we identified seven and nine proteins using MALDI-TOF-MS and LC-ESI-MS/MS, respectively. Of the analysed spots, 25% contain two proteins. Different metabolic pathways were modulated in Arabidopsis leaves according to aphid feeding: most corresponded to carbohydrate, amino acid and energy metabolism, photosynthesis, defence response and translation. This paper has established a survey of early alterations induced in the proteome of Arabidopsis by M. persicae aphids. It provides valuable insights into the complex responses of plants to biological stress, particularly for herbivorous insects with sucking feeding behaviour.
Collapse
Affiliation(s)
- D-H Truong
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - J Bauwens
- Functional & Evolutionary Entomology, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - P Delaplace
- Plant Biology, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - G Mazzucchelli
- Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - G Lognay
- Analytical Chemistry Laboratory, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - F Francis
- Functional & Evolutionary Entomology, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| |
Collapse
|
14
|
Abstract
The glyoxalase pathway is required for detoxification of cytotoxic metabolite MG (methylglyoxal) that would otherwise increase to lethal concentrations under adverse environmental conditions. Since its discovery 100 years ago, several roles have been assigned to glyoxalases, but, in plants, their involvement in stress response and tolerance is the most widely accepted role. The plant glyoxalases have emerged as multigene family and this expansion is considered to be important from the perspective of maintaining a robust defence machinery in these sessile species. Glyoxalases are known to be differentially regulated under stress conditions and their overexpression in plants confers tolerance to multiple abiotic stresses. In the present article, we review the importance of glyoxalases in plants, discussing possible roles with emphasis on involvement of the glyoxalase pathway in plant stress tolerance.
Collapse
|
15
|
Fang X, Chen J, Dai L, Ma H, Zhang H, Yang J, Wang F, Yan C. Proteomic dissection of plant responses to various pathogens. Proteomics 2015; 15:1525-43. [DOI: 10.1002/pmic.201400384] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/28/2014] [Accepted: 01/12/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Xianping Fang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and Hunan Provincial Key Laboratory of Biology and Control of Plant Diseases and Insect Pests; Hunan Agricultural University; Changsha Hunan P. R. China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
- Institute of Biology; Hangzhou Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Jianping Chen
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and Hunan Provincial Key Laboratory of Biology and Control of Plant Diseases and Insect Pests; Hunan Agricultural University; Changsha Hunan P. R. China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Liangying Dai
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and Hunan Provincial Key Laboratory of Biology and Control of Plant Diseases and Insect Pests; Hunan Agricultural University; Changsha Hunan P. R. China
| | - Huasheng Ma
- Institute of Biology; Hangzhou Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Hengmu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Jian Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Fang Wang
- Laboratory of Biotechnology; Institute of Biotechnology; Ningbo Academy of Agricultural Sciences; Ningbo P. R. China
| | - Chengqi Yan
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
| |
Collapse
|
16
|
Barah P, Bones AM. Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:479-93. [PMID: 25538257 DOI: 10.1093/jxb/eru489] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The biggest challenge for modern biology is to integrate multidisciplinary approaches towards understanding the organizational and functional complexity of biological systems at different hierarchies, starting from the subcellular molecular mechanisms (microscopic) to the functional interactions of ecological communities (macroscopic). The plant-insect interaction is a good model for this purpose with the availability of an enormous amount of information at the molecular and the ecosystem levels. Changing global climatic conditions are abruptly resetting plant-insect interactions. Integration of discretely located heterogeneous information from the ecosystem to genes and pathways will be an advantage to understand the complexity of plant-insect interactions. This review will present the recent developments in omics-based high-throughput experimental approaches, with particular emphasis on studying plant defence responses against insect attack. The review highlights the importance of using integrative systems approaches to study plant-insect interactions from the macroscopic to the microscopic level. We analyse the current efforts in generating, integrating and modelling multiomics data to understand plant-insect interaction at a systems level. As a future prospect, we highlight the growing interest in utilizing the synthetic biology platform for engineering insect-resistant plants.
Collapse
Affiliation(s)
- Pankaj Barah
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology (NTNU), N 7491 Trondheim, Norway
| | - Atle M Bones
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology (NTNU), N 7491 Trondheim, Norway
| |
Collapse
|
17
|
Yuan XY, Liang F, Jiang SH, Wan MF, Ma J, Zhang XY, Cui B. Differential protein expression in Phalaenopsis under low temperature. Appl Biochem Biotechnol 2014; 175:909-24. [PMID: 25349090 DOI: 10.1007/s12010-014-1345-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/20/2014] [Indexed: 11/25/2022]
Abstract
A comparative proteomic analysis was carried out to explore the molecular mechanisms of responses to cold stress in Phalaenopsis after treated by low temperature (13/8 °C day/night) for 15 days. Differentially expressed proteins were examined using two-dimensional electrophoresis (2-DE) and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-TOF/MS). Among 85 differentially expressed proteins, 73 distinct proteins were identified. Comparative analysis revealed that the identified proteins mainly participate in photosynthesis, protein synthesis, folding and degradation, respiration, defense response, amino acid metabolism, energy pathway, cytoskeleton, transcription regulation, signal transduction, and seed storage protein, while the functional classification of the remaining four proteins was not determined. These data suggested that the proteins might work cooperatively to establish a new homeostasis under cold stress; 37 % of the identified cold-responsive proteins were associated with various aspects of chloroplast physiology, and 56 % of them were predicted to be located in the chloroplasts, implying that the cold stress tolerance of Phalaenopsis was achieved, at least partly, by regulation of chloroplast function. Moreover, the protein destination control, which was mediated by chaperones and proteases, plays an important role in tolerance to cold stress.
Collapse
Affiliation(s)
- Xiu-Yun Yuan
- Institute of Bioengineering, Zhengzhou Normal University, Zhengzhou, 450044, China,
| | | | | | | | | | | | | |
Collapse
|