1
|
Liang Y, Jiang Y, Liu J, Li X, Cheng X, Bao L, Zhou H, Guo Z. Blood-Brain Barrier Disruption and Imaging Assessment in Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01300-6. [PMID: 39322815 DOI: 10.1007/s12975-024-01300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Disruption of the blood-brain barrier (BBB) is an important pathological hallmark of ischemic stroke. Blood-brain barrier disruption (BBBD) is a consequence of ischemia and may also exacerbate damage to brain parenchyma. Therefore, maintaining BBB integrity is critical for the central nervous system (CNS) homeostasis. This review offers a concise overview of BBB structure and function, along with the mechanisms underlying its impairment following a stroke. In addition, we review the recent imaging techniques employed to study blood-brain barrier permeability (BBBP) in the context of ischemic brain injury with the goal of providing imaging guidance for stroke diagnosis and treatment from the perspective of the BBBD. This knowledge is vital for developing strategies to safeguard the BBB during cerebral ischemia.
Collapse
Affiliation(s)
- Yuchen Liang
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Yueluan Jiang
- MR Research and Collaboration Team, Diagnostic Imaging, Siemens Healthineers Ltd., Beijing, China
| | - Jiaxin Liu
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Xuewei Li
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Xinyue Cheng
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Lei Bao
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Hongwei Zhou
- Department of Radiology, the First Hospital of Jilin University, Changchun, China.
| | - Zhenni Guo
- Department of Neurology, Stroke Center, the First Hospital of Jilin University, Changchun, China.
- Department of Neurology, Neuroscience Research Center, the First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Urasheva ZU, Kabdrakhmanova GB, Yermagambetova AP, Utegenova AB, Seitmaganbetova NA, Aliyev OM, Kurmangaliyeva SS, Kenzhina NK, Kurmambayev YZ, Khamidulla AA. Bibliometric Analysis of the Role of Occludin in the Pathogenesis of Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:2121733. [PMID: 39119484 PMCID: PMC11309812 DOI: 10.1155/2024/2121733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/16/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Over the past decade, there has been a notable surge in research dedicated to unraveling the intricate role of tight junction proteins in blood-brain barrier (BBB) damage associated with ischemic stroke. This bibliometric analysis explores the expansive landscape of occludin research, a key tight junction protein, during the years 2000-2023, shedding light on the global scientific contributions, collaborations, and emerging trends in this critical area of stroke pathogenesis. China and the United States emerge as significant contributors, underscoring their prominence in advancing our understanding of tight junction proteins. Occludin, identified as a linchpin in regulating BBB integrity, proves to be a pivotal player, with implications extending to the diagnosis of hemorrhagic transformation in ischemic stroke. This study identifies occludin as a potential biomarker, offering promise for early diagnosis and paving the way for novel diagnostic strategies. The analysis highlights the necessity for a more comprehensive exploration of tight junction proteins, including occludin and claudin-5, particularly in the context of acute cerebral ischemia. The unique healthcare landscape in Kazakhstan adds urgency to the call for further scientific research in this region, emphasizing the need for tailored investigations to address specific regional challenges. This comprehensive overview not only delineates the current state of occludin research but also signals the direction for future investigations. The identified knowledge gaps and emerging trends provide a roadmap for researchers and policymakers alike, with implications for both scientific discourse and clinical practice. Moving forward, a deeper understanding of tight junction proteins, informed by the insights gleaned from this study, holds the potential to shape targeted therapeutic interventions and diagnostic strategies, ultimately contributing to advancements in global stroke care.
Collapse
Affiliation(s)
- Zhanylsyn U. Urasheva
- Department of NeurologyWest Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | | | | | - Aigerim B. Utegenova
- Department of NeurologyWest Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Nazgul A. Seitmaganbetova
- Department of Propaedeutics of Internal DiseasesWest Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Ondassyn M. Aliyev
- Department of Propaedeutics of Internal DiseasesWest Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Saulesh S. Kurmangaliyeva
- Department of Microbiology, Virology and ImmunologyWest Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Nazym K. Kenzhina
- The Course of TherapyWest Kazakhstan High Medicine College, Uralsk, Kazakhstan
| | - Yergen Z. Kurmambayev
- Department of Internal Medicine 1West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Alima A. Khamidulla
- Department of NeurologyWest Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
3
|
Stavrou VT, Vavougios GD, Astara K, Mysiris DS, Tsirimona G, Papayianni E, Boutlas S, Daniil Z, Hadjigeorgiou G, Bargiotas P, Gourgoulianis KI. The Impact of Different Exercise Modes in Fitness and Cognitive Indicators: Hybrid versus Tele-Exercise in Patients with Long Post-COVID-19 Syndrome. Brain Sci 2024; 14:693. [PMID: 39061433 PMCID: PMC11275076 DOI: 10.3390/brainsci14070693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The purpose of our study was to obtain evidence that an unsupervised tele-exercise program (TEgroup) via an online platform is a feasible alternative to a hybrid mode of supervised and unsupervised exercise (HEgroup) sessions for improving fitness indexes, respiratory and cognitive functions, and biomarkers of oxidative stress in patients recovering from COVID-19. Forty-nine patients with long post-COVID-19 were randomly divided into two groups (HEgroup: n = 24, age 60.0 ± 9.5 years versus TEgroup: n = 25, age 58.7 ± 9.5 years). For each patient, we collected data from body composition, oxidative stress, pulmonary function, physical fitness, and cognitive function before and after the 12-week exercise rehabilitation program (ERP). Our data showed differences in both groups before and after 12-week ERP on fitness indicators, body composition, and pulmonary function indicators. Our findings demonstrated differences between groups after 12-week ERP on adjustment in the domains of cognitive function (HEgroup increased the "visuospatial" domain: 3.2 ± 1.1 versus 3.5 ± 0.8 score, p = 0.008 and TEgroup increased the "memory" domain: 3.3 ± 1.0 versus 3.8 ± 0.5 score, p = 0.003; after 12-week ERP showed differences between groups in domain "attention" TEgroup: 4.8 ± 1.5 versus HEgroup: 3.6 ± 1.8 score, p = 0.014) and the diffusing capacity for carbon monoxide (HEgroup increased the percent of predicted values at 0.5 ± 32.3% and TEgroup at 26.0 ± 33.1%, p < 0.001). These findings may be attributed to the different ways of learning exercise programs, resulting in the recruitment of different neural circuits.
Collapse
Affiliation(s)
- Vasileios T. Stavrou
- Laboratory of Cardio-Pulmonary Testing and Pulmonary Rehabilitation, Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece; (G.D.V.); (Z.D.); (K.I.G.)
- RespiHub, ONISLOS-MSCA COFUND, Department of Neurology, Medical School, University of Cyprus, 2029 Nicosia, Cyprus;
| | - George D. Vavougios
- Laboratory of Cardio-Pulmonary Testing and Pulmonary Rehabilitation, Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece; (G.D.V.); (Z.D.); (K.I.G.)
- Department of Neurology, Medical School, University of Cyprus, 2029 Nicosia, Cyprus;
| | - Kyriaki Astara
- Department of Neurology, 417 Army Equity Fund Hospital (NIMTS), 11521 Athens, Greece;
| | - Dimitrios S. Mysiris
- Department of Neurology, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece;
| | - Glykeria Tsirimona
- Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece; (G.T.); (E.P.); (S.B.)
| | - Eirini Papayianni
- Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece; (G.T.); (E.P.); (S.B.)
| | - Stylianos Boutlas
- Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece; (G.T.); (E.P.); (S.B.)
| | - Zoe Daniil
- Laboratory of Cardio-Pulmonary Testing and Pulmonary Rehabilitation, Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece; (G.D.V.); (Z.D.); (K.I.G.)
- Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece; (G.T.); (E.P.); (S.B.)
| | | | - Panagiotis Bargiotas
- RespiHub, ONISLOS-MSCA COFUND, Department of Neurology, Medical School, University of Cyprus, 2029 Nicosia, Cyprus;
- Department of Neurology, Medical School, University of Cyprus, 2029 Nicosia, Cyprus;
| | - Konstantinos I. Gourgoulianis
- Laboratory of Cardio-Pulmonary Testing and Pulmonary Rehabilitation, Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece; (G.D.V.); (Z.D.); (K.I.G.)
- Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece; (G.T.); (E.P.); (S.B.)
| |
Collapse
|
4
|
Galindo AN, Frey Rubio DA, Hettiaratchi MH. Biomaterial strategies for regulating the neuroinflammatory response. MATERIALS ADVANCES 2024; 5:4025-4054. [PMID: 38774837 PMCID: PMC11103561 DOI: 10.1039/d3ma00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/07/2024] [Indexed: 05/24/2024]
Abstract
Injury and disease in the central nervous system (CNS) can result in a dysregulated inflammatory environment that inhibits the repair of functional tissue. Biomaterials present a promising approach to tackle this complex inhibitory environment and modulate the mechanisms involved in neuroinflammation to halt the progression of secondary injury and promote the repair of functional tissue. In this review, we will cover recent advances in biomaterial strategies, including nanoparticles, hydrogels, implantable scaffolds, and neural probe coatings, that have been used to modulate the innate immune response to injury and disease within the CNS. The stages of inflammation following CNS injury and the main inflammatory contributors involved in common neurodegenerative diseases will be discussed, as understanding the inflammatory response to injury and disease is critical for identifying therapeutic targets and designing effective biomaterial-based treatment strategies. Biomaterials and novel composites will then be discussed with an emphasis on strategies that deliver immunomodulatory agents or utilize cell-material interactions to modulate inflammation and promote functional tissue repair. We will explore the application of these biomaterial-based strategies in the context of nanoparticle- and hydrogel-mediated delivery of small molecule drugs and therapeutic proteins to inflamed nervous tissue, implantation of hydrogels and scaffolds to modulate immune cell behavior and guide axon elongation, and neural probe coatings to mitigate glial scarring and enhance signaling at the tissue-device interface. Finally, we will present a future outlook on the growing role of biomaterial-based strategies for immunomodulation in regenerative medicine and neuroengineering applications in the CNS.
Collapse
Affiliation(s)
- Alycia N Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - David A Frey Rubio
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - Marian H Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| |
Collapse
|
5
|
Shao J, Lang Y, Ding M, Yin X, Cui L. Transcription Factor EB: A Promising Therapeutic Target for Ischemic Stroke. Curr Neuropharmacol 2024; 22:170-190. [PMID: 37491856 PMCID: PMC10788889 DOI: 10.2174/1570159x21666230724095558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 07/27/2023] Open
Abstract
Transcription factor EB (TFEB) is an important endogenous defensive protein that responds to ischemic stimuli. Acute ischemic stroke is a growing concern due to its high morbidity and mortality. Most survivors suffer from disabilities such as numbness or weakness in an arm or leg, facial droop, difficulty speaking or understanding speech, confusion, impaired balance or coordination, or loss of vision. Although TFEB plays a neuroprotective role, its potential effect on ischemic stroke remains unclear. This article describes the basic structure, regulation of transcriptional activity, and biological roles of TFEB relevant to ischemic stroke. Additionally, we explore the effects of TFEB on the various pathological processes underlying ischemic stroke and current therapeutic approaches. The information compiled here may inform clinical and basic studies on TFEB, which may be an effective therapeutic drug target for ischemic stroke.
Collapse
Affiliation(s)
- Jie Shao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Manqiu Ding
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
6
|
Mathias K, Machado RS, Stork S, Dos Santos D, Joaquim L, Generoso J, Danielski LG, Barichello T, Prophiro JS, Petronilho F. Blood-brain barrier permeability in the ischemic stroke: An update. Microvasc Res 2024; 151:104621. [PMID: 37918521 DOI: 10.1016/j.mvr.2023.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Stroke is the second leading cause of death globally and the major cause of long-term disability. Among the types of strokes, ischemic stroke, which occurs due to obstruction of blood vessels responsible for cerebral irrigation, is considered the most prevalent, accounting for approximately 86 % of all stroke cases. This interruption of blood supply leads to a critical pathophysiological mechanism, including oxidative stress and neuroinflammation which are responsible for structural alterations of the blood-brain barrier (BBB). The increased BBB permeability associated with cerebral ischemia-reperfusion may contribute to a worse outcome after stroke. Thus, this narrative review aims to update the pathophysiological mechanisms involved in the increase in BBB permeability and to list the possible therapeutic strategies.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Solange Stork
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - David Dos Santos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA
| | - Josiane Somariva Prophiro
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| |
Collapse
|
7
|
Zhang S, Yu Y, Xu P, Shen X, Fang C, Wu X, Qu P, Wu T, Wang QM, Luo X, Hong Y. Mechanical digit sensory stimulation: a randomized control trial on neurological and motor recovery in acute stroke. Front Neurosci 2023; 17:1134904. [PMID: 37287803 PMCID: PMC10242038 DOI: 10.3389/fnins.2023.1134904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Background Mechanical digit sensory stimulation (MDSS) is a novel therapy designed to accelerate the recovery of upper limb (including hand) function in patients with hemiplegia following a stroke. The primary goal of this study was to investigate the effect of MDSS on patients with acute ischemic stroke (AIS). Methods Sixty-one inpatients with AIS were randomly divided into conventional rehabilitation group (RG) and stimulation group (SG), and the latter group received MDSS therapy. A healthy group consisting of 30 healthy adults was also included. The interleukin-17A (IL-17A), vascular endothelial growth factor A (VEGF-A), and tumor necrosis factor-alpha (TNF-α) plasma levels were measured in all subjects. The neurological and motor functions of patients were evaluated using the National Institutes of Health Stroke Scale (NIHSS), Mini-Mental State Examination (MMSE), Fugel-Meyer Assessment (FMA), and Modified Barthel Index (MBI). Results After 12 days of intervention, the IL-17A, TNF-α, and NIHSS levels were significantly decreased, while the VEGF-A, MMSE, FMA, and MBI levels were significantly increased in both disease groups. No significant difference was observed between both disease groups after intervention. The levels of IL-17A and TNF-α were positively correlated with NIHSS but negatively correlated with MMSE, FMA, and MBI. The VEGF-A levels were negatively correlated with NIHSS but positively correlated with MMSE, FMA, and MBI. Conclusion Both MDSS and conventional rehabilitation significantly reduce the production of IL-17A and TNF-α, increase the VEGF-A levels, and effectively improve cognition and motor function of hemiplegic patients with AIS, and the effects of MDSS and conventional rehabilitation are comparable.
Collapse
Affiliation(s)
- Shuting Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yang Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Panpan Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xianshan Shen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Chuanqin Fang
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiaosan Wu
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Ping Qu
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Tingting Wu
- Key Laboratory of Oral Disease Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, Anhui Province, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Xun Luo
- School of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Yongfeng Hong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
8
|
Zhang X, Wang X, Wang S, Zhang Y, Wang Z, Yang Q, Wang S, Cao R, Yu B, Zheng Y, Dang Y. Machine learning algorithms assisted identification of post-stroke depression associated biological features. Front Neurosci 2023; 17:1146620. [PMID: 36968495 PMCID: PMC10030717 DOI: 10.3389/fnins.2023.1146620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
ObjectivesPost-stroke depression (PSD) is a common and serious psychiatric complication which hinders functional recovery and social participation of stroke patients. Stroke is characterized by dynamic changes in metabolism and hemodynamics, however, there is still a lack of metabolism-associated effective and reliable diagnostic markers and therapeutic targets for PSD. Our study was dedicated to the discovery of metabolism related diagnostic and therapeutic biomarkers for PSD.MethodsExpression profiles of GSE140275, GSE122709, and GSE180470 were obtained from GEO database. Differentially expressed genes (DEGs) were detected in GSE140275 and GSE122709. Functional enrichment analysis was performed for DEGs in GSE140275. Weighted gene co-expression network analysis (WGCNA) was constructed in GSE122709 to identify key module genes. Moreover, correlation analysis was performed to obtain metabolism related genes. Interaction analysis of key module genes, metabolism related genes, and DEGs in GSE122709 was performed to obtain candidate hub genes. Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and random forest, were used to identify signature genes. Expression of signature genes was validated in GSE140275, GSE122709, and GSE180470. Gene set enrichment analysis (GSEA) was applied on signature genes. Based on signature genes, a nomogram model was constructed in our PSD cohort (27 PSD patients vs. 54 controls). ROC curves were performed for the estimation of its diagnostic value. Finally, correlation analysis between expression of signature genes and several clinical traits was performed.ResultsFunctional enrichment analysis indicated that DEGs in GSE140275 enriched in metabolism pathway. A total of 8,188 metabolism associated genes were identified by correlation analysis. WGCNA analysis was constructed to obtain 3,471 key module genes. A total of 557 candidate hub genes were identified by interaction analysis. Furthermore, two signature genes (SDHD and FERMT3) were selected using LASSO and random forest analysis. GSEA analysis found that two signature genes had major roles in depression. Subsequently, PSD cohort was collected for constructing a PSD diagnosis. Nomogram model showed good reliability and validity. AUC values of receiver operating characteristic (ROC) curve of SDHD and FERMT3 were 0.896 and 0.964. ROC curves showed that two signature genes played a significant role in diagnosis of PSD. Correlation analysis found that SDHD (r = 0.653, P < 0.001) and FERM3 (r = 0.728, P < 0.001) were positively related to the Hamilton Depression Rating Scale 17-item (HAMD) score.ConclusionA total of 557 metabolism associated candidate hub genes were obtained by interaction with DEGs in GSE122709, key modules genes, and metabolism related genes. Based on machine learning algorithms, two signature genes (SDHD and FERMT3) were identified, they were proved to be valuable therapeutic and diagnostic biomarkers for PSD. Early diagnosis and prevention of PSD were made possible by our findings.
Collapse
Affiliation(s)
- Xintong Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangyu Wang
- Department of Rehabilitation Medicine, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Shuwei Wang
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Yingjie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zeyu Wang
- Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Qingyan Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Song Wang
- Department of Neurological Rehabilitation, Wuxi Yihe Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Risheng Cao
- Department of Science and Technology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Risheng Cao,
| | - Binbin Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Binbin Yu,
| | - Yu Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Yu Zheng,
| | - Yini Dang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Yini Dang,
| |
Collapse
|
9
|
Hu Q, Luo K, Liu P, Mei Y. To discuss the mechanism of colchicine in the treatment of acute cerebral infarction based on network pharmacology. Medicine (Baltimore) 2022; 101:e30720. [PMID: 36197265 PMCID: PMC9509177 DOI: 10.1097/md.0000000000030720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
To explore the mechanism of action of colchicine in the treatment of acute cerebral infarction (ACI) based on network pharmacology. The Swiss Target Prediction Database and CTD database were used to predict the target information of colchicine. ACI-related targets were retrieved using the GeneCards database, and the target protein interaction network (PPI) and active ingredient-target network were obtained by combining Cytoscape 3.7.1 software and R language. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and gene function analysis (GO) enrichment analysis were performed using R language to preliminarily explore the multiple pharmacological mechanisms of action of colchicine. There were 200 targets identified by network parameter analysis; 958 ACI targets were identified. Overlapping comparisons allowed the extraction of 143 overlapping targets, and the top 30 targets were screened according to the topological isomerization parameters. Component-target networks were constructed. A PPI of overlapping targets was established to identify key targets. In addition, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and GO functional enrichment analysis were performed to explore the multiple mechanisms of action of colchicine in the treatment of ACI. Colchicine treatment of ACI is characterized by multi-component, multi-target and multi-pathway, and can exert complex network regulation through the interaction between different targets, providing a new idea and new basis for further exploration of the mechanism of action of colchicine in the treatment of ACI.
Collapse
Affiliation(s)
- Qiaoxia Hu
- Department of Geriatrics, the Affiliated Hospital of Medical School of Ningbo University, Institute of Geriatrics of Ningbo University, Ningbo, China
- *Correspondence: Qiaoxia Hu, Department of Geriatrics, the Affiliated Hospital of Medical School of Ningbo University, Institute of Geriatrics of Ningbo University, 247 Renmin Road, Ningbo 315020, China (e-mail: )
| | - Kena Luo
- Department of Geriatrics, the Affiliated Hospital of Medical School of Ningbo University, Institute of Geriatrics of Ningbo University, Ningbo, China
| | - Puheng Liu
- Department of Geriatrics, the Affiliated Hospital of Medical School of Ningbo University, Institute of Geriatrics of Ningbo University, Ningbo, China
| | - Yifei Mei
- Department of Geriatrics, the Affiliated Hospital of Medical School of Ningbo University, Institute of Geriatrics of Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Jia J. Exploration on neurobiological mechanisms of the central–peripheral–central closed-loop rehabilitation. Front Cell Neurosci 2022; 16:982881. [PMID: 36119128 PMCID: PMC9479450 DOI: 10.3389/fncel.2022.982881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Central and peripheral interventions for brain injury rehabilitation have been widely employed. However, as patients’ requirements and expectations for stroke rehabilitation have gradually increased, the limitations of simple central intervention or peripheral intervention in the rehabilitation application of stroke patients’ function have gradually emerged. Studies have suggested that central intervention promotes the activation of functional brain regions and improves neural plasticity, whereas peripheral intervention enhances the positive feedback and input of sensory and motor control modes to the central nervous system, thereby promoting the remodeling of brain function. Based on the model of a central–peripheral–central (CPC) closed loop, the integration of center and peripheral interventions was effectively completed to form “closed-loop” information feedback, which could be applied to specific brain areas or function-related brain regions of patients. Notably, the closed loop can also be extended to central and peripheral immune systems as well as central and peripheral organs such as the brain–gut axis and lung–brain axis. In this review article, the model of CPC closed-loop rehabilitation and the potential neuroimmunological mechanisms of a closed-loop approach will be discussed. Further, we highlight critical questions about the neuroimmunological aspects of the closed-loop technique that merit future research attention.
Collapse
Affiliation(s)
- Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Regional Medical Center, Fujian, China
- The First Affiliated Hospital of Fujian Medical University, Fujian, China
- *Correspondence: Jie Jia,
| |
Collapse
|
11
|
Zhang D, Li Y, Li H, Fu W, Zeng J, Zeng X. Analysis of Factors That Influence the Prognosis of Swallowing Function Rehabilitation Therapy in Patients with Dysphagia After Medullary Infarction. Neuropsychiatr Dis Treat 2022; 18:97-107. [PMID: 35079218 PMCID: PMC8776725 DOI: 10.2147/ndt.s341353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 01/01/2023] Open
Abstract
PURPOSE This study investigated the factors that influence the prognosis of swallowing function rehabilitation therapy in patients with dysphagia after medullary infarction. PATIENTS AND METHODS This retrospective study was conducted using the clinical data of 51 patients who were diagnosed with dysphagia after medullary infarction and hospitalized at our institution between January 2019 and January 2021. As per the water swallow test (WST) grade at 1 month after rehabilitation treatment, patients were classified into the good prognosis group and the poor prognosis group. Univariate analysis as well as univariate and multivariate logistic regression analysis were used to analyze factors that influence the prognosis of swallowing function rehabilitation therapy in patients with dysphagia after medullary infarction. Receiver operating characteristic (ROC) curves were then used to test the predictive ability of the significant parameters to predict the prognosis of the rehabilitation therapy in these patients. RESULTS Univariate analysis and univariate logistic regression analysis showed that previous stroke (odds ratio [OR] = 1.361), dysarthria (OR = 3.771), disease course (OR = 1.112), National Institutes of Health Stroke Scale (NIHSS) score at admission (OR = 2.596), and infarct site (OR = 11.071) were all significantly correlated with the prognosis of swallowing function rehabilitation therapy in patients with dysphagia after medullary infarction (P < 0.05). Multivariate logistic regression analysis showed that dysarthria (OR = 5.519, 95% confidence interval (CI) 1.413-21.566), infarct site (OR = 18.634, 95% CI 1.696-204.73), and the NIHSS score (OR = 1.001, 95% CI 1.536-4.820) were independent influencing factors of the prognosis of swallowing function rehabilitation therapy in these patients. The ROC curve showed that the area under the curve for the combined prediction of the three indicators was 0.943. CONCLUSION The NIHSS score, dysarthria, and infarct site are independent influencing factors for the prognosis of swallowing function rehabilitation therapy in patients with dysphagia after medullary infarction.
Collapse
Affiliation(s)
- Di Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Yi Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Heping Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Weifeng Fu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Jing Zeng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Xi Zeng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| |
Collapse
|
12
|
Müller S, Kufner A, Dell'Orco A, Rackoll T, Mekle R, Piper SK, Fiebach JB, Villringer K, Flöel A, Endres M, Ebinger M, Nave AH. Evolution of Blood-Brain Barrier Permeability in Subacute Ischemic Stroke and Associations With Serum Biomarkers and Functional Outcome. Front Neurol 2021; 12:730923. [PMID: 34744972 PMCID: PMC8567961 DOI: 10.3389/fneur.2021.730923] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: In the setting of acute ischemic stroke, increased blood-brain barrier permeability (BBBP) as a sign of injury is believed to be associated with increased risk of poor outcome. Pre-clinical studies show that selected serum biomarkers including C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNFα), matrix metallopeptidases (MMP), and vascular endothelial growth factors (VEGFs) may play a role in BBBP post-stroke. In the subacute phase of stroke, increased BBBP may also be caused by regenerative mechanisms such as vascular remodeling and therefore may improve functional recovery. Our aim was to investigate the evolution of BBBP in ischemic stroke using contrast-enhanced (CE) magnetic resonance imaging (MRI) and to analyze potential associations with blood-derived biomarkers as well as functional recovery in subacute ischemic stroke patients. Methods: This is an exploratory analysis of subacute ischemic stroke patients enrolled in the BAPTISe study nested within the randomized controlled PHYS-STROKE trial (interventions: 4 weeks of aerobic fitness training vs. relaxation). Patients with at least one CE-MRI before (v1) or after (v2) the intervention were eligible for this analysis. The prevalence of increased BBBP was visually assessed on T1-weighted MR-images based on extent of contrast-agent enhancement within the ischemic lesion. The intensity of increased BBBP was assessed semi-quantitatively by normalizing the mean voxel intensity within the region of interest (ROI) to the contralateral hemisphere (“normalized CE-ROI”). Selected serum biomarkers (high-sensitive CRP, IL-6, TNF-α, MMP-9, and VEGF) at v1 (before intervention) were analyzed as continuous and dichotomized variables defined by laboratory cut-off levels. Functional outcome was assessed at 6 months after stroke using the modified Rankin Scale (mRS). Results: Ninety-three patients with a median baseline NIHSS of 9 [IQR 6–12] were included into the analysis. The median time to v1 MRI was 30 days [IQR 18–37], and the median lesion volume on v1 MRI was 4 ml [IQR 1.2–23.4]. Seventy patients (80%) had increased BBBP visible on v1 MRI. After the trial intervention, increased BBBP was still detectable in 52 patients (74%) on v2 MRI. The median time to v2 MRI was 56 days [IQR 46–67]. The presence of increased BBBP on v1 MRI was associated with larger lesion volumes and more severe strokes. Aerobic fitness training did not influence the increase of BBBP evaluated at v2. In linear mixed models, the time from stroke onset to MRI was inversely associated with normalized CE-ROI (coefficient −0.002, Standard Error 0.007, p < 0.01). Selected serum biomarkers were not associated with the presence or evolution of increased BBBP. Multivariable regression analysis did not identify the occurrence or evolution of increased BBBP as an independent predictor of favorable functional outcome post-stroke. Conclusion: In patients with moderate-to-severe subacute stroke, three out of four patients demonstrated increased BBB permeability, which decreased over time. The presence of increased BBBP was associated with larger lesion volumes and more severe strokes. We could not detect an association between selected serum biomarkers of inflammation and an increased BBBP in this cohort. No clear association with favorable functional outcome was observed. Trial registration: NCT01954797.
Collapse
Affiliation(s)
- Sarah Müller
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Anna Kufner
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie - Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Andrea Dell'Orco
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Torsten Rackoll
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,BIH QUEST - Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany.,ExcellenceCluster NeuroCure, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ralf Mekle
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sophie K Piper
- Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen B Fiebach
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Kersten Villringer
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
| | - Matthias Endres
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie - Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,ExcellenceCluster NeuroCure, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Martin Ebinger
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Medical Park Berlin Humboldtmühle, Berlin, Germany
| | - Alexander H Nave
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie - Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
13
|
Lu J, Wang J, Yu L, Cui R, Zhang Y, Ding H, Yan G. Treadmill Exercise Attenuates Cerebral Ischemia-Reperfusion Injury by Promoting Activation of M2 Microglia via Upregulation of Interleukin-4. Front Cardiovasc Med 2021; 8:735485. [PMID: 34692788 PMCID: PMC8532515 DOI: 10.3389/fcvm.2021.735485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Exercise has been proven to be an effective therapy for stroke by reducing the microglia-initiated proinflammatory response. Few studies, however, have focused on the phenotypic changes in microglia cells caused by exercise training. The present study was designed to evaluate the influence of treadmill exercise on microglia polarization and the molecular mechanisms involved. Methods: Male Sprague-Dawley rats were randomly assigned into 3 groups: sham, MCAO and exercise. The middle cerebral artery occlusion (MCAO) and exercise groups received MCAO surgery and the sham group a sham operation. The exercise group also underwent treadmill exercise after the surgery. These groups were studied after 4 and 7 days to evaluate behavioral performance using a modified neurological severity score (mNSS), and infarct conditions using 2,3,5-triphenyl tetrazolium chloride. Quantitative real-time polymerase chain reaction (qRT-PCR) and Luminex was employed to determine the expressions of markers of microglia phenotypes. Western blotting was employed to identify the phosphorylation levels of Janus kinase1 (JAK1) and signal transducer and activator of transcription 6 (STAT6). Immunofluorescence was conducted to identify microglia phenotypes. Results: Treadmill exercise was found to improve neurobehavioral outcomes, mainly motor and balance functions, reduce infarct volumes and significantly increase interleukin-4 (IL-4) expression. In addition, treadmill exercise inhibited M1 microglia and promoted M2 microglia activation as evidenced by decreased M1 and increased M2 markers. Furthermore, an obvious increase in p-JAK1 and p-STAT6 was observed in the exercise group. Conclusions: Treadmill exercise ameliorates cerebral ischemia-reperfusion injury by enhancing IL-4 expression to promote M2 microglia polarization, possibly via the JAK1-STAT6 pathway.
Collapse
Affiliation(s)
- Juanjuan Lu
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China.,School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jie Wang
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Long Yu
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Rong Cui
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China.,School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ying Zhang
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Hanqing Ding
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guofeng Yan
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Lee H, Yun HJ, Ding Y. Timing is everything: Exercise therapy and remote ischemic conditioning for acute ischemic stroke patients. Brain Circ 2021; 7:178-186. [PMID: 34667901 PMCID: PMC8459690 DOI: 10.4103/bc.bc_35_21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Physical exercise is a promising rehabilitative strategy for acute ischemic stroke. Preclinical trials suggest that exercise restores cerebral blood circulation and re-establishes the blood–brain barrier’s integrity with neurological function and motor skill improvement. Clinical trials demonstrated that exercise improves prognosis and decreases complications after ischemic events. Due to these encouraging findings, early exercise rehabilitation has been quickly adopted into stroke rehabilitation guidelines. Unfortunately, preclinical trials have failed to warn us of an adverse effect. Trials with very early exercise rehabilitation (within 24 h of ischemic attack) found an inferior prognosis at 3 months. It was not immediately clear as to why exercise was detrimental when performed very early while it was ameliorative just a few short days later. This review aimed to explore the potential mechanisms of harm seen in very early exercise administered to acute ischemic stroke patients. To begin, the mechanisms of exercise’s benefit were transposed onto the current understanding of acute ischemic stroke’s pathogenesis, specifically during the acute and subacute phases. Then, exercise rehabilitation’s mechanisms were compared to that of remote ischemic conditioning (RIC). This comparison may reveal how RIC may be providing clinical benefit during the acute phase of ischemic stroke when exercise proved to be harmful.
Collapse
Affiliation(s)
- Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, Michigan, USA
| |
Collapse
|
15
|
Wu S, Yin Y, Du L. Blood-Brain Barrier Dysfunction in the Pathogenesis of Major Depressive Disorder. Cell Mol Neurobiol 2021; 42:2571-2591. [PMID: 34637015 DOI: 10.1007/s10571-021-01153-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Major depression represents a complex and prevalent psychological disease that is characterized by persistent depressed mood, impaired cognitive function and complicated pathophysiological and neuroendocrine alterations. Despite the multifactorial etiology of depression, one of the most recent factors to be identified as playing a critical role in the development of depression is blood-brain barrier (BBB) disruption. The occurrence of BBB integrity disruption contributes to the disturbance of brain homeostasis and leads to complications of neurological diseases, such as stroke, chronic neurodegenerative disorders, neuroinflammatory disorders. Recently, BBB associated tight junction disruption has been shown to implicate in the pathophysiology of depression and contribute to increased susceptibility to depression. However, the underlying mechanisms and importance of BBB damage in depression remains largely unknown. This review highlights how BBB disruption regulates the depression process and the possible molecular mechanisms involved in development of depression-induced BBB dysfunction. Moreover, insight on promising therapeutic targets for treatment of depression with associated BBB dysfunctions are also discussed.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuye Yin
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
16
|
Wang F, Zhang S, Zhou F, Zhao M, Zhao H. Early physical rehabilitation therapy between 24 and 48 h following acute ischemic stroke onset: a randomized controlled trial. Disabil Rehabil 2021; 44:3967-3972. [PMID: 33736542 DOI: 10.1080/09638288.2021.1897168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Early mobilization is believed to be helpful for patients with acute ischemic stroke. This study aimed to compare the difference between starting rehabilitation between 24 and 48 h and 72 and 96 h following the onset of ischemic stroke. MATERIALS AND METHODS This was a single-center, single-blind, randomized controlled trial. The early rehabilitation (ER) group started exercising between 24 and 48 h after stroke onset, which the standard rehabilitation (SR) group started exercising between 72 and 96 h. The two groups received sitting, standing, and repetitive body strength training respectively. RESULTS In this study, 110 patients were analyzed. Patients in the early rehabilitation group had more favorable outcomes (The modified Rankin scale score 0-2, ER group = 32 versus SR group = 20, adjusted odds ratio 2.27, 95% CI 1.05-4.87; p = 0.036) at 3-month follow-up. The simplified Fugl-Meyer assessment (FMA) scores for the lower extremity were influenced by the interaction effect (F = 7.24, p = 0.01). The post-hoc analysis revealed a difference in the lower extremity FMA score at one week after stroke (difference 2.30 (95% CI 0.65-3.96); p = 0.007). CONCLUSIONS Early physical rehabilitation training between 24 and 48 h may be beneficial and improve patients' lower extremity function within the first week. CLINICAL TRIAL REGISTRATION UNIQUE IDENTIFIER NCT02718534Implications for rehabilitationAcute ischemic stroke has a variety of symptoms, and acroparalysis is a major concern.Starting physical rehabilitation early can improve the prognosis of patients with ischemic stroke.Early rehabilitation is more conducive to the recovery of lower extremity motor function, but in the subsequent rehabilitation process, the upper extremity function should be paid more attention.
Collapse
Affiliation(s)
- Fudong Wang
- Department of Emergency, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Shun Zhang
- Department of Neurology, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Fenghua Zhou
- Department of Rehabilitation, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Min Zhao
- Department of Emergency, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Hongyu Zhao
- Department of Emergency, Sheng Jing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Zhang P, Yang L, Li G, Jin Y, Wu D, Wang QM, Huang P. Agrin Involvement in Synaptogenesis Induced by Exercise in a Rat Model of Experimental Stroke. Neurorehabil Neural Repair 2020; 34:1124-1137. [PMID: 33135566 DOI: 10.1177/1545968320969939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Agrin is a proteoglycan that aggregates nicotinic acetylcholine receptors (AChRs) on neuromuscular junctions and takes part in synaptogenesis in the development of the central nervous system. However, its effects on neural repair and synaptogenesis after stroke are still unclear. OBJECTIVE This study aimed to investigate the effects of agrin on neural repair and synaptogenesis after stroke and the effects of exercise on this process in vivo and in vitro. METHODS Exercise with gradually increased intensity was initiated at 1 day after middle cerebral artery occlusion (MCAO) for a maximum of 14 days. Neurological deficit scores and foot fault tests were used to assess the behavioral recovery. Western blotting, immunofluorescence, and electron microscopic images were used to detect the expression of agrin, synaptogenesis-related proteins, and synaptic density in vivo. In vitro, the ischemic neuron model was established via oxygen-glucose deprivation (OGD). The lentivirus overexpressed agrin and CREB inhibitor were used to investigate the mechanism by which agrin promoted synaptogenesis. RESULTS Exercise promoted behavioral recovery and this beneficial role was linked to the upregulated expression of agrin and increased synaptic density. Overexpressed agrin promoted synaptogenesis in OGD neuron, CREB inhibitor downregulated the expression of agrin and hampered synaptogenesis in cultured neurons. CONCLUSIONS These results indicated that exercise poststroke improved the recovery of behavioral function after stroke. Synaptogenesis was an important and beneficial factor, and agrin played a critical role in this process and could be a potential therapeutic target for the treatment of stroke and other nervous system diseases.
Collapse
Affiliation(s)
- Pengyue Zhang
- Yunnan University of Traditional Chinese Medicine, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Liqiang Yang
- Kunming University of Science and Technology, Kunming, China
| | - Guangxiang Li
- Kunming University of Science and Technology, Kunming, China
| | - Yaju Jin
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qing Mei Wang
- Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Peidong Huang
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
18
|
Zhang D, Lu Y, Zhao X, Zhang Q, Li L. Aerobic exercise attenuates neurodegeneration and promotes functional recovery - Why it matters for neurorehabilitation & neural repair. Neurochem Int 2020; 141:104862. [PMID: 33031857 DOI: 10.1016/j.neuint.2020.104862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Aerobic exercise facilitates optimal neurological function and exerts beneficial effects in neurologic injuries. Both animal and clinical studies have shown that aerobic exercise reduces brain lesion volume and improves multiple aspects of cognition and motor function after stroke. Studies using animal models have proposed a wide range of potential molecular mechanisms that underlie the neurological benefits of aerobic exercise. Furthermore, additional exercise parameters, including time of initiation, exercise dosage (exercise duration and intensity), and treatment modality are also critical for clinical application, as identifying the optimal combination of parameters will afford patients with maximal functional gains. To clarify these issues, the current review summarizes the known neurological benefits of aerobic exercise under both physiological and pathological conditions and then considers the molecular mechanisms underlying these benefits in the contexts of stroke-like focal cerebral ischemia and cardiac arrest-induced global cerebral ischemia. In addition, we explore the key roles of exercise parameters on the extent of aerobic exercise-induced neurological benefits to elucidate the optimal combination for aerobic exercise intervention. Finally, the current challenges for aerobic exercise implementation after stroke are discussed.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Xudong Zhao
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Lei Li
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
19
|
Li F, Geng X, Huber C, Stone C, Ding Y. In Search of a Dose: The Functional and Molecular Effects of Exercise on Post-stroke Rehabilitation in Rats. Front Cell Neurosci 2020; 14:186. [PMID: 32670026 PMCID: PMC7330054 DOI: 10.3389/fncel.2020.00186] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Although physical exercise has been demonstrated to augment recovery of the post-stroke brain, the question of what level of exercise intensity optimizes neurological outcomes of post-stroke rehabilitation remains unsettled. In this study, we aim to clarify the mechanisms underlying the intensity-dependent effect of exercise on neurologic function, and thereby to help direct the clinical application of exercise-based neurorehabilitation. To do this, we used a well-established rat model of ischemic stroke consisting of cerebral ischemia induction through middle cerebral artery occlusion (MCAO). Ischemic rats were subsequently assigned either to a control group entailing post-stroke rest or to one of two exercise groups distinguished by the intensity of their accompanying treadmill regimens. After 24 h of reperfusion, exercise was initiated. Infarct volume, apoptotic cell death, and neurological defects were quantified in all groups at 3 days, and motor and cognitive functions were tracked up to day-28. Additionally, Western blotting was used to assess the influence of our interventions on several proteins related to synaptogenesis and neuroplasticity (growth-associated protein 43, a microtubule-associated protein, postsynaptic density-95, synapsin I, hypoxia-inducible factor-1α, brain-derived neurotrophic factor, nerve growth factor, tyrosine kinase B, and cAMP response element-binding protein). Our results were in equal parts encouraging and surprising. Both mild and intense exercise significantly decreased infarct volume, cell death, and neurological deficits. Motor and cognitive function, as determined using an array of tests such as beam balance, forelimb placing, and the Morris water maze, were also significantly improved by both exercise protocols. Interestingly, while an obvious enhancement of neuroplasticity proteins was shown in both exercise groups, mild exercise rats demonstrated a stronger effect on the expressions of Tau (p < 0.01), brain-derived neurotrophic factor (p < 0.01), and tyrosine kinase B (p < 0.05). These findings contribute to the growing body of literature regarding the positive effects of both mild and intense long-term treadmill exercise on brain injury, functional outcome, and neuroplasticity. Additionally, the results may provide a base for our future study regarding the regulation of HIF-1α on the BDNF/TrkB/CREB pathway in the biochemical processes underlying post-stroke synaptic plasticity.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christian Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, MI, United States
| |
Collapse
|
20
|
Physical Training Moderates Blood-Brain-Barrier Disruption and Improves Cognitive Dysfunction Related to Transient Brain Ischemia in Rats. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09840-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Marzolini S, Robertson AD, Oh P, Goodman JM, Corbett D, Du X, MacIntosh BJ. Aerobic Training and Mobilization Early Post-stroke: Cautions and Considerations. Front Neurol 2019; 10:1187. [PMID: 31803129 PMCID: PMC6872678 DOI: 10.3389/fneur.2019.01187] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
Knowledge gaps exist in how we implement aerobic exercise programs during the early phases post-stroke. Therefore, the objective of this review was to provide evidence-based guidelines for pre-participation screening, mobilization, and aerobic exercise training in the hyper-acute and acute phases post-stroke. In reviewing the literature to determine safe timelines of when to initiate exercise and mobilization we considered the following factors: arterial blood pressure dysregulation, cardiac complications, blood-brain barrier disruption, hemorrhagic stroke transformation, and ischemic penumbra viability. These stroke-related impairments could intensify with inappropriate mobilization/aerobic exercise, hence we deemed the integrity of cerebral autoregulation to be an essential physiological consideration to protect the brain when progressing exercise intensity. Pre-participation screening criteria are proposed and countermeasures to protect the brain from potentially adverse circulatory effects before, during, and following mobilization/exercise sessions are introduced. For example, prolonged periods of standing and static postures before and after mobilization/aerobic exercise may elicit blood pooling and/or trigger coagulation cascades and/or cerebral hypoperfusion. Countermeasures such as avoiding prolonged standing or incorporating periodic lower limb movement to activate the venous muscle pump could counteract blood pooling after an exercise session, minimize activation of the coagulation cascade, and mitigate potential cerebral hypoperfusion. We discuss patient safety in light of the complex nature of stroke presentations (i.e., type, severity, and etiology), medical history, comorbidities such as diabetes, cardiac manifestations, medications, and complications such as anemia and dehydration. The guidelines are easily incorporated into the care model, are low-risk, and use minimal resources. These and other strategies represent opportunities for improving the safety of the activity regimen offered to those in the early phases post-stroke. The timeline for initiating and progressing exercise/mobilization parameters are contingent on recovery stages both from neurobiological and cardiovascular perspectives, which to this point have not been specifically considered in practice. This review includes tailored exercise and mobilization prescription strategies and precautions that are not resource intensive and prioritize safety in stroke recovery.
Collapse
Affiliation(s)
- Susan Marzolini
- KITE, Toronto Rehab-University Health Network, Toronto, ON, Canada
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Canadian Partnership for Stroke Recovery, Toronto, ON, Canada
| | - Andrew D. Robertson
- Schlegel-University of Waterloo Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Paul Oh
- KITE, Toronto Rehab-University Health Network, Toronto, ON, Canada
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Canadian Partnership for Stroke Recovery, Toronto, ON, Canada
| | - Jack M. Goodman
- KITE, Toronto Rehab-University Health Network, Toronto, ON, Canada
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Dale Corbett
- Canadian Partnership for Stroke Recovery, Toronto, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Xiaowei Du
- KITE, Toronto Rehab-University Health Network, Toronto, ON, Canada
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Bradley J. MacIntosh
- Canadian Partnership for Stroke Recovery, Toronto, ON, Canada
- Sunnybrook Health Sciences Center, Toronto, ON, Canada
| |
Collapse
|
22
|
Bower JE, Kuhlman KR, Haydon MD, Boyle CC, Radin A. Cultivating a healthy neuro‐immune network: A health psychology approach. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2019; 13. [PMID: 37008404 PMCID: PMC10062207 DOI: 10.1111/spc3.12498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The field of psychoneuroimmunology (PNI) examines interactions among psychological and behavioral states, the brain, and the immune system. Research in PNI has elegantly documented effects of stress at multiple levels of the neuro-immune network, with profound implications for both physical and mental health. In this review, we consider how the neuro-immune network might be influenced by "positive" psychological and behavioral states, focusing on positive affect, eudaimonic well-being, physical activity, and sleep. There is compelling evidence that these positive states and behaviors are associated with changes in immune activity in the body, including reductions in peripheral inflammatory processes relevant for physical health. Growing evidence from animal models also suggests effects of positive states on immune cells in the brain and the blood-brain barrier, which then impact critical aspects of mood, cognition, and behavior. Tremendous advances are being made in our understanding of neuro-immune dynamics; one of the central goals of this review is to highlight recent preclinical research in this area and consider how we can leverage these findings to investigate and cultivate a healthy neuro-immune network in humans.
Collapse
Affiliation(s)
| | - Kate R. Kuhlman
- University of California Los Angeles
- University of California Irvine
| | | | | | | |
Collapse
|
23
|
Lan X, Sun Z, Chu C, Boltze J, Li S. Dental Pulp Stem Cells: An Attractive Alternative for Cell Therapy in Ischemic Stroke. Front Neurol 2019; 10:824. [PMID: 31428038 PMCID: PMC6689980 DOI: 10.3389/fneur.2019.00824] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a major cause of disability and mortality worldwide, but effective restorative treatments are very limited at present. Regenerative medicine research revealed that stem cells are promising therapeutic options. Dental pulp stem cells (DPSCs) are autologously applicable cells that origin from the neural crest and exhibit neuro-ectodermal features next to multilineage differentiation potentials. DPSCs are of increasing interest since they are relatively easy to obtain, exhibit a strong proliferation ability, and can be cryopreserved for a long time without losing their multi-directional differentiation capacity. Besides, use of DPSCs can avoid fundamental problems such as immune rejection, ethical controversy, and teratogenicity. Therefore, DPSCs provide a tempting prospect for stroke treatment.
Collapse
Affiliation(s)
- Xiaoyan Lan
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Zhengwu Sun
- Department of Pharmacy, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Chengyan Chu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| |
Collapse
|
24
|
Lee JM, Baek SS, Kim TW, Park HS, Park SS, Park JM, Kim YJ, Lee HS, Shin MS. Preischemic treadmill exercise improves short-term memory by inhibiting hypoperfusion-induced disruption of blood-brain barrier after bilateral common carotid arteries occlusion. J Exerc Rehabil 2019; 15:370-376. [PMID: 31316928 PMCID: PMC6614759 DOI: 10.12965/jer.1938274.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/30/2019] [Indexed: 01/29/2023] Open
Abstract
Bilateral common carotid arteries occlusion (BCCAO) causes an abrupt reduction of cerebral blood flow, and this method has been used to investigate the effects of chronic cerebral hypoperfusion on vascular dementia and neuronal injuries. Chronic cerebral hypoperfusion leads to functional changes in the hippocampus and then results in a cognitive impairment. We investigated the effect of preischemic treadmill exercise on short-term memory and blood-brain barrier integration following cerebral hypoperfusion caused by BCCAO. The rats in the preischemic treadmill exercise and BCCAO group were made to run on a treadmill for 30 min once a day for 4 weeks. At 4 weeks after performing treadmill exercise, right carotid artery was ligated, and 1 week after, left common carotid artery was ligated. At 20 days after BCCAO, short-term memory was evaluated. Half of the rats were sacrificed 2 days after BCCAO and the other rats were sacrificed at 3 weeks after BCCAO. Immunohistochemistry and western blot were performed. Preischemic treadmill exercise alleviated impairment of short-term memory in the step-down avoidance task. Preischemic treadmill exercise reduced microvascular injury in the hippocampus. Preischemic treadmill exercise prevented the reduction of zonula occludens-1 in the hippocampus and inhibited the activation of matrix metalloproteinase-9. Therefore, pre-conditioning treadmill exercise might be used as a therapeutic strategy for the prevention of stroke in patients.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Sport & Health Science, College of Art & Culture, Sangmyung University, Seoul, Korea
| | - Seung-Soo Baek
- Department of Sport & Health Science, College of Art & Culture, Sangmyung University, Seoul, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hye-Sang Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jong-Min Park
- College of Nursing Science, Kyung Hee University, Seoul, Korea
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University, Seoul, Korea
| | - Hyun-Seob Lee
- Department of Physical Education, Korea University, Seoul, Korea
| | - Mal-Soon Shin
- School of Global Sport Studies, Korea University, Sejong, Korea
| |
Collapse
|
25
|
Wang CJ, Wu Y, Zhang Q, Yu KW, Wang YY. An enriched environment promotes synaptic plasticity and cognitive recovery after permanent middle cerebral artery occlusion in mice. Neural Regen Res 2019; 14:462-469. [PMID: 30539814 PMCID: PMC6334594 DOI: 10.4103/1673-5374.245470] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on synaptic remodeling in a mouse model of chronic cerebral ischemia, produced by subjecting adult male C57BL/6 mice to permanent left middle cerebral artery occlusion. Three days postoperatively, mice were randomly assigned to the environmental enrichment and standard housing groups. Mice in the standard housing group were housed and fed a standard diet. Mice in the environmental enrichment group were housed in a cage with various toys and fed a standard diet. Then, 28 days postoperatively, spatial learning and memory were tested using the Morris water maze. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 in the hippocampus were analyzed by western blot assay. The number of synapses was evaluated by electron microscopy. In the water maze test, mice in the environmental enrichment group had a shorter escape latency, traveled markedly longer distances, spent more time in the correct quadrant (northeast zone), and had a higher frequency of crossings compared with the standard housing group. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 were substantially upregulated in the hippocampus in the environmental enrichment group compared with the standard housing group. Furthermore, electron microscopy revealed that environmental enrichment increased the number of synapses in the hippocampal CA1 region. Collectively, these findings suggest that environmental enrichment ameliorates the spatial learning and memory impairment induced by permanent middle cerebral artery occlusion. Environmental enrichment in mice with cerebral ischemia likely promotes cognitive recovery by inducing plastic changes in synapses.
Collapse
Affiliation(s)
- Chuan-Jie Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke-Wei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Yang Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. The Neuroprotective Effects of Exercise: Maintaining a Healthy Brain Throughout Aging. Brain Plast 2018; 4:17-52. [PMID: 30564545 PMCID: PMC6296262 DOI: 10.3233/bpl-180069] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2018] [Indexed: 02/06/2023] Open
Abstract
Physical activity plays an essential role in maintaining a healthy body, yet it also provides unique benefits for the vascular and cellular systems that sustain a healthy brain. While the benefit of exercise has been observed in humans of all ages, the availability of preclinical models has permitted systematic investigations into the mechanisms by which exercise supports and protects the brain. Over the past twenty-five years, rodent models have shown that increased physical activity elevates neurotrophic factors in the hippocampal and cortical areas, facilitating neurotransmission throughout the brain. Increased physical activity (such as by the voluntary use of a running wheel or regular, timed sessions on a treadmill) also promotes proliferation, maturation and survival of cells in the dentate gyrus, contributing to the process of adult hippocampal neurogenesis. In this way, rodent studies have tremendous value as they demonstrate that an 'active lifestyle' has the capacity to ameliorate a number of age-related changes in the brain, including the decline in adult neurogenesis. Moreover, these studies have shown that greater physical activity may protect the brain health into advanced age through a number of complimentary mechanisms: in addition to upregulating factors in pro-survival neurotrophic pathways and enhancing synaptic plasticity, increased physical activity promotes brain health by supporting the cerebrovasculature, sustaining the integrity of the blood-brain barrier, increasing glymphatic clearance and proteolytic degradation of amyloid beta species, and regulating microglia activation. Collectively, preclinical studies demonstrate that exercise initiates diverse and powerful neuroprotective pathways that may converge to promote continued brain health into old age. This review will draw on both seminal and current literature that highlights mechanisms by which exercise supports the functioning of the brain, and aids in its protection.
Collapse
Affiliation(s)
- Laura M. Vecchio
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Ying Meng
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Kristiana Xhima
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Nir Lipsman
- Institute of Medical Sciences, University of Toronto, ON, Canada
- Physical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
| | - Clement Hamani
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| |
Collapse
|
27
|
Sun P, Bu F, Min JW, Munshi Y, Howe MD, Liu L, Koellhoffer EC, Qi L, McCullough LD, Li J. Inhibition of calcium/calmodulin-dependent protein kinase kinase (CaMKK) exacerbates impairment of endothelial cell and blood-brain barrier after stroke. Eur J Neurosci 2018; 49:27-39. [PMID: 30422362 DOI: 10.1111/ejn.14223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/21/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
Brain microvascular endothelial cells play an essential role in maintaining blood-brain barrier (BBB) integrity, and disruption of the BBB aggravates the ischemic injury. CaMKK (α and β) is a major kinase activated by elevated intracellular calcium. Previously, we demonstrated that inhibition of CaMKK exacerbated outcomes, conversely, overexpression reduced brain injury after stroke in mice. Interestingly, CaMKK has been shown to activate a key endothelial protector, sirtuin 1 (SIRT1). We hypothesized that CaMKK protects brain endothelial cells via SIRT1 activation after stroke. In this study, Oxygen-Glucose Deprivation (OGD) was performed in human brain microvascular endothelial cells. Stroke was induced by middle cerebral artery occlusion (MCAO) in male mice. Knockdown of CaMKK β using siRNA increased cell death following OGD. Inhibition of CaMKK β by STO-609 significantly and selectively down-regulated levels of phosphorylated SIRT1 after OGD. Changes in the downstream targets of SIRT1 were observed following STO-609 treatment. The effect of STO-609 on cell viability after OGD was absent, when SIRT1 was concurrently inhibited. We also demonstrated that STO-609 increased endothelial expression of the pro-inflammatory proteins ICAM-1 and VCAM-1 and inhibition of CaMKK exacerbated OGD-induced leukocyte-endothelial adhesion. Finally, intracerebroventricular injection of STO-609 exacerbated endothelial apoptosis and reduced BBB integrity after 24-hr reperfusion following MCAO in vivo. Collectively, these results demonstrated that CaMKK inhibition reduced endothelial cell viability, exacerbated inflammatory responses and aggravated BBB impairment after ischemia. CaMKK activation may attenuate ischemic brain injury via protection of the microvascular system and a reduction in the infiltration of pro-inflammatory factors.
Collapse
Affiliation(s)
- Ping Sun
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Fan Bu
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jia-Wei Min
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Yashasvee Munshi
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Matthew D Howe
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Lin Liu
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Edward C Koellhoffer
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Li Qi
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jun Li
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
28
|
Abbasian S, Rastegar MM M. Is the Intensity or Duration of Treadmill Training Important for Stroke Patients? A Meta-Analysis. J Stroke Cerebrovasc Dis 2018; 27:32-43. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.09.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/20/2017] [Accepted: 09/29/2017] [Indexed: 11/26/2022] Open
|
29
|
Li J, Hu XS, Zhou FF, Li S, Lin YS, Qi WQ, Qi CF, Zhang X. Limb remote ischemic postconditioning protects integrity of the blood-brain barrier after stroke. Neural Regen Res 2018; 13:1585-1593. [PMID: 30127119 PMCID: PMC6126140 DOI: 10.4103/1673-5374.237122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Integrity of the blood-brain barrier structure is essential for maintaining the internal environment of the brain. Development of cerebral infarction and brain edema is strongly associated with blood-brain barrier leakage. Therefore, studies have suggested that protecting the blood-brain barrier may be an effective method for treating acute stroke. To examine this possibility, stroke model rats were established by middle cerebral artery occlusion and reperfusion. Remote ischemic postconditioning was immediately induced by three cycles of 10-minute ischemia/10-minute reperfusion of bilateral hind limbs at the beginning of middle cerebral artery occlusion reperfusion. Neurological function of rat models was evaluated using Zea Longa’s method. Permeability of the blood-brain barrier was assessed by Evans blue leakage. Infarct volume and brain edema were evaluated using 2,3,5-triphenyltetrazolium chloride staining. Expression of matrix metalloproteinase-9 and claudin-5 mRNA was determined by real-time quantitative reverse transcription-polymerase chain reaction. Expression of matrix metalloproteinase-9 and claudin-5 protein was measured by western blot assay. The number of matrix metalloproteinase-9- and claudin-5-positive cells was analyzed using immunohistochemistry. Our results showed that remote ischemic postconditioning alleviated disruption of the blood-brain barrier, reduced infarct volume and edema, decreased expression of matrix metalloproteinase-9 mRNA and protein and the number of positive cells, increased expression of claudin-5 mRNA and protein and the number of positive cells, and remarkably improved neurological function. These findings confirm that by suppressing expression of matrix metalloproteinase-9 and claudin-5 induced by acute ischemia/reperfusion, remote ischemic postconditioning reduces blood-brain barrier injury, mitigates ischemic injury, and exerts protective effects on the brain.
Collapse
Affiliation(s)
- Juan Li
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Xiao-Song Hu
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Fang-Fang Zhou
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Shuai Li
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - You-Sheng Lin
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Wen-Qian Qi
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Cun-Fang Qi
- Department of Anatomy, Qinghai University, Xining, Qinghai Province, China
| | - Xiao Zhang
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| |
Collapse
|
30
|
Buttler L, Jordão MT, Fragas MG, Ruggeri A, Ceroni A, Michelini LC. Maintenance of Blood-Brain Barrier Integrity in Hypertension: A Novel Benefit of Exercise Training for Autonomic Control. Front Physiol 2017; 8:1048. [PMID: 29311978 PMCID: PMC5733101 DOI: 10.3389/fphys.2017.01048] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022] Open
Abstract
The blood-brain barrier (BBB) is a complex multicellular structure acting as selective barrier controlling the transport of substances between these compartments. Accumulating evidence has shown that chronic hypertension is accompanied by BBB dysfunction, deficient local perfusion and plasma angiotensin II (Ang II) access into the parenchyma of brain areas related to autonomic circulatory control. Knowing that spontaneously hypertensive rats (SHR) exhibit deficient autonomic control and brain Ang II hyperactivity and that exercise training is highly effective in correcting both, we hypothesized that training, by reducing Ang II content, could improve BBB function within autonomic brain areas of the SHR. After confirming the absence of BBB lesion in the pre-hypertensive SHR, but marked fluorescein isothiocyanate dextran (FITC, 10 kD) leakage into the brain parenchyma of the hypothalamic paraventricular nucleus (PVN), nucleus of the solitary tract, and rostral ventrolateral medulla during the established phase of hypertension, adult SHR, and age-matched WKY were submitted to a treadmill training (T) or kept sedentary (S) for 8 weeks. The robust FITC leakage within autonomic areas of the SHR-S was largely reduced and almost normalized since the 2nd week of training (T2). BBB leakage reduction occurred simultaneously and showed strong correlations with both decreased LF/HF ratio to the heart and reduced vasomotor sympathetic activity (power spectral analysis), these effects preceding the appearance of resting bradycardia (T4) and partial pressure fall (T8). In other groups of SHR-T simultaneously infused with icv Ang II or saline (osmotic mini-pumps connected to a lateral ventricle cannula) we proved that decreased local availability of this peptide and reduced microglia activation (IBA1 staining) are crucial mechanisms conditioning the restoration of BBB integrity. Our data also revealed that Ang II-induced BBB lesion was faster within the PVN (T2), suggesting the prominent role of this nucleus in driven hypertension-induced deficits. These original set of data suggest that reduced local Ang II content (and decreased activation of its downstream pathways) is an essential and early-activated mechanism to maintain BBB integrity in trained SHR and uncovers a novel beneficial effect of exercise training to improve autonomic control even in the presence of hypertension.
Collapse
Affiliation(s)
- Leila Buttler
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria T Jordão
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matheus G Fragas
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriana Ruggeri
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Ceroni
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lisete C Michelini
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Coleman ER, Moudgal R, Lang K, Hyacinth HI, Awosika OO, Kissela BM, Feng W. Early Rehabilitation After Stroke: a Narrative Review. Curr Atheroscler Rep 2017; 19:59. [PMID: 29116473 PMCID: PMC5802378 DOI: 10.1007/s11883-017-0686-6] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Despite current rehabilitative strategies, stroke remains a leading cause of disability in the USA. There is a window of enhanced neuroplasticity early after stroke, during which the brain's dynamic response to injury is heightened and rehabilitation might be particularly effective. This review summarizes the evidence of the existence of this plastic window, and the evidence regarding safety and efficacy of early rehabilitative strategies for several stroke domain-specific deficits. RECENT FINDINGS Overall, trials of rehabilitation in the first 2 weeks after stroke are scarce. In the realm of very early mobilization, one large and one small trial found potential harm from mobilizing patients within the first 24 h after stroke, and only one small trial found benefit in doing so. For the upper extremity, constraint-induced movement therapy appears to have benefit when started within 2 weeks of stroke. Evidence for non-invasive brain stimulation in the acute period remains scant and inconclusive. For aphasia, the evidence is mixed, but intensive early therapy might be of benefit for patients with severe aphasia. Mirror therapy begun early after stroke shows promise for the alleviation of neglect. Novel approaches to treating dysphagia early after stroke appear promising, but the high rate of spontaneous improvement makes their benefit difficult to gauge. The optimal time to begin rehabilitation after a stroke remains unsettled, though the evidence is mounting that for at least some deficits, initiation of rehabilitative strategies within the first 2 weeks of stroke is beneficial. Commencing intensive therapy in the first 24 h may be harmful.
Collapse
Affiliation(s)
- Elisheva R Coleman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, 260 Stetson St., Suite 2300, Cincinnati, OH, 45267-0525, USA.
| | - Rohitha Moudgal
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kathryn Lang
- Department of Rehabilitation Services, University of Cincinnati, Cincinnati, OH, USA
| | - Hyacinth I Hyacinth
- Aflac Cancer and Blood Disorder Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Oluwole O Awosika
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, 260 Stetson St., Suite 2300, Cincinnati, OH, 45267-0525, USA
| | - Brett M Kissela
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, 260 Stetson St., Suite 2300, Cincinnati, OH, 45267-0525, USA
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
32
|
The Effects of Early Exercise on Motor, Sense, and Memory Recovery in Rats With Stroke. Am J Phys Med Rehabil 2017; 96:e36-e43. [PMID: 27977432 DOI: 10.1097/phm.0000000000000670] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Exercise is an effective, inexpensive, home-based, and accessible intervention strategy for stroke treatment, and early exercise after stroke has attracted a great deal of attention in recent years. However, the effects of early exercise on comprehensive functional recovery remain poorly understood. The present study investigated the effect of early exercise on motor, sense, balance, and spatial memory recovery. DESIGN Adult Sprague-Dawley rats were subjected to unilateral middle cerebral artery occlusion (MCAO) and were randomly divided into early exercise group (EE), non-exercise group (NE), and sham group. EE group received 2 weeks of exercise training initiated at 24 hours after operation. The recovery of motor, sense, and balance function was evaluated every 3 days after MCAO. Spatial memory recovery was detected from 21 to 25 days after MCAO. RESULTS The results showed that early exercise significantly promoted the motor and spatial memory recovery with statistical differences. The rats in EE group have a better recovery in sense and balance function, but there is no statistically significant difference about these results. CONCLUSION Our results showed that early moderate exercise can significantly promote motor and spatial memory recovery, but not the sense and balance functions.
Collapse
|
33
|
Pan R, Yu K, Weatherwax T, Zheng H, Liu W, Liu KJ. Blood Occludin Level as a Potential Biomarker for Early Blood Brain Barrier Damage Following Ischemic Stroke. Sci Rep 2017; 7:40331. [PMID: 28079139 PMCID: PMC5228160 DOI: 10.1038/srep40331] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/05/2016] [Indexed: 11/09/2022] Open
Abstract
Concern about intracerebral hemorrhage (ICH) is the primary reason for withholding tPA therapy from patients with ischemic stroke. Early blood brain barrier (BBB) damage is the major risk factor for fatal post-thrombolysis ICH, but rapidly assessing BBB damage before tPA administration is highly challenging. We recently reported that ischemia induced rapid degradation of tight junction protein occludin in cerebromicrovessels. The present study investigates whether the cleaved occludin is released into the blood stream and how blood occludin levels correlate to the extent of BBB damage using a rat model of ischemic stroke. Cerebral ischemia induced a time-dependent increase of blood occludin with a sharp increase at 4.5-hour post-ischemia onset, which concurrently occurred with the loss of occludin from ischemic cerebral microvessels and a massive BBB leakage at 4.5-hour post-ischemia. Two major occludin fragments were identified in the blood during cerebral ischemia. Furthermore, blood occludin levels remained significantly higher than its basal level within the first 24 hours after ischemia onset. Our findings demonstrate that blood occludin levels correlate well with the extent of BBB damage and thus may serve as a clinically relevant biomarker for evaluating the risk of ICH before tPA administration.
Collapse
Affiliation(s)
- Rong Pan
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kewei Yu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Theodore Weatherwax
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Handong Zheng
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Wenlan Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,The Central Laboratory, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, Guangdong, 518035, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
34
|
Lee JM, Park JM, Song MK, Oh YJ, Kim CJ, Kim YJ. The ameliorative effects of exercise on cognitive impairment and white matter injury from blood-brain barrier disruption induced by chronic cerebral hypoperfusion in adolescent rats. Neurosci Lett 2016; 638:83-89. [PMID: 27956237 DOI: 10.1016/j.neulet.2016.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/13/2016] [Accepted: 12/08/2016] [Indexed: 01/13/2023]
Abstract
Vascular dementia is the progressive change in blood vessels that leads to neuronal injuries in vulnerable areas induced by chronic cerebral hypoperfusion (CCH). CCH induces disruption of blood-brain barrier (BBB), and this BBB disruption can initiate the cognitive impairment and white matter injury. In the present study, we evaluated the effect of treadmill exercise on the cognitive impairment, white matter injury, and BBB disruption induced by CCH. Vascular dementia was induced by permanent bilateral common carotid arteries occlusion (BCCAO) in rats. The rats in the exercise group were made to run on a treadmill for 30min once a day for 14 weeks, starting 4 weeks after birth. Our results revealed that treadmill exercise group was alleviated the cognitive impairment and myelin degradation induced by CCH. The disruption of BBB after CCH indicates degradation of occludin, zonula occluden-1 (ZO-1), and up-regulation of matrix metalloproteinases (MMPs). Treadmill exercise may provide protective effects on BBB disruption from degradation of occludin, ZO-1, and overexpression of MMP-9 after CCH. These findings suggest that treadmill exercise ameliorates cognitive impairment and white matter injury from BBB disruption induced by CCH in rats. The present study will be valuable for means of prophylactic and therapeutic intervention for patients with CCH.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Physiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, South Korea
| | - Jong-Min Park
- Department of Physiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, South Korea
| | - Min Kyung Song
- Department of Basic Nursing Science, College of Nursing Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 South Korea
| | - Yoo Joung Oh
- Department of Basic Nursing Science, College of Nursing Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 South Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, South Korea
| | - Youn-Jung Kim
- Department of Basic Nursing Science, College of Nursing Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 South Korea.
| |
Collapse
|
35
|
Zhang X, Chen XP, Lin JB, Xiong Y, Liao WJ, Wan Q. Effect of enriched environment on angiogenesis and neurological functions in rats with focal cerebral ischemia. Brain Res 2016; 1655:176-185. [PMID: 27818208 DOI: 10.1016/j.brainres.2016.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to investigate the effect of enriched environment (EE) on cerebral angiogenesis after ischemia-reperfusion injury. Middle cerebral artery occlusion (MCAO) followed by reperfusion was performed in rats to set up an animal model of ischemia-reperfusion injury. In a set of behavioral tests, we demonstrated that the animals in the IEE (ischemia + enriched environment) group exhibited significantly improved neurological functions compared to those in the standard housing condition group. In consistent with the functional tests, smaller infarction volumes were observed in the animals of IEE group. Laser scanning confocal microscopy and 3D quantitative analysis of cerebral microvessels revealed that EE treatment increased the total vessel surface area and number of branch point in the ischemic boundary zone. IgG extraction assay showed that the blood brain barrier (BBB) leakage in the ischemic brain was attenuated after EE treatment. EE treatment also enhanced endothelial cells (ECs) proliferation and increased the expression levels of VEGF and its receptor Flk-1 after ischemia-reperfusion injury. Analyses of Spearman's correlation coefficients indicated a correlation of mNSS scores with enhanced cerebral angiogenesis. Together, the results suggest that EE treatment-induced cerebral angiogenesis may contribute to the improved neurological outcome of stroke animals after ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiu-Ping Chen
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jun-Bin Lin
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Xiong
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei-Jing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Qi Wan
- Department of Physiology, Center for Brain Clinic, Zhongnan Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
36
|
Exercise protects against methamphetamine-induced aberrant neurogenesis. Sci Rep 2016; 6:34111. [PMID: 27677455 PMCID: PMC5039713 DOI: 10.1038/srep34111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022] Open
Abstract
While no effective therapy is available for the treatment of methamphetamine (METH)-induced neurotoxicity, aerobic exercise is being proposed to improve depressive symptoms and substance abuse outcomes. The present study focuses on the effect of exercise on METH-induced aberrant neurogenesis in the hippocampal dentate gyrus in the context of the blood-brain barrier (BBB) pathology. Mice were administered with METH or saline by i.p. injections for 5 days with an escalating dose regimen. One set of mice was sacrificed 24 h post last injection of METH, and the remaining animals were either subjected to voluntary wheel running (exercised mice) or remained in sedentary housing (sedentary mice). METH administration decreased expression of tight junction (TJ) proteins and increased BBB permeability in the hippocampus. These changes were preserved post METH administration in sedentary mice and were associated with the development of significant aberrations of neural differentiation. Exercise protected against these effects by enhancing the protein expression of TJ proteins, stabilizing the BBB integrity, and enhancing the neural differentiation. In addition, exercise protected against METH-induced systemic increase in inflammatory cytokine levels. These results suggest that exercise can attenuate METH-induced neurotoxicity by protecting against the BBB disruption and related microenvironmental changes in the hippocampus.
Collapse
|
37
|
Diaz R, Miguel PM, Deniz BF, Confortim HD, Barbosa S, Mendonça MCP, Cruz‐Höfling MA, Pereira LO. Environmental enrichment attenuates the blood brain barrier dysfunction induced by the neonatal hypoxia‐ischemia. Int J Dev Neurosci 2016; 53:35-45. [DOI: 10.1016/j.ijdevneu.2016.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/08/2016] [Accepted: 06/16/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ramiro Diaz
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Patrícia Maidana Miguel
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Bruna Ferrary Deniz
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Heloísa Deola Confortim
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Sílvia Barbosa
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
- Departamento de Ciências MorfológicasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Monique Culturato Padilha Mendonça
- Departamento de Farmacologia, Faculdade de Ciências MédicasUniversidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
- Departamento de Bioquímica e Biologia TecidualInstituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - Maria Alice Cruz‐Höfling
- Departamento de Farmacologia, Faculdade de Ciências MédicasUniversidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
- Departamento de Bioquímica e Biologia TecidualInstituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - Lenir Orlandi Pereira
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
- Departamento de Ciências MorfológicasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| |
Collapse
|
38
|
Jiang C, Yu K, Wu Y, Xie H, Liu G, Wu J, Jia J, Kuang S. Enriched Environment Enhances Poststroke Neurological Function Recovery on Rat: Involvement of p-ERK1/2. J Stroke Cerebrovasc Dis 2016; 25:1590-1598. [PMID: 27068861 DOI: 10.1016/j.jstrokecerebrovasdis.2016.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/22/2016] [Accepted: 03/04/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Increasing evidence shows that exposure to an enriched environment (EE) after cerebral ischemia or reperfusion injury is neuroprotective in animal models, including that EE enhances functional recovery after ischemic stroke. However, the mechanism underlying this effect remains unclear. To clarify this critical issue, the current study investigated the effects of EE on the role of extracellular signal-regulated kinase (ERK) after cerebral ischemia or reperfusion injury of rat. METHODS Adult rats were subjected to ischemia induced by middle cerebral artery occlusion (MCAO) followed by reperfusion. Ladder walking task and limb-use asymmetry task were used to test the recovery of rat behavior on postoperative days 1, 3, 5, 7, 14 and days 3, 7, 14, respectively. On the eighth day after MCAO, infarct volume was assessed by 2,3,5-triphenyltetrazolium chloride staining. Expressions of phosphorylated ERK1/2 (p-ERK1/2) and total ERK1/2 were examined by western blot, and electron microscopy was used to evaluate the astrocytes morphology surround in the perivascular 14 days after MCAO. RESULTS EE improves the recovery of coordination and integration of motor movements on rats after cerebral ischemia or reperfusion injury. EE downregulates the level of p-ERK1/2 in the rat cortex after cerebral ischemia or reperfusion injury. Furthermore, EE reduces astrocytic swelling and injury. CONCLUSIONS These findings suggest that EE could promote rehabilitation after ischemia via regulation of p-ERK1/2 expression, which may provide a therapeutic approach for cerebral ischemia or reperfusion injury. The suppression of postischemic astrocytic swelling in the brain of the ischemic rats through the intervention of EE would be one of the underlying mechanisms in the protective effect of cerebral ischemia.
Collapse
Affiliation(s)
- Congyu Jiang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Kewei Yu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Shanghai, China.
| | - Hongyu Xie
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Gang Liu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Junfa Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Shenyi Kuang
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Nishioka R, Sugimoto K, Aono H, Mise A, Choudhury ME, Miyanishi K, Islam A, Fujita T, Takeda H, Takahashi H, Yano H, Tanaka J. Treadmill exercise ameliorates ischemia-induced brain edema while suppressing Na⁺/H⁺ exchanger 1 expression. Exp Neurol 2015; 277:150-161. [PMID: 26724742 DOI: 10.1016/j.expneurol.2015.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 01/23/2023]
Abstract
Exercise may be one of the most effective and sound therapies for stroke; however, the mechanisms underlying the curative effects remain unclear. In this study, the effects of forced treadmill exercise with electric shock on ischemic brain edema were investigated. Wistar rats were subjected to transient (90 min) middle cerebral artery occlusion (tMCAO). Eighty nine rats with substantially large ischemic lesions were evaluated using magnetic resonance imaging (MRI) and were randomly assigned to exercise and non-exercise groups. The rats were forced to run at 4-6m/s for 10 min/day on days 2, 3 and 4. Brain edema was measured on day 5 by MRI, histochemical staining of brain sections and tissue water content determination (n=7, each experiment). Motor function in some rats was examined on day 30 (n=6). Exercise reduced brain edema (P<0.05-0.001, varied by the methods) and ameliorated motor function (P<0.05). The anti-glucocorticoid mifepristone or the anti-mineralocorticoid spironolactone abolished these effects, but orally administered corticosterone mimicked the ameliorating effects of exercise. Exercise prevented the ischemia-induced expression of mRNA encoding aquaporin 4 (AQP4) and Na(+)/H(+) exchangers (NHEs) (n=5 or 7, P<0.01). Microglia and NG2 glia expressed NHE1 in the peri-ischemic region of rat brains and also in mixed glial cultures. Corticosterone at ~10nM reduced NHE1 and AQP4 expression in mixed glial and pure microglial cultures. Dexamethasone and aldosterone at 10nM did not significantly alter NHE1 and AQP4 expression. Exposure to a NHE inhibitor caused shrinkage of microglial cells. These results suggest that the stressful short-period and slow-paced treadmill exercise suppressed NHE1 and AQP4 expression resulting in the amelioration of brain edema at least partly via the moderate increase in plasma corticosterone levels.
Collapse
Affiliation(s)
- Ryutaro Nishioka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Kana Sugimoto
- Department of Legal Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Japan
| | - Hitomi Aono
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Ayano Mise
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Kazuya Miyanishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Afsana Islam
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Takahiro Fujita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Haruna Takeda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Hisaaki Takahashi
- Center for Advanced Research and Education, Asahikawa Medical University, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan.
| |
Collapse
|
40
|
Physical Exercise as a Diagnostic, Rehabilitation, and Preventive Tool: Influence on Neuroplasticity and Motor Recovery after Stroke. Neural Plast 2015; 2015:608581. [PMID: 26682073 PMCID: PMC4670869 DOI: 10.1155/2015/608581] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 01/19/2023] Open
Abstract
Stroke remains a leading cause of adult motor disabilities in the world and accounts for the greatest number of hospitalizations for neurological disease. Stroke treatments/therapies need to promote neuroplasticity to improve motor function. Physical exercise is considered as a major candidate for ultimately promoting neural plasticity and could be used for different purposes in human and animal experiments. First, acute exercise could be used as a diagnostic tool to understand new neural mechanisms underlying stroke physiopathology. Indeed, better knowledge of stroke mechanisms that affect movements is crucial for enhancing treatment/rehabilitation effectiveness. Secondly, it is well established that physical exercise training is advised as an effective rehabilitation tool. Indeed, it reduces inflammatory processes and apoptotic marker expression, promotes brain angiogenesis and expression of some growth factors, and improves the activation of affected muscles during exercise. Nevertheless, exercise training might also aggravate sensorimotor deficits and brain injury depending on the chosen exercise parameters. For the last few years, physical training has been combined with pharmacological treatments to accentuate and/or accelerate beneficial neural and motor effects. Finally, physical exercise might also be considered as a major nonpharmacological preventive strategy that provides neuroprotective effects reducing adverse effects of brain ischemia. Therefore, prestroke regular physical activity may also decrease the motor outcome severity of stroke.
Collapse
|
41
|
Neuroprotection of Early Locomotor Exercise Poststroke: Evidence From Animal Studies. Can J Neurol Sci 2015; 42:213-20. [PMID: 26041314 DOI: 10.1017/cjn.2015.39] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Early locomotor exercise after stroke has attracted a great deal of attention in clinical and animal research in recent years. A series of animal studies showed that early locomotor exercise poststroke could protect against ischemic brain injury and improve functional outcomes through the promotion of angiogenesis, inhibition of acute inflammatory response and neuron apoptosis, and protection of the blood-brain barrier. However, to date, the clinical application of early locomotor exercise poststroke was limited because some clinicians have little confidence in its effectiveness. Here we review the current progress of early locomotor exercise poststroke in animal models. We hope that a comprehensive awareness of the early locomotor exercise poststroke may help to implement early locomotor exercise more appropriately in treatment for ischemic stroke.
Collapse
|
42
|
Glutathione suppresses cerebral infarct volume and cell death after ischemic injury: involvement of FOXO3 inactivation and Bcl2 expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:426069. [PMID: 25722793 PMCID: PMC4334940 DOI: 10.1155/2015/426069] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/18/2015] [Accepted: 01/27/2015] [Indexed: 01/27/2023]
Abstract
Ischemic stroke interrupts the flow of blood to the brain and subsequently results in cerebral infarction and neuronal cell death, leading to severe pathophysiology. Glutathione (GSH) is an antioxidant with cellular protective functions, including reactive oxygen species (ROS) scavenging in the brain. In addition, GSH is involved in various cellular survival pathways in response to oxidative stress. In the present study, we examined whether GSH reduces cerebral infarct size after middle cerebral artery occlusion in vivo and the signaling mechanisms involved in the promotion of cell survival after GSH treatment under ischemia/reperfusion conditions in vitro. To determine whether GSH reduces the extent of cerebral infarction, cell death after ischemia, and reperfusion injury, we measured infarct size in ischemic brain tissue and the expression of claudin-5 associated with brain infarct formation. We also examined activation of the PI3K/Akt pathway, inactivation of FOXO3, and expression of Bcl2 to assess the role of GSH in promoting cell survival in response to ischemic injury. Based on our results, we suggest that GSH might improve the pathogenesis of ischemic stroke by attenuating cerebral infarction and cell death.
Collapse
|
43
|
Moderate Treadmill Exercise Protects Synaptic Plasticity of the Dentate Gyrus and Related Signaling Cascade in a Rat Model of Alzheimer's Disease. Mol Neurobiol 2014; 52:1067-1076. [PMID: 25288155 DOI: 10.1007/s12035-014-8916-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/28/2014] [Indexed: 12/23/2022]
Abstract
The dentate gyrus (DG) of the hippocampus is known to be more resistant to the effects of various external factors than other hippocampal areas. This study investigated the neuroprotective effects of moderate treadmill exercise on early-phase long-term potentiation (E-LTP) and its molecular signaling pathways in the DG of amyloid β rat model of sporadic Alzheimer's disease (AD). Animals were preconditioned to run on treadmill for 4 weeks and concurrently received ICV infusion of Aβ₁₋₄₂ peptides (250 pmol/day) during the third and fourth weeks of exercise training. We utilized in vivo electrophysiological recordings to assess the effect of exercise and/or AD pathology on basal synaptic transmission and E-LTP magnitude of the perforant pathway synapses in urethane-anesthetized rats. Immunoblotting analysis was used to quantify changes in the levels of learning and memory-related key signaling molecules. The AD-impaired basal synaptic transmission and suppression of E-LTP in the DG were prevented by prior moderate treadmill exercise. In addition, exercise normalized the basal levels of memory and E-LTP-related signaling molecules including Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), calcineurin (PP2B), and brain-derived neurotrophic factor (BDNF). Exercise also prevented the reduction of phosphorylated CaMKII and aberrant increase of PP2B seen after E-LTP induction in amyloid-infused rats. Our data suggests that by restoring the balance of kinase-phosphatase, 4 weeks of moderate treadmill exercise prevents DG synaptic deficits and deleterious alterations in signaling pathways associated with AD.
Collapse
|
44
|
CHANG HENGCHIH, YANG YEARU, WANG PAULUSS, WANG RAYYAU. Quercetin Enhances Exercise-Mediated Neuroprotective Effects in Brain Ischemic Rats. Med Sci Sports Exerc 2014; 46:1908-16. [DOI: 10.1249/mss.0000000000000310] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Austin MW, Ploughman M, Glynn L, Corbett D. Aerobic exercise effects on neuroprotection and brain repair following stroke: a systematic review and perspective. Neurosci Res 2014; 87:8-15. [PMID: 24997243 DOI: 10.1016/j.neures.2014.06.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/04/2014] [Accepted: 06/24/2014] [Indexed: 01/02/2023]
Abstract
Aerobic exercise (AE) enhances neuroplasticity and improves functional outcome in animal models of stroke, however the optimal parameters (days post-stroke, intensity, mode, and duration) to influence brain repair processes are not known. We searched PubMed, CINAHL, PsychInfo, the Cochrane Library, and the Central Register of Controlled Clinical Trials, using predefined criteria, including all years up to July 2013 (English language only). Clinical studies were included if participants had experienced an ischemic or hemorrhagic stroke. We included animal studies that utilized any method of global or focal ischemic stroke or intracerebral hemorrhage. Any intervention utilizing AE-based activity with the intention of improving cardiorespiratory fitness was included. Of the 4250 titles returned, 47 studies (all in animal models) met criteria and measured the effects of exercise on brain repair parameters (lesion volume, oxidative damage, inflammation and cell death, neurogenesis, angiogenesis and markers of stress). Our synthesized findings show that early-initiated (24-48h post-stroke) moderate forced exercise (10m/min, 5-7 days per week for about 30min) reduced lesion volume and protected perilesional tissue against oxidative damage and inflammation at least for the short term (4 weeks). The applicability and translation of experimental exercise paradigms to clinical trials are discussed.
Collapse
Affiliation(s)
- Mark W Austin
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Lindsay Glynn
- Health Sciences Library, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Dale Corbett
- Canadian Partnership for Stroke Recovery and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
46
|
Wang X, Zhang M, Feng R, Li WB, Ren SQ, Zhang J, Zhang F. Physical exercise training and neurovascular unit in ischemic stroke. Neuroscience 2014; 271:99-107. [PMID: 24780769 DOI: 10.1016/j.neuroscience.2014.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/16/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Physical exercise could exert a neuroprotective effect in both clinical studies and animal experiments. A series of related studies have indicated that physical exercise could reduce infarct volume, alleviate neurological deficits, decrease blood-brain barrier dysfunction, promote angiogenesis in cerebral vascular system and increase the survival rate after ischemic stroke. In this review, we summarized the protective effects of physical exercise on neurovascular unit (NVU), including neurons, astrocytes, pericytes and the extracellular matrix. Furthermore, it was demonstrated that exercise training could decrease the blood-brain barrier dysfunction and promote angiogenesis in cerebral vascular system. An awareness of the exercise intervention benefits pre- and post stroke may lead more stroke patients and people with high-risk factors to accept exercise therapy for the prevention and treatment of stroke.
Collapse
Affiliation(s)
- X Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - M Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - R Feng
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - W B Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - S Q Ren
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - J Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - F Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
47
|
Mukherjee K, Edgett BA, Burrows HW, Castro C, Griffin JL, Schwertani AG, Gurd BJ, Funk CD. Whole blood transcriptomics and urinary metabolomics to define adaptive biochemical pathways of high-intensity exercise in 50-60 year old masters athletes. PLoS One 2014; 9:e92031. [PMID: 24643011 PMCID: PMC3958411 DOI: 10.1371/journal.pone.0092031] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/18/2014] [Indexed: 01/18/2023] Open
Abstract
Exercise is beneficial for a variety of age-related disorders. However, the molecular mechanisms mediating the beneficial adaptations to exercise in older adults are not well understood. The aim of the current study was to utilize a dual approach to characterize the genetic and metabolic adaptive pathways altered by exercise in veteran athletes and age-matched untrained individuals. Two groups of 50–60 year old males: competitive cyclists (athletes, n = 9; VO2peak 59.1±5.2 ml·kg−1·min−1; peak aerobic power 383±39 W) and untrained, minimally active individuals (controls, n = 8; VO2peak 35.9±9.7 ml·kg−1·min−1; peak aerobic power 230±57 W) were examined. All participants completed an acute bout of submaximal endurance exercise, and blood and urine samples pre- and post-exercise were analyzed for gene expression and metabolic changes utilizing genome-wide DNA microarray analysis and NMR spectroscopy-based metabolomics, respectively. Our results indicate distinct differences in gene and metabolite expression involving energy metabolism, lipids, insulin signaling and cardiovascular function between the two groups. These findings may lead to new insights into beneficial signaling pathways of healthy aging and help identify surrogate markers for monitoring exercise and training load.
Collapse
Affiliation(s)
- Kamalika Mukherjee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Brittany A. Edgett
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Harrison W. Burrows
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Cecilia Castro
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Julian L. Griffin
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | | | - Brendon J. Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Colin D. Funk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
48
|
Lima CB, Soares GDSF, Vitor SM, Andrade-da-Costa BLDS, Castellano B, Guedes RCA. Spreading depression features and Iba1 immunoreactivity in the cerebral cortex of developing rats submitted to treadmill exercise after treatment with monosodium glutamate. Int J Dev Neurosci 2013; 33:98-105. [PMID: 24374255 DOI: 10.1016/j.ijdevneu.2013.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/09/2013] [Accepted: 12/18/2013] [Indexed: 12/18/2022] Open
Abstract
Physical exercise and excessive consumption of monosodium glutamate (MSG) can affect the morphological and electrophysiological organization of the brain during development. However, the interaction of both factors remains unclear. We analyzed the effect of this interaction on the excitability-related phenomenon known as cortical spreading depression (CSD) and the microglial reaction expressed as Iba1-immunolabeled cells in the rat motor cortex. MSG (2g/kg or 4g/kg) was administered every other day during the first 14 postnatal days. Treadmill exercise started at 21-23 days of life and lasted 3 weeks, 5 days/week, for 30min/day. At 45-60 days, CSD was recorded for 4h at two cortical points and the CSD parameters (velocity, amplitude, and duration of the negative potential change) calculated. Confirming previous observations, exercised rats presented with lower CSD velocities (3.29±0.18mm/min) than the sedentary group (3.80±0.18mm/min; P<0.05). MSG increased CSD velocities in the exercised rats compared to saline-treated and exercised animals in a dose-dependent manner (3.49±0.19, 4.05±0.18, and 3.27±0.26 for 2g/kg MSG, 4g/kg MSG, and saline, respectively; P<0.05). The amplitude (ranging from 14.3±5.9 to 18.7±6.2mV) and duration (46.7±11.1 to 60.5±11.6s) of the negative slow potential shift of the CSD were similar in all groups. Both exercise and MSG treatment increased Iba1 immunolabeling. The results confirm that physical exercise decelerates CSD propagation. However, it does not impede the CSD-accelerating action of MSG. These effects were accompanied by a cortical microglia reaction. Therefore, the data suggest that treadmill exercise early in life can influence the development of cortical electrical activity.
Collapse
Affiliation(s)
- Cássia Borges Lima
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, 50670901 Recife, Brazil
| | | | - Suênia Marcele Vitor
- Department of Nutrition, Universidade Federal de Pernambuco, 50670901 Recife, Brazil
| | | | - Bernardo Castellano
- Unit of Medical Histology, Institute of Neuroscience and Dept Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Spain
| | | |
Collapse
|