1
|
González A, Fullaondo A, Odriozola A. Host genetics-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:83-122. [PMID: 39396843 DOI: 10.1016/bs.adgen.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) represents the second leading cause of cancer incidence and the third leading cause of cancer deaths worldwide. There is currently a lack of understanding of the onset of CRC, hindering the development of effective prevention strategies, early detection methods and the selection of appropriate therapies. This article outlines the key aspects of host genetics currently known about the origin and development of CRC. The organisation of the colonic crypts is described. It discusses how the transformation of a normal cell to a cancer cell occurs and how that malignant cell can populate an entire colonic crypt, promoting colorectal carcinogenesis. Current knowledge about the cell of origin of CRC is discussed, and the two morphological pathways that can give rise to CRC, the classical and alternative pathways, are presented. Due to the molecular heterogeneity of CRC, each of these pathways has been associated with different molecular mechanisms, including chromosomal and microsatellite genetic instability, as well as the CpG island methylator phenotype. Finally, different CRC classification systems are described based on genetic, epigenetic and transcriptomic alterations, allowing diagnosis and treatment personalisation.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
2
|
Yan L, Shi J, Zhu J. Cellular and molecular events in colorectal cancer: biological mechanisms, cell death pathways, drug resistance and signalling network interactions. Discov Oncol 2024; 15:294. [PMID: 39031216 PMCID: PMC11265098 DOI: 10.1007/s12672-024-01163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, affecting millions each year. It emerges from the colon or rectum, parts of the digestive system, and is closely linked to both genetic and environmental factors. In CRC, genetic mutations such as APC, KRAS, and TP53, along with epigenetic changes like DNA methylation and histone modifications, play crucial roles in tumor development and treatment responses. This paper delves into the complex biological underpinnings of CRC, highlighting the pivotal roles of genetic alterations, cell death pathways, and the intricate network of signaling interactions that contribute to the disease's progression. It explores the dysregulation of apoptosis, autophagy, and other cell death mechanisms, underscoring the aberrant activation of these pathways in CRC. Additionally, the paper examines how mutations in key molecular pathways, including Wnt, EGFR/MAPK, and PI3K, fuel CRC development, and how these alterations can serve as both diagnostic and prognostic markers. The dual function of autophagy in CRC, acting as a tumor suppressor or promoter depending on the context, is also scrutinized. Through a comprehensive analysis of cellular and molecular events, this research aims to deepen our understanding of CRC and pave the way for more effective diagnostics, prognostics, and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Yan
- Medical Department, The Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Jia Shi
- Department of Obstetrics and Gynecology, The Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Jiazuo Zhu
- Department of Oncology, Xuancheng City Central Hospital, No. 117 Tong Road, Xuancheng, Anhui, China.
| |
Collapse
|
3
|
Dezfuli AAZ, Abu-Elghait M, Salem SS. Recent Insights into Nanotechnology in Colorectal Cancer. Appl Biochem Biotechnol 2024; 196:4457-4471. [PMID: 37751009 DOI: 10.1007/s12010-023-04696-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/27/2023]
Abstract
Colorectal cancer (CRC) is the third cancer among the known causes of cancer that impact people. Although CRC drug options are imperfect, primary detection of CRC can play a key role in treating the disease and reducing mortality. Cancer tissues show many molecular markers that can be used as a new way to advance therapeutic methods. Nanotechnology includes a wide range of nanomaterials with high diagnostic and therapeutic power. Several nanomaterials and nanoformulations can be used to treat cancer, especially CRC. In this review, we discuss recent insights into nanotechnology in colorectal cancer.
Collapse
Affiliation(s)
- Aram Asareh Zadegan Dezfuli
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Salem S Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
4
|
Arif B, Yasir S, Saeed M, Fatmi MQ. Natural products can be potential inhibitors of metalloproteinase II from Bacteroides fragilis to intervene colorectal cancer. Heliyon 2024; 10:e32838. [PMID: 39005891 PMCID: PMC11239599 DOI: 10.1016/j.heliyon.2024.e32838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Bacteroides fragilis, a gram negative and obligate anaerobe bacterium, is a member of normal gut microbiota and facilitates many essential roles being performed in human body in normal circumstances specifically in Gastrointestinal or GI tract. Sometimes, due to genetics, epigenetics, and environmental factors, Bacteroides fragilis and their protein(s) start interacting with intestinal epithelium thus damaging the lining leading to colorectal cancers (CRC). To identify these protein(s), we incorporated a novel subtractive proteomics approach in the study. Metalloproteinase II (MPII), a Bacteroides fragilis toxin (bft), was investigated for its virulence and unique pathways to demonstrate its specificity and uniqueness in pathogenicity followed by molecular docking against a set of small drug-like natural molecules to discover potential inhibitors against the toxin. All these identified inhibitor-like molecules were analyzed for their ADMET calculations and detailed physiochemical properties to predict their druggability, GI absorption, blood brain barrier and skin permeation, and others. Resultantly, a total of ten compounds with the least binding energies were obtained and were subjected to protein-compound interaction analysis. Interaction analysis revealed the most common ligand-interacting residues in MPII are His 345, Glu 346, His 339, Gly 310, Tyr 341, Pro 340, Asp 187, Phe 309, Lys 307, Ile 185, Thr 308, and Pro 184. Therefore, top three compounds complexed with MPII having best binding energies were selected in order to analyze their trajectories. RMSD, RMSF, Rg and MMPBSA analysis revealed that all compounds showed good binding and keeping the complex stable and compact throughout the simulation time in addition to all properties and qualities of being a potential inhibitor against MPII.
Collapse
Affiliation(s)
- Bushra Arif
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Pakistan
| | - Saba Yasir
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Muhammad Saeed
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Pakistan
| | - M. Qaiser Fatmi
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Pakistan
| |
Collapse
|
5
|
Lee J, Ogino S, Wang M. Weighting estimation in the cause-specific Cox regression with partially missing causes of failure. Stat Med 2024; 43:2575-2591. [PMID: 38659326 DOI: 10.1002/sim.10084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 02/25/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Complex diseases are often analyzed using disease subtypes classified by multiple biomarkers to study pathogenic heterogeneity. In such molecular pathological epidemiology research, we consider a weighted Cox proportional hazard model to evaluate the effect of exposures on various disease subtypes under competing-risk settings in the presence of partially or completely missing biomarkers. The asymptotic properties of the inverse and augmented inverse probability-weighted estimating equation methods are studied with a general pattern of missing data. Simulation studies have been conducted to demonstrate the double robustness of the estimators. For illustration, we applied this method to examine the association between pack-years of smoking before the age of 30 and the incidence of colorectal cancer subtypes defined by a combination of four tumor molecular biomarkers (statuses of microsatellite instability, CpG island methylator phenotype, BRAF mutation, and KRAS mutation) in the Nurses' Health Study cohort.
Collapse
Affiliation(s)
- Jooyoung Lee
- Department of Applied Statistics, Chung-Ang University, Seoul, Korea
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Eli and Edythe L Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Zhu W, Zhang F, Wang M, Meng S, Ren F. Temozolomide alleviates breast carcinoma via the inhibition of EGFR/ERK/ MMP-1 pathway with induction of apoptotic events. Acta Cir Bras 2024; 39:e391624. [PMID: 38808816 PMCID: PMC11126306 DOI: 10.1590/acb391624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/26/2024] [Indexed: 05/30/2024] Open
Abstract
PURPOSE To evaluate the chemotherapeutic activity of temozolomide counter to mammary carcinoma. METHODS In-vitro anticancer activity has been conducted on MCF7 cells, and mammary carcinoma has been induced in Wistar rats by introduction of 7, 12-Dimethylbenz(a)anthracene (DMBA), which was sustained for 24 weeks. Histopathology, immunohistochemistry, cell proliferation study and apoptosis assay via TUNEL method was conducted to evaluate an antineoplastic activity of temozolomide in rat breast tissue. RESULTS IC50 value of temozolomide in MCF7 cell has been obtained as 103 μM, which demonstrated an initiation of apoptosis. The temozolomide treatment facilitated cell cycle arrest in G2/M and S phase dose dependently. The treatment with temozolomide suggested decrease of the hyperplastic abrasions and renovation of the typical histological features of mammary tissue. Moreover, temozolomide therapy caused the downregulation of epidermal growth factor receptor, extracellular signal-regulated kinase, and metalloproteinase-1 expression and upstream of p53 and caspase-3 proliferation to indicate an initiation of apoptotic events. CONCLUSIONS The occurrence of mammary carcinoma has been significantly decreased by activation of apoptotic pathway and abrogation of cellular propagation that allowable for developing a suitable mechanistic pathway of temozolomide in order to facilitate chemotherapeutic approach.
Collapse
Affiliation(s)
- Weijun Zhu
- Taizhou Municipal Hospital – Department of Pathology – Zhejiang Province, Taizhou Zhejiang, China
| | - Fengjun Zhang
- The 940th Hospital of Joint Logistics Support Force of PLA – Department of Mammary Gland – Lanzhou, Gansu, China
| | - Maoyun Wang
- First Medical Center of PLA General Hospital – Department of Traditional Chinese Medicine – Beijing, China
| | - Shuai Meng
- First Medical Center of PLA General Hospital – Department of Traditional Chinese Medicine – Beijing, China
| | - Fang Ren
- First Medical Center of PLA General Hospital – Department of Traditional Chinese Medicine – Beijing, China
| |
Collapse
|
7
|
Peng WB, Li YP, Zeng Y, Chen K. Transglutaminase 2 serves as a pathogenic hub gene of KRAS mutant colon cancer based on integrated analysis. World J Gastrointest Oncol 2024; 16:2074-2090. [PMID: 38764826 PMCID: PMC11099438 DOI: 10.4251/wjgo.v16.i5.2074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Colon cancer is acknowledged as one of the most common malignancies worldwide, ranking third in United States regarding incidence and mortality. Notably, approximately 40% of colon cancer cases harbor oncogenic KRAS mutations, resulting in the continuous activation of epidermal growth factor receptor signaling. AIM To investigate the key pathogenic genes in KRAS mutant colon cancer holds considerable importance. METHODS Weighted gene co-expression network analysis, in combination with additional bioinformatics analysis, were conducted to screen the key factors driving the progression of KRAS mutant colon cancer. Meanwhile, various in vitro experiments were also conducted to explore the biological function of transglutaminase 2 (TGM2). RESULTS Integrated analysis demonstrated that TGM2 acted as an independent prognostic factor for progression-free survival. Immunohistochemical analysis on tissue microarrays revealed that TGM2 was associated with an elevated probability of perineural invasion in patients with KRAS mutant colon cancer. Additionally, biological roles of the key gene TGM2 was also assessed, suggesting that the downregulation of TGM2 attenuated the proliferation, invasion, and migration of the KRAS mutant colon cancer cell line. CONCLUSION This study underscores the potential significance of TGM2 in the progression of KRAS mutant colon cancer. This insight not only offers a theoretical foundation for therapeutic approaches but also highlights the need for additional clinical trials and fundamental research to support our preliminary findings.
Collapse
Affiliation(s)
- Wei-Bin Peng
- First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
| | - Yu-Ping Li
- First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
| | - Yong Zeng
- First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
| | - Kai Chen
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, Guangdong Province, China
| |
Collapse
|
8
|
Pennel K, Dutton L, Melissourgou-Syka L, Roxburgh C, Birch J, Edwards J. Novel radiation and targeted therapy combinations for improving rectal cancer outcomes. Expert Rev Mol Med 2024; 26:e14. [PMID: 38623751 PMCID: PMC11140547 DOI: 10.1017/erm.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/29/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Neoadjuvant radiotherapy (RT) is commonly used as standard treatment for rectal cancer. However, response rates are variable and survival outcomes remain poor, highlighting the need to develop new therapeutic strategies. Research is focused on identifying novel methods for sensitising rectal tumours to RT to enhance responses and improve patient outcomes. This can be achieved through harnessing tumour promoting effects of radiation or preventing development of radio-resistance in cancer cells. Many of the approaches being investigated involve targeting the recently published new dimensions of cancer hallmarks. This review article will discuss key radiation and targeted therapy combination strategies being investigated in the rectal cancer setting, with a focus on exploitation of mechanisms which target the hallmarks of cancer.
Collapse
Affiliation(s)
- Kathryn Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Louise Dutton
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Lydia Melissourgou-Syka
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
- CRUK Scotland Institute, Glasgow, G611BD, UK
| | - Campbell Roxburgh
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
- Academic Unit of Surgery, Glasgow Royal Infirmary, University of Glasgow, Glasgow, G4 0SF, UK
| | - Joanna Birch
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
9
|
Pérez-Valero Á, Magadán-Corpas P, Ye S, Serna-Diestro J, Sordon S, Huszcza E, Popłoński J, Villar CJ, Lombó F. Antitumor Effect and Gut Microbiota Modulation by Quercetin, Luteolin, and Xanthohumol in a Rat Model for Colorectal Cancer Prevention. Nutrients 2024; 16:1161. [PMID: 38674851 PMCID: PMC11054239 DOI: 10.3390/nu16081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer stands as the third most prevalent form of cancer worldwide, with a notable increase in incidence in Western countries, mainly attributable to unhealthy dietary habits and other factors, such as smoking or reduced physical activity. Greater consumption of vegetables and fruits has been associated with a lower incidence of colorectal cancer, which is attributed to their high content of fiber and bioactive compounds, such as flavonoids. In this study, we have tested the flavonoids quercetin, luteolin, and xanthohumol as potential antitumor agents in an animal model of colorectal cancer induced by azoxymethane and dodecyl sodium sulphate. Forty rats were divided into four cohorts: Cohort 1 (control cohort), Cohort 2 (quercetin cohort), Cohort 3 (luteolin cohort), and Cohort 4 (xanthohumol cohort). These flavonoids were administered intraperitoneally to evaluate their antitumor potential as pharmaceutical agents. At the end of the experiment, after euthanasia, different physical parameters and the intestinal microbiota populations were analyzed. Luteolin was effective in significantly reducing the number of tumors compared to the control cohort. Furthermore, the main significant differences at the microbiota level were observed between the control cohort and the cohort treated with luteolin, which experienced a significant reduction in the abundance of genera associated with disease or inflammatory conditions, such as Clostridia UCG-014 or Turicibacter. On the other hand, genera associated with a healthy state, such as Muribaculum, showed a significant increase in the luteolin cohort. These results underline the anti-colorectal cancer potential of luteolin, manifested through a modulation of the intestinal microbiota and a reduction in the number of tumors.
Collapse
Affiliation(s)
- Álvaro Pérez-Valero
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Patricia Magadán-Corpas
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Suhui Ye
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Juan Serna-Diestro
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (S.S.); (E.H.); (J.P.)
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (S.S.); (E.H.); (J.P.)
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (S.S.); (E.H.); (J.P.)
| | - Claudio J. Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
10
|
Pierantoni C, Cosentino L, Ricciardiello L. Molecular Pathways of Colorectal Cancer Development: Mechanisms of Action and Evolution of Main Systemic Therapy Compunds. Dig Dis 2024; 42:319-324. [PMID: 38531339 DOI: 10.1159/000538511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Colorectal cancer is known as one of the "big killers" in oncology given its burden in terms on morbidity and mortality. Since the second half of the last century, similarly to what happened for other solid tumors, a large series of cytotoxic molecules have been developed and tested to treat this disease. SUMMARY Following new discoveries in terms of colorectal cancer pathogenesis and specific pathways involved such as angiogenesis, a new series of drugs have been developed: targeted therapies. KEY MESSAGES In this review, we will briefly describe colorectal cancer molecular biology and its main pathways in order to retrace the main stages of oncological treatment development for colorectal cancer from the first available treatments to novel approaches to the disease.
Collapse
Affiliation(s)
- Chiara Pierantoni
- Policlinico di Sant'Orsola, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lorenzo Cosentino
- Policlinico di Sant'Orsola, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Ricciardiello
- Policlinico di Sant'Orsola, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy,
| |
Collapse
|
11
|
Lee S, Shin W, Park DG, Namgung H. Genetic specificity study using next-generation sequencing (NGS) of peritoneal metastatic colorectal cancer compared to primary colorectal cancer. Genes Genomics 2024; 46:289-302. [PMID: 38316717 DOI: 10.1007/s13258-024-01492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND In patients with colorectal cancer, peritoneal metastases are the second most frequent metastatic lesion after liver metastases. Peritoneal metastases have a very poor prognosis, with a median survival time of 5-7 months. Currently, there is a lack of research on the genetic differences between primary colorectal cancer and peritoneal metastases. Therefore, we aimed to identify their genetic characteristics through a cancer panel test using next-generation sequencing. OBJECTIVE We aim to investigate the specificity of genetic variants in primary colorectal cancer and peritoneal metastases. METHODS We recruited patients with stage I, II, and III primary colorectal cancer and peritoneal metastases for genetic analysis using NGS. Samples were collected from patients who underwent surgery at Dankook University Hospital and consented to genetic testing. NGS was performed using a cancer panel. RESULTS Among 36 patients with primary cancer, TP53 gene mutation was identified the most in 25 patients (69%), followed by APC gene mutation in 19 patients (53%), and KRAS gene mutation in 17 patients (47%). In the peritoneal metastasis patient group, unlike the primary cancer patient group, KRAS gene mutations were the most common 6 patients (55%), followed by TP53 gene mutations in 4 patients (36%) and PIK3CA gene mutations in 2 patients (18%). CONCLUSION The small number of surgical cases of peritoneal metastases was a limitation of our sample size. Nevertheless, we identified differences in the alterations of specific genes between primary and peritoneal metastases. Acquiring additional cases and collecting more data will provide deeper insights into these cancers.
Collapse
Affiliation(s)
- Sungchul Lee
- Department of Surgery, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Wonseok Shin
- NGS Clinical Laboratory, Division of Cancer Research, Dankook University Hospital, Cheonan, Republic of Korea
- Samrt Animal Bio Institute, Dankook University, Cheonan, Republic of Korea
| | - Dong-Guk Park
- Department of Surgery, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Hwan Namgung
- Department of Surgery, Dankook University College of Medicine, Cheonan, Republic of Korea.
| |
Collapse
|
12
|
Chakraborty B, Agarwal S, Kori S, Das R, Kashaw V, Iyer AK, Kashaw SK. Multiple Protein Biomarkers and Different Treatment Strategies for Colorectal Carcinoma: A Comprehensive Prospective. Curr Med Chem 2024; 31:3286-3326. [PMID: 37151060 DOI: 10.2174/0929867330666230505165031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 05/09/2023]
Abstract
In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.
Collapse
Affiliation(s)
- Biswadip Chakraborty
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivangi Agarwal
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, ISF College of Pharmacy, Moga-Punjab, India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
13
|
Barber LE, Bertrand KA, Sheehy S, White LF, Roy HK, Rosenberg L, Palmer JR, Petrick JL. Aspirin and nonaspirin nonsteroidal antiinflammatory drug use and occurrence of colorectal adenoma in Black American women. Int J Cancer 2023; 153:1978-1987. [PMID: 37555819 PMCID: PMC10927007 DOI: 10.1002/ijc.34674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023]
Abstract
Evidence suggests that aspirin use reduces the occurrence of colorectal neoplasia. Few studies have investigated the association among Black Americans, who are disproportionately burdened by the disease. We assessed aspirin use in relation to colorectal adenoma among Black women. The Black Women's Health Study is a prospective cohort of self-identified Black American women established in 1995. Participants reported regular aspirin use on baseline and follow-up questionnaires. Beginning in 1999, participants reported undergoing a colonoscopy or sigmoidoscopy, the only procedures through which colorectal adenomas can be diagnosed. Multivariable logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) for associations between aspirin use and colorectal adenoma among 34 397 women who reported at least 1 colonoscopy or sigmoidoscopy. From 1997 through 2018, 1913 women were diagnosed with an adenoma. Compared to nonaspirin users, regular users had 14% (OR = 0.86, 95% CI: 0.78-0.95) lower odds of adenoma. The odds of adenoma decreased with increasing duration of aspirin use (≥10 years: OR = 0.80, 95% CI: 0.66-0.96). Initiating aspirin at a younger age was associated with a reduced adenoma occurrence (age < 40 years at initiation: OR = 0.69, 95% CI: 0.55-0.86). Regular aspirin use was associated with a decreased odds of colorectal adenoma in our study of Black women. These findings support evidence demonstrating a chemopreventive impact of aspirin on colorectal neoplasia and suggest that aspirin may be a useful prevention strategy among US Black women.
Collapse
Affiliation(s)
- Lauren E Barber
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
- Slone Epidemiology Center at Boston University, Boston, Massachusetts, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | | | - Shanshan Sheehy
- Slone Epidemiology Center at Boston University, Boston, Massachusetts, USA
| | - Laura F White
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Hemant K Roy
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Lynn Rosenberg
- Slone Epidemiology Center at Boston University, Boston, Massachusetts, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, Massachusetts, USA
| | - Jessica L Petrick
- Slone Epidemiology Center at Boston University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Yamaguchi M. Regucalcin Is a Potential Regulator in Human Cancer: Aiming to Expand into Cancer Therapy. Cancers (Basel) 2023; 15:5489. [PMID: 38001749 PMCID: PMC10670417 DOI: 10.3390/cancers15225489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Regucalcin, a calcium-binding protein lacking the EF-hand motif, was initially discovered in 1978. Its name is indicative of its function in calcium signaling regulation. The rgn gene encodes for regucalcin and is situated on the X chromosome in both humans and vertebrates. Regucalcin regulates pivotal enzymes involved in signal transduction and has an inhibitory function, which includes protein kinases, protein phosphatases, cysteinyl protease, nitric oxide dynthetase, aminoacyl-transfer ribonucleic acid (tRNA) synthetase, and protein synthesis. This cytoplasmic protein is transported to the nucleus where it regulates deoxyribonucleic acid and RNA synthesis as well as gene expression. Overexpression of regucalcin inhibits proliferation in both normal and cancer cells in vitro, independent of apoptosis. During liver regeneration in vivo, endogenous regucalcin suppresses cell growth when overexpressed. Regucalcin mRNA and protein expressions are significantly downregulated in tumor tissues of patients with various types of cancers. Patients exhibiting upregulated regucalcin in tumor tissue have shown prolonged survival. The decrease of regucalcin expression is linked to the advancement of cancer. Overexpression of regucalcin carries the potential for preventing and treating carcinogenesis. Additionally, extracellular regucalcin has displayed control over various types of human cancer cells. Regucalcin may hold a prominent role as a regulatory factor in cancer development. Supplying the regucalcin gene could prove to be a valuable asset in cancer treatment. The therapeutic value of regucalcin suggests its potential significance in treating cancer patients. This review delves into the most recent research on the regulatory role of regucalcin in human cancer development, providing a novel approach for treatment.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Hawaii, HI 96813, USA
| |
Collapse
|
15
|
Macharia JM, Varjas T, Mwangi RW, Káposztás Z, Rozmann N, Pintér M, Wagara IN, Raposa BL. Modulatory Properties of Aloe secundiflora's Methanolic Extracts on Targeted Genes in Colorectal Cancer Management. Cancers (Basel) 2023; 15:5002. [PMID: 37894369 PMCID: PMC10605537 DOI: 10.3390/cancers15205002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Colon tumors have a very complicated and poorly understood pathogenesis. Plant-based organic compounds might provide a novel source for cancer treatment with a sufficient novel mode of action. The objective of this study was to analyze and evaluate the efficacy of Aloe secundiflora's (AS) methanolic extracts on the expression of CASPS9, 5-LOX, Bcl2, Bcl-xL, and COX-2 in colorectal cancer (CRC) management. Caco-2 cell lines were used in the experimental study. In the serial exhaustive extraction (SEE) method, methanol was utilized as the extraction solvent. Upon treatment of CASPS9 with the methanolic extracts, the expression of the genes was progressively upregulated, thus, dose-dependently increasing the rate of apoptosis. On the other hand, the expressions of 5-LOX, Bcl2, and Bcl-xL were variably downregulated in a dose-dependent manner. This is a unique novel study that evaluated the effects of AS methanolic extracts in vitro on CRC cell lines using different dosage concentrations. We, therefore, recommend the utilization of AS and the application of methanol as the extraction solvent of choice for maximum modulatory benefits in CRC management. In addition, we suggest research on the specific metabolites in AS involved in the modulatory pathways that suppress the development of CRC and potential metastases.
Collapse
Affiliation(s)
- John M. Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, 7621 Pẻcs, Hungary
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pẻcs, 7621 Pẻcs, Hungary
| | - Ruth W. Mwangi
- Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
- Department of Biological Sciences, Egerton University, Nakuru P.O. Box 3366-20100, Kenya
| | - Zsolt Káposztás
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary (B.L.R.)
| | - Nóra Rozmann
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, 7621 Pẻcs, Hungary
| | - Márton Pintér
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, 7621 Pẻcs, Hungary
| | - Isabel N. Wagara
- Department of Biological Sciences, Egerton University, Nakuru P.O. Box 3366-20100, Kenya
| | - Bence L. Raposa
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary (B.L.R.)
| |
Collapse
|
16
|
Choudhury H, Pandey M, Saravanan V, Mun ATY, Bhattamisra SK, Parikh A, Garg S, Gorain B. Recent progress of targeted nanocarriers in diagnostic, therapeutic, and theranostic applications in colorectal cancer. BIOMATERIALS ADVANCES 2023; 153:213556. [PMID: 37478770 DOI: 10.1016/j.bioadv.2023.213556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Cancer at the lower end of the digestive tract, colorectal cancer (CRC), starts with asymptomatic polyps, which can be diagnosed as cancer at a later stage. It is the fourth leading cause of malignancy-associated mortality worldwide. Despite progress in conventional treatment strategies, the possibility to overcome the mortality and morbidity issues with the enhancement of the lifespan of CRC patients is limited. With the advent of nanocarrier-based drug delivery systems, a promising revolution has been made in diagnosis, treatment, and theranostic purposes for cancer management. Herein, we reviewed the progress of miniaturized nanocarriers, such as liposomes, niosomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles, employed in passive and active targeting and their role in theranostic applications in CRC. With this novel scope, the diagnosis and treatment of CRC have proceeded to the forefront of innovation, where specific characteristics of the nanocarriers, such as processability, flexibility in developing precise architecture, improved circulation, site-specific delivery, and rapid response, facilitate the management of cancer patients. Furthermore, surface-engineered technologies for the nanocarriers could involve receptor-mediated deliveries towards the overexpressed receptors on the CRC microenvironment. Moreover, the potential of clinical translation of these targeted miniaturized formulations as well as the possible limitations and barriers that could impact this translation into clinical practice were highlighted. The advancement of these newest developments in clinical research and progress into the commercialization stage gives hope for a better tomorrow.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Vilashini Saravanan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Amanda Tan Yee Mun
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ankit Parikh
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
17
|
Molla MHR, Aljahdali MO. Marine-derived sea urchin compounds as potential anti-cancer drug candidate against colorectal cancer: In silico and in vitro studies. Saudi J Biol Sci 2023; 30:103748. [PMID: 37560480 PMCID: PMC10407901 DOI: 10.1016/j.sjbs.2023.103748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/11/2023] Open
Abstract
Sea urchin-derived compounds are potential candidates for the development of effective drugs for the treatment of cancer diseases. In this study, 19 compounds derived from sea urchin (Diadema savignyi) were used to treat colorectal cancer using the HCT116 cell line. However, molecular docking, ADME (absorption, distribution, metabolism, and excretion), toxicity, molecular dynamic (MD) simulation, and molecular mechanics generalized Born surface area (MM-GBSA) were used to confirm the ligand-protein interaction. Interactions of Importin-11 receptor with sea urchin compounds reveal that four compounds have higher binding affinities (ranging from -8.6 to -7.1 kcal/mol). In vitro testing revealed that the CID 6432458 compound was effective (docking score of -8.6 kcal/mol) against the HCT116 cell line. The cytotoxicity of HCT116 has been documented, with an IC50 value of 6.885 ± 4. MTT assay, apoptosis analysis, and cell cycle assay were utilized to examine cell death in colorectal cancer. In the MTT experiment, 15 µM and 20 µM dosages were associated with 77% cell death; however, flow cytometry analysis using the IC50 value revealed that the selected chemical induced greater apoptosis in the HCT116 cell line (58.5%). The gene expression data revealed that the apoptotic gene BAX is expressed at a higher level than the BCL-2 gene. The IPO11 gene was downregulated during treatment. In the experiment involving the cell cycle, the S phase for the 30 µM dose showed 75.1% apoptosis, which was greater than the other concentrations used alone. These in silico and in vitro analysis will not only provide new information about Importin-11 receptor and insight into colorectal cancer but will also facilitate the development of natural compounds in a significant and worthwhile manner.
Collapse
Affiliation(s)
- Mohammad Habibur Rahman Molla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21598, Saudi Arabia
| | - Mohammed Othman Aljahdali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21598, Saudi Arabia
| |
Collapse
|
18
|
Macharia JM, Káposztás Z, Bence RL. Medicinal Characteristics of Withania somnifera L. in Colorectal Cancer Management. Pharmaceuticals (Basel) 2023; 16:915. [PMID: 37513827 PMCID: PMC10384768 DOI: 10.3390/ph16070915] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Research into tumorigenic pathways can aid in the development of more efficient cancer therapies and provide insight into the physiological regulatory mechanisms employed by rapidly proliferating cancer cells. Due to the severe side effects of cancer chemotherapeutic medications, plant chemicals and their analogues are now explored more frequently for the treatment and prevention of colorectal cancer (CRC), opening the stage for new phytotherapeutic strategies that are considered effective and safe substitutes. Our study aimed to evaluate the medicinal properties of Withania somnifera L. and its safety applications in CRC management. Important databases were rigorously searched for relevant literature, and only 82 full-text publications matched the inclusion requirements from a massive collection of 10,002 titles and abstracts. W. somnifera L. contains a high concentration of active plant-based compounds. The pharmacological activity of the plant from our study has been demonstrated to exert antiproliferation, upregulation of apoptosis, decrease in oxidative stress, downregulation of cyclooxygenase-2 (COX-2), induction of targeted cytotoxic effects on cancerous cells, and exertion of both antiangiogenesis and antimigratory effects. We advise further research before recommending W. somnifera L. for clinical use to identify the optimal concentrations required to elicit beneficial effects in CRC management in humans, singly or in combination.
Collapse
Affiliation(s)
- John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, Vörösmarty Mihály Str. 4, 7621 Pécs, Hungary
| | - Zsolt Káposztás
- Faculty of Health Science, University of Pẻcs, 7621 Pécs, Hungary
| | - Raposa L Bence
- Faculty of Health Science, University of Pẻcs, 7621 Pécs, Hungary
| |
Collapse
|
19
|
Sarkar A, Bhaskara Rao KV. Unraveling anticancer potential of a novel serine protease inhibitor from marine yeast Candida parapsilosis ABS1 against colorectal and breast cancer cells. World J Microbiol Biotechnol 2023; 39:225. [PMID: 37296286 DOI: 10.1007/s11274-023-03670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The study was planned to isolate a serine protease inhibitor compound with anticancer potential against colorectal and breast cancer cells from marine yeast. Protease enzymes play a crucial role in the mechanism of life-threatening diseases like cancer, malaria and AIDS. Hence, blocking these enzymes with potential inhibitors can be an efficient approach in drug therapy for these diseases. A total of 12 marine yeast isolates, recovered from mangrove swamps of Sundarbans, India, showed inhibition activity against trypsin. The yeast isolate ABS1 showed highest inhibition activity (89%). The optimum conditions for protease inhibitor production were found to be glucose, ammonium phosphate, pH 7.0, 30 °C and 2 M NaCl. The PI protein from yeast isolate ABS1 was purified using ethyl acetate extraction and anion exchange chromatography. The purified protein was characterized using denaturing SDS-PAGE, Liquid Chromatography Electrospray Ionization Mass Spectrometry (LC-ESI-MS), Reverse Phase High Pressure Liquid Chromatography (RP-HPLC) and Fourier Transform Infra-red Spectroscopy (FTIR) analysis. The intact molecular weight of the PI protein was determined to be 25.584 kDa. The PI protein was further studied for in vitro anticancer activities. The IC50 value for MTT cell proliferation assay was found to be 43 µg/ml against colorectal cancer HCT15 cells and 48 µg/ml against breast cancer MCF7 cells. Hoechst staining, DAPI staining and DNA fragmentation assay were performed to check the apoptotic cells. The marine yeast was identified as Candida parapsilosis ABS1 (Accession No. MH782231) using 18s rRNA sequencing.
Collapse
Affiliation(s)
- Anwesha Sarkar
- Marine Biotechnology Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - K V Bhaskara Rao
- Marine Biotechnology Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
20
|
Mehdizadeh R, Ansari AM, Forouzesh F, Ghadirian R, Shahriari F, Shariatpanahi SP, Javidi MA. Cross-talk between non-ionizing electromagnetic fields and metastasis; EMT and hybrid E/M may explain the anticancer role of EMFs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00060-3. [PMID: 37302516 DOI: 10.1016/j.pbiomolbio.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Recent studies have shown that non-ionizing electromagnetic fields (NIEMFs) in a specific frequency, intensity, and exposure time can have anti-cancer effects on various cancer cells; however, the underlying precise mechanism of action is not transparent. Most cancer deaths are due to metastasis. This important phenomenon plays an inevitable role in different steps of cancer including progression and development. It has different stages including invasion, intravasation, migration, extravasation, and homing. Epithelial-mesenchymal transition (EMT), as well as hybrid E/M state, are biological processes, that involve both natural embryogenesis and tissue regeneration, and abnormal conditions including organ fibrosis or metastasis. In this context, some evidence reveals possible footprints of the important EMT-related pathways which may be affected in different EMFs treatments. In this article, critical EMT molecules and/or pathways which can be potentially affected by EMFs (e.g., VEGFR, ROS, P53, PI3K/AKT, MAPK, Cyclin B1, and NF-кB) are discussed to shed light on the mechanism of EMFs anti-cancer effect.
Collapse
Affiliation(s)
- Romina Mehdizadeh
- Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Madjid Ansari
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reyhane Ghadirian
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Shahriari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Amin Javidi
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
21
|
Macharia JM, Ngure V, Emődy B, Király B, Káposztás Z, Rozmann N, Erdélyi A, Raposa B. Pharmacotherapeutic Potential of Aloe secundiflora against Colorectal Cancer Growth and Proliferation. Pharmaceutics 2023; 15:pharmaceutics15051558. [PMID: 37242800 DOI: 10.3390/pharmaceutics15051558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Aloe species are widespread and diverse in African ecosystems, and this commonly correlates to their habitual use as reservoirs of herbal medicine. The side effects associated with chemotherapy and the development of antimicrobial resistance to empirically used antimicrobial drugs are substantial, paving the way for novel phytotherapeutic approaches. This comprehensive study aimed to evaluate and present Aloe secundiflora (A. secundiflora) as a compelling alternative with potential benefits in colorectal cancer (CRC) treatment. Important databases were systematically searched for relevant literature, and out of a large collection of 6421 titles and abstracts, only 68 full-text articles met the inclusion criteria. A. secundiflora possesses an abundant presence of bioactive phytoconstituents in the leaves and roots, including anthraquinones, naphthoquinones, phenols, alkaloids, saponins, tannins, and flavonoids, among others. These metabolites have proven diverse efficacy in inhibiting cancer growth. The presence of innumerable biomolecules in A. secundiflora signifies the beneficial effects of incorporating the plant as a potential anti-CRC agent. Nonetheless, we recommend further research to determine the optimal concentrations necessary to elicit beneficial effects in the management of CRC. Furthermore, they should be investigated as potential raw ingredients for making conventional medications.
Collapse
Affiliation(s)
- John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Veronica Ngure
- School of Science and Applied Technology, Laikipia University, Nyahururu P.O. Box 1100-20300, Kenya
| | - Barnabás Emődy
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Bence Király
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Zsolt Káposztás
- Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Nóra Rozmann
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Attila Erdélyi
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Bence Raposa
- Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| |
Collapse
|
22
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
23
|
Prashantha K, Krishnappa A, Muthappa M. 3D bioprinting of gastrointestinal cancer models: A comprehensive review on processing, properties, and therapeutic implications. Biointerphases 2023; 18:020801. [PMID: 36963961 DOI: 10.1116/6.0002372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Gastrointestinal tract (GIT) malignancies are an important public health problem considering the increased incidence in recent years and the high morbidity and mortality associated with it. GIT malignancies constitute 26% of the global cancer incidence burden and 35% of all cancer-related deaths. Gastrointestinal cancers are complex and heterogenous diseases caused by the interplay of genetic and environmental factors. The tumor microenvironment (TME) of gastrointestinal tract carcinomas is dynamic and complex; it cannot be recapitulated in the basic two-dimensional cell culture systems. In contrast, three-dimensional (3D) in vitro models can mimic the TME more closely, enabling an improved understanding of the microenvironmental cues involved in the various stages of cancer initiation, progression, and metastasis. However, the heterogeneity of the TME is incompletely reproduced in these 3D culture models, as they fail to regulate the orientation and interaction of various cell types in a complex architecture. To emulate the TME, 3D bioprinting has emerged as a useful technique to engineer cancer tissue models. Bioprinted cancer tissue models can potentially recapitulate cancer pathology and increase drug resistance in an organ-mimicking 3D environment. In this review, we describe the 3D bioprinting methods, bioinks, characterization of 3D bioprinted constructs, and their application in developing gastrointestinal tumor models that integrate their microenvironment with different cell types and substrates, as well as bioprinting modalities and their application in therapy and drug screening. We review prominent studies on the 3D bioprinted esophageal, hepatobiliary, and colorectal cancer models. In addition, this review provides a comprehensive understanding of the cancer microenvironment in printed tumor models, highlights current challenges with respect to their clinical translation, and summarizes future perspectives.
Collapse
Affiliation(s)
- Kalappa Prashantha
- Centre for Research and Innovation, Adichunchanagiri School of Natural Sciences, Adichunchanagiri University, BGSIT, B.G. Nagara, Mandya District 571448, Karnataka, India
| | - Amita Krishnappa
- Department of Pathology, Adichunchanagiri Institute of Medicinal Sciences Adichunchanagiri University, B.G. Nagara, Mandya District 571448, Karnataka, India
| | - Malini Muthappa
- Department of Physiology, Adichunchanagiri Institute of Medicinal Sciences Adichunchanagiri University, B.G. Nagara, Mandya District 571448, Karnataka, India
| |
Collapse
|
24
|
Chen JF, Wu SW, Shi ZM, Hu B. Traditional Chinese medicine for colorectal cancer treatment: potential targets and mechanisms of action. Chin Med 2023; 18:14. [PMID: 36782251 PMCID: PMC9923939 DOI: 10.1186/s13020-023-00719-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is a disease with complex pathogenesis, it is prone to metastasis, and its development involves abnormalities in multiple signaling pathways. Surgery, chemotherapy, radiotherapy, target therapy, and immunotherapy remain the main treatments for CRC, but improvement in the overall survival rate and quality of life is urgently needed. Traditional Chinese medicine (TCM) has a long history of preventing and treating CRC. It could affect CRC cell proliferation, apoptosis, cell cycle, migration, invasion, autophagy, epithelial-mesenchymal transition, angiogenesis, and chemoresistance by regulating multiple signaling pathways, such as PI3K/Akt, NF-κB, MAPK, Wnt/β-catenin, epidermal growth factor receptors, p53, TGF-β, mTOR, Hedgehog, and immunomodulatory signaling pathways. In this paper, the main signaling pathways and potential targets of TCM and its active ingredients in the treatment of CRC were systematically summarized, providing a theoretical basis for treating CRC with TCM and new ideas for further exploring the pathogenesis of CRC and developing new anti-CRC drugs.
Collapse
Affiliation(s)
- Jin-Fang Chen
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Shi-Wei Wu
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Zi-Man Shi
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China. .,Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
25
|
Yerlikaya A, Zeren S. Molecular Pathways, Targeted Therapies, and Proteomic Investigations of Colorectal Cancer. Curr Mol Med 2023; 23:2-12. [PMID: 34951572 DOI: 10.2174/1566524022666211224120614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
According to the GLOBOCAN 2020 data, colorectal cancer is the third most commonly diagnosed cancer and the second leading cause of cancer-related death. The risk factors for colorectal cancer include a diet abundant with fat, refined carbohydrates, animal protein, low fiber content, alcoholism, obesity, long-term cigarette smoking, low physical activity, and aging. Colorectal carcinomas are classified as adenocarcinoma, neuroendocrine, squamous cell, adenosquamous, spindle cell, and undifferentiated carcinomas. In addition, many variants of colorectal carcinomas have been recently distinguished based on histological, immunological, and molecular characteristics. Recently developed targeted molecules in conjunction with standard chemotherapeutics or immune checkpoint inhibitors provide promising treatment protocols for colorectal cancer. However, the benefit of targeted therapies is strictly dependent on the mutational status of signaling molecules (e.g., KRAS) or mismatch repair systems. Here it is aimed to provide a comprehensive view of colorectal cancer types, molecular pathways associated, recently developed targeted therapies, as well as proteomic investigations applied to colorectal cancer for the discovery of novel biomarkers and new targets for treatment protocols.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Sezgin Zeren
- Department of General Surgery, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| |
Collapse
|
26
|
Vital M, Carusso F, Vergara C, Neffa F, Della Valle A, Esperón P. Genetic and epigenetic characteristics of patients with colorectal cancer from Uruguay. Pathol Res Pract 2023; 241:154264. [PMID: 36495761 DOI: 10.1016/j.prp.2022.154264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC), the 3rd most frequent cancer worldwide, affects both men and women. This pathology arises from the progressive accumulation of genetic and epigenetic alterations. In this study, KRAS, NRAS, PIK3CA, and BRAF gene mutations, mismatch repair (MMR) genes methylation profile, microsatellite instability (MSI) and CpG Island Methylator Phenotype (CIMP) status were assessed. The associations of these molecular features with clinicopathological data were also investigated. A hundred and eight unselected CRC samples and their histological and clinical data, were gathered between 2017 and 2020. The prevalence of KRAS, NRAS and BRAF gene mutations was similar to that described in other populations. 28.7% of tumors were KRAS-mutated, mostly in men, distal location, with a CIMP-negative status. BRAFV600E frequency was 6.5% and associated with MSI (p = 0.048), MLH1-methylated (p < 0.001) and CIMP-High (p < 0.001) status. We also confirmed that BRAFV600E tumors were more prevalent in older women and proximal location. A striking different result was the lack of most common variants in the PIK3CA gene. A complete absence of PIK3CA-mutated tumors in a population has not been previously reported. Among MMR genes, the only with an aberrant methylation pattern was MLH1 gene. Its frequency was 9.25%, lower than previously reported. Methylated tumors were most frequent in patients older than 70 years old and proximal tumor location. Finally, CIMP-High status was mainly observed in moderately differentiated tumors with a rate of 15.7%. Our findings were consistent with previous reports in other populations, but also showed some features unique to our cohort. This study is the first to report the analysis of a large number molecular biomarkers of CRC in Uruguay and one of the few performed in Latin-America.
Collapse
Affiliation(s)
- Marcelo Vital
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, General Flores 2124, CP1800 Montevideo, Uruguay.
| | - Florencia Carusso
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Carolina Vergara
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Florencia Neffa
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Adriana Della Valle
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Patricia Esperón
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, General Flores 2124, CP1800 Montevideo, Uruguay; Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay; Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain.
| |
Collapse
|
27
|
Kdimati S, Bürtin F, Linnebacher M, Mullins CS. Patient-Derived Organoids for In Vivo Validation of In Vitro Data. Methods Mol Biol 2023; 2589:111-126. [PMID: 36255621 DOI: 10.1007/978-1-0716-2788-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Patient-derived organoids are promising tumor models for functional validation of next-generation sequencing-based therapy recommendations. In times of rapidly advancing precision oncology approaches in everyday clinical processes, reliable and valid tumor models are required. Tumor organoids consist of tumor "stem" cells, differentiated (epithelial) tumor, and stroma cells. The cellular architecture and interactions closely mimic the original patient tumor. These organoids can be implanted into immunodeficient mice, generating patient-derived organoid-derived xenografts, thus enabling in vitro to in vivo transfer. Most importantly, the high clinical relevance of PDO models is maintained in this conversion. This protocol describes in detail the methods and techniques as well as the materials necessary to generate in vitro PDO and in vivo PDO-derived xenograft models. The elaborate process description starts with the processing of freshly obtained tumor tissue. The proceedings include tissue processing, organoid culturing, PDO implantation into immunodeficient mice, tumor explantation, and finally tumor preservation. All these proceedings are described in this timely chronological order. This protocol will enable researchers to generate PDO models from freshly received tumor tissue and generate PDO-derived xenografts. Models generated according to these methods are suitable for a very broad research spectrum.
Collapse
Affiliation(s)
- Said Kdimati
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock, Germany
| | - Florian Bürtin
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock, Germany
| | | |
Collapse
|
28
|
Jothimani G, Ganesan H, Pathak S, Banerjee A. Molecular Characterization of Primary and Metastatic Colon Cancer Cells to Identify Therapeutic Targets with Natural Compounds. Curr Top Med Chem 2022; 22:2598-2615. [PMID: 35366775 DOI: 10.2174/1568026622666220401161511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Metastasis is the world's leading cause of colon cancer morbidity. Due to its heterogeneity, it has been challenging to understand primary to metastatic colon cancer progression and find a molecular target for colon cancer treatment. OBJECTIVES The current investigation aimed to characterize the immune and genotypic profiles of primary and metastatic colon cancer cell lines and identify a molecular target for colon cancer treatment. METHODS Colony-forming potential, migration and invasion potential, cytokine profiling, miRNA, and mRNA expression were examined. Molecular docking for the Wnt signaling proteins with various plant compounds was performed. RESULTS Colony formation, migration, and invasion potential were significantly higher in metastatic cells. The primary and metastatic cells' local immune and genetic status revealed TGF β-1, IL-8, MIP-1b, I-TAC, GM-CSF, and MCP-1 were highly expressed in all cancer cells. RANTES, IL-4, IL- 6, IFNγ, and G-CSF were less expressed in cancer cell lines. mRNA expression analysis displayed significant overexpression of proliferation, cell cycle, and oncogenes, whereas apoptosis cascade and tumor suppressor genes were significantly down-regulated in metastatic cells more evidently. Most importantly, the results of molecular docking with dysregulated Wnt signaling proteins shows that peptide AGAP and coronaridine had maximum hydrogen bonds to β-catenin and GSK3β with a better binding affinity. CONCLUSION This study emphasized genotypic differences between the primary and metastatic colon cancer cells, delineating the intricate mechanisms to understand the primary to metastatic advancement. The molecular docking aided in understanding the future molecular targets for bioactive- based colon cancer therapeutic interventions.
Collapse
Affiliation(s)
- Ganesan Jothimani
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Harsha Ganesan
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| |
Collapse
|
29
|
Macharia JM, Zhang L, Mwangi RW, Rozmann N, Kaposztas Z, Varjas T, Sugár M, Alfatafta H, Pintér M, Bence RL. Are chemical compounds in medical mushrooms potent against colorectal cancer carcinogenesis and antimicrobial growth? Cancer Cell Int 2022; 22:379. [PMID: 36457023 PMCID: PMC9714114 DOI: 10.1186/s12935-022-02798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
After cardiovascular diseases, cancer is the second main cause of death globally. Mushrooms have been demonstrated to contain amalgamation with properties capable of inhibiting carcinogenesis and microbial growth, principally secondary metabolites such as quinolones, steroids, terpenes, anthraquinones, and benzoic acid derivatives among others. This study aimed to substantiate their potency concerning colon cancer carcinogenesis and antimicrobial growth. A systematic search of important literature was performed considering all the articles published until April 2022. Screening was performed by searching the BMC Springer, Elsevier, Embase, Web of Science, Ovid, and MEDLINE databases. In addition, Google Scholar was used to supplement information. Titles and abstracts that matched the established criteria were selected for full-text article scrutiny and subsequently used in the updated present review. Bioactive compounds present in medicinal mushrooms such as ascorbic acid, organic acids, flavonoids, polysaccharides, glycosides, phenols, linoleic acid, grifolin, and tocopherols among other compounds play a key role in suppressing the proliferation of cancerous cells and selectively act as antibacterial and antifungal agents. These metabolites actively scavenge oxygen free radicals, hydroxyl radicals, and nitrite radicals that would otherwise increase the risks of the growth and development of cancerous cells. Mushrooms' bioactive compounds and metabolites actively inhibit nuclear factor-kappa activation, protein kinase B processes, and ultimately the expression of Cyclooxygenases 2 in cancerous cells. Medicinal mushrooms should be considered as alternative natural chemo-preventive agents in the global fight against colon cancer and the evolution of drug-resistant pathogenic microorganisms, as they exhibit robust potency. They have not been reported to exhibit adverse harmful effects compared to synthetic chemotherapies, yet they have been reported to demonstrate significant beneficial effects.
Collapse
Affiliation(s)
- John M. Macharia
- grid.9679.10000 0001 0663 9479Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, City of Pẻcs, Hungary
| | - Lu Zhang
- grid.9679.10000 0001 0663 9479Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, City of Pẻcs, Hungary
| | - Ruth W. Mwangi
- grid.129553.90000 0001 1015 7851Doctoral School of Horticultural Sciences, Institute of Vegetables and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, Budapest City, Hungary ,grid.8301.a0000 0001 0431 4443Faculty of Science, Department of Biological Sciences, Egerton University, Nakuru City, Kenya
| | - Nora Rozmann
- grid.9679.10000 0001 0663 9479Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, City of Pẻcs, Hungary
| | - Zsolt Kaposztas
- grid.9679.10000 0001 0663 9479Faculty of Health Sciences, University of Pécs, City of Pécs, Hungary
| | - Tímea Varjas
- grid.9679.10000 0001 0663 9479Medical School, Department of Public Health Medicine, University of Pẻcs, City of Pẻcs, Hungary
| | - Miklós Sugár
- grid.9679.10000 0001 0663 9479Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, City of Pẻcs, Hungary
| | - Huda Alfatafta
- grid.9679.10000 0001 0663 9479Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, City of Pẻcs, Hungary
| | - Márton Pintér
- grid.9679.10000 0001 0663 9479Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, City of Pẻcs, Hungary
| | - Raposa L. Bence
- grid.9679.10000 0001 0663 9479Faculty of Health Sciences, University of Pécs, City of Pécs, Hungary
| |
Collapse
|
30
|
Yang H, Yue GGL, Leung PC, Wong CK, Zhang YJ, Lau CBS. Anti-metastatic effects of 1,2,3,4,6-Penta-O-galloyl-β-D-glucose in colorectal cancer: Regulation of cathepsin B-mediated extracellular matrix dynamics and epithelial-to-mesenchymal transition. Pharmacol Res 2022; 184:106457. [PMID: 36116708 DOI: 10.1016/j.phrs.2022.106457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 02/05/2023]
Abstract
Despite significant advances in the diagnosis and treatment of colorectal cancer (CRC), metastatic colorectal cancer still poses serious threat to CRC patients. The natural gallotannin 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG) has been shown to possess anti-tumor effects on colon cancer cells, but its anti-metastatic effect is yet to be investigated. In this study, the effects of PGG on cell proliferation, colony formation ability, motility, migration were investigated in colon cancer cells using BrdU, colony formation, scratch, and transwell assays, respectively. Western blot assay was used for assessing protein expression. The orthotopic colon tumor-bearing mouse model and human colon cancer metastatic mouse model were employed to evaluate the anti-metastatic effects of PGG. Results showed that PGG exhibited not only anti-proliferative and colony formation inhibitory effects, but also inhibition on cell adhesion, motility, and migration in both HCT116 and colon 26-M01 cells via modulating protein expression of cathepsin B, FAK, cofilin, and epithelial-to-mesenchymal transition related proteins. In addition, PGG (10 or 15 mg/kg, i.p.) could significantly inhibit liver and lung metastasis in colon cancer metastatic mice models. Furthermore, PGG could regulate the populations of T cells, macrophages, and MDSCs, while the levels of IL-2, IL-6, IL-10, IFN-γ, and TNF-α were altered after PGG treatment in metastatic CRC mice. This is the first report of the anti-metastatic effects of PGG by regulating cathepsin B-mediated extracellular matrix dynamics and epithelial-to-mesenchymal transition process in CRC. Our findings suggested that PGG has great potential to be developed as an anti-metastatic agent for metastatic CRC.
Collapse
Affiliation(s)
- Huihai Yang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Ping-Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China; Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, People's Republic of China.
| | - Clara Bik-San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China.
| |
Collapse
|
31
|
EREN KESKİN S, GÜZDOLU E, SERTDEMİR N, DEMİR G, SÜNNETÇİ AKKOYUNLU D, ÇİNE N, ÇABUK D, SAVLI H. Metastatik Kolorektal Kanserli Hastalarda KRAS/NRAS Gen Mutasyon Profilleri. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.30934/kusbed.1052876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amaç: RAS genleri, Epidermal Büyüme Faktörü Reseptörü (EGFR) tarafından indüklenen RAS-MAPK Sinyal yolağının bir üyesidir. Bu yolaktaki genlerde meydana gelen mutasyonlar kanser gelişimini tetiklemektedir. Kolorektal kanserde (KRK), RAS genlerinde meydana gelen mutasyonlar EGFR hedefli tedaviye karşı direnç gelişimine neden olur. EGFR monoklonal antikorları, kemoterapötik ajanlar olarak metastatik kolorektal kanser tedavisinde yaygın şekilde kullanılmaktadır. KRAS mutasyonları KRK’nın 30-50%’sinde, NRAS mutasyonları ise 2-3%’ünde bulunur. Bu çalışmada, KRK’lı hastalarda KRAS/NRAS mutasyonlarını analiz etmeyi amaçladık.
Yöntem: EGFR-hedefli tedaviye direnç gösteren 100 metastatik KRK hastası, Real-Time Polimeraz Zincir Reaksiyonu yöntemi ile KRAS mutasyonu (ekzon 2, 3, 4) ve NRAS mutasyonu (ekzon 2, 3, 4) durumu için tarandı.
Bulgular: Bu çalışma sonucunda, KRAS mutasyonu oranı 48% ve NRAS mutasyonu oranı 1,92% olarak bulundu. En yaygın KRAS mutasyonları kodon 12’de saptandı. Kodon 12 mutasyonlarının dağılımı G12V (25%), G12D (23%), G12C (14,5%) olarak elde edildi.
Sonuç: Çalışmamızda saptanan KRAS ve NRAS mutasyon sıklıkları benzer raporlar ile uyumlu bulundu. Sonuçlarımız, RAS mutasyonlarının test edilmesinin EGFR-hedefli tedaviden fayda sağlayacak hastaları belirlemede hayati rolünü desteklemektedir.
Collapse
Affiliation(s)
- Seda EREN KESKİN
- KOCAELİ ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ GENETİK ANABİLİM DALI
| | - Eda GÜZDOLU
- KOCAELİ ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ ENSTİTÜSÜ
| | | | - Gülhan DEMİR
- KOCAELİ ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ ENSTİTÜSÜ, TIBBİ GENETİK VE MOLEKÜLER BİYOLOJİ ANABİLİM DALI
| | | | - Naci ÇİNE
- KOCAELİ ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ GENETİK ANABİLİM DALI
| | - Devrim ÇABUK
- KOCAELİ ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, İÇ HASTALIKLARI ANABİLİM DALI, TIBBİ ONKOLOJİ BİLİM DALI
| | - Hakan SAVLI
- KOCAELİ ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ ENSTİTÜSÜ, TIBBİ GENETİK VE MOLEKÜLER BİYOLOJİ ANABİLİM DALI
| |
Collapse
|
32
|
The Insulin-like Growth Factor System and Colorectal Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081274. [PMID: 36013453 PMCID: PMC9410426 DOI: 10.3390/life12081274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factors (IGFs) are peptides which exert mitogenic, endocrine and cytokine activities. Together with their receptors, binding proteins and associated molecules, they participate in numerous pathophysiological processes, including cancer development. Colorectal cancer (CRC) is a disease with high incidence and mortality rates worldwide, whose etiology usually represents a combination of the environmental and genetic factors. IGFs are most often increased in CRC, enabling excessive autocrine/paracrine stimulation of the cell growth. Overexpression or increased activation/accessibility of IGF receptors is a coinciding step which transmits IGF-related signals. A number of molecules and biochemical mechanisms exert modulatory effects shaping the final outcome of the IGF-stimulated processes, frequently leading to neoplastic transformation in the case of irreparable disbalance. The IGF system and related molecules and pathways which participate in the development of CRC are the focus of this review.
Collapse
|
33
|
Bhat AA, Nisar S, Singh M, Ashraf B, Masoodi T, Prasad CP, Sharma A, Maacha S, Karedath T, Hashem S, Yasin SB, Bagga P, Reddy R, Frennaux MP, Uddin S, Dhawan P, Haris M, Macha MA. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun (Lond) 2022; 42:689-715. [PMID: 35791509 PMCID: PMC9395317 DOI: 10.1002/cac2.12295] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 04/24/2022] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is a predominant life-threatening cancer, with liver and peritoneal metastases as the primary causes of death. Intestinal inflammation, a known CRC risk factor, nurtures a local inflammatory environment enriched with tumor cells, endothelial cells, immune cells, cancer-associated fibroblasts, immunosuppressive cells, and secretory growth factors. The complex interactions of aberrantly expressed cytokines, chemokines, growth factors, and matrix-remodeling enzymes promote CRC pathogenesis and evoke systemic responses that affect disease outcomes. Mounting evidence suggests that these cytokines and chemokines play a role in the progression of CRC through immunosuppression and modulation of the tumor microenvironment, which is partly achieved by the recruitment of immunosuppressive cells. These cells impart features such as cancer stem cell-like properties, drug resistance, invasion, and formation of the premetastatic niche in distant organs, promoting metastasis and aggressive CRC growth. A deeper understanding of the cytokine- and chemokine-mediated signaling networks that link tumor progression and metastasis will provide insights into the mechanistic details of disease aggressiveness and facilitate the development of novel therapeutics for CRC. Here, we summarized the current knowledge of cytokine- and chemokine-mediated crosstalk in the inflammatory tumor microenvironment, which drives immunosuppression, resistance to therapeutics, and metastasis during CRC progression. We also outlined the potential of this crosstalk as a novel therapeutic target for CRC. The major cytokine/chemokine pathways involved in cancer immunotherapy are also discussed in this review.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Mayank Singh
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Bazella Ashraf
- Department of BiotechnologySchool of Life SciencesCentral University of KashmirGanderbalJammu & Kashmir191201India
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Chandra P. Prasad
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Atul Sharma
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Selma Maacha
- Division of Translational MedicineResearch BranchSidra MedicineDoha26999Qatar
| | | | - Sheema Hashem
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Syed Besina Yasin
- Department of PathologySher‐I‐Kashmir Institute of Medical SciencesSrinagarJammu & Kashmir190011India
| | - Puneet Bagga
- Department of Diagnostic ImagingSt. Jude Children's Research HospitalMemphisTN38105USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision MedicineDepartment of RadiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104USA
| | | | - Shahab Uddin
- Translational Research InstituteHamad Medical CorporationDoha3050Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
- Laboratory Animal Research CenterQatar UniversityDoha2713Qatar
| | - Muzafar A. Macha
- Watson‐Crick Centre for Molecular MedicineIslamic University of Science and TechnologyAwantiporaJammu & Kashmir192122India
| |
Collapse
|
34
|
HJURP inhibits proliferation of ovarian cancer cells by regulating CENP-A/CENP-N. Bull Cancer 2022; 109:1007-1016. [DOI: 10.1016/j.bulcan.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022]
|
35
|
Esmeeta A, Adhikary S, Dharshnaa V, Swarnamughi P, Ummul Maqsummiya Z, Banerjee A, Pathak S, Duttaroy AK. Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomed Pharmacother 2022; 153:113384. [PMID: 35820317 DOI: 10.1016/j.biopha.2022.113384] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/19/2022] Open
Abstract
Colon cancer is the third most predominant cancer caused by genetic, environmental and nutritional factors. Plant-based compounds are very well known to regress colon cancer in many ways, like delaying tumor growth, managing chemotherapy and radiation therapy side-effects, and working at the molecular levels. Medicinal plants contain many bioactive phytochemicals such as flavonoids, polyphenol compounds, caffeic acid, catechins, saponins, polysaccharides, triterpenoids, alkaloids, glycosides, phenols, quercetin, luteolin, kaempferol and luteolin glycosides, carnosic acid, oleanolic acid, rosmarinic acid, emodin, and eugenol and anthricin. These bioactive compounds can reduce tumor cell proliferation via several mechanisms, such as blocking cell cycle checkpoints and promoting apoptosis through activating initiator and executioner caspase. Traditional medicines have been used globally to treat cancers because of their anti-cancer effects, antioxidant properties, anti-inflammatory properties, anti-mutagenic effects, and anti-angiogenic effects. In addition, these medicines effectively suppress early and intermediate stages of carcinogenesis when administered in their active and pure form. However, traditional medicine is not very popular due to some critical challenges. These include poor solubility and absorption of these compounds, intellectual property-related issues, involvement of drug synergism, absence of drug-likeness, and unsure protocols for their extraction from the plant source. Using bioactive compounds in colon cancer has equal advantages and limitations. This review highlights the benefits and challenges of using bioactive compounds derived from plants for colon cancer. We have also discussed using these compounds to target cancer stem cell self-renewal, its effects on cancer cell metabolism, safety parameters, easy modulation, and their bioavailability.
Collapse
Affiliation(s)
- Akanksha Esmeeta
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Subhamay Adhikary
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - V Dharshnaa
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - P Swarnamughi
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Z Ummul Maqsummiya
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India.
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
36
|
Li Q, Yang Y, Wang X, Yang X, Zhao Y, Wu Q, Zhao Y. Alternariol ameliorates lung carcinoma via reprogramming cytokine signaling associated with PI3K/Akt cascade in vitro and in vivo. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objectives The lung cancer is most frequently diagnosed cancer incidence worldwide. A large number of populations are heavily affected to this every year with poor prognosis. Methods Our study investigated the anticancer effect of alternariol, a secondary metabolite, on A549 lung cancer cell line and benzo-α-pyrene induced lung carcinoma model on balb/c mice. The cytotoxicity assay, DAPI staining and the flow cytometry was performed to assess the anticancer efficacy of alternariol in A549 lung cancer cell. For in vivo study the toxicity study was performed. The lung cancer was developed in the animals via intraperitoneal administration of benzo-α-pyrene and subsequently 2 weeks later alternariol treatment was carried out for 24 weeks. The chemotherapeutic effect of alternariol was assessed through histopathological analysis, followed by immunohistochemistry and in vivo antioxidant study. Results The in vitro data suggested a significant percentage of early and late apoptotic events in A549 cells with G0/G1 phase arrest which ultimately caused apoptosis followed by alternariol therapy. The in vivo study showed that alternariol therapy decreased the pulmonary fibrosis and formation of granuloma in lung tissue and restored the normal histopathological characteristics of lung. Furthermore, alternariol treatment downregulated the expression of PI3K, Akt and inflammatory mediators such as IL-6, TNF-α and increased the expression of apoptotic markers, p53. Conclusion In conclusion, the treatment with alternariol effectively decreased the progression of lung cancer through the inhibition of carcinogenic markers by reprogramming the p53/PI3K/Akt pathway and IL-6/TNF-α mediated cytokine signaling in mice.
Collapse
Affiliation(s)
- Qiufang Li
- Clinical 1 Department, College of nursing and health, Zhengzhou University, Zhengzhou, China
| | - Yanzi Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaokai Wang
- Department of basic medicine, College of nursing and health, Zhengzhou University, Zhengzhou, China
| | - Xiaopeng Yang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaosong Zhao
- Experimental center of College of nursing and health, Zhengzhou University, Zhengzhou, China
| | - Qiuge Wu
- Department of respiratory medicine, The First Affiliated Hospital of Zhengzhou University Zhengzhou, China
| | - Yanli Zhao
- Department of basic nursing, College of nursing and health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
GATA4 and estrogen receptor alpha bind at SNPs rs9921222 and rs10794639 to regulate AXIN1 expression in osteoblasts. Hum Genet 2022; 141:1849-1861. [PMID: 35678873 DOI: 10.1007/s00439-022-02463-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/21/2022] [Indexed: 11/04/2022]
Abstract
Osteoporosis is a serious public health problem that affects 200 million people worldwide. Genome-wide association studies have revealed the association between several single nucleotide polymorphisms (SNPs) near WNT/β-catenin signaling genes and bone mineral density (BMD). The activation of β-catenin by WNT ligands is required for osteoblast differentiation. SNP rs9921222 is an intronic variant of AXIN1 (a scaffold protein in the destruction complex that regulates β-catenin signaling) that correlates with BMD. However, the biological mechanism of SNP rs9921222 has never been reported. Here, we show that the genotype of SNP rs9921222 correlates with the expression of AXIN1 in human osteoblasts. RNA and genomic DNA were analyzed from primary osteoblasts from 111 different individuals. Homozygous TT at rs9921222 correlates with a higher expression of AXIN1 than homozygous CC. Regional association analysis showed that rs9921222 is in high linkage disequilibrium (LD) with SNP rs10794639. In silico transcription factor analysis predicted that rs9921222 is within a GATA4 motif and rs10794639 is adjacent to an estrogen receptor alpha (ERα) motif. Mechanistically, GATA4 and ERα bind at SNPs rs9921222 and rs10794639 as detected by ChIP-qPCR. Luciferase assays demonstrate that rs9921222 is the causal SNP to alter ERα and GATA4 binding. GATA4 promoted the expression, and in contrast, ERα suppressed the expression of AXIN1 via the histone deacetylase complex member SIN3A. Functionally, the level of AXIN1 negatively correlates with the level of transcriptionally active β-catenin. In summary, we have discovered a molecular mechanism of the SNP rs9921222 to regulate AXIN1 through GATA4 and ERα binding in human osteoblasts.
Collapse
|
38
|
Tumor Molecular Profiling in Hispanics: Moving Towards Precision Oncology and Health Equity. J Racial Ethn Health Disparities 2022; 10:1423-1431. [PMID: 35648382 PMCID: PMC10163076 DOI: 10.1007/s40615-022-01328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tumor molecular profiling techniques, such as next-generation sequencing (NGS) to identify somatic genetic alterations, allow physicians to have a better understanding of the affected carcinogenic pathways and guide targeted therapy. The objective of our study was to characterize common somatic alterations and carcinogenic pathways among Puerto Rican Hispanics with solid tumors. METHODS We conducted a single-institution, retrospective study to characterize molecular tumor profiles using a 592-gene NGS platform. Actionable mutations with current or developing therapies targeting affected genes/pathways were highlighted. RESULTS Tumors from 50 Hispanic patients were evaluated using CARIS Life Science© NGS testing. The median age of our study population was 55 (range 21-84); 54% (n = 27) were males. The primary tumor sites were colorectal (n = 24), gastric (n = 5), breast (n = 4), and lung (n = 3). The most common genetic mutations identified were in TP53 (44%), APC (38%), and KRAS (32%); followed by alterations in EGFR (4%), HER2 (6%), and homologous recombinant deficiency genes (BRCA2, 6%). Genetic alterations were found in multiple signaling pathways particularly in the cell cycle control pathway, MAPK and Wnt/β-Catenin signaling pathways. Targetable biomarkers were identified in 27/50 (54.0%) of tumors. DISCUSSION Molecular profiling techniques, such as next-generation sequencing, have substantially expanded access to alterations in the cancer genome. Our findings demonstrated important actionable mutations in most of the tumors evaluated and support the integration of somatic mutation profiling in the evaluation of Hispanic cancer patients with advanced cancer to help guide therapeutic options.
Collapse
|
39
|
Zhang X, Liu T, Huang J, He J. PICALM exerts a role in promoting CRC progression through ERK/MAPK signaling pathway. Cancer Cell Int 2022; 22:178. [PMID: 35501863 PMCID: PMC9063212 DOI: 10.1186/s12935-022-02577-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 04/06/2022] [Indexed: 01/06/2023] Open
Abstract
Background Colorectal cancer (CRC) is a common malignant tumor in gastrointestinal tract with high incidence and mortality. In this study, the functions and potential mechanism of phosphatidylinositol-binding clathrin assembly protein (PICALM) in CRC were preliminarily explored. Methods Based on the Cancer Genome Atlas database and immunohistochemistry staining, revealing that the expression level of PICALM in CRC tissues was higher than that in adjacent normal tissues. Results Moreover, loss-of-function and gain-of-function assays in HCT 116 and RKO cells found that PICALM promotes proliferation and migration of CRC cells and inhibits apoptosis. Consistently, knockdown of PICALM inhibited tumorigenicity of CRC cells in vivo. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that knockdown of PICALM resulted in the enrichment of MAPK signaling pathway. Treatment of CRC cells with MAPK inhibitor reversed the effects of PICALM overexpression on proliferation and apoptosis. In addition, overexpression of PICALM upregulated the protein levels of ERK1/2 (p-ERK1/2), MEK1/2 (p-MEK1/2), p38 (p-p38) and JNK (p-JNK), and these effects were partially alleviated by the treatment of MAPK inhibitor. Conclusions In summary, the study presented the new discovery that PICALM promoted CRC progression through ERK/MAPK signaling pathway, which drew further interest regarding its clinical application as a promising therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02577-z.
Collapse
Affiliation(s)
- Xitao Zhang
- Department of Coloproctology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu, Guangzhou, 510280, Guangdong, China
| | - Tianlai Liu
- Department of Coloproctology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu, Guangzhou, 510280, Guangdong, China
| | - Jinlin Huang
- Department of General Surgery, Shun De Hospital of Guang Zhou University of Chinese Medicine, 898 Jinsha Avenue, Shun De, Foshan, 510006, Guangdong, China
| | - Jianping He
- Department of Coloproctology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
40
|
Hafez FS, Meckawy GR, Alorabi M, Shakweer MM. Interpretation of P16 expression as a marker of HPV in colorectal cancer. Histol Histopathol 2022; 37:475-481. [PMID: 35178697 DOI: 10.14670/hh-18-439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colorectal cancer is one of the most prevalent types of tumors worldwide. P16ᴵᴺᴷ⁴ᵃ is a widely used immunohistochemical marker for high-risk HPV infection. The purpose of this study is to explore the relationship between P16 expression as an indicator of HPV infection and colorectal cancer in Egyptian patients, as well as its association with histopathological characteristics. MATERIAL AND METHODS The study was performed on 59 cases of colorectal carcinoma cases and 30 specimens of normal colonic mucosa. RESULTS p16 protein was detected in 22% (13 of 59) of patients with colorectal carcinoma. No evidence of P16 expression in all 30 cases of non-neoplastic colonic mucosa was found. More frequent expression of P16 was seen in distal carcinomas. CONCLUSION our study demonstrated that P16 protein is expressed in a reasonable percent of colorectal carcinoma cases, suggesting a role of HPV in colorectal carcinogenesis. The present study highlights the role of p16 protein expression which is important in the pathogenesis in colorectal carcinoma, especially regarding distal tumors.
Collapse
Affiliation(s)
- Fatma S Hafez
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Ghada R Meckawy
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Alorabi
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa M Shakweer
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of pathology, Faculty of Medicine, Badr University in Cairo (BUC), Egypt
| |
Collapse
|
41
|
Nazarian A, Arbeev KG, Yashkin AP, Kulminski AM. Genome-wide analysis of genetic predisposition to common polygenic cancers. J Appl Genet 2022; 63:315-325. [PMID: 34981446 PMCID: PMC8983541 DOI: 10.1007/s13353-021-00679-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
Lung, breast, prostate, and colorectal cancers are among the most common and fatal malignancies worldwide. They are mainly caused by multifactorial mechanisms and are genetically heterogeneous. We investigated the genetic architecture of these cancers through genome-wide association, pathway-based, and summary-based transcriptome-/methylome-wide association analyses using three independent cohorts. Our genome-wide association analyses identified the associations of 33 single-nucleotide polymorphisms (SNPs) at P < 5E - 06, of which 32 SNPs were not previously reported and did not have proxy variants within their ± 1 Mb flanking regions. Moreover, other polymorphisms mapped to their closest genes were not previously associated with the same cancers at P < 5E - 06. Our pathway enrichment analyses revealed associations of 32 pathways; mainly related to the immune system, DNA replication/transcription, and chromosomal organization; with the studied cancers. Also, 60 probes were associated with these cancers in our transcriptome-wide and methylome-wide analyses. The ± 1 Mb flanking regions of most probes had not attained P < 5E - 06 in genome-wide association studies. The genes corresponding to the significant probes can be considered as potential targets for further functional studies. Two genes (i.e., CDC14A and PMEL) demonstrated stronger evidence of associations with lung cancer as they had significant probes in both transcriptome-wide and methylome-wide association analyses. The novel cancer-associated SNPs and genes identified here would advance our understanding of the genetic heterogeneity of the common cancers.
Collapse
Affiliation(s)
- Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA.
| | - Konstantin G Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA
| | - Arseniy P Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA.
| |
Collapse
|
42
|
Brás MM, Sousa SR, Carneiro F, Radmacher M, Granja PL. Mechanobiology of Colorectal Cancer. Cancers (Basel) 2022; 14:1945. [PMID: 35454852 PMCID: PMC9028036 DOI: 10.3390/cancers14081945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, the mechanobiology of colorectal cancer (CRC) are discussed. Mechanotransduction of CRC is addressed considering the relationship of several biophysical cues and biochemical pathways. Mechanobiology is focused on considering how it may influence epithelial cells in terms of motility, morphometric changes, intravasation, circulation, extravasation, and metastization in CRC development. The roles of the tumor microenvironment, ECM, and stroma are also discussed, taking into account the influence of alterations and surface modifications on mechanical properties and their impact on epithelial cells and CRC progression. The role of cancer-associated fibroblasts and the impact of flow shear stress is addressed in terms of how it affects CRC metastization. Finally, some insights concerning how the knowledge of biophysical mechanisms may contribute to the development of new therapeutic strategies and targeting molecules and how mechanical changes of the microenvironment play a role in CRC disease are presented.
Collapse
Affiliation(s)
- Maria Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-465 Porto, Portugal
- Serviço de Patologia, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manfred Radmacher
- Institute for Biophysics, University of Bremen, 28334 Bremen, Germany
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
43
|
Negri F, Bottarelli L, de’Angelis GL, Gnetti L. KRAS: A Druggable Target in Colon Cancer Patients. Int J Mol Sci 2022; 23:ijms23084120. [PMID: 35456940 PMCID: PMC9027058 DOI: 10.3390/ijms23084120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/18/2022] Open
Abstract
Mutations in KRAS are among the most frequent aberrations in cancer, including colon cancer. KRAS direct targeting is daunting due to KRAS protein resistance to small molecule inhibition. Moreover, its elevated affinity to cellular guanosine triphosphate (GTP) has made the design of specific drugs challenging. Indeed, KRAS was considered ‘undruggable’. KRASG12C is the most commonly mutated variant of KRAS in non-small cell lung cancer. Currently, the achievements obtained with covalent inhibitors of this variant have given the possibility to assess the best therapeutic approach to KRAS-driven tumors. Mutation-related biochemical assets and the tissue of origin are expected to influence responses to treatment. Further attempts to obtain mutant-specific KRAS (KRASG12C) switch-II covalent inhibitors are ongoing and the results are promising. Drugs targeted to block KRAS effector pathways could be combined with direct KRAS inhibitors, immunotherapy or T cell-targeting approaches in KRAS-mutant tumors. The development of valuable combination regimens will be essential against potential mechanisms of resistance that may arise during treatment.
Collapse
Affiliation(s)
- Francesca Negri
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
- Correspondence:
| | - Lorena Bottarelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Gian Luigi de’Angelis
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Letizia Gnetti
- Pathology Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
| |
Collapse
|
44
|
|
45
|
Gheorghe AS, Negru ȘM, Preda M, Mihăilă RI, Komporaly IA, Dumitrescu EA, Lungulescu CV, Kajanto LA, Georgescu B, Radu EA, Stănculeanu DL. Biochemical and Metabolical Pathways Associated with Microbiota-Derived Butyrate in Colorectal Cancer and Omega-3 Fatty Acids Implications: A Narrative Review. Nutrients 2022; 14:nu14061152. [PMID: 35334808 PMCID: PMC8950877 DOI: 10.3390/nu14061152] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Knowledge regarding the influence of the microbial community in cancer promotion or protection has expanded even more through the study of bacterial metabolic products and how they can modulate cancer risk, which represents an extremely challenging approach for the relationship between intestinal microbiota and colorectal cancer (CRC). This review discusses research progress on the effect of bacterial dysbiosis from a metabolic point of view, particularly on the biochemical mechanisms of butyrate, one of the main short chain fatty acids (SCFAs) with anti-inflammatory and anti-tumor properties in CRC. Increased daily intake of omega-3 polyunsaturated fatty acids (PUFAs) significantly increases the density of bacteria that are known to produce butyrate. Omega-3 PUFAs have been proposed as a treatment to prevent gut microbiota dysregulation and lower the risk or progression of CRC.
Collapse
Affiliation(s)
- Adelina Silvana Gheorghe
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Șerban Mircea Negru
- Department of Oncology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Correspondence: (Ș.M.N.); (M.P.)
| | - Mădălina Preda
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (Ș.M.N.); (M.P.)
| | - Raluca Ioana Mihăilă
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Isabela Anda Komporaly
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Elena Adriana Dumitrescu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | | | - Lidia Anca Kajanto
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Bogdan Georgescu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Emanuel Alin Radu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Dana Lucia Stănculeanu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| |
Collapse
|
46
|
Bennedsen ALB, Furbo S, Bjarnsholt T, Raskov H, Gögenur I, Kvich L. The gut microbiota can orchestrate the signaling pathways in colorectal cancer. APMIS 2022; 130:121-139. [PMID: 35007370 DOI: 10.1111/apm.13206] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Current evidence suggests that bacteria contribute to the development of certain cancers, such as colorectal cancer (CRC), partly by stimulating chronic inflammation. However, little is known about the bacterial impact on molecular pathways in CRC. Recent studies have demonstrated how specific bacteria can influence the major CRC-related pathways, i.e., Wnt, PI3K-Akt, MAPK, TGF-β, EGFR, mTOR, and p53. In order to advance the current understanding and facilitate the choice of pathways to investigate, we have systematically collected and summarized the current knowledge within bacterial altered major pathways in CRC. Several pro-tumorigenic and anti-tumorigenic bacterial species and their respective metabolites interfere with the major signaling pathways addressed in this review. Not surprisingly, some of these studies investigated known CRC drivers, such as Escherichia coli, Fusobacterium nucleatum, and Bacteroides fragilis. Interestingly, some metabolites produced by bacterial species typically considered pathogenic, e.g., Vibrio cholera, displayed anti-tumorigenic activities, emphasizing the caution needed when classifying healthy and unhealthy microorganisms. The results collectively emphasize the complexity of the relationship between the microbiota and the tumorigenesis of CRC, and future studies should verify these findings in more realistic models, such as organoids, which constitute a promising platform. Moreover, future trials should investigate the clinical potential of preventive modulation of the gut microbiota regarding CRC development.
Collapse
Affiliation(s)
- Astrid L B Bennedsen
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Sara Furbo
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Hans Raskov
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Ismail Gögenur
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Kvich
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark.,Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Joshi P, Basso B, Wang H, Hong SH, Giardina C, Shin DG. rPAC: Route based pathway analysis for cohorts of gene expression data sets. Methods 2022; 198:76-87. [PMID: 34628030 PMCID: PMC8792230 DOI: 10.1016/j.ymeth.2021.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 02/03/2023] Open
Abstract
Pathway analysis is a popular method aiming to derive biological interpretation from high-throughput gene expression studies. However, existing methods focus mostly on identifying which pathway or pathways could have been perturbed, given differential gene expression patterns. In this paper, we present a novel pathway analysis framework, namely rPAC, which decomposes each signaling pathway route into two parts, the upstream portion of a transcription factor (TF) block and the downstream portion from the TF block and generates a pathway route perturbation analysis scheme examining disturbance scores assigned to both parts together. This rPAC scoring is further applied to a cohort of gene expression data sets which produces two summary metrics, "Proportion of Significance" (PS) and "Average Route Score" (ARS), as quantitative measures discerning perturbed pathway routes within and/or between cohorts. To demonstrate rPAC's scoring competency, we first used a large amount of simulated data and compared the method's performance against those by conventional methods in terms of power curve. Next, we performed a case study involving three epithelial cancer data sets from The Cancer Genome Atlas (TCGA). The rPAC method revealed specific pathway routes as potential cancer type signatures. A deeper pathway analysis of sub-groups (i.e., age groups in COAD or cancer sub-types in BRCA) resulted in pathway routes that are known to be associated with the sub-groups. In addition, multiple previously uncharacterized pathways routes were identified, potentially suggesting that rPAC is better in deciphering etiology of a disease than conventional methods particularly in isolating routes and sections of perturbed pathways in a finer granularity.
Collapse
Affiliation(s)
- Pujan Joshi
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA.
| | - Brent Basso
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT, USA
| | - Honglin Wang
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA
| | - Seung-Hyun Hong
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA
| | - Charles Giardina
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT, USA
| | - Dong-Guk Shin
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
48
|
Gurba A, Taciak P, Sacharczuk M, Młynarczuk-Biały I, Bujalska-Zadrożny M, Fichna J. Gold (III) Derivatives in Colon Cancer Treatment. Int J Mol Sci 2022; 23:724. [PMID: 35054907 PMCID: PMC8775370 DOI: 10.3390/ijms23020724] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Colorectal cancer (CRC) is the third most frequently diagnosed cancer in men and the second in women. Standard patterns of antitumor therapy, including cisplatin, are ineffective due to their lack of specificity for tumor cells, development of drug resistance, and severe side effects. For this reason, new methods and strategies for CRC treatment are urgently needed. Current research includes novel platinum (Pt)- and other metal-based drugs such as gold (Au), silver (Ag), iridium (Ir), or ruthenium (Ru). Au(III) compounds are promising drug candidates for CRC treatment due to their structural similarity to Pt(II). Their advantage is their relatively good solubility in water, but their disadvantage is an unsatisfactory stability under physiological conditions. Due to these limitations, work is still underway to improve the formula of Au(III) complexes by combining with various types of ligands capable of stabilizing the Au(III) cation and preventing its reduction under physiological conditions. This review summarizes the achievements in the field of stable Au(III) complexes with potential cytotoxic activity restricted to cancer cells. Moreover, it has been shown that not nucleic acids but various protein structures such as thioredoxin reductase (TrxR) mediate the antitumor effects of Au derivatives. The state of the art of the in vivo studies so far conducted is also described.
Collapse
Affiliation(s)
- Agata Gurba
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
| | - Przemysław Taciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
| | - Mariusz Sacharczuk
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
- Department of Genomics, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Izabela Młynarczuk-Biały
- Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.T.); (M.S.); (M.B.-Z.)
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| |
Collapse
|
49
|
Predicted miRNAs suppressed cell proliferation and migration via FAK/VASP axis; Systems biology approach. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
Wei PL, Lin JC, Hung CS, Makondi PT, Batzorig U, Chang TC, Huang CY, Chang YJ. Human α-defensin 6 (HD6) suppresses CRC proliferation and metastasis through abolished EGF/EGFR signaling pathway. Int J Med Sci 2022; 19:34-46. [PMID: 34975297 PMCID: PMC8692109 DOI: 10.7150/ijms.64850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
The incidence of colorectal cancer (CRC) has increased significantly in the past decade. Early diagnosis and new therapeutics are still urgently needed for CRC in clinical practice. Human α-defensin 6 (HD6) plays a defense role against microbes in the gastrointestinal tract. However, the role and mechanism of HD6 in CRC is still unresolved. Specimens from CRC patients with higher HD6 showed better outcomes. Overexpressed HD6 in CRC cells caused a reduction of cell proliferative, migratory, and invasive ability in vitro and in vivo. HD6-overexpressed caused S phase arrest through changes in cyclin-A and B and CDK2 levels. In addition, serpine-1 may be negatively regulated by HD6 altering the translocation of c-Jun N-terminal kinases (JNK), extracellular regulated protein kinases (ERK), and p38. Higher HD6 and lower serpine-1 levels in CRC patients reflected better outcomes. Finally, we found that HD6 interacts directly with epidermal growth factor receptor (EGFR) by co-immunoprecipitated assay. EGF treatment caused an increase of the level of serpine-1 and pEGFR levels and then increased growth activity in HD6 overexpressing cells. Together, our study shows that HD6 may compete with EGF to bind to EGFR and interrupt cancer progression in CRC. We believe these findings may give new insights for HD6 in CRC therapy.
Collapse
Affiliation(s)
- Po-Li Wei
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan.,Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Jang-Chun Lin
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Sheng Hung
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Uyanga Batzorig
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tung-Cheng Chang
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Colon and Rectal, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yu Huang
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Colon and Rectal, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|