1
|
Chen L, Guo X, Lin W, Huang Y, Zhuang S, Li Q, Xu J, Ye S. Curcumin derivative C210 induces Epstein-Barr virus lytic cycle and inhibits virion production by disrupting Hsp90 function. Sci Rep 2024; 14:26694. [PMID: 39496752 PMCID: PMC11535535 DOI: 10.1038/s41598-024-77294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Lytic induction therapy was devised to selectively combat malignancies associated with Epstein-Barr virus (EBV) by triggering viral reactivation from latency. At present, the major challenges of lytic induction therapy are to maximize reactivating efficiencies and meanwhile minimize infectious virion production. C210, a novel curcumin derivative with potent Hsp90 inhibitory activity, was explored for EBV-reactivating and virion-producing effects in EBV-positive nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC) cell lines. And the molecular mechanisms underlying these effects were determined. Follow C210 treatment, EBV lytic RNAs and proteins were upregulated, but infectious virions were not produced. Knockdown of heat shock protein 90 (Hsp90) induced expression of lytic RNAs and proteins, and diminished C210-driven EBV lytic induction. Pretreatment with an X box binding protein 1 (XBP1) inhibitor reduced C210-induced EBV lytic RNA. Furthermore, we demonstrated that C210 inhibited the binding of Hsp90 with its clients, signal transducer and activator of transcription 3 (STAT3) and xeroderma pigmentosum group B-complementing protein (XPB), which subsequently promoted their proteasomal degradation. Degradation of STAT3 by C210 enhanced the EBV-reactivating and anticancer capacity of suberoylanilide hydroxamic acid (SAHA). Depletion of XPB blocked SAHA-induced expression of late viral genes and production of infectious virions. These results elucidate a novel Hsp90 inhibitor targeting EBV lytic phase and extend the research on lytic induction strategy, which may offer reference value in the treatment of EBV-positive malignancies.
Collapse
Grants
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
Collapse
Affiliation(s)
- Linli Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaojing Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wen Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yingying Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Suling Zhuang
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qianfeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianhua Xu
- The School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Shengnan Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Ulloa-Aguilar JM, Herrera Moro Huitron L, Benítez-Zeferino RY, Cerna-Cortes JF, García-Cordero J, León-Reyes G, Guzman-Bautista ER, Farfan-Morales CN, Reyes-Ruiz JM, Miranda-Labra RU, De Jesús-González LA, León-Juárez M. The Nucleolus and Its Interactions with Viral Proteins Required for Successful Infection. Cells 2024; 13:1591. [PMID: 39329772 PMCID: PMC11430610 DOI: 10.3390/cells13181591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Nuclear bodies are structures in eukaryotic cells that lack a plasma membrane and are considered protein condensates, DNA, or RNA molecules. Known nuclear bodies include the nucleolus, Cajal bodies, and promyelocytic leukemia nuclear bodies. These bodies are involved in the concentration, exclusion, sequestration, assembly, modification, and recycling of specific components involved in the regulation of ribosome biogenesis, RNA transcription, and RNA processing. Additionally, nuclear bodies have been shown to participate in cellular processes such as the regulation of transcription of the cell cycle, mitosis, apoptosis, and the cellular stress response. The dynamics and functions of these bodies depend on the state of the cell. It is now known that both DNA and RNA viruses can direct their proteins to nuclear bodies, causing alterations in their composition, dynamics, and functions. Although many of these mechanisms are still under investigation, it is well known that the interaction between viral and nuclear body proteins is necessary for the success of the viral infection cycle. In this review, we concisely describe the interaction between viral and nuclear body proteins. Furthermore, we focus on the role of the nucleolus in RNA virus infections. Finally, we discuss the possible implications of the interaction of viral proteins on cellular transcription and the formation/degradation of non-coding RNAs.
Collapse
Affiliation(s)
- José Manuel Ulloa-Aguilar
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Posgrado en Biología Experimental, Departamento de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09310, Mexico
| | - Luis Herrera Moro Huitron
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Rocío Yazmin Benítez-Zeferino
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Jorge Francisco Cerna-Cortes
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Guadalupe León-Reyes
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Edgar Rodrigo Guzman-Bautista
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
| | - Carlos Noe Farfan-Morales
- Departamento de Ciencias Naturales, Universidad Autonoma Metropolitana (UAM), Unidad Cuajimalpa, Mexico City 05348, Mexico;
| | - José Manuel Reyes-Ruiz
- Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico;
| | - Roxana U. Miranda-Labra
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09310, Mexico;
| | | | - Moises León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
| |
Collapse
|
3
|
Shechter O, Sausen DG, Gallo ES, Dahari H, Borenstein R. Epstein-Barr Virus (EBV) Epithelial Associated Malignancies: Exploring Pathologies and Current Treatments. Int J Mol Sci 2022; 23:14389. [PMID: 36430864 PMCID: PMC9699474 DOI: 10.3390/ijms232214389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Epstein-Barr virus (EBV) is one of eight known herpesviruses with the potential to infect humans. Globally, it is estimated that between 90-95% of the population has been infected with EBV. EBV is an oncogenic virus that has been strongly linked to various epithelial malignancies such as nasopharyngeal and gastric cancer. Recent evidence suggests a link between EBV and breast cancer. Additionally, there are other, rarer cancers with weaker evidence linking them to EBV. In this review, we discuss the currently known epithelial malignancies associated with EBV. Additionally, we discuss and establish which treatments and therapies are most recommended for each cancer associated with EBV.
Collapse
Affiliation(s)
- Oren Shechter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Daniel G. Sausen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Elisa S. Gallo
- Tel-Aviv Sourasky Medical Center, Division of Dermatology, Tel-Aviv 6423906, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
4
|
Movassagh M, Morton SU, Hehnly C, Smith J, Doan TT, Irizarry R, Broach JR, Schiff SJ, Bailey JA, Paulson JN. mirTarRnaSeq: An R/Bioconductor Statistical Package for miRNA-mRNA Target Identification and Interaction Analysis. BMC Genomics 2022; 23:439. [PMID: 35698050 PMCID: PMC9191533 DOI: 10.1186/s12864-022-08558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/17/2022] [Indexed: 11/10/2022] Open
Abstract
We introduce mirTarRnaSeq, an R/Bioconductor package for quantitative assessment of miRNA-mRNA relationships within sample cohorts. mirTarRnaSeq is a statistical package to explore predicted or pre-hypothesized miRNA-mRNA relationships following target prediction.We present two use cases applying mirTarRnaSeq. First, to identify miRNA targets, we examined EBV miRNAs for interaction with human and virus transcriptomes of stomach adenocarcinoma. This revealed enrichment of mRNA targets highly expressed in CD105+ endothelial cells, monocytes, CD4+ T cells, NK cells, CD19+ B cells, and CD34 cells. Next, to investigate miRNA-mRNA relationships in SARS-CoV-2 (COVID-19) infection across time, we used paired miRNA and RNA sequenced datasets of SARS-CoV-2 infected lung epithelial cells across three time points (4, 12, and 24 hours post-infection). mirTarRnaSeq identified evidence for human miRNAs targeting cytokine signaling and neutrophil regulation immune pathways from 4 to 24 hours after SARS-CoV-2 infection. Confirming the clinical relevance of these predictions, three of the immune specific mRNA-miRNA relationships identified in human lung epithelial cells after SARS-CoV-2 infection were also observed to be differentially expressed in blood from patients with COVID-19. Overall, mirTarRnaSeq is a robust tool that can address a wide-range of biological questions providing improved prediction of miRNA-mRNA interactions.
Collapse
Affiliation(s)
- Mercedeh Movassagh
- Dana Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Sarah U Morton
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Christine Hehnly
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jasmine Smith
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Trang T Doan
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Center for Neural Engineering and Center for Infectious Disease Dynamics, Departments of Engineering Science and Mechanics, Neurosurgery and Physics, The Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Rafael Irizarry
- Dana Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - James R Broach
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Steven J Schiff
- Center for Neural Engineering and Center for Infectious Disease Dynamics, Departments of Engineering Science and Mechanics, Neurosurgery and Physics, The Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Jeffrey A Bailey
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Joseph N Paulson
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States.
| |
Collapse
|
5
|
Yang S, Tong Y, Chen L, Yu W. Human Identical Sequences, hyaluronan, and hymecromone ─ the new mechanism and management of COVID-19. MOLECULAR BIOMEDICINE 2022; 3:15. [PMID: 35593963 PMCID: PMC9120813 DOI: 10.1186/s43556-022-00077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 has created formidable damage to public health and market economy. Currently, SARS-CoV-2 variants has exacerbated the transmission from person-to-person. Even after a great deal of investigation on COVID-19, SARS-CoV-2 is still rampaging globally, emphasizing the urgent need to reformulate effective prevention and treatment strategies. Here, we review the latest research progress of COVID-19 and provide distinct perspectives on the mechanism and management of COVID-19. Specially, we highlight the significance of Human Identical Sequences (HIS), hyaluronan, and hymecromone ("Three-H") for the understanding and intervention of COVID-19. Firstly, HIS activate inflammation-related genes to influence COVID-19 progress through NamiRNA-Enhancer network. Accumulation of hyaluronan induced by HIS-mediated HAS2 upregulation is a substantial basis for clinical manifestations of COVID-19, especially in lymphocytopenia and pulmonary ground-glass opacity. Secondly, detection of plasma hyaluronan can be effective for evaluating the progression and severity of COVID-19. Thirdly, spike glycoprotein of SARS-CoV-2 may bind to hyaluronan and further serve as an allergen to stimulate allergic reaction, causing sudden adverse effects after vaccination or the aggravation of COVID-19. Finally, antisense oligonucleotides of HIS or inhibitors of hyaluronan synthesis (hymecromone) or antiallergic agents could be promising therapeutic agents for COVID-19. Collectively, Three-H could hold the key to understand the pathogenic mechanism and create effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
6
|
Li W, Yang S, Xu P, Zhang D, Tong Y, Chen L, Jia B, Li A, Lian C, Ru D, Zhang B, Liu M, Chen C, Fu W, Yuan S, Gu C, Wang L, Li W, Liang Y, Yang Z, Ren X, Wang S, Zhang X, Song Y, Xie Y, Lu H, Xu J, Wang H, Yu W. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine 2022; 76:103861. [PMID: 35124429 PMCID: PMC8811534 DOI: 10.1016/j.ebiom.2022.103861] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Since late 2019, SARS-CoV-2 infection has resulted in COVID-19 accompanied by diverse clinical manifestations. However, the underlying mechanism of how SARS-CoV-2 interacts with host and develops multiple symptoms is largely unexplored. METHODS Bioinformatics analysis determined the sequence similarity between SARS-CoV-2 and human genomes. Diverse fragments of SARS-CoV-2 genome containing Human Identical Sequences (HIS) were cloned into the lentiviral vector. HEK293T, MRC5 and HUVEC were infected with laboratory-packaged lentivirus or transfected with plasmids or antagomirs for HIS. Quantitative RT-PCR and chromatin immunoprecipitation assay detected gene expression and H3K27ac enrichment, respectively. UV-Vis spectroscopy assessed the interaction between HIS and their target locus. Enzyme-linked immunosorbent assay evaluated the hyaluronan (HA) levels of culture supernatant and plasma of COVID-19 patients. FINDINGS Five short sequences (24-27 nt length) sharing identity between SARS-CoV-2 and human genome were identified. These RNA elements were highly conserved in primates. The genomic fragments containing HIS were predicted to form hairpin structures in silico similar to miRNA precursors. HIS may function through direct genomic interaction leading to activation of host enhancers, and upregulation of adjacent and distant genes, including cytokine genes and hyaluronan synthase 2 (HAS2). HIS antagomirs and Cas13d-mediated HIS degradation reduced HAS2 expression. Severe COVID-19 patients displayed decreased lymphocytes and elevated D-dimer, and C-reactive proteins, as well as increased plasma hyaluronan. Hymecromone inhibited hyaluronan production in vitro, and thus could be further investigated as a therapeutic option for preventing severe outcome in COVID-19 patients. INTERPRETATION HIS of SARS-CoV-2 could promote COVID-19 progression by upregulating hyaluronan, providing novel targets for treatment. FUNDING The National Key R&D Program of China (2018YFC1005004), Major Special Projects of Basic Research of Shanghai Science and Technology Commission (18JC1411101), and the National Natural Science Foundation of China (31872814, 32000505).
Collapse
Affiliation(s)
- Wei Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Peng Xu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Ben Jia
- Shanghai Epiprobe Biotechnology Co., Ltd, Shanghai 200233, China
| | - Ang Li
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Cheng Lian
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Daoping Ru
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Baolong Zhang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Mengxing Liu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Cancan Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Weihui Fu
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Songhua Yuan
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chenjian Gu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenxuan Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Ying Liang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Zhicong Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Xiaoguang Ren
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Shaoxuan Wang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
| | - Xiaoyan Zhang
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jianqing Xu
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China.
| |
Collapse
|
7
|
The Role of NK Cells in EBV Infection and EBV-Associated NPC. Viruses 2021; 13:v13020300. [PMID: 33671917 PMCID: PMC7918975 DOI: 10.3390/v13020300] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
A vast majority of the population worldwide are asymptomatic carriers of Epstein-Barr Virus (EBV). However, some infected individuals eventually develop EBV-related cancers, including Nasopharyngeal Carcinoma (NPC). NPC is one of the most common EBV-associated epithelial cancers, and is highly prevalent in Southern China and Southeast Asia. While NPC is highly sensitive to radiotherapy and chemotherapy, there is a lack of effective and durable treatment among the 15%–30% of patients who subsequently develop recurrent disease. Natural Killer (NK) cells are natural immune lymphocytes that are innately primed against virus-infected cells and nascent aberrant transformed cells. As EBV is found in both virally infected and cancer cells, it is of interest to examine the NK cells’ role in both EBV infection and EBV-associated NPC. Herein, we review the current understanding of how EBV-infected cells are cleared by NK cells, and how EBV can evade NK cell-mediated elimination in the context of type II latency in NPC. Next, we summarize the current literature about NPC and NK cell biology. Finally, we discuss the translational potential of NK cells in NPC. This information will deepen our understanding of host immune interactions with EBV-associated NPC and facilitate development of more effective NK-mediated therapies for NPC treatment.
Collapse
|
8
|
Lung RWM, Tong JHM, Ip LM, Lam KH, Chan AWH, Chak WP, Chung LY, Yeung WW, Hau PM, Chau SL, Tsao SW, Lau KM, Lo KW, To KF. EBV-encoded miRNAs can sensitize nasopharyngeal carcinoma to chemotherapeutic drugs by targeting BRCA1. J Cell Mol Med 2020; 24:13523-13535. [PMID: 33074587 PMCID: PMC7701581 DOI: 10.1111/jcmm.16007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein‐Barr virus (EBV)‐associated epithelial malignancy. The high expression of BART‐miRNAs (miR‐BARTs) during latent EBV infection in NPC strongly supports their pathological importance in cancer progression. Recently, we found that several BART‐miRNAs work co‐operatively to modulate the DNA damage response (DDR) by reducing Ataxia‐telangiectasia‐mutated (ATM) activity. In this study, we further investigated the role of miR‐BARTs on DDR. The immunohistochemical study showed that the DNA repair gene, BRCA1, is consistently down‐regulated in primary NPCs. Using computer prediction programs and a series of reporter assays, we subsequently identified the negative regulatory role of BART2‐3p, BART12, BART17‐5p and BART19‐3p in BRCA1 expression. The ectopic expression of these four miR‐BARTs suppressed endogenous BRCA1 expression in EBV‐negative epithelial cell lines, whereas BRCA1 expression was enhanced by repressing endogenous miR‐BARTs activities in C666‐1 cells. More importantly, suppressing BRCA1 expression in nasopharyngeal epithelial cell lines using miR‐BART17‐5p and miR‐BART19‐3p mimics reduced the DNA repair capability and increased the cell sensitivity to the DNA‐damaging chemotherapeutic drugs, cisplatin and doxorubicin. Our findings suggest that miR‐BARTs play a novel role in DDR and may facilitate the development of effective NPC therapies.
Collapse
Affiliation(s)
- Raymond Wai-Ming Lung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Joanna Hung-Man Tong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lok-Man Ip
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Hei Lam
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Po Chak
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lau-Ying Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Walter Wai Yeung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Pok-Man Hau
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuk-Ling Chau
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Sai-Wah Tsao
- Department of Biomedical Sciences and Center of Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| | - Kin-Mang Lau
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Epstein-Barr Virus Mediated Signaling in Nasopharyngeal Carcinoma Carcinogenesis. Cancers (Basel) 2020; 12:cancers12092441. [PMID: 32872147 PMCID: PMC7565514 DOI: 10.3390/cancers12092441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Epstein-Barr virus (EBV) infection is known to contribute in nasopharyngeal carcinoma (NPC) carcinogenesis. The oncogenic roles of the EBV proteins and non-coding RNAs in NPC are becoming evident with the aid of current advances in genome-wide and in-depth molecular analyses. This current work provides a comprehensive overview, which covers recent understandings of the pathogenic role of EBV infection in NPC. Perspectives on molecular mechanisms, which are involved in the pathogenesis of NPC, focusing on the connection between EBV and NPC cells and the corresponding signaling pathways are highlighted. Cancer hallmarks associated with EBV in NPC development are also discussed herein. Abstract Nasopharyngeal carcinoma (NPC) is one of the most common tumors occurring in China and Southeast Asia. Etiology of NPC seems to be complex and involves many determinants, one of which is Epstein-Barr virus (EBV) infection. Although evidence demonstrates that EBV infection plays a key role in NPC carcinogenesis, the exact relationship between EBV and dysregulation of signaling pathways in NPC needs to be clarified. This review focuses on the interplay between EBV and NPC cells and the corresponding signaling pathways, which are modulated by EBV oncoproteins and non-coding RNAs. These altered signaling pathways could be critical for the initiation and progression of NPC.
Collapse
|
10
|
Wang D, Zeng Z, Zhang S, Xiong F, He B, Wu Y, Li W, Tang L, Wei F, Xiang B, Li Z, Zhou Y, Zhou M, Li X, Li Y, Li G, Xiong W, Guo C. Epstein-Barr virus-encoded miR-BART6-3p inhibits cancer cell proliferation through the LOC553103-STMN1 axis. FASEB J 2020; 34:8012-8027. [PMID: 32306460 DOI: 10.1096/fj.202000039rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
Epstein-Barr virus (EBV) is a tumorigenic virus that can cause various human malignancies such as nasopharyngeal carcinoma (NPC) and gastric cancer (GC). EBV encodes 44 mature micro (mi)RNAs, mostly exhibiting oncogenic properties and promoting cancer progression. However, we have previously found that one EBV-encoded miRNA, namely EBV-miR-BART6-3p, acts as a tumor suppressor by inhibiting metastasis and invasion. Here, we report that EBV-miR-BART6-3p inhibits the proliferation of EBV-associated cancers, NPC, and GC, by targeting and downregulating a long non-coding RNA (lncRNA), LOC553103. Through proteomics analysis, we determined that stathmin (STMN1) is affected by EBV-miR-BART6-3p and LOC553103. Further, via RNA immunoprecipitation and luciferase reporter assay, we confirmed that LOC553103 directly binds and stabilizes the 3'UTR region of STMN1 mRNA. These results indicate that the EBV-miR-BART6-3p/LOC553103/STMN1 axis regulates the expression of cell cycle-associated proteins, which then inhibit EBV-associated tumor cell proliferation. These findings provide potential targets or strategies for novel EBV-related cancer treatments, as well as contributes new insights into the understanding of EBV infection-related carcinogenesis.
Collapse
Affiliation(s)
- Dan Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Baoyu He
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Yingfen Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Weimin Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Le Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Fang Wei
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yanhong Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
11
|
Liu W, Luo B. The impact of EBV on the epigenetics of gastric carcinoma. Future Virol 2020. [DOI: 10.2217/fvl-2019-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
EBV is an important human tumor virus and is closely related to the occurrence of a variety of tumors, involving 10% of gastric cancer. In EBV-associated gastric carcinoma (EBVaGC), EBV expresses restrict viral genes including EBV nuclear antigen 1, EBV encoded small RNAs, Bam HI-A rightward transcripts, latent membrane protein 2A and miRNAs. The role of EBV in gastric carcinogenesis has received increasing attention and is considered to be another pathogenic factor in addition to Helicobacter pylori. A typical characteristic of EBVaGC is the extensive methylation of viral and host genome. Combined with other epigenetic mechanisms, EBV infection acts as an epigenetic driver of EBVaGC oncogenesis. In this review we discuss recent findings of EBV effect on host epigenetic alterations in EBVaGC and its role in oncogenic process.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, PR China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, PR China
| |
Collapse
|
12
|
Liu J, Zhang Y, Liu W, Zhang Q, Xiao H, Song H, Luo B. MiR-BART1-5p targets core 2β-1,6-acetylglucosaminyltransferase GCNT3 to inhibit cell proliferation and migration in EBV-associated gastric cancer. Virology 2019; 541:63-74. [PMID: 32056716 DOI: 10.1016/j.virol.2019.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022]
Abstract
GCNT3 (core 2β-1,6-acetylglucosaminyltransferase) is a novel core mucin synthase. It is known that abnormal expression of GCNT3 promotes the progression of several human cancers. However, its relationship with Epstein-Barr virus (EBV) has not been comprehensively studied. We found GCNT3 expression in EBV-associated gastric cancer cells and tissues to be lower than in EBV-negative gastric cancer cells and tissues, and high expression was significantly associated with advanced tumor-lymph node metastasis. Luciferase reporter assay revealed that miR-BART1-5p directly targeted GCNT3. In addition, miR-BART1-5p mimics transfection was observed to reduce cell proliferation and migration, while miR-BART1-5p inhibitor increased cell proliferation and migration following transfection. In conclusion, both miR-BART1-5p and knockdown of GCNT3 inhibited cell proliferation and migration. In addition, EBV may regulate GCNT3 by affecting the NF-kB signaling pathway. E-cadherin, N-cadherin, vimentin, and p-ERK were found to be downstream molecules of the miR-BART1-5p/GCNT3 pathway.
Collapse
Affiliation(s)
- Juanjuan Liu
- Department of Pathogenic Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Yan Zhang
- Department of Pathogenic Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China; Department of Clinical Laboratory, Central Hospital of Zibo, 54 Gongqingtuan Road, Zibo, 255036, China.
| | - Wen Liu
- Department of Pathogenic Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Qianqian Zhang
- Department of Pathogenic Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Hua Xiao
- Department of Pathogenic Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Hui Song
- Department of Pathogenic Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Bing Luo
- Department of Pathogenic Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| |
Collapse
|
13
|
Tsang CM, Lui VWY, Bruce JP, Pugh TJ, Lo KW. Translational genomics of nasopharyngeal cancer. Semin Cancer Biol 2019; 61:84-100. [PMID: 31521748 DOI: 10.1016/j.semcancer.2019.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
Nasopharyngeal carcinoma (NPC), also named the Cantonese cancer, is a unique cancer with strong etiological association with infection of the Epstein-Barr virus (EBV). With particularly high prevalence in Southeast Asia, the involvement of EBV and genetic aberrations contributive to NPC tumorigenesis have remained unclear for decades. Recently, genomic analysis of NPC has defined it as a genetically homogeneous cancer, driven largely by NF-κB signaling caused by either somatic aberrations of NF-κB negative regulators or by overexpression of the latent membrane protein 1 (LMP1), an EBV viral oncoprotein. This represents a landmark finding of the NPC genome. Exome and RNA sequencing data from new EBV-positive NPC models also highlight the importance of PI3K pathway aberrations in NPC. We also realize for the first time that NPC mutational burden, mutational signatures, MAPK/PI3K aberrations, and MHC Class I gene aberrations, are prognostic for patient outcome. Together, these multiple genomic discoveries begin to shape the focus of NPC therapy development. Given the challenge of NF-κB targeting in human cancers, more innovative drug discovery approaches should be explored to target the unique atypical NF-κB activation feature of NPC. Our next decade of NPC research should focus on further identification of the -omic landscapes of recurrent and metastatic NPC, development of gene-based precision medicines, as well as large-scale drug screening with the newly developed and well-characterized EBV-positive NPC models. Focused preclinical and clinical investigations on these major directions may identify new and effective targeting strategies to further improve survival of NPC patients.
Collapse
Affiliation(s)
- Chi Man Tsang
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON, M5G 1L7, Canada
| | - Kwok Wai Lo
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
14
|
Hancock MH, Skalsky RL. Roles of Non-coding RNAs During Herpesvirus Infection. Curr Top Microbiol Immunol 2019; 419:243-280. [PMID: 28674945 DOI: 10.1007/82_2017_31] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Non-coding RNAs (ncRNAs) play essential roles in multiple aspects of the life cycles of herpesviruses and contribute to lifelong persistence of herpesviruses within their respective hosts. In this chapter, we discuss the types of ncRNAs produced by the different herpesvirus families during infection, some of the cellular ncRNAs manipulated by these viruses, and the overall contributions of ncRNAs to the viral life cycle, influence on the host environment, and pathogenesis.
Collapse
Affiliation(s)
- Meaghan H Hancock
- Vaccine and Gene Therapy Institute at Oregon Health and Science University, Beaverton, OR, USA
| | - Rebecca L Skalsky
- Vaccine and Gene Therapy Institute at Oregon Health and Science University, Beaverton, OR, USA.
| |
Collapse
|
15
|
Dong M, Chen JN, Huang JT, Gong LP, Shao CK. The roles of EBV-encoded microRNAs in EBV-associated tumors. Crit Rev Oncol Hematol 2019; 135:30-38. [PMID: 30819444 DOI: 10.1016/j.critrevonc.2019.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is believed to be a pathogen causing a number of human cancers, but the pathogenic mechanisms remain unclear. An increasing number of studies have indicated that EBV-encoded microRNAs (EBV miRNAs) are expressed in a latency type- and tumor type-dependent manner, playing important roles in the development and progression of EBV-associated tumors. By targeting one or more genes of the virus and the host, EBV miRNAs are responsible for the deregulation of a variety of viral and host cell biological processes, including viral replication, latency maintenance, immune evasion, cell apoptosis and metabolism, and tumor proliferation and metastasis. In addition, some EBV miRNAs can be used as excellent diagnostic, prognostic and treatment efficacy predictive biomarkers for EBV-associated tumors. More importantly, EBV miRNA-targeting therapeutics have emerged and have been developing rapidly, which may open a new era in the treatment of EBV-associated tumors in the near future.
Collapse
Affiliation(s)
- Min Dong
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun-Ting Huang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Li-Ping Gong
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
16
|
Wang M, Yu F, Wu W, Wang Y, Ding H, Qian L. Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. Int J Biol Sci 2018; 14:565-576. [PMID: 29805308 PMCID: PMC5968849 DOI: 10.7150/ijbs.24562] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic virus that infects over 90% of the world's adult population. EBV can establish life-long latent infection in host due to the balance between EBV and host immune system. EBV latency is associated with various malignancies such as nasopharyngeal carcinoma, gastric carcinoma and Burkitt's lymphoma. EBV is the first human virus that has the capability to encode microRNAs (miRNAs). Remarkably, EBV-encoded miRNAs are abundantly expressed in latently-infected cells and serve important function in viral infection and pathogenesis. Increasing evidence indicates that EBV miRNAs target the host mRNAs involved in cell proliferation, apoptosis and transformation. EBV miRNAs also inhibit the expression of viral antigens, thereby enabling infected cells to escape immune recognition. Intriguingly, EBV miRNAs directly suppress host antiviral immunity by interfering with antigen presentation and immune cell activation. This review will update the current knowledge about EBV miRNAs implicated in host immune responses. An in-depth understanding of the functions of EBV miRNAs in host antiviral immunity will shed light on the EBV-host interactions and provide potential therapeutic targets for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Yu Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Han Ding
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Lili Qian
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| |
Collapse
|
17
|
Lung RW, Hau P, Yu KH, Yip KY, Tong JH, Chak W, Chan AW, Lam K, Lo AK, Tin EK, Chau S, Pang JC, Kwan JS, Busson P, Young LS, Yap L, Tsao S, To K, Lo K. EBV-encoded miRNAs target ATM-mediated response in nasopharyngeal carcinoma. J Pathol 2018; 244:394-407. [PMID: 29230817 PMCID: PMC5888186 DOI: 10.1002/path.5018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/09/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein-Barr virus (EBV) infection. In NPC, miR-BARTs, the EBV-encoded miRNAs derived from BamH1-A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV-encoded miRNAs in a panel of NPC patient-derived xenografts and an EBV-positive NPC cell line by small RNA sequencing. Among the 40 miR-BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV-miRNAs, BART5-5p, BART7-3p, BART9-3p, and BART14-3p could negatively regulate the expression of a key DNA double-strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'-UTR. Notably, the expression of these four miR-BARTs represented more than 10% of all EBV-encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT-PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5-5p, BART7-3p, BART9-3p, and BART14-3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR-BARTs in EBV-positive NPC cells, we further demonstrated the novel function of miR-BARTs in inhibiting Zta-induced lytic reactivation. These findings imply that the four viral miRNAs work co-operatively to modulate ATM activity in response to DNA damage and to maintain viral latency, contributing to the tumorigenesis of NPC. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Raymond W‐M Lung
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Pok‐Man Hau
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Ken H‐O Yu
- Department of Computer Science and EngineeringThe Chinese University of Hong KongHong Kong
| | - Kevin Y Yip
- Department of Computer Science and EngineeringThe Chinese University of Hong KongHong Kong
| | - Joanna H‐M Tong
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Wing‐Po Chak
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Anthony W‐H Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Ka‐Hei Lam
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Angela Kwok‐Fung Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Edith K‐Y Tin
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Shuk‐Ling Chau
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Jesse C‐S Pang
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Johnny S‐H Kwan
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Pierre Busson
- UMR8126 CNRS, Université Paris‐SudUniversité Paris‐SaclayGustave Roussy, VillejuifFrance
| | | | - Lee‐Fah Yap
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
| | - Sai‐Wah Tsao
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Ka‐Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Kwok‐Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| |
Collapse
|
18
|
Alarcón A, Figueroa U, Espinoza B, Sandoval A, Carrasco-Aviño G, Aguayo FR, Corvalan AH. Epstein-Barr Virus–Associated Gastric Carcinoma: The Americas’ Perspective. Gastric Cancer 2017. [DOI: 10.5772/intechopen.70201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Zhao Z, Liu W, Liu J, Wang J, Luo B. The effect of EBV on WIF1, NLK, and APC gene methylation and expression in gastric carcinoma and nasopharyngeal cancer. J Med Virol 2017; 89:1844-1851. [PMID: 28543390 DOI: 10.1002/jmv.24863] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/07/2017] [Indexed: 12/27/2022]
Abstract
Epstein-Barr virus (EBV) is an important DNA tumor virus that is associated with approximately 10% of gastric carcinomas and 99% of nasopharyngeal cancers (NPC). DNA methylation and microRNAs (miRNAs) are the most studied epigenetic mechanisms that can prompt disease susceptibility. This study aimed to detect the effect of EBV on Wnt inhibitory factor 1 (WIF1), Nemo-like kinase (NLK), and adenomatous polyposis coli (APC) gene methylation, and expression in gastric carcinoma and NPC. The WIF1, NLK, and APC gene mRNA expression levels were measured by real-time quantitative RT-PCR in four EBV-positive cell lines and four EBV-negative cell lines. Bisulfite genomic sequencing or methylation-specific PCR was used to detect the methylation status of the WIF1, NLK, and APC promoters. All cell lines were treated with 5-azacytidine (5-aza-dC), miR-BART19-3p mimics or an inhibitor, and analyzed by flow cytometry and MTT cell proliferation assays. The WIF1, NLK, and APC promoters were hypermethylated in all eight cell lines. 5-Aza-dC displayed a growth inhibitory effect on cells . After transfection with miR-BART19-3p mimics, the expression of WIF1, and APC decreased, and the cellular proliferation rate increased. After transfection with the miR-BART19-3p inhibitor, the expression levels were higher, and the cell growth was inhibited. In the NPC and GC cell lines, the promoters of WIF1, NLK, and APC are highly methylated, and the expression of these three genes is regulated by miR-BART19-3p. The activity of the Wnt pathway in EBV-associated tumors may be enhanced by miR-BART19-3p.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Wen Liu
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Jincheng Liu
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Jiayi Wang
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
20
|
朱 晓, 李 夏, 李 素, 于 红. EBV相关性胃癌研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1375-1381. [DOI: 10.11569/wcjd.v25.i15.1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
胃癌细胞中存在Epstein-Barr病毒(Epstein-Barr virus, EBV)者被称为EBV相关性胃癌(Epstein-Barr virus-associated gastric carcinoma, EBVaGC). 近年来EBVaGC作为一种独特的分子亚型疾病逐渐被人们所认知, 全球胃癌患者中平均有10%者为EBVaGC. 本文对EBVaGC近年来在流行病学、临床病理特征、发病机制、治疗及预后等方面的研究进展作一综述. 但目前对EBVaGC的研究尚不明确, 且尚无临床诊疗规范与共识, 也带来了新的挑战和机遇.
Collapse
|
21
|
Assadian F, Kamel W, Laurell G, Svensson C, Punga T, Akusjärvi G. Expression profile of Epstein-Barr virus and human adenovirus small RNAs in tonsillar B and T lymphocytes. PLoS One 2017; 12:e0177275. [PMID: 28542273 PMCID: PMC5444648 DOI: 10.1371/journal.pone.0177275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
We have used high-throughput small RNA sequencing to characterize viral small RNA expression in purified tonsillar B and T lymphocytes isolated from patients tested positive for Epstein-Barr virus (EBV) or human adenovirus (HAdV) infections, respectively. In the small set of patients analyzed, the expression profile of EBV and HAdV miRNAs could not distinguish between patients diagnosed with tonsillar hypertrophy or chronic/recurrent tonsillitis. The EBV miR-BART expression profile among the patients diagnosed with tonsillar diseases resembles most closely the pattern seen in EBV+ tumors (Latency II/I). The miR-BARTs that appear to be absent in normal EBV infected cells are essentially all detectable in the diseased tonsillar B lymphocytes. In the EBV+ B cells we detected 44 EBV miR-BARTs derived from the proposed BART precursor hairpins whereof five are not annotated in miRBase v21. One previously undetected miRNA, BART16b-5p, originates from the miR-BART16 precursor hairpin as an alternative 5´ miR-BART16 located precisely upstream of the annotated miR-BART16-5p. Further, our analysis revealed an extensive sequence variation among the EBV miRNAs with isomiRs having a constant 5´ end but alternative 3´ ends. A range of small RNAs was also detected from the terminal stem of the EBER RNAs and the 3´ part of v-snoRNA1. During a lytic HAdV infection in established cell lines the terminal stem of the viral non-coding VA RNAs are processed to highly abundant viral miRNAs (mivaRNAs). In contrast, mivaRNA expression in HAdV positive tonsillar T lymphocytes was very low. The small RNA profile further showed that the 5´ mivaRNA from VA RNAI and the 3´ mivaRNA from VA RNAII were as predicted, whereas the 3´ mivaRNA from VA RNAI showed an aberrant processing upstream of the expected Dicer cleavage site.
Collapse
Affiliation(s)
- Farzaneh Assadian
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Göran Laurell
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Catharina Svensson
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
22
|
Wang YF, He DD, Liang HW, Yang D, Yue H, Zhang XM, Wang R, Li B, Yang HX, Liu Y, Chen Y, Duan YX, Zhang CY, Chen X, Fu J. The identification of up-regulated ebv-miR-BHRF1-2-5p targeting MALT1 and ebv-miR-BHRF1-3 in the circulation of patients with multiple sclerosis. Clin Exp Immunol 2017; 189:120-126. [PMID: 28253538 DOI: 10.1111/cei.12954] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a well-documented aetiological factor for multiple sclerosis (MS). EBV encodes at least 44 microRNAs (miRNAs) that are readily detectable in the circulation of human. Previous studies have demonstrated that EBV-encoded miRNAs regulate host immune response and may serve as biomarkers for EBV-associated diseases. However, the roles of EBV miRNAs in MS are still unknown. To fill the gap, we conducted a comprehensive profiling of 44 mature EBV miRNAs in 30 relapsing-remitting MS (RRMS) patients at relapse and 30 matched healthy controls. Expression levels of ebv-miR-BHRF1-2-5p and ebv-miR-BHRF1-3 were elevated significantly in the circulation and correlated positively with the expanded disability status scale (EDSS) scores of MS patients. Receiver operating characteristic (ROC) analyses confirmed that the expression of these two miRNAs distinguished MS patients clearly from healthy controls. Luciferase assays revealed that ebv-miR-BHRF1-2-5p may directly target MALT1 (mucosa-associated lymphoid tissue lymphoma transport protein 1), a key regulator of immune homeostasis. In conclusion, we described the expression of EBV miRNAs in MS and preliminarily validated the potential target genes of significantly altered EBV miRNAs. The findings may pave the way for prospective study about the pathogenesis of MS.
Collapse
Affiliation(s)
- Y F Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - D D He
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - H W Liang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - D Yang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - H Yue
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - X M Zhang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - R Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - B Li
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - H X Yang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Y Liu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Y Chen
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Y X Duan
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - C Y Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - X Chen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - J Fu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
Kikuchi K, Inoue H, Miyazaki Y, Ide F, Kojima M, Kusama K. Epstein-Barr virus (EBV)-associated epithelial and non-epithelial lesions of the oral cavity. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:95-109. [PMID: 28725300 PMCID: PMC5501733 DOI: 10.1016/j.jdsr.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 12/28/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
Epstein–Barr virus (EBV) is known to be associated with the development of malignant lymphoma and lymphoproliferative disorders (LPDs) in immunocompromised patients. EBV, a B-lymphotropic gamma-herpesvirus, causes infectious mononucleosis and oral hairy leukoplakia, as well as various pathological types of lymphoid malignancy. Furthermore, EBV is associated with epithelial malignancies such as nasopharyngeal carcinoma (NPC), salivary gland tumor, gastric carcinoma and breast carcinoma. In terms of oral disease, there have been several reports of EBV-related oral squamous cell carcinoma (OSCC) worldwide. However, the role of EBV in tumorigenesis of human oral epithelial or lymphoid tissue is unclear. This review summarizes EBV-related epithelial and non-epithelial tumors or tumor-like lesions of the oral cavity. In addition, we describe EBV latent genes and their expression in normal epithelium, inflamed gingiva, epithelial dysplasia and SCC, as well as considering LPDs (MTX- and age-related) and DLBCLs of the oral cavity.
Collapse
Affiliation(s)
- Kentaro Kikuchi
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Harumi Inoue
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Yuji Miyazaki
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Fumio Ide
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Masaru Kojima
- Department of Anatomic and Diagnostic Pathology, Dokkyo Medical University School of Medicine, 880 Oaza-kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Kaoru Kusama
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| |
Collapse
|
24
|
Chak WP, Lung RWM, Tong JHM, Chan SYY, Lun SWM, Tsao SW, Lo KW, To KF. Downregulation of long non-coding RNA MEG3 in nasopharyngeal carcinoma. Mol Carcinog 2016; 56:1041-1054. [PMID: 27597634 DOI: 10.1002/mc.22569] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/12/2016] [Accepted: 09/04/2016] [Indexed: 12/13/2022]
Abstract
In our previous whole-transcriptome sequencing analysis, downregulation of a long non-coding RNA, maternally expressed gene 3 (MEG3), was identified in NPC samples. This finding suggests the possible role of MEG3 as a tumor suppressor in this distinctive disease. In the present study, two MEG3 variants, AF119863 (MEG3-AF) and BX247998 (MEG3-BX), were found abundantly expressed in a normal nasopharyngeal epithelial cell line, NP69. Significant downregulation of MEG3-AF was further verified in a panel of NPC samples including xenografts and primary biopsies. MEG3 is an imprinted gene located within chromosome 14q32, a common deleted region in NPC. Both DNA copy number loss and aberrant promoter methylation contributed to MEG3 inactivation. Interestingly, MEG3 expression could successfully be rescued by the treatment of a demethylation agent. Besides, ectopic expression of MEG3 in NPC cell lines resulted in considerable repression of in vitro anchorage-independent growth and in vivo tumorigenicity, in addition to significant inhibition in cell proliferation, colony formation, and induction of cell cycle arrest. Finally, we revealed the association between MEG3 activity and the p53 signaling cascade. Our findings characterize MEG3 as a tumor suppressive long non-coding RNA in NPC and encourage the development of precise long non-coding RNA-targeted epigenetic therapy against this malignancy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wing-Po Chak
- State Key Laboratory of Oncology in South China, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, HKSAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, HKSAR, China
| | - Raymond Wai-Ming Lung
- State Key Laboratory of Oncology in South China, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, HKSAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, HKSAR, China
| | - Joanna Hung-Man Tong
- State Key Laboratory of Oncology in South China, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, HKSAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, HKSAR, China
| | - Sylvia Yat-Yee Chan
- State Key Laboratory of Oncology in South China, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, HKSAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, HKSAR, China
| | - Samantha Wei-Man Lun
- State Key Laboratory of Oncology in South China, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, HKSAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, HKSAR, China
| | - Sai-Wah Tsao
- Li Ka Shing Faculty of Medicine, School of Biomedical Science and Center for Cancer Research, The University of Hong Kong, HKSAR, China
| | - Kwok-Wai Lo
- State Key Laboratory of Oncology in South China, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, HKSAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, HKSAR, China
| | - Ka-Fai To
- State Key Laboratory of Oncology in South China, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, HKSAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, HKSAR, China.,Partner State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, HKSAR, China
| |
Collapse
|
25
|
Treece AL, Duncan DL, Tang W, Elmore S, Morgan DR, Dominguez RL, Speck O, Meyers MO, Gulley ML. Gastric adenocarcinoma microRNA profiles in fixed tissue and in plasma reveal cancer-associated and Epstein-Barr virus-related expression patterns. J Transl Med 2016; 96:661-71. [PMID: 26950485 PMCID: PMC5767475 DOI: 10.1038/labinvest.2016.33] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/09/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022] Open
Abstract
MicroRNA expression in formalin-fixed paraffin-embedded tissue (FFPE) or plasma may add value for cancer management. The GastroGenus miR Panel was developed to measure 55 cancer-specific human microRNAs, Epstein-Barr virus (EBV)-encoded microRNAs, and controls. This Q-rtPCR panel was applied to 100 FFPEs enriched for adenocarcinoma or adjacent non-malignant mucosa, and to plasma of 31 patients. In FFPE, microRNAs upregulated in malignant versus adjacent benign gastric mucosa were hsa-miR-21, -155, -196a, -196b, -185, and -let-7i. Hsa-miR-18a, 34a, 187, -200a, -423-3p, -484, and -744 were downregulated. Plasma of cancer versus non-cancer controls had upregulated hsa-miR-23a, -103, and -221 and downregulated hsa-miR-378, -346, -486-5p, -200b, -196a, -141, and -484. EBV-infected versus uninfected cancers expressed multiple EBV-encoded microRNAs, and concomitant dysregulation of four human microRNAs suggests that viral infection may alter cellular biochemical pathways. Human microRNAs were dysregulated between malignant and benign gastric mucosa and between plasma of cancer patients and non-cancer controls. Strong association of EBV microRNA expression with known EBV status underscores the ability of microRNA technology to reflect disease biology. Expression of viral microRNAs in concert with unique human microRNAs provides novel insights into viral oncogenesis and reinforces the potential for microRNA profiles to aid in classifying gastric cancer subtypes. Pilot studies of plasma suggest the potential for a noninvasive addition to cancer diagnostics.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/virology
- Aged
- Aged, 80 and over
- Case-Control Studies
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/virology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Humans
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Pilot Projects
- RNA, Neoplasm/blood
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Viral/blood
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/virology
Collapse
Affiliation(s)
- Amanda L Treece
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel L Duncan
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weihua Tang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sandra Elmore
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas R Morgan
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Ricardo L Dominguez
- Department of Gastroenterology, Western Regional Hospital, Santa Rosa de Copan, Honduras
| | - Olga Speck
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael O Meyers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margaret L Gulley
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Role of Viral miRNAs and Epigenetic Modifications in Epstein-Barr Virus-Associated Gastric Carcinogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6021934. [PMID: 26977250 PMCID: PMC4764750 DOI: 10.1155/2016/6021934] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/26/2023]
Abstract
MicroRNAs are short (21–23 nucleotides), noncoding RNAs that typically silence posttranscriptional gene expression through interaction with target messenger RNAs. Currently, miRNAs have been identified in almost all studied multicellular eukaryotes in the plant and animal kingdoms. Additionally, recent studies reported that miRNAs can also be encoded by certain single-cell eukaryotes and by viruses. The vast majority of viral miRNAs are encoded by the herpesviruses family. These DNA viruses including Epstein-Barr virus encode their own miRNAs and/or manipulate the expression of cellular miRNAs to facilitate respective infection cycles. Modulation of the control pathways of miRNAs expression is often involved in the promotion of tumorigenesis through a specific cascade of transduction signals. Notably, latent infection with Epstein-Barr virus is considered liable of causing several types of malignancies, including the majority of gastric carcinoma cases detected worldwide. In this review, we describe the role of the Epstein-Barr virus in gastric carcinogenesis, summarizing the functions of the Epstein-Barr virus-encoded viral proteins and related epigenetic alterations as well as the roles of Epstein-Barr virus-encoded and virally modulated cellular miRNAs.
Collapse
|
27
|
Abstract
EBV expresses a number of viral noncoding RNAs (ncRNAs) during latent infection, many of which have known regulatory functions and can post-transcriptionally regulate viral and/or cellular gene expression. With recent advances in RNA sequencing technologies, the list of identified EBV ncRNAs continues to grow. EBV-encoded RNAs (EBERs) , the BamHI-A rightward transcripts (BARTs) , a small nucleolar RNA (snoRNA) , and viral microRNAs (miRNAs) are all expressed during EBV infection in a variety of cell types and tumors. Recently, additional novel EBV ncRNAs have been identified. Viral miRNAs, in particular, have been under extensive investigation since their initial identification over ten years ago. High-throughput studies to capture miRNA targets have revealed a number of miRNA-regulated viral and cellular transcripts that tie into important biological networks. Functions for many EBV ncRNAs are still unknown; however, roles for many EBV miRNAs in latency and in tumorigenesis have begun to emerge. Ongoing mechanistic studies to elucidate the functions of EBV ncRNAs should unravel additional roles for ncRNAs in the viral life cycle. In this chapter, we will discuss our current knowledge of the types of ncRNAs expressed by EBV, their potential roles in viral latency, and their potential involvement in viral pathogenesis.
Collapse
|
28
|
Yen RLS, Telisinghe PU, Cunningham A, Abdullah MS, Chong CF, Chong VH. Profiles of Epstein-Barr virus associated gastric carcinomas in Brunei Darussalam. Asian Pac J Cancer Prev 2015; 15:10489-93. [PMID: 25556497 DOI: 10.7314/apjcp.2014.15.23.10489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastric cancer is the second most common gastrointestinal cancer and is largely attributed to Helicobacter pylori (H. pylori) infection. In addition, studies have also shown association with Epstein-Barr virus (EBV) in 10% of gastric cancers. This study assessed the characteristics of EBV associated gastric cancers (EBVaGC) in Brunei Darussalam. MATERIALS AND METHODS This study included gastric cancers diagnosed between 2008 and 2012, registered with the Department of Pathology RIPAS Hospital, Brunei Darussalam. Clinical case notes were systematically reviewed. Histology specimens were all stained for EBV and also assessed for intestinal metaplasia and H. pylori. RESULTS There were a total of 81 patients (54 male and 27 females) with a mean age of 65.8±14.8 years included in the study. Intestinal metaplasia and active H. pylori infection were detected in 40.7% and 30.9% respectively. A majority of the tumors were proximally located (55.6%), most poorly differentiated (well differentiated 16%, moderately differentiated 30.9% and poorly differentiated 53.1%) and the stages at diagnosis were; stage I (44.4%), stage II (23.5%), stage III (8.6%) and stage IV (23.5%). EBV positivity (EBVaGC) was seen in 30.9%. Between EBVaGC and EBV negative gastric cancers, there were no significant differences (age, gender, ethnic group, presence of Intestinal metaplasia, tumor locations, stages of disease and degree of tumor differentiation). CONCLUSIONS This study showed that a third of gastric cancers in Brunei Darussalam were positive for EBV, higher than what have been reported in the literature. However, there were no significant differences between EBVaGC and EBV negative gastric cancers. This suggests that the role of EBV in gastric cancer may be mostly incidental rather than any causal relation. However, further studies are required.
Collapse
|
29
|
Wang L, Li G, Yao ZQ, Moorman JP, Ning S. MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV. Rev Med Virol 2015; 25:320-41. [PMID: 26258805 DOI: 10.1002/rmv.1850] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/09/2015] [Accepted: 06/28/2015] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) function as key regulators in immune responses and cancer development. In the contexts of infection with oncogenic viruses, miRNAs are engaged in viral persistence, latency establishment and maintenance, and oncogenesis. In this review, we summarize the potential roles and mechanisms of viral and cellular miRNAs in the host-pathogen interactions during infection with selected tumor viruses and HIV, which include (i) repressing viral replication and facilitating latency establishment by targeting viral transcripts, (ii) evading innate and adaptive immune responses via toll-like receptors, RIG-I-like receptors, T-cell receptor, and B-cell receptor pathways by targeting signaling molecules such as TRAF6, IRAK1, IKKε, and MyD88, as well as downstream targets including regulatory cytokines such as tumor necrosis factor α, interferon γ, interleukin 10, and transforming growth factor β, (iii) antagonizing intrinsic and extrinsic apoptosis pathways by targeting pro-apoptotic or anti-apoptotic gene transcripts such as the Bcl-2 family and caspase-3, (iv) modulating cell proliferation and survival through regulation of the Wnt, PI3K/Akt, Erk/MAPK, and Jak/STAT signaling pathways, as well as the signaling pathways triggered by viral oncoproteins such as Epstein-Barr Virus LMP1, by targeting Wnt-inhibiting factor 1, SHIP, pTEN, and SOCSs, and (v) regulating cell cycle progression by targeting cell cycle inhibitors such as p21/WAF1 and p27/KIP1. Further elucidation of the interaction between miRNAs and these key biological events will facilitate our understanding of the pathogenesis of viral latency and oncogenesis and may lead to the identification of miRNAs as novel targets for developing new therapeutic or preventive interventions.
Collapse
Affiliation(s)
- Ling Wang
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Guangyu Li
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Zhi Q Yao
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, TN, USA
| | - Jonathan P Moorman
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, TN, USA
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
30
|
Tsang CM, Tsao SW. The role of Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. Virol Sin 2015; 30:107-21. [PMID: 25910483 DOI: 10.1007/s12250-015-3592-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. EBV episomes are detected in almost all NPC cells. The role of EBV in NPC pathogenesis has long been postulated but remains enigmatic. In contrast to infection of B lymphocytes, EBV infection does not directly transform nasopharyngeal epithelial cells into proliferative clones with malignant potential. EBV infection of normal pharyngeal epithelial cells is predominantly lytic in nature. Genetic alterations in premalignant nasopharyngeal epithelium, in combination with inflammatory stimulation in the nasopharyngeal mucosa, presumably play essential roles in the establishment of a latent EBV infection in infected nasopharyngeal epithelial cells during the early development of NPC. Establishment of latent EBV infection in premalignant nasopharyngeal epithelial cells and expression of latent viral genes, including the BART transcripts and BART-encoded microRNAs, are crucial features of NPC. Expression of EBV genes may drive further malignant transformation of premalignant nasopharyngeal epithelial cells into cancer cells. The difficulties involved in the establishment of NPC cell lines and the progressive loss of EBV epsiomes in NPC cells propagated in culture strongly implicate the contribution of host stromal components to the growth of NPC cells in vivo and maintenance of EBV in infected NPC cells. Defining the growth advantages of EBV-infected NPC cells in vivo will lead to a better understanding of the contribution of EBV infection in NPC pathogenesis, and may lead to the identification of novel therapeutic targets for NPC treatment.
Collapse
Affiliation(s)
- Chi Man Tsang
- Department of Anatomy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
31
|
Niller HH, Tarnai Z, Decsi G, Zsedényi A, Bánáti F, Minarovits J. Role of epigenetics in EBV regulation and pathogenesis. Future Microbiol 2015; 9:747-56. [PMID: 25046522 DOI: 10.2217/fmb.14.41] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetic modifications of the viral and host cell genomes regularly occur in EBV-associated lymphomas and carcinomas. The cell type-dependent usage of latent EBV promoters is determined by the cellular epigenetic machinery. Viral oncoproteins interact with the very same epigenetic regulators and alter the cellular epigenotype and gene-expression pattern: there are common gene sets hypermethylated in both EBV-positive and EBV-negative neoplasms of different histological types. A group of hypermethylated promoters may represent, however, a unique EBV-associated epigenetic signature in EBV-positive gastric carcinomas. By contrast, EBV-immortalized B-lymphoblastoid cell lines are characterized by genome-wide demethylation and loss and rearrangement of heterochromatic histone marks. Early steps of EBV infection may also contribute to reprogramming of the cellular epigenome.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Department of Microbiology & Hygiene, University of Regensburg, Franz-Josef-Strauss Allee 11, D-93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Profiling of Virus-Encoded MicroRNAs in Epstein-Barr Virus-Associated Gastric Carcinoma and Their Roles in Gastric Carcinogenesis. J Virol 2015; 89:5581-91. [PMID: 25740983 DOI: 10.1128/jvi.03639-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/01/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) is one of the major oncogenic viruses and is found in nearly 10% of gastric carcinomas. EBV is known to encode its own microRNAs (miRNAs); however, their roles have not been fully investigated. The present report is the largest series to comprehensively profile the expression of 44 known EBV miRNAs in tissue samples from patients with EBV-associated gastric carcinoma. Several miRNAs were highly expressed in EBV-associated gastric carcinoma, and in silico analysis revealed that the target genes of these EBV miRNAs had functions associated with cancer-related pathways, especially the regulation of apoptosis. Apoptosis was reduced in EBV-associated gastric carcinoma tissue samples, and gastric carcinoma cell lines infected with EBV exhibited downregulation of the proapoptotic protein Bid (the BH3-interacting domain death agonist), a member of the Bcl-2 family. The luciferase activity of the reporter vector containing the 3' untranslated region of BID was inhibited by an ebv-miR-BART4-5p mimic in gastric cancer cell lines. Transfection of an ebv-miR-BART4-5p mimic reduced Bid expression in EBV-negative cell lines, leading to reduced apoptosis under serum deprivation. The inhibition of ebv-miR-BART4-5p expression was associated with partial recovery of Bid levels in EBV-positive cell lines. The results demonstrated the antiapoptotic role of EBV miRNA via regulation of Bid expression in EBV-associated gastric carcinoma. These findings provide novel insights in the roles of EBV miRNAs in gastric carcinogenesis, which would be a potential therapeutic target. IMPORTANCE This report is the largest series to comprehensively profile the expression of 44 known EBV miRNAs in clinical samples from EBV-associated gastric carcinoma patients. Of the EBV miRNAs, ebv-miR-BART4-5p plays an important role in gastric carcinogenesis via regulation of apoptosis.
Collapse
|
33
|
Zur Hausen H, de Villiers EM. Reprint of: cancer "causation" by infections--individual contributions and synergistic networks. Semin Oncol 2015; 42:207-22. [PMID: 25843727 DOI: 10.1053/j.seminoncol.2015.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The search for infectious agents playing a role in human carcinogenesis and their identification remain important issues. This could provide clues for a broader spectrum of cancers preventable by vaccination and accessible to specific therapeutic regimens. Yet, the various ways of interacting among different factors functioning synergistically and their different modes of affecting individual cells should bring to question the validity of the term "causation". It also should put a word of caution into all attempts to summarize criteria for "causality" of infectious agents in cancer development. At least in the opinion of these authors, we would be much better off avoiding these terms, replacing "causal factor" by "risk factor" and grading them according to their contribution to an individual's cancer risk.
Collapse
|
34
|
Tsao SW, Tsang CM, To KF, Lo KW. The role of Epstein-Barr virus in epithelial malignancies. J Pathol 2015; 235:323-33. [PMID: 25251730 PMCID: PMC4280676 DOI: 10.1002/path.4448] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022]
Abstract
The close association of Epstein–Barr virus (EBV) infection with non-keratinizing nasopharyngeal carcinomas and a subset of gastric carcinomas suggests that EBV infection is a crucial event in these cancers. The difficulties encountered in infecting and transforming primary epithelial cells in experimental systems suggest that the role of EBV in epithelial malignancies is complex and multifactorial in nature. Genetic alterations in the premalignant epithelium may support the establishment of latent EBV infection, which is believed to be an initiation event. Oncogenic properties have been reported in multiple EBV latent genes. The BamH1 A rightwards transcripts (BARTs) and the BART-encoded microRNAs (miR-BARTs) are highly expressed in EBV-associated epithelial malignancies and may induce malignant transformation. However, enhanced proliferation may not be the crucial function of EBV infection in epithelial malignancies, at least in the early stages of cancer development. EBV-encoded gene products may confer anti-apoptotic properties and promote the survival of infected premalignant epithelial cells harbouring genetic alterations. Multiple EBV-encoded microRNAs have been reported to have immune evasion functions. Genetic alterations in host cells, as well as inflammatory stroma, could modulate the expression of EBV genes and alter the growth properties of infected premalignant epithelial cells, encouraging their selection during carcinogenesis.
Collapse
Affiliation(s)
- Sai-Wah Tsao
- Department of Anatomy and Centre for Cancer Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | | | | | | |
Collapse
|
35
|
Shinozaki-Ushiku A, Kunita A, Fukayama M. Update on Epstein-Barr virus and gastric cancer (review). Int J Oncol 2015; 46:1421-34. [PMID: 25633561 DOI: 10.3892/ijo.2015.2856] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is a distinct subtype that accounts for nearly 10% of gastric carcinomas. EBVaGC is defined by monoclonal proliferation of carcinoma cells with latent EBV infection, as demonstrated by EBV-encoded small RNA (EBER) in situ hybridization. EBVaGC has characteristic clinicopathological features, including predominance among males, a proximal location in the stomach, lymphoepithelioma-like histology and a favorable prognosis. EBVaGC belongs to latency type I or II, in which EBERs, EBNA-1, BARTs, LMP-2A and BART miRNAs are expressed. Previous studies have shown that some EBV latent genes have oncogenic properties. Recent advances in genome-wide and comprehensive molecular analyses have demonstrated that both genetic and epigenetic changes contribute to EBVaGC carcinogenesis. Genetic changes that are characteristic of EBVaGC include frequent mutations in PIK3CA and ARID1A and amplification of JAK2 and PD-L1/L2. Global CpG island hypermethylation, which induces epigenetic silencing of tumor suppressor genes, is also a unique feature of EBVaGC and is considered to be crucial for its carcinogenesis. Furthermore, post-transcriptional gene expression regulation by cellular and/or EBV-derived microRNAs has attracted considerable attention. These abnormalities result in significant alterations in gene expression related to cell proliferation, apoptosis, migration and immune signaling pathways. In the present review we highlight the latest findings on EBVaGC from clinicopathological and molecular perspectives to provide a better understanding of EBV involvement in gastric carcinogenesis.
Collapse
Affiliation(s)
- Aya Shinozaki-Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
36
|
Genomic assays for Epstein-Barr virus-positive gastric adenocarcinoma. Exp Mol Med 2015; 47:e134. [PMID: 25613731 PMCID: PMC4314585 DOI: 10.1038/emm.2014.93] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 10/06/2014] [Indexed: 12/13/2022] Open
Abstract
A small set of gastric adenocarcinomas (9%) harbor Epstein–Barr virus (EBV) DNA within malignant cells, and the virus is not an innocent bystander but rather is intimately linked to pathogenesis and tumor maintenance. Evidence comes from unique genomic features of host DNA, mRNA, microRNA and CpG methylation profiles as revealed by recent comprehensive genomic analysis by The Cancer Genome Atlas Network. Their data show that gastric cancer is not one disease but rather comprises four major classes: EBV-positive, microsatellite instability (MSI), genomically stable and chromosome instability. The EBV-positive class has even more marked CpG methylation than does the MSI class, and viral cancers have a unique pattern of methylation linked to the downregulation of CDKN2A (p16) but not MLH1. EBV-positive cancers often have mutated PIK3CA and ARID1A and an amplified 9p24.1 locus linked to overexpression of JAK2, CD274 (PD-L1) and PDCD1LG2 (PD-L2). Multiple noncoding viral RNAs are highly expressed. Patients who fail standard therapy may qualify for enrollment in clinical trials targeting cancer-related human gene pathways or promoting destruction of infected cells through lytic induction of EBV genes. Genomic tests such as the GastroGenus Gastric Cancer Classifier are available to identify actionable variants in formalin-fixed cancer tissue of affected patients.
Collapse
|
37
|
MicroRNAs in virus-induced tumorigenesis and IFN system. Cytokine Growth Factor Rev 2014; 26:183-94. [PMID: 25466647 DOI: 10.1016/j.cytogfr.2014.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 12/13/2022]
Abstract
Numerous microRNAs (miRNAs), small non-coding RNAs encoded in the human genome, have been shown to be involved in cancer pathogenesis and progression. There is evidence that some of these miRNAs possess proapoptotic or proliferation promoting roles in the cell by negatively regulating target mRNAs. Oncogenic viruses are able to produce persistent infection, favoring tumor development by deregulating cell proliferation and inhibiting apoptosis. It has been recently suggested that cellular miRNAs may participate in host-virus interactions, influencing viral replication. Many mammalian viruses counteract this cellular antiviral defense by using viral proteins but also by encoding viral miRNAs involved in virus-induced tumorigenesis. Interferons (IFNs) modulate a number of non-coding RNA genes, especially miRNAs, that may be used by mammalian organisms as a mechanism of IFN system to combat viral infection and related diseases. In particular, IFNs might induce specific cellular miRNAs that target viral transcripts thereby using this strategy as part of their effectiveness against invading viruses. Therefore IFNs, interferon stimulated genes and miRNAs could act synergistically as innate response to virus infection to induce a potent non-permissive cellular environment for virus replication and virus-induced cancer. The relevance of this reviewed research topic is clearly related to the observation that although virus infections are responsible of specific tumors, other unidentified genetic alterations are likely involved in the induction of malignant transformation. The identification of such genetic alterations, i.e. miRNA expression in transformed cells, would be of considerable importance for the analysis of the pathogenesis and for the treatment of cancer induced by specific viruses as well as for the advancement of the current knowledge on the molecular mechanisms underlying virus-host interaction. In this respect, we will review also the important, still little explored, roles of miRNAs acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes.
Collapse
|
38
|
Nishikawa J, Yoshiyama H, Iizasa H, Kanehiro Y, Nakamura M, Nishimura J, Saito M, Okamoto T, Sakai K, Suehiro Y, Yamasaki T, Oga A, Yanai H, Sakaida I. Epstein-barr virus in gastric carcinoma. Cancers (Basel) 2014; 6:2259-74. [PMID: 25386788 PMCID: PMC4276965 DOI: 10.3390/cancers6042259] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/27/2014] [Accepted: 10/28/2014] [Indexed: 12/28/2022] Open
Abstract
The Epstein-Barr virus (EBV) is detected in about 10% of gastric carcinoma cases throughout the world. In EBV-associated gastric carcinoma, all tumor cells harbor the clonal EBV genome. Gastric carcinoma associated with EBV has distinct clinicopathological features, occurs predominately in men and in younger-aged individuals, and presents a generally diffuse histological type. Most cases of EBV-associated gastric carcinoma exhibit a histology rich in lymphocyte infiltration. The immunological reactiveness in the host may represent a relatively preferable prognosis in EBV-positive cases. This fact highlights the important role of EBV in the development of EBV-associated gastric carcinoma. We have clearly proved direct infection of human gastric epithelialcells by EBV. The infection was achieved by using a recombinant EBV. Promotion of growth by EBV infection was observed in the cells. Considerable data suggest that EBV may directly contribute to the development of EBV-associated GC. This tumor-promoting effect seems to involve multiple mechanisms, because EBV affects several host proteins and pathways that normally promote apoptosis and regulate cell proliferation.
Collapse
Affiliation(s)
- Jun Nishikawa
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.
| | - Hironori Yoshiyama
- Department of Microbiology, Shimane University Faculty of Medicine, 89-1 Enyacho, Izumo City, Shimane 693-8501, Japan.
| | - Hisashi Iizasa
- Department of Microbiology, Shimane University Faculty of Medicine, 89-1 Enyacho, Izumo City, Shimane 693-8501, Japan.
| | - Yuichi Kanehiro
- Department of Microbiology, Shimane University Faculty of Medicine, 89-1 Enyacho, Izumo City, Shimane 693-8501, Japan.
| | - Munetaka Nakamura
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.
| | - Junichi Nishimura
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.
| | - Mari Saito
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.
| | - Takeshi Okamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.
| | - Kouhei Sakai
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.
| | - Atsunori Oga
- Department of Pathology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.
| | - Hideo Yanai
- Department of Clinical Research, National Hospital Organization Kanmon Medical Center, 1-1 Sotoura, Chofu, Shimonoseki, Yamaguchi 752-8510, Japan.
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan.
| |
Collapse
|
39
|
zur Hausen H, de Villiers EM. Cancer "causation" by infections--individual contributions and synergistic networks. Semin Oncol 2014; 41:860-75. [PMID: 25499643 DOI: 10.1053/j.seminoncol.2014.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The search for infectious agents playing a role in human carcinogenesis and their identification remain important issues. This could provide clues for a broader spectrum of cancers preventable by vaccination and accessible to specific therapeutic regimens. Yet, the various ways of interacting among different factors functioning synergistically and their different modes of affecting individual cells should bring to question the validity of the term "causation". It also should put a word of caution into all attempts to summarize criteria for "causality" of infectious agents in cancer development. At least in the opinion of these authors, we would be much better off avoiding these terms, replacing "causal factor" by "risk factor" and grading them according to their contribution to an individual's cancer risk.
Collapse
|
40
|
Chan OS, Ngan RK. Individualized treatment in stage IVC nasopharyngeal carcinoma. Oral Oncol 2014; 50:791-7. [DOI: 10.1016/j.oraloncology.2014.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/04/2014] [Accepted: 01/06/2014] [Indexed: 11/16/2022]
|
41
|
Augello C, Gianelli U, Savi F, Moro A, Bonoldi E, Gambacorta M, Vaira V, Baldini L, Bosari S. MicroRNA as potential biomarker in HCV-associated diffuse large B-cell lymphoma. J Clin Pathol 2014; 67:697-701. [PMID: 24914240 DOI: 10.1136/jclinpath-2014-202352] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS To identify molecular characteristics to hepatitis C virus (HCV)-associated diffuse large B-cell lymphoma (DLBCL) through a comprehensive miRNAs expression profiling. METHODS In this study, miRNA profiles were obtained from 37 patients with DLBCLs and 60 patients with reactive lymph nodes, equally distributed according to HCV presence. Germinal centres, from reactive lymph nodes were used as controls. Clinical features at presentation were available for all patients. RESULTS A set of 52 miRNAs define a signature for HCV-associated DLBCL. Importantly, decreased expression of miR-138-5p and increased expression of miR-147a, miR-147b and miR-511-5p in HCV DLBCL was found to be a poor prognostic factor for HCV-positive DLBCL patients. CONCLUSIONS These data reveal molecular differences in diffuse DLBCL patients according to HCV presence, potentially useful as novel prognostic or therapeutic biomarkers.
Collapse
Affiliation(s)
- Claudia Augello
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Umberto Gianelli
- Hematopathology Section, Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, IRCCS Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Federica Savi
- Division of Pathology, San Paolo Hospital, Milan, Italy
| | - Alessia Moro
- Division of Pathology, San Paolo Hospital, Milan, Italy
| | | | - Marcello Gambacorta
- Department of Laboratory Medicine, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Valentina Vaira
- Division of Pathology, IRCCS Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Luca Baldini
- Division of Hematology, Department of Clinical and Community Sciences, University of Milan, IRCCS Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Silvano Bosari
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, IRCCS Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy
| |
Collapse
|
42
|
Delihas N. Editorial on the Special Issue: Regulation by non-coding RNAs. Int J Mol Sci 2013; 14:21960-4. [PMID: 24201126 PMCID: PMC3856044 DOI: 10.3390/ijms141121960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022] Open
Abstract
This Special Issue of IJMS is devoted to regulation by non-coding RNAs and contains both original research and review articles. An attempt is made to provide an up-to-date analysis of this very fast moving field and cover regulatory roles of both microRNAs and long non-coding RNAs. Multifaceted functions of these RNAs in normal cellular processes, as well as in disease progression, are highlighted.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222 USA.
| |
Collapse
|