1
|
Yang K, Hu B, Zhang W, Yuan T, Xu Y. Recent progress in the understanding of Citrus Huanglongbing: from the perspective of pathogen and citrus host. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:77. [PMID: 39525404 PMCID: PMC11541981 DOI: 10.1007/s11032-024-01517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Citrus Huanglongbing (HLB) is a devastating disease spread by citrus psyllid, causing severe losses to the global citrus industry. The transmission of HLB is mainly influenced by both the pathogen and the citrus psyllid. The unculturable nature of the HLB bacteria (Candidatus Liberibacter asiaticus, CLas) and the susceptibility of all commercial citrus varieties made it extremely difficult to study the mechanisms of resistance and susceptibility. In recent years, new progress has been made in understanding the virulence factors of CLas as well as the defense strategies of citrus host against the attack of CLas. This paper reviews the recent advances in the pathogenic mechanisms of CLas, the screening of agents targeting the CLas, including antimicrobial peptides, metabolites and chemicals, the citrus host defense response to CLas, and strategies to enhance citrus defense. Future challenges that need to be addressed are also discussed.
Collapse
Affiliation(s)
- Kun Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bin Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tao Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
2
|
Park I, Kim YG, Lee JH, Lee J. Antibiofilm and Antivirulence Potentials of 3,2'-Dihydroxyflavone against Staphylococcus aureus. Int J Mol Sci 2024; 25:8059. [PMID: 39125628 PMCID: PMC11311418 DOI: 10.3390/ijms25158059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Staphylococcus aureus, particularly drug-resistant strains, poses significant challenges in healthcare due to its ability to form biofilms, which confer increased resistance to antibiotics and immune responses. Building on previous knowledge that several flavonoids exhibit antibiofilm activity, this study sought to identify a novel flavonoid capable of effectively inhibiting biofilm formation and virulence factor production in S. aureus strains including MRSA. Among the 19 flavonoid-like compounds tested, 3,2'-dihydroxyflavone (3,2'-DHF) was identified for the first time as inhibiting biofilm formation and virulence factors in S. aureus with an MIC 75 µg/mL. The antibiofilm activity was further confirmed by microscopic methods. Notably, 3,2'-DHF at 5 µg/mL was effective in inhibiting both mono- and polymicrobial biofilms involving S. aureus and Candida albicans, a common co-pathogen. 3,2'-DHF reduces hemolytic activity, slime production, and the expression of key virulence factors such as hemolysin gene hla and nuclease gene nuc1 in S. aureus. These findings highlight the potential of 3,2'-DHF as a novel antibiofilm and antivirulence agent against both bacterial and fungal biofilms, offering a promising alternative to traditional antibiotics in the treatment of biofilm-associated infections.
Collapse
Affiliation(s)
| | | | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (I.P.); (Y.-G.K.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (I.P.); (Y.-G.K.)
| |
Collapse
|
3
|
Elkhalifa ME, Ashraf M, Ahmed A, Usman A, Hamdoon AA, Elawad MA, Almalki MG, Mosa OF, Niyazov LN, Ayaz M. Polyphenols and their nanoformulations as potential antibiofilm agents against multidrug-resistant pathogens. Future Microbiol 2024; 19:255-279. [PMID: 38305223 DOI: 10.2217/fmb-2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 02/03/2024] Open
Abstract
The emergence of multidrug-resistant (MDR) pathogens is a major problem in the therapeutic management of infectious diseases. Among the bacterial resistance mechanisms is the development of an enveloped protein and polysaccharide-hydrated matrix called a biofilm. Polyphenolics have demonstrated beneficial antibacterial effects. Phenolic compounds mediate their antibiofilm effects via disruption of the bacterial membrane, deprivation of substrate, protein binding, binding to adhesion complex, viral fusion blockage and interactions with eukaryotic DNA. However, these compounds have limitations of chemical instability, low bioavailability, poor water solubility and short half-lives. Nanoformulations offer a promising solution to overcome these challenges by enhancing their antibacterial potential. This review summarizes the antibiofilm role of polyphenolics, their underlying mechanisms and their potential role as resistance-modifying agents.
Collapse
Affiliation(s)
- Modawy Em Elkhalifa
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Muhammad Ashraf
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| | - Alshebli Ahmed
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Assad Usman
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| | - Alashary Ae Hamdoon
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Mohammed A Elawad
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Meshari G Almalki
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
| | - Osama F Mosa
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
| | - Laziz N Niyazov
- Medical Chemistry Department, Bukhara State Medical Institute Named After Abu Ali Ibn Sino, Bukhara, Uzbekistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| |
Collapse
|
4
|
Arrari F, Jabri MA, Ayari A, Dakhli N, Ben Fayala C, Boubaker S, Sebai H. Chromatographic Analyses of Spirulina (Arthrospira platensis) and Mechanism of Its Protective Effects against Experimental Obesity and Hepatic Steatosis in Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1823. [PMID: 37893541 PMCID: PMC10608300 DOI: 10.3390/medicina59101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Obesity is currently a major health problem due to fatty acid accumulation and excess intake of energy, which leads to an increase in oxidative stress, particularly in the liver. The main goal of this study is to evaluate the protective effects of spirulina (SP) against cafeteria diet (CD)-induced obesity, oxidative stress, and lipotoxicity in rats. Materials and Methods: The rats were divided into four groups and received daily treatments for eight weeks as follows: control group fed a standard diet (SD 360 g/d); cafeteria diet group (CD 360 g/d); spirulina group (SP 500 mg/kg); and CD + SP group (500 mg/kg, b.w., p.o.) according to body weight (b.w.) per oral (p.o.). Results: Our results show that treatment with a CD increased the weights of the body, liver, and abdominal fat. Additionally, severe hepatic alteration, disturbances in the metabolic parameters of serum, and lipotoxicity associated with oxidative stress in response to the CD-induced obesity were observed. However, SP treatment significantly reduced the liver alteration of CD feed and lipid profile disorder associated with obesity. Conclusions: Our findings suggest that spirulina has a marked potential therapeutic effect against obesity and mitigates disturbances in liver function parameters, histological alterations, and oxidative stress status.
Collapse
Affiliation(s)
- Fatma Arrari
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| | - Mohamed-Amine Jabri
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| | - Ala Ayari
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| | - Nouha Dakhli
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| | - Chayma Ben Fayala
- Laboratory of Human and Experimental Pathological Anatomy, Pasteur Institute of Tunisia, Tunis 1002, Tunisia
| | - Samir Boubaker
- Laboratory of Human and Experimental Pathological Anatomy, Pasteur Institute of Tunisia, Tunis 1002, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| |
Collapse
|
5
|
Buchmann D, Schwabe M, Weiss R, Kuss AW, Schaufler K, Schlüter R, Rödiger S, Guenther S, Schultze N. Natural phenolic compounds as biofilm inhibitors of multidrug-resistant Escherichia coli - the role of similar biological processes despite structural diversity. Front Microbiol 2023; 14:1232039. [PMID: 37731930 PMCID: PMC10507321 DOI: 10.3389/fmicb.2023.1232039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 09/22/2023] Open
Abstract
Multidrug-resistant gram-negative pathogens such as Escherichia coli have become increasingly difficult to treat and therefore alternative treatment options are needed. Targeting virulence factors like biofilm formation could be one such option. Inhibition of biofilm-related structures like curli and cellulose formation in E. coli has been shown for different phenolic natural compounds like epigallocatechin gallate. This study demonstrates this effect for other structurally unrelated phenolics, namely octyl gallate, scutellarein and wedelolactone. To verify whether these structurally different compounds influence identical pathways of biofilm formation in E. coli a broad comparative RNA-sequencing approach was chosen with additional RT-qPCR to gain initial insights into the pathways affected at the transcriptomic level. Bioinformatical analysis of the RNA-Seq data was performed using DESeq2, BioCyc and KEGG Mapper. The comparative bioinformatics analysis on the pathways revealed that, irrespective of their structure, all compounds mainly influenced similar biological processes. These pathways included bacterial motility, chemotaxis, biofilm formation as well as metabolic processes like arginine biosynthesis and tricarboxylic acid cycle. Overall, this work provides the first insights into the potential mechanisms of action of novel phenolic biofilm inhibitors and highlights the complex regulatory processes of biofilm formation in E. coli.
Collapse
Affiliation(s)
- David Buchmann
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Michael Schwabe
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Romano Weiss
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Andreas W. Kuss
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Nadin Schultze
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Kauffmann AC, Castro VS. Phenolic Compounds in Bacterial Inactivation: A Perspective from Brazil. Antibiotics (Basel) 2023; 12:antibiotics12040645. [PMID: 37107007 PMCID: PMC10135396 DOI: 10.3390/antibiotics12040645] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Phenolic compounds are natural substances that are produced through the secondary metabolism of plants, fungi, and bacteria, in addition to being produced by chemical synthesis. These compounds have anti-inflammatory, antioxidant, and antimicrobial properties, among others. In this way, Brazil represents one of the most promising countries regarding phenolic compounds since it has a heterogeneous flora, with the presence of six distinct biomes (Cerrado, Amazon, Atlantic Forest, Caatinga, Pantanal, and Pampa). Recently, several studies have pointed to an era of antimicrobial resistance due to the unrestricted and large-scale use of antibiotics, which led to the emergence of some survival mechanisms of bacteria to these compounds. Therefore, the use of natural substances with antimicrobial action can help combat these resistant pathogens and represent a natural alternative that may be useful in animal nutrition for direct application in food and can be used in human nutrition to promote health. Therefore, this study aimed to (i) evaluate the phenolic compounds with antimicrobial properties isolated from plants present in Brazil, (ii) discuss the compounds across different classes (flavonoids, xanthones, coumarins, phenolic acids, and others), and (iii) address the structure-activity relationship of phenolic compounds that lead to antimicrobial action.
Collapse
Affiliation(s)
| | - Vinicius Silva Castro
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
7
|
Queiroga MC, Laranjo M, Andrade N, Marques M, Costa AR, Antunes CM. Antimicrobial, Antibiofilm and Toxicological Assessment of Propolis. Antibiotics (Basel) 2023; 12:antibiotics12020347. [PMID: 36830258 PMCID: PMC9952062 DOI: 10.3390/antibiotics12020347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Antimicrobial resistance is a serious problem for the control of infections and infectious diseases. Propolis is a substance produced by honeybees with antimicrobial and antibiofilm properties. To consider propolis as an alternative to the use of antimicrobials for infection control, we assessed its antimicrobial and antibiofilm activities. To assess propolis for topical medical use, toxicological studies were also performed. A Portuguese 70% propolis ethanolic extract was chemically evaluated and studied for antimicrobial activity on staphylococcal field isolates (n = 137) and antibiofilm action (n = 45). Cell toxicological assessment was performed using keratinocytes and fibroblasts. Pinobanksin, chrysin, acacetin, apigenin, pinocembrin, and kaempferol-dimethyl-ether were detected. All 137 isolates were susceptible to 6.68 mg/mL or lower propolis concentration (80% isolates were susceptible to <1 mg/mL). The mean percentage of biofilm inhibition was 71%, and biofilm disruption was 88.5%. Propolis (<1 mg/mL) was well-tolerated by fibroblasts and moderately tolerated by keratinocytes. The combined antimicrobial and antibiofilm effect of propolis, together with its low toxicity to connective tissue and epithelial cells, suggests a good applicability for topical antibacterial treatment. Therefore, propolis seems to be a good alternative to antimicrobials for the treatment of infections with Staphylococcus spp. that deserves to be evaluated in vivo.
Collapse
Affiliation(s)
- Maria Cristina Queiroga
- MED–Mediterranean Institute for Agriculture, Environment and Development & CHANGE–Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- Correspondence:
| | - Marta Laranjo
- MED–Mediterranean Institute for Agriculture, Environment and Development & CHANGE–Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Nara Andrade
- Universidade Paulista, Campus Petrolina-PE, Av. Barão do Rio Branco, 700-862 - Centro, Petrolina - PE, CEP: 56304-260, Brazil
| | - Mariana Marques
- Instituto de Ciências da Terra, ICT, Universidade de Évora, 7006-554 Évora, Portugal
| | - Ana Rodrigues Costa
- Instituto de Ciências da Terra, ICT, Universidade de Évora, 7006-554 Évora, Portugal
- Departamento de Ciências Médicas e da Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, 7006-554 Évora, Portugal
| | - Célia Maria Antunes
- Instituto de Ciências da Terra, ICT, Universidade de Évora, 7006-554 Évora, Portugal
- Departamento de Ciências Médicas e da Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, 7006-554 Évora, Portugal
- Centro Académico Clínico do Alentejo, C-TRAIL, 7000-671 Évora, Portugal
| |
Collapse
|
8
|
Birsa ML, Sarbu LG. An Improved Synthetic Method for Sensitive Iodine Containing Tricyclic Flavonoids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238430. [PMID: 36500522 PMCID: PMC9740535 DOI: 10.3390/molecules27238430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022]
Abstract
The synthesis of new iodine containing synthetic tricyclic flavonoids is reported. Due to the sensitivity of the precursors to the heat and acidic conditions required for the ring closure of the 1,3-dithiolium core, a new cyclization method has been developed. It consists in the treatment of the corresponding iodine-substituted 3-dithiocarbamic flavonoids with a 1:1 (v/v) mixture of glacial acetic acid-concentrated sulfuric acid at 40 °C. The synthesis of the iodine-substituted 3-dithiocarbamic flavonoids has also been tuned in terms of reaction conditions.
Collapse
|
9
|
Stepanov D, Buchmann D, Schultze N, Wolber G, Schaufler K, Guenther S, Belik V. A Combined Bayesian and Similarity-Based Approach for Predicting E. coli Biofilm Inhibition by Phenolic Natural Compounds. JOURNAL OF NATURAL PRODUCTS 2022; 85:2255-2265. [PMID: 36107719 DOI: 10.1021/acs.jnatprod.2c00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Screening for biofilm inhibition by purified natural compounds is difficult due to compounds' chemical diversity and limited commercial availability, combined with time- and cost-intensiveness of the laboratory process. In silico prediction of chemical and biological properties of molecules is a widely used technique when experimental data availability is of concern. At the same time, the performance of predictive models directly depends on the amount and quality of experimental data. Driven by the interest in developing a model for prediction of the antibiofilm effect of phenolic natural compounds such as flavonoids, we performed experimental assessment of antibiofilm activity of 320 compounds from this subset of chemicals. The assay was performed once on two Escherichia coli strains on agar in 24-well microtiter plates. The inhibition was assessed visually by detecting morphological changes in macrocolonies. Using the data obtained, we subsequently trained a Bayesian logistic regression model for prediction of biofilm inhibition, which was combined with a similarity-based method in order to increase the overall sensitivity (at the cost of accuracy). The quality of the predictions was subsequently validated by experimental assessment in three independent experiments with two resistant E. coli strains of 23 compounds absent in the initial data set. The validation demonstrated that the model may successfully predict the targeted effect as compared to the baseline accuracy. Using a randomly selected database of commercially available natural phenolics, we obtained approximately 6.0% of active compounds, whereas using our prediction-based substance selection, the percentage of phenolics found to be active increased to 34.8%.
Collapse
Affiliation(s)
- Dmitri Stepanov
- Department of Biology, Chemistry & Pharmacy, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - David Buchmann
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| | - Nadin Schultze
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| | - Gerhard Wolber
- Department of Biology, Chemistry & Pharmacy, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| | - Vitaly Belik
- Department of Veterinary Medicine, Institute for Veterinary Epidemiology and Biostatistics, System Modeling Group, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| |
Collapse
|
10
|
Balada C, Díaz V, Castro M, Echeverría-Bugueño M, Marchant MJ, Guzmán L. Chemistry and Bioactivity of Microsorum scolopendria (Polypodiaceae): Antioxidant Effects on an Epithelial Damage Model. Molecules 2022; 27:molecules27175467. [PMID: 36080235 PMCID: PMC9457714 DOI: 10.3390/molecules27175467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Microsorum scolopendia (MS), which grows on the Chilean island of Rapa Nui, is a medicinal fern used to treat several diseases. Despite being widely used, this fern has not been deeply investigated. The aim of this study was to perform a characterization of the polyphenolic and flavonoid identity, radical scavenging, antimicrobial, and anti-inflammatory properties of MS rhizome and leaf extracts (RAE and HAE). The compound identity was analyzed through the reversed-phase high-performance liquid chromatography (RP-HPLC) method coupled with mass spectrometry. The radical scavenging and anti-inflammatory activities were evaluated for DPPH, ORAC, ROS formation, and COX inhibition activity assay. The antimicrobial properties were evaluated using an infection model on Human Dermal Fibroblast adult (HDFa) cell lines incubated with Staphylococcus aureus and Staphylococcus epidermidis. The most abundant compounds were phenolic acids between 46% to 57% in rhizome and leaf extracts, respectively; followed by flavonoids such as protocatechic acid 4-O-glucoside, cirsimaritin, and isoxanthohumol, among others. MS extract inhibited and disaggregated the biofilm bacterial formed and showed an anti-inflammatory selective property against COX-2 enzyme. RAE generated a 64% reduction of ROS formation in the presence of S. aureus and 87.35% less ROS in the presence of S. epidermidis on HDFa cells. MS has great therapeutic potential and possesses several biological properties that should be evaluated.
Collapse
Affiliation(s)
- Cristóbal Balada
- Laboratorio de Biomedicina y Biocatálisis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
| | - Valentina Díaz
- Laboratorio de Biomedicina y Biocatálisis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
| | - Mónica Castro
- Laboratorio de Propagación, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, La Palma S/N, Quillota 2260000, Chile
| | - Macarena Echeverría-Bugueño
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Quillota 980, Viña del Mar 2531015, Chile
- Centro Interdisciplinario para la Investigación Acuícola (INCAR), Universidad Andrés Bello, Quillota 980, Viña del Mar 2531015, Chile
| | - María José Marchant
- Laboratorio de Biomedicina y Biocatálisis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
| | - Leda Guzmán
- Laboratorio de Biomedicina y Biocatálisis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
- Correspondence:
| |
Collapse
|
11
|
An Overview of Biofilm Formation-Combating Strategies and Mechanisms of Action of Antibiofilm Agents. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081110. [PMID: 35892912 PMCID: PMC9394423 DOI: 10.3390/life12081110] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Biofilm formation on surfaces via microbial colonization causes infections and has become a major health issue globally. The biofilm lifestyle provides resistance to environmental stresses and antimicrobial therapies. Biofilms can cause several chronic conditions, and effective treatment has become a challenge due to increased antimicrobial resistance. Antibiotics available for treating biofilm-associated infections are generally not very effective and require high doses that may cause toxicity in the host. Therefore, it is essential to study and develop efficient anti-biofilm strategies that can significantly reduce the rate of biofilm-associated healthcare problems. In this context, some effective combating strategies with potential anti-biofilm agents, including plant extracts, peptides, enzymes, lantibiotics, chelating agents, biosurfactants, polysaccharides, organic, inorganic, and metal nanoparticles, etc., have been reviewed to overcome biofilm-associated healthcare problems. From their extensive literature survey, it can be concluded that these molecules with considerable structural alterations might be applied to the treatment of biofilm-associated infections, by evaluating their significant delivery to the target site of the host. To design effective anti-biofilm molecules, it must be assured that the minimum inhibitory concentrations of these anti-biofilm compounds can eradicate biofilm-associated infections without causing toxic effects at a significant rate.
Collapse
|
12
|
Prenylated Flavonoids in Topical Infections and Wound Healing. Molecules 2022; 27:molecules27144491. [PMID: 35889363 PMCID: PMC9323352 DOI: 10.3390/molecules27144491] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
The review presents prenylated flavonoids as potential therapeutic agents for the treatment of topical skin infections and wounds, as they can restore the balance in the wound microenvironment. A thorough two-stage search of scientific papers published between 2000 and 2022 was conducted, with independent assessment of results by two reviewers. The main criteria were an MIC (minimum inhibitory concentration) of up to 32 µg/mL, a microdilution/macrodilution broth method according to CLSI (Clinical and Laboratory Standards Institute) or EUCAST (European Committee on Antimicrobial Susceptibility Testing), pathogens responsible for skin infections, and additional antioxidant, anti-inflammatory, and low cytotoxic effects. A total of 127 structurally diverse flavonoids showed promising antimicrobial activity against pathogens affecting wound healing, predominantly Staphylococcus aureus strains, but only artocarpin, diplacone, isobavachalcone, licochalcone A, sophoraflavanone G, and xanthohumol showed multiple activity, including antimicrobial, antioxidant, and anti-inflammatory along with low cytotoxicity important for wound healing. Although prenylated flavonoids appear to be promising in wound therapy of humans, and also animals, their activity was measured only in vitro and in vivo. Future studies are, therefore, needed to establish rational dosing according to MIC and MBC (minimum bactericidal concentration) values, test potential toxicity to human cells, measure healing kinetics, and consider formulation in smart drug release systems and/or delivery technologies to increase their bioavailability.
Collapse
|
13
|
Freitas PAD, Oliveira KAD, Magalhães LA, Neves RDJD, Maia CSC, Silveira LR, Lima TTD, Vasconcelos RP, Brito LC, Torres-Leal FL, Oliveira ACD. Improvement of 2,2'-Azobis(2-Methylpropionamidine) Dihydrochloride-Induced Hepatic Redox Imbalance in Swiss Mice and HepG2 Cells by Rutin. J Med Food 2022; 25:630-635. [PMID: 35612492 DOI: 10.1089/jmf.2021.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Redox imbalance can lead to irreversible damages to biological functions. In this context, rutin stands out for its antioxidant potential. The objective of this study was to evaluate the acute and chronic effect of rutin on the hepatic redox imbalance. The study was performed according to three different protocols. First, healthy male Swiss mice were divided into two groups: control and rutin, the second of which received chronic oral supplementation of rutin (10 mg/kg). The second involved evaluation of the generation of reactive oxygen species (ROS) by HepG2 cells, incubated or not with rutin (20 and 40 μg/mL) for 3 h. The final protocol involved assessment of the acute effect of rutin (10 mg/kg) in mice with oxidative stress induced by 2,2'-azobis(2-methylpropionamidine) dihydrochloride (ABAP). After the in vivo treatments, the livers were collected to analyze the oxidative damage by thiol, and the antioxidant defense by catalase, superoxide dismutase, and glutathione peroxidase. In the HepG2 cells, the following probes were employed to assess the ROS production: dichlorofluorescein, MitoSOX, dihydroethidium, and Amplex Red. Rutin administered chronically improved the antioxidant defense in healthy animals, and when administered acutely both inhibited the increased production of ROS in HepG2 cells and improved the redox imbalance parameters in mice with induced oxidative stress. This study suggests rutin as a protective agent for restoration of hepatic redox homeostasis in redox injury induced by ABAP in Swiss mice and HelpG2 cells.
Collapse
Affiliation(s)
| | - Keciany Alves de Oliveira
- Academic Master Course in Nutrition and Health, Ceará State University (UECE), Fortaleza, Ceará, Brazil
| | | | | | - Carla Soraya Costa Maia
- Academic Master Course in Nutrition and Health, Ceará State University (UECE), Fortaleza, Ceará, Brazil
| | - Leonardo Reis Silveira
- Endocrine Pancreas and Metabolism Laboratory, Campinas State University (UNICAMP), Campinas, São Paulo, Brazil
| | - Tanes Tamamura de Lima
- Endocrine Pancreas and Metabolism Laboratory, Campinas State University (UNICAMP), Campinas, São Paulo, Brazil
| | - Renata Prado Vasconcelos
- Graduate Program in Physiological Sciences, Ceará State University (UECE), Fortaleza, Ceará, Brazil
| | - Luciana Catunda Brito
- Department of Physical Education, Institute of Physical Education and Sports, Ceará Federal University (UFC), Fortaleza, Ceará, Brazil
| | | | | |
Collapse
|
14
|
From the environment to the hospital: how plants can help to fight bacteria biofilm. Microbiol Res 2022; 261:127074. [DOI: 10.1016/j.micres.2022.127074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
|
15
|
Optimization of Callus and Cell Suspension Cultures of Lycium schweinfurthii for Improved Production of Phenolics, Flavonoids, and Antioxidant Activity. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lycium schweinfurthii is a traditional medicinal plant grown in the Mediterranean region. As it is used in folk medicine to treat stomach ulcers, it took more attention as a source of valuable secondary metabolites. The in vitro cultures of L. schweinfurthii could be a great tool to produce secondary metabolites at low costs. The presented study aimed to introduce and optimize a protocol for inducing callus and cell suspension cultures as well as estimating phenolic, flavonoid compounds, and antioxidant activity in the cultures of the studied species. Three plant growth regulators (PGRs) were supplemented to MS medium solely or in combination to induce callus from leaf explants. The combination between 2,4-dichlorophenoxy acetic acid (2,4-D) and 1-naphthyl acetic acid (NAA) induced callus in all explants regardless of the concentration. The highest fresh weight of callus (3.92 g) was obtained on MS medium fortified with 1 mg L−1 of both 2,4-D and NAA (DN1) after 7 weeks of culture. DN1 was the best medium for callus multiplication regarding the increase in fresh weight and size of callus. Otherwise, the highest phenolics, flavonoids, and antioxidant activity against DPPH free radicals were of callus on MS fortified with 2 mg L−1 NAA (N2). The cell suspension cultures were cultivated on a liquid N2 medium with different sucrose concentrations of 5–30 g L−1 to observe the possible effects on cells’ multiplication and secondary metabolite production. The highest fresh and viable biomass of 12.01 g was obtained on N2 containing 30 g L−1 sucrose. On the other hand, the cell cultures on N2 medium of 5 and 30 g L−1 sucrose produced phenolics and flavonoids, and revealed antioxidant activity against DPPH and ABTS+ free radicals more than other sucrose concentrations. The presented protocol should be useful in the large-scale production of phenolic and flavonoid compounds from callus and cell cultures of L. schweinfurthii.
Collapse
|
16
|
Gemmell CT, Parreira VR, Farber JM. Controlling Listeria monocytogenes Growth and Biofilm Formation Using Flavonoids. J Food Prot 2022; 85:639-646. [PMID: 34982818 DOI: 10.4315/jfp-21-135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The aim of this study was to investigate the ability of natural plant-derivate products (flavonoid compounds) to inhibit the growth and biofilm-forming ability of Listeria monocytogenes. A collection of 500 synthetic and natural flavonoids were tested individually on strains of L. monocytogenes for their antimicrobial and antibiofilm activity. The flavonoids were tested against a L. monocytogenes cocktail of five strains at a concentration of 100 μM to determine their effect on planktonic growth. The optical density was measured every hour for 24 h at 37°C, and every hour for 48 h at 22°C. A total of 17 flavonoids were chosen for further study because of their ability to significantly reduce the growth of L. monocytogenes up to 97%. An additional two flavonoids that increased planktonic growth were chosen as well to investigate whether they had the same effect on biofilm growth. A lower concentration of flavonoid compounds (50 μM) was selected to investigate the individual effects on L. monocytogenes biofilm formation using (i) stainless steel coupons to quantify biomass using crystal violet staining and (ii) glass slides using confocal laser scanning microscopic (CLSM) imaging to observe the biofilm architecture. The 19 flavonoids showed various levels of L. monocytogenes biofilm growth inhibition, ranging from 2 to 100% after 48 h of incubation at 22 or 10°C. This includes 18 of the 19 flavonoids significantly (P ≤ 0.05) inhibiting L. monocytogenes biofilm formation on stainless steel coupons under at least one of the testing conditions. However, only one flavonoid compound demonstrated significant biofilm inhibition (P ≤ 0.05) under all conditions tested. Furthermore, 8 of the selected 19 flavonoid compounds showed visible reductions through CLSM in L. monocytogenes biofilm formation. Overall, we identified five flavonoid compounds to be promising antibiofilm and antimicrobial agents against L. monocytogenes. HIGHLIGHTS
Collapse
Affiliation(s)
- Christopher T Gemmell
- Canadian Research Institute for Food Safety, University of Guelph, 50 Stone Road, Guelph, Ontario N1G 2W1, Canada
| | - Valeria R Parreira
- Canadian Research Institute for Food Safety, University of Guelph, 50 Stone Road, Guelph, Ontario N1G 2W1, Canada
| | - Jeffrey M Farber
- Canadian Research Institute for Food Safety, University of Guelph, 50 Stone Road, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
17
|
Daniela SV, Gabriela OM, Andrea PM. A state-of-the-art review and prospective therapeutic applications of prenyl flavonoids as chemosensitizers against antifungal multidrug resistance in Candida albicans. Curr Med Chem 2022; 29:4251-4281. [PMID: 35139777 DOI: 10.2174/0929867329666220209103538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Multidrug resistance (MDR) in the opportunistic pathogen Candida albicans is defined as non-susceptibility to at least one agent in two or more drug classes. This phenomenon has been increasingly reported since the rise in the incidence of fungal infections in immunocompromised patients at the end of the last century. After the discovery of efflux pump overexpression as a principal mechanism causing MDR in Candida strains, drug discovery targeting fungal efflux transporters has had a growing impact. Chemosensitization aims to enhance azole intracellular concentrations through combination therapy with transporter inhibitors. Consequently, the use of drug efflux inhibitors combined with the antifungal agent will sensitize the pathogen. As a result, the use of lower drug concentrations will reduce possible adverse effects on the host. Through an extensive revision of the literature, this review aims to provide an exhaustive and critical analysis of the studies carried out in the past two decades, regarding the chemosensitization strategy to cope with multidrug resistance in C. albicans. This work provides a deep analysis of the research about the inhibition of drug-efflux membrane transporters by prenylated flavonoids and the interactions of these phytocompounds with azole antifungals as an approach to chemosensitize multidrug-resistant C. albicans strains. We highlight the importance of prenylflavonoids and their particular chemical and pharmacological characteristics that make them excellent candidates with therapeutic potential as chemosensitizers. Finally, we propose the need for further research of prenyl flavonoids as inhibitors of drug-efflux mediated fungal resistance.
Collapse
Affiliation(s)
- Santi V Daniela
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| | - Ortega María Gabriela
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| | - Peralta Mariana Andrea
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| |
Collapse
|
18
|
Synthesis, Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02207-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Qiao Q, Si F, Wu C, Wang J, Zhang A, Tao J, Zhang L, Liu Y, Feng Z. Transcriptome sequencing and flavonoid metabolism analysis in the leaves of three different cultivars of Acer truncatum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:1-13. [PMID: 34968987 DOI: 10.1016/j.plaphy.2021.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Young and mature leaves of three Acer truncatum varieties with different leaf colors were examined. Transcriptome sequencing and flavonoid metabolism were used to analyze the differential gene expression associated with different leaf colors and growth stages and the relationships between gene expression and flavonoid and anthocyanin contents to improve ornamental value and develop flavonoid-rich A. truncatum. Kyoto Encyclopedia of Genes and Genomes database annotation of differentially expressed genes indicated that the following genes were related to flavonoid synthesis: phenylpropanoid biosynthesis genes (PAL, C4H, 4CL and CHS), flavonoid biosynthesis genes (E2.1.1.104, CHI, FLS, F3'5'H and ANR), anthocyanin biosynthesis genes (ANS, DFR, HCT, BZ1, GT1, and UGT79B1), isoflavonoid biosynthesis genes (HIDH and CYP81E17), and their transcriptional regulator (MYB). A total of 234 types of flavonoids were detected. The types and contents of anthocyanins in the red-leaf varieties 'Hong Jingling' and 'Caidie Fanfei' were significantly higher than those in the green leaf cultivar 'Lv Baoshi', especially morning glory 3-O-glucoside, delphinidin 3-O-glucoside, and pelargonium-3-O-glucoside, which were not detected in 'Lv Baoshi'. Combined omics analysis showed that downregulated expression of C4H, CHS and F3'5'H and upregulated expression of FLS reduced the supply of raw materials for anthocyanin synthesis, and downstream ANR upregulation converted anthocyanins to procyanidins, increasing the total flavonoid content. F3'5'H expression was downregulated in the leaves of each variety with development, resulting in the accumulation of catechins and the gradual greening of the leaves. F3'5'H was significantly depleted in the young leaves of 'Hong Jingling' and 'Caidie Fanfei' compared with the young leaves of 'Lv Baoshi', while ANS and BZ1 were enriched significantly. It is concluded that F3'5'H, BZ1, and ANS are the key genes needed for breeding red A. truncatum and that ANR is the key gene needed for breeding varieties with a high flavonoids contens. These results may facilitate genetic modification or selection for further improvement of the ornamental qualities and flavonoid content of A. truncatum.
Collapse
Affiliation(s)
- Qian Qiao
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, Shandong, 271000, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fenfen Si
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chong Wu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, Shandong, 271000, China
| | - Jiangyong Wang
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, Shandong, 271000, China
| | - Anning Zhang
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, Shandong, 271000, China
| | - Jihan Tao
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, Shandong, 271000, China
| | - Lin Zhang
- Taishan Forestry Science Institute, Tai'an, Shandong, 271000, China
| | - Yan Liu
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Zhen Feng
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
20
|
Gómez PAM, Mendizábal MFR, Poma RDC, Cifuentes TVR, Quispe FMM, Torres DJM, Amaranto REB, Medina CAM, Contreras LAP. Antibacterial and Antiadhesion Effects of Psidium guajava Fractions on a Multispecies Biofilm Associated with Periodontitis. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2022. [DOI: 10.1590/pboci.2022.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Antibacterial, Antibiofilm, and Efflux Pump Inhibitory Properties of the Crude Extract and Fractions from Acacia macrostachya Stem Bark. ScientificWorldJournal 2021; 2021:5381993. [PMID: 34720766 PMCID: PMC8553507 DOI: 10.1155/2021/5381993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022] Open
Abstract
Microbial infections remain a public health problem due to the upsurge of bacterial resistance. In this study, the antibacterial, antibiofilm, and efflux pump inhibitory activities of the stem bark of Acacia macrostachya, an indigenous African medicinal plant, were investigated. In traditional medicine, the plant is used in the treatment of microbial infections and inflammatory conditions. A crude methanol extract obtained by Soxhlet extraction was partitioned by column chromatography to obtain the petroleum ether, ethyl acetate, and methanol fractions. Antibacterial, efflux pump inhibition and antibiofilm formation activities were assessed by the high-throughput spot culture growth inhibition (HT-SPOTi), ethidium bromide accumulation, and the crystal violet retention assay, respectively. The minimum inhibitory concentrations (MICs) of the crude extract and major fractions ranged from 250 to ≥500 μg/mL. At a concentration of 3.9–250 μg/mL, all extracts demonstrated >80% inhibition of biofilm formation in S. aureus. In P. aeruginosa, the EtOAc fraction showed the highest antibiofilm activity (59–69%) while the pet-ether fraction was most active against E. coli biofilms (45–67%). Among the test samples, the crude extract, methanol, and ethyl acetate fractions showed remarkable efflux pump inhibition in S. aureus, E. coli, and P. aeruginosa. At ½ MIC, the methanol fraction demonstrated significant accumulation of EtBr in E. coli having superior efflux inhibition over the standard EPIs: chlorpromazine and verapamil. Tannins, flavonoids, triterpenoids, phytosterols, coumarins, and saponins were identified in preliminary phytochemical studies. Stigmasterol was identified in the EtOAc fraction. This study justifies the use of A. macrostachya in the treatment of infections in traditional medicine and highlights its potential as a source of bioactive compounds that could possibly interact with some resistance mechanisms in bacteria to combat antimicrobial resistance.
Collapse
|
22
|
Mamdouh D, Mahgoub HAM, Gabr AMM, Ewais EA, Smetanska I. Genetic Stability, Phenolic, Flavonoid, Ferulic Acid Contents, and Antioxidant Activity of Micropropagated Lycium schweinfurthii Plants. PLANTS 2021; 10:plants10102089. [PMID: 34685900 PMCID: PMC8540154 DOI: 10.3390/plants10102089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Lycium schweinfurthii is a Mediterranean wild shrub rich in plant secondary metabolites. In vitro propagation of this plant may support the production of valuable dietary supplements for humanity, introduction of it to the world market, and opportunities for further studies. The presented study aimed to introduce an efficient and reproducible protocol for in vitro micropropagation of L. schweinfurthii and assess the genetic stability of micropropagated plants (MiPs) as well as to estimate phenolic, flavonoid, ferulic acid contents, and the antioxidant activity in leaves of micropropagated plants. Two DNA-based techniques, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR), and one biochemical technique, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), were used to assess the genetic stability in MiPs. Spectrophotometric analysis was performed to estimate total phenolic and flavonoid contents and antioxidant activity of MiPs leaves, while ferulic acid content was estimated using high-performance thin-layer chromatography (HPTLC). Sufficient shoot proliferation was achieved at MS (Murashige and Skoog) medium supplemented with 0.4 mg L-1 kinetin and rooted successfully on half-strength MS medium fortified with 0.4 mg L-1 Indole-3-butyric acid (IBA). The Jaccard's similarity coefficients detected in MiPs reached 52%, 55%, and 82% in the RAPD, ISSR, and SDS-PAGE analyses, respectively. In the dried leaves of MiPs, the phenolic, flavonoid, and ferulic acid contents of 11.53 mg gallic acid equivalent, 12.99 mg catechin equivalent, and 45.52 mg were estimated per gram, respectively. However, an IC50 of 0.43, and 1.99 mg mL-1 of MiP dried leaves' methanolic extract was required to scavenge half of the DPPH, and ABTS free radicals, respectively. The study presented a successful protocol for in vitro propagation of a valued promising plant source of phenolic compounds.
Collapse
Affiliation(s)
- Diaa Mamdouh
- Department of Plant Food Processing, Agricultural Faculty, University of Applied Sciences Weihensteph-an-Triesdorf, Markgrafenstr 16, 91746 Weidenbach, Germany
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (H.A.M.M.); (E.A.E.)
- Correspondence: (D.M.); (I.S.)
| | - Hany A. M. Mahgoub
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (H.A.M.M.); (E.A.E.)
| | - Ahmed M. M. Gabr
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Division, National Research Centre (NRC), Cairo 12622, Egypt;
| | - Emad A. Ewais
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (H.A.M.M.); (E.A.E.)
| | - Iryna Smetanska
- Department of Plant Food Processing, Agricultural Faculty, University of Applied Sciences Weihensteph-an-Triesdorf, Markgrafenstr 16, 91746 Weidenbach, Germany
- Correspondence: (D.M.); (I.S.)
| |
Collapse
|
23
|
Phytochemical Composition, Antibacterial, and Antibiofilm Activity of Malva sylvestris Against Human Pathogenic Bacteria. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.114164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: Considering the increased rate of microbial resistance to antibiotics and chemical side effects of antibiotics, there is a need for an alternative antimicrobial agent with fewer complications. Medicinal plants are rich resources of phytochemical compounds with antibacterial activity that could fight off this problem. Objectives: The aim of this research was to investigate the chemical composition, antimicrobial, and antibiofilm properties of Malva sylvestris on some pathogenic bacteria. Methods: Antibacterial effect of the extract was assessed by the well diffusion and broth microdilution methods against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. The anti-biofilm property of the extract was also examined using the crystal violet assay. Finally, the chemical constituents and total phenols of the extract were determined by gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC), respectively. Results: The methanolic extract of M. sylvestris showed antimicrobial activity against all tested Gram-negative and Gram-positive strains by the agar well diffusion method. The minimum inhibitory concentration (MIC) of the extract ranged from 21.9 ± 0.1 to 51.9 ± 0.5 mg/mL against the tested microorganisms. In addition, the minimum bactericidal concentration (MBC) spanned from 43.7 ± 0.1 to 85.8 ± 0.3 mg/mL. The biofilm inhibitory concentration (BIC50) of the extract was found to be 40 - 87 mg/mL against the tested bacteria. Analysis of the extract by GC-MS indicated that the most abundant compounds were 1-heptacosanol (38.41%), 17-Pentatriacontene (19.78%), and 6,9,12,15-docosatetraenoic acid, methyl ester (8.08%). High-performance liquid chromatography confirmed the presence of apigenin (6.84 ppm) and salicylic acid (1.5 ppm) as phenolic compounds in M. sylvestris methanolic extract. Conclusions: The results of this study represent the high potency of M. sylvestris extract as a source of biologically-active compounds for the development of future phytotherapeutic products with antibacterial and antibiofilm activity.
Collapse
|
24
|
Mala L, Lalouckova K, Skrivanova E. Bacterial Skin Infections in Livestock and Plant-Based Alternatives to Their Antibiotic Treatment. Animals (Basel) 2021; 11:2473. [PMID: 34438930 PMCID: PMC8388705 DOI: 10.3390/ani11082473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Due to its large surface area, the skin is susceptible to various injuries, possibly accompanied by the entrance of infective agents into the body. Commensal organisms that constitute the skin microbiota play important roles in the orchestration of cutaneous homeostasis and immune competence. The opportunistic pathogen Staphylococcus aureus is present as part of the normal biota of the skin and mucous membranes in both humans and animals, but can cause disease when it invades the body either due to trauma or because of the impaired immune response of the host. Colonization of livestock skin by S. aureus is a precursor for majority of bacterial skin infections, which range from boils to sepsis, with the best-characterized being bovine mastitis. Antibiotic treatment of these infections can contribute to the promotion of resistant bacterial strains and even to multidrug resistance. The development of antibiotic resistance to currently available antibiotics is a worldwide problem. Considering the increasing ability of bacteria to effectively resist antibacterial agents, it is important to reduce the livestock consumption of antibiotics to preserve antibiotic effectiveness in the future. Plants are recognized as sources of various bioactive substances, including antibacterial activity towards clinically important microorganisms. This review provides an overview of the current knowledge on the major groups of phytochemicals with antibacterial activity and their modes of action. It also provides a list of currently known and used plant species aimed at treating or preventing bacterial skin infections in livestock.
Collapse
Affiliation(s)
- Lucie Mala
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| | - Klara Lalouckova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| | - Eva Skrivanova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| |
Collapse
|
25
|
Bhatia S, Lal A, Singh S, Franco F. Potential of polyphenols in curbing quorum sensing and biofilm formation in Gram-negative pathogens. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.314044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
|
26
|
Uchil A, Murali TS, Nayak R. Escaping ESKAPE: A chalcone perspective. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
27
|
Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics (Basel) 2020; 10:antibiotics10010003. [PMID: 33374551 PMCID: PMC7822488 DOI: 10.3390/antibiotics10010003] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistant bacteria are a global threat for human and animal health. However, they are only part of the problem of antibiotic failure. Another bacterial strategy that contributes to their capacity to withstand antimicrobials is the formation of biofilms. Biofilms are associations of microorganisms embedded a self-produced extracellular matrix. They create particular environments that confer bacterial tolerance and resistance to antibiotics by different mechanisms that depend upon factors such as biofilm composition, architecture, the stage of biofilm development, and growth conditions. The biofilm structure hinders the penetration of antibiotics and may prevent the accumulation of bactericidal concentrations throughout the entire biofilm. In addition, gradients of dispersion of nutrients and oxygen within the biofilm generate different metabolic states of individual cells and favor the development of antibiotic tolerance and bacterial persistence. Furthermore, antimicrobial resistance may develop within biofilms through a variety of mechanisms. The expression of efflux pumps may be induced in various parts of the biofilm and the mutation frequency is induced, while the presence of extracellular DNA and the close contact between cells favor horizontal gene transfer. A deep understanding of the mechanisms by which biofilms cause tolerance/resistance to antibiotics helps to develop novel strategies to fight these infections.
Collapse
|
28
|
Reigada I, Guarch-Pérez C, Patel JZ, Riool M, Savijoki K, Yli-Kauhaluoma J, Zaat SAJ, Fallarero A. Combined Effect of Naturally-Derived Biofilm Inhibitors and Differentiated HL-60 Cells in the Prevention of Staphylococcus aureus Biofilm Formation. Microorganisms 2020; 8:E1757. [PMID: 33182261 PMCID: PMC7695255 DOI: 10.3390/microorganisms8111757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023] Open
Abstract
Nosocomial diseases represent a huge health and economic burden. A significant portion is associated with the use of medical devices, with 80% of these infections being caused by a bacterial biofilm. The insertion of a foreign material usually elicits inflammation, which can result in hampered antimicrobial capacity of the host immunity due to the effort of immune cells being directed to degrade the material. The ineffective clearance by immune cells is a perfect opportunity for bacteria to attach and form a biofilm. In this study, we analyzed the antibiofilm capacity of three naturally derived biofilm inhibitors when combined with immune cells in order to assess their applicability in implantable titanium devices and low-density polyethylene (LDPE) endotracheal tubes. To this end, we used a system based on the coculture of HL-60 cells differentiated into polymorphonuclear leukocytes (PMNs) and Staphylococcus aureus (laboratory and clinical strains) on titanium, as well as LDPE surfaces. Out of the three inhibitors, the one coded DHA1 showed the highest potential to be incorporated into implantable devices, as it displayed a combined activity with the immune cells, preventing bacterial attachment on the titanium and LDPE. The other two inhibitors seemed to also be good candidates for incorporation into LDPE endotracheal tubes.
Collapse
Affiliation(s)
- Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
| | - Clara Guarch-Pérez
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.G.-P.); (M.R.); (S.A.J.Z.)
| | - Jayendra Z. Patel
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (J.Z.P.); (J.Y.-K.)
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.G.-P.); (M.R.); (S.A.J.Z.)
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (J.Z.P.); (J.Y.-K.)
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.G.-P.); (M.R.); (S.A.J.Z.)
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
| |
Collapse
|
29
|
Pruteanu M, Hernández Lobato JI, Stach T, Hengge R. Common plant flavonoids prevent the assembly of amyloid curli fibres and can interfere with bacterial biofilm formation. Environ Microbiol 2020; 22:5280-5299. [PMID: 32869465 DOI: 10.1111/1462-2920.15216] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023]
Abstract
Like all macroorganisms, plants have to control bacterial biofilm formation on their surfaces. On the other hand, biofilms are highly tolerant against antimicrobial agents and other stresses. Consequently, biofilms are also involved in human chronic infectious diseases, which generates a strong demand for anti-biofilm agents. Therefore, we systematically explored major plant flavonoids as putative anti-biofilm agents using different types of biofilms produced by Gram-negative and Gram-positive bacteria. In Escherichia coli macrocolony biofilms, the flavone luteolin and the flavonols myricetin, morin and quercetin were found to strongly reduce the extracellular matrix. These agents directly inhibit the assembly of amyloid curli fibres by driving CsgA subunits into an off-pathway leading to SDS-insoluble oligomers. In addition, they can interfere with cellulose production by still unknown mechanisms. Submerged biofilm formation, however, is hardly affected. Moreover, the same flavonoids tend to stimulate macrocolony and submerged biofilm formation by Pseudomonas aeruginosa. For Bacillus subtilis, the flavonone naringenin and the chalcone phloretin were found to inhibit growth. Thus, plant flavonoids are not general anti-biofilm compounds but show species-specific effects. However, based on their strong and direct anti-amyloidogenic activities, distinct plant flavonoids may provide an attractive strategy to specifically combat amyloid-based biofilms of some relevant pathogens.
Collapse
Affiliation(s)
- Mihaela Pruteanu
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | | | - Thomas Stach
- Institut für Biologie/Zoologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| |
Collapse
|
30
|
Limsuwan S, Jarukitsakul S, Issuriya A, Chusri S, Joycharat N, Jaisamut P, Saising J, Jetwanna KWN, Voravuthikunchai SP. Thai herbal formulation 'Ya-Pit-Samut-Noi': Its antibacterial activities, effects on bacterial virulence factors and in vivo acute toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112975. [PMID: 32417424 DOI: 10.1016/j.jep.2020.112975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A Thai herbal formulation 'Ya-Pit-Samut-Noi' containing Nigella sativa (seed), Piper retrofractum (fruit), Punica granatum (pericarp), and Quercus infectoria (nutgall) has long been traditionally used to treat diarrhea or bloody mucous diarrhea. Scientific information is very important to support its therapeutic effects and traditional drug development. AIM OF THE STUDY This study aimed to evaluate the antibacterial activities of Ya-Pit-Samut-Noi against diarrhea-causing bacteria and determine its effects on bacterial virulence factors and in vivo acute toxicity. MATERIALS AND METHODS Ethanol and water extracts of Ya-Pit-Samut-Noi and its plant components were prepared. The agar diffusion method was used for preliminary screening of antibacterial activity of the extracts against diarrhea-causing bacteria including Staphylococcus aureus, Vibrio cholerae, and Vibrio parahaemolyticus. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were assessed using broth microdilution method. The effects on bactericidal activity, bacterial cell wall, and cell membrane were examined by time-kill, lysis, and leakage assays, respectively. The effects on bacterial virulence factors including quorum-sensing system, biofilm production, and swarming motility were determined. Phytochemical screening was carried out to identify the group of chemical compounds present in the formulation extracts. Acute toxicity study was conducted by a single oral dose of 2000 mg/kg body weight in Wistar albino rats. RESULTS Ethanol and water extracts of Ya-Pit-Samut-Noi and Quercus infectoria demonstrated antibacterial efficacy against all bacterial strains as revealed by zones of inhibition ranging from 7.0 to 24.5 mm. The ethanol and water extracts of Ya-Pit-Samut-Noi and Quercus infectoria produced strong bacteriostatic activity against V. parahaemolyticus (n = 11) with an MIC range of 7.81-250 μg/ml. Only the ethanol extract of Ya-Pit-Samut-Noi produced MBC values less than or equal to 1000 μg/ml against all V. parahaemolyticus. Based on time-kill study, no surviving V. parahaemolyticus (ATCC 17802 and 5268) cells were detected within 6-12 h after treatment with the ethanol extract of Ya-Pit-Samut-Noi at MBC-4MBC concentrations. Vibrioparahaemolyticus ATCC 17802 cells treated with the ethanol extract of Ya-Pit-Samut-Noi demonstrated no lysis or leakage through the bacterial membrane was not observed. At low concentrations (0.125-0.25 μg/ml) the ethanol extract of Ya-Pit-Samut-Noi inhibited violacein production by Chromobacterium violaceum DMST 21761 without affecting the bacterial growth. The ethanol (31.25-62.5 μg/ml) and water (31.25-250 μg/ml) extracts of Ya-Pit-Samut-Noi inhibited biofilm production by S. aureus. The ethanol and water extracts of Ya-Pit-Samut-Noi at 1000 μg/ml reduced the swarming motility of Escherichia coli O157: H7 by 74.98% and 52.65%, respectively. Tannins and terpenoids were detected in both the ethanol and water extracts. Flavonoids were present only in the ethanol extract. Alkaloids and antraquinones were not noticed in either extract. In the acute toxicity study, there were no significant changes in hematological and biochemical parameters nor were adverse effects on mortality, general behaviors, body weight, or organ weights detected. CONCLUSIONS The scientific evidence from this study supported the therapeutic effects and safety of the traditional Thai herbal formulation 'Ya-Pit-Samut-Noi' which has been used as an alternative treatment for gastrointestinal infections in Thailand.
Collapse
Affiliation(s)
- Surasak Limsuwan
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Siriporn Jarukitsakul
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Acharaporn Issuriya
- Department of Physiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sasitorn Chusri
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Nantiya Joycharat
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Patcharawalai Jaisamut
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jongkon Saising
- School of Health Science, Mae Fah Luang University, Muang, Chiang Rai, 57100, Thailand
| | - Korakot Wichitsa-Nguan Jetwanna
- Department of Mathematics and Statistics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
31
|
Biharee A, Sharma A, Kumar A, Jaitak V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia 2020; 146:104720. [PMID: 32910994 DOI: 10.1016/j.fitote.2020.104720] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Infectious diseases are the leading cause of death in 21st century due to antimicrobial resistance and scarcity of new molecules to undertake rising infections. There could be a multiple reasons behind antimicrobial resistance whether it is increased drug metabolism or bacterial endotoxins. The demand of effective medication is increasing day by day to treat microbial infections and combat antimicrobial resistance. In recent years most of the synthetic antimicrobials developed resistance so natural products could provide better options to fulfill this demand. There has been increasing interest in the research on flavonoids because various flavonoids were found to be effective against pathogenic microorganisms. OBJECTIVE The objective of this article will be to explore antimicrobial activity of flavonoids with special focus on their possible mechanism of action. METHODS The article reviewed recent literature related to flavonoids with antimicrobial activity, which were isolated from various sources and the compounds showing fairly good activity against tested microbial species were discussed. RESULTS By throughout literature review it has been found that flavonoids show antimicrobial effect by inhibiting virulence factors, efflux pump, biofilm formation, membrane disruption, cell envelop synthesis, nucleic acid synthesis, and bacterial motility inhibition. CONCLUSION Most of the antimicrobial drugs available now a days are ineffective due to development of resistance to them. Flavonoids have the potential to overcome this emerging crisis as this class of natural products showed the antimicrobial activity by different mechanisms than those of conventional drugs, so flavonoid could be an effective treatment of pathogenic infections.
Collapse
Affiliation(s)
- Avadh Biharee
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Aditi Sharma
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Amit Kumar
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India..
| |
Collapse
|
32
|
Soares MS, da Silva DF, Amaral JC, da Silva MM, Forim MR, Rodrigues-Filho E, das Graças Fernandes da Silva MF, Fernandes JB, Machado MA, de Souza AA, Martins CHG. Rapid differentiation of graft Citrus sinensis with and without Xylella fastidiosa infection by mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 3:e8745. [PMID: 32053855 DOI: 10.1002/rcm.8745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Xylella fastidiosa causes citrus variegated chlorosis (CVC) in sweet orange trees. A diagnostic method for detecting CVC before the symptoms appear, which would inform citrus producers in advance about when the plant should be removed from the orchard, is essential for reducing pesticide application costs. METHODS Chemometrics was applied to high-performance liquid chromatography diode array detector (HPLC-DAD) data to evaluate the similarities and differences between the chromatographic profiles. A liquid chromatography/atmospheric pressure chemical ionization mass spectrometry selected reaction monitoring (LC/APCI-MS-SRM) method was developed to identify the major compounds and to determine their amounts in all samples. RESULTS We evaluated the effect of this bacterium on the variation in the chemical profile in citrus plants. The organs of C. sinensis grafted on C. limonia were analyzed. Chemometrics was applied to the obtained data, and two major groups were differentiated. Flavonoids were observed in one group (leaves) and coumarins in the second (roots), both at higher concentrations in the plants with CVC symptoms than in those without the symptoms and those in the negative control. The rootstocks also interfered in the metabolism of the scion. CONCLUSIONS The developed LC/APCI-MS-SRM method for detecting CVC before the symptoms appear is simple and accurate. It is inexpensive, and many samples can be screened per hour using 1 mg of leaves. Knowledge of the influence of the rootstock on the chemical profile of the graft is limited. This study demonstrates the effect of the rootstock in synthesizing flavonoids and increasing its content in all parts of the graft.
Collapse
Affiliation(s)
- Márcio Santos Soares
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | | | - Jéssica Cristina Amaral
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | | | - Moacir Rossi Forim
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | - Edson Rodrigues-Filho
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | | | - João Batista Fernandes
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | - Marcos Antônio Machado
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico, CP 04,13490-970, Cordeirópolis, SP, Brazil
| | | | | |
Collapse
|
33
|
Abraham WR. Commentary on "Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: A Comprehensive Review" authored by Enrique Barrajón-Catalán, Institute of Molecular and Cell Biology (IBMC), Miguel Hernandez University (UMH), Avda. Universidad s/n, Elche 03202. Spain. Curr Med Chem 2020; 27:4750-4752. [PMID: 32571199 DOI: 10.2174/092986732728200621213702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wolf-Rainer Abraham
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
34
|
Chen S. Adsorption of three selected flavonoids with humic fraction‐modified silica gel in hexane: A mechanism study. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shushi Chen
- National Chiayi University Chiayi Republic of China
| |
Collapse
|
35
|
Fitmawati F, Resida E, Kholifah SN, Roza RM, Almurdani M, Emrizal E. Antioxidant (gallic acid and quercetin) profile of Sumatran wild mangoes ( Mangifera spp.): a potential source for antidegenerative medicine. F1000Res 2020; 9:220. [PMID: 32595953 PMCID: PMC7309414 DOI: 10.12688/f1000research.22380.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 03/30/2024] Open
Abstract
Background: New findings on the potential of wild mangoes from the island of Sumatra as a source of antioxidant helps their conservation effort as it introduces their useful compounds to the public. This study aims to analyze the antioxidant profile and quantification of gallic acid and quercetin content from leaves and bark of Sumatran wild mangoes. Exploration and analysis of phytochemical constituents from 11 Sumatran wild mangoes was performed. Methods: Antioxidant activity of wild mangoes was analysed with 1,1- diphenyl-2-picryl hydroxyl (DPPH), and determination of quercetin and gallic acid content was performed by high performance liquid chromatography (HPLC) method. Total flavonoid and phenolic analysis was also performed. Curve fitting analysis used a linear regression approach. Results: The highest level of antioxidant activity, phenolic compound and flavonoid compound was found in the leaves and bark of Mangifera sp1. (MBS), the bark of M. foetida3 (var. batu) and leaves of M. torquenda, and the bark and leaves of M. sumatrana, respectively. The content of gallic acid in leaves ranged from 5.2270-35.4763 mg/g dry weight. Quercetin content of wild mangoes leaves ranged from 0.76 to 1.47 mg/g dry weight with the lowest value in M. foetida2 (var. manis) and the highest in M. laurina. Conclusion: The results obtained are expected to be useful in supporting the development of antidegenerative drugs from natural ingredients that have potential as immunomodulatory agents.
Collapse
Affiliation(s)
- Fitmawati Fitmawati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | - Esi Resida
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | - Sri Nur Kholifah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | - Rodesia Mustika Roza
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | - Muhammad Almurdani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | | |
Collapse
|
36
|
Fitmawati F, Resida E, Kholifah SN, Roza RM, Almurdani M, Emrizal E. Antioxidant (gallic acid and quercetin) profile of Sumatran wild mangoes ( Mangifera spp.): a potential source for antidegenerative medicine. F1000Res 2020; 9:220. [PMID: 32595953 PMCID: PMC7309414 DOI: 10.12688/f1000research.22380.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2020] [Indexed: 03/30/2024] Open
Abstract
Background: New findings on the potential of wild mangoes from the island of Sumatra as a source of antioxidant helps their conservation effort as it introduces their useful compounds to the public. This study aims to analyze the antioxidant profile and quantification of gallic acid and quercetin content from leaves and bark of Sumatran wild mangoes. Exploration and analysis of phytochemical constituents from 11 Sumatran wild mangoes was performed. Methods: Antioxidant activity of wild mangoes was analysed with 1,1- diphenyl-2-picryl hydroxyl (DPPH), and determination of quercetin and gallic acid content was performed by high performance liquid chromatography (HPLC) method. Total flavonoid and phenolic analysis was also performed. Curve fitting analysis used a linear regression approach. Results: The highest level of antioxidant activity, phenolic compound and flavonoid compound was found in the leaves and bark of Mangifera sp1. (MBS), the bark of M. foetida3 (var. batu) and leaves of M. torquenda, and the bark and leaves of M. sumatrana, respectively. The content of gallic acid in leaves ranged from 5.23-35.48 mg/g dry weight. Quercetin content of wild mangoes leaves ranged from 0.76 to 1.16 mg/g dry weight with the lowest value in M. foetida2 (var. manis) and the highest in M. laurina. Conclusion: The results obtained are expected to be useful in supporting the development of antidegenerative drugs from natural ingredients that have potential as immunomodulatory agents.
Collapse
Affiliation(s)
- Fitmawati Fitmawati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | - Esi Resida
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | - Sri Nur Kholifah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | - Rodesia Mustika Roza
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | - Muhammad Almurdani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | | |
Collapse
|
37
|
Fitmawati F, Resida E, Kholifah SN, Roza RM, Almurdani M, Emrizal E. Phytochemical screening and antioxidant profiling of Sumatran wild mangoes ( Mangifera spp.): a potential source for medicine antidegenerative effects. F1000Res 2020; 9:220. [PMID: 32595953 PMCID: PMC7309414 DOI: 10.12688/f1000research.22380.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 01/21/2023] Open
Abstract
Background: New findings on the potential of wild mangoes from the island of Sumatra as a source of antioxidant helps their conservation effort as it introduces their useful compounds to the public. This study aims to analyze the antioxidant profile and quantification of gallic acid and quercetin content from leaves and bark of Sumatran wild mangoes. Exploration and analysis of phytochemical constituents from 11 Sumatran wild mangoes was performed. Methods: Antioxidant activity of wild mangoes was analysed with 1,1- diphenyl-2-picryl hydroxyl (DPPH), and determination of quercetin and gallic acid content was performed by high performance liquid chromatography (HPLC) method. Total flavonoid and phenolic analysis was also performed. Curve fitting analysis used a linear regression approach. Results: The highest level of antioxidant activity, phenolic compound and flavonoid compound was found in the leaves and bark of Mangifera sp1. (MBS), the bark of M. foetida3 (var. batu) and leaves of M. torquenda, and the bark and leaves of M. sumatrana, respectively. The content of gallic acid in leaves ranged from 5.23-35.48 mg/g dry weight. Quercetin content of wild mangoes leaves ranged from 0.76 to 1.16 mg/g dry weight with the lowest value in M. foetida2 (var. manis) and the highest in M. laurina. Conclusion: The results obtained are expected to be useful in supporting the development of drugs that have antidegenerative effects.
Collapse
Affiliation(s)
- Fitmawati Fitmawati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | - Esi Resida
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | - Sri Nur Kholifah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | - Rodesia Mustika Roza
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | - Muhammad Almurdani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| | | |
Collapse
|
38
|
Lee HJ, Oh SY, Hong SH. Inhibition of streptococcal biofilm formation by Aronia by extracellular RNA degradation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1806-1811. [PMID: 31858598 DOI: 10.1002/jsfa.10223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The accumulation of oral bacterial biofilms is one of the primary etiological factors for oral diseases. Aronia melanocarpa extracts display general health benefits, including antimicrobial activities. This study evaluates the inhibitory effect of Aronia juice on oral streptococcal biofilm formation. RESULTS Exposure to 1/10-diluted Aronia juice for 1 min significantly decreased in vitro streptococcal biofilm formation (P < 0.001). No remarkable difference was noted in streptococcal growth by Aronia under the same conditions. Interestingly, 1 week of oral rinse with diluted Aronia juice led to significantly fewer salivary streptococcal colony-forming units (CFUs) relative to oral rinsing with tap water (P < 0.05). Furthermore, Aronia exerted an extracellular RNA-degrading effect, and RNase inhibitor alleviated Aronia-dependent streptococcal biofilm inhibition. CONCLUSION Aronia might inhibit initial biofilm formation by decomposing extracellular RNA, which plays an important role in bacterial biofilm formation. Our data suggest that oral rinsing with Aronia juice will aid in treating oral biofilm-dependent diseases easily and efficiently. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Su Young Oh
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
39
|
Reis SVD, Couto NMGD, Brust FR, Trentin DS, Silva JKRD, Arruda MSP, Gnoatto SCB, Macedo AJ. Remarkable capacity of brosimine b to disrupt methicillin-resistant Staphylococcus aureus (MRSA) preformed biofilms. Microb Pathog 2020; 140:103967. [PMID: 31911193 DOI: 10.1016/j.micpath.2020.103967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major public health concern representing about 60% of S. aureus isolated from hospitalized patients in countries such as USA and Brazil in the last years. Additionally, the ability to adhere to surfaces and the development of biofilms are important properties of pathogenic bacteria involved in medical device-associated infections, and staphylococci are recognized as the major etiologic agents in these situations. The aim of this study is to evaluate three Brosimum acutifolium flavonoids, 4'-hydroxy-7,8(2″,2″-dimethylpyran)flavan (1), brosimine b (2) and 4-hydroxy-lonchocarpin (3), regarding their antibiofilm, antibacterial and antioxidant activities. Flavonoids 1 and 2 were able to reduce S. aureus viability within preformed biofilms in 73% at 50 μM while 2 also reduced biofilm biomass in 48% at 100 μM. Flavonoid 3 was not able to reduce biofilm biomass at assessed concentrations. When tested against methicillin-resistant S. aureus (MRSA) strains, 2 (100 μM) reduced 70%-98% of viable bacteria within 24h-old biofilms. The minimum inhibitory concentration against the methicillin-sensitive Staphylococcus aureus ATCC 25904 was 50 μM for the three compounds. In preliminary assays to evaluate cytotoxicity, 1 was highly hemolytic at concentrations above 50 μM while 2 and 3 did not cause significant hemolysis at 100 μM. The antioxidant activity was observed only in the ethanolic extract and 2. In vivo toxicity evaluations using Galleria mellonella larvae as alternative host model resulted in 83.3% survival for treatment with 1, 76.7% for 2, and 100% for 3 at 500 mg/kg. This study highlights the potential of these flavonoids, especially 2, as antibiofilm agent to control preformed S. aureus biofilms.
Collapse
Affiliation(s)
- Sharon Vieira Dos Reis
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil
| | - Nádia Miléo Garcês de Couto
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), 90610-000, Porto Alegre, RS, Brazil
| | - Flávia Roberta Brust
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), 90610-000, Porto Alegre, RS, Brazil; Faculdade Inedi, CESUCA, Cachoeririnha, RS, Brazil
| | - Danielle Silva Trentin
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil
| | | | | | - Simone Cristina Baggio Gnoatto
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), 90610-000, Porto Alegre, RS, Brazil
| | - Alexandre José Macedo
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
40
|
Strategies to Prevent Biofilm Infections on Biomaterials: Effect of Novel Naturally-Derived Biofilm Inhibitors on a Competitive Colonization Model of Titanium by Staphylococcus aureus and SaOS-2 Cells. Microorganisms 2020; 8:microorganisms8030345. [PMID: 32121332 PMCID: PMC7143544 DOI: 10.3390/microorganisms8030345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Biofilm-mediated infection is a major cause of bone prosthesis failure. The lack of molecules able to act in biofilms has driven research aimed at identifying new anti-biofilm agents via chemical screens. However, to be able to accommodate a large number of compounds, the testing conditions of these screenings end up being typically far from the clinical scenario. In this study, we assess the potential applicability of three previously discovered anti-biofilm compounds to be part of implanted medical devices by testing them on in vitro systems that more closely resemble the clinical scenario. To that end, we used a competition model based on the co-culture of SaOS-2 mammalian cells and Staphylococcus aureus (collection and clinical strains) on a titanium surface, as well as titanium pre-conditioned with high serum protein concentration. Additionally, we studied whether these compounds enhance the previously proven protective effect of pre-incubating titanium with SaOS-2 cells. Out of the three, DHA1 was the one with the highest potential, showing a preventive effect on bacterial adherence in all tested conditions, making it the most promising agent for incorporation into bone implants. This study emphasizes and demonstrates the importance of using meaningful experimental models, where potential antimicrobials ought to be tested for the protection of biomaterials in translational applications.
Collapse
|
41
|
Qu Q, Wang J, Cui W, Zhou Y, Xing X, Che R, Liu X, Chen X, Bello-Onaghise G, Dong C, Li Z, Li X, Li Y. In vitro activity and In vivo efficacy of Isoliquiritigenin against Staphylococcus xylosus ATCC 700404 by IGPD target. PLoS One 2019; 14:e0226260. [PMID: 31860659 PMCID: PMC6924684 DOI: 10.1371/journal.pone.0226260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/23/2019] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus xylosus (S. xylosus) is a type of coagulase-negative Staphylococcus, which was previously considered as non-pathogenic. However, recent studies have linked it with cases of mastitis in cows. Isoliquiritigenin (ISL) is a bioactive compound with pharmacological functions including antibacterial activity. In this study, we evaluated the effect of ISL on S. xylosus in vitro and in vivo. The MIC of ISL against S. xylosus was 80 μg/mL. It was observed that sub-MICs of ISL (1/2MIC, 1/4MIC, 1/8MIC) significantly inhibited the formation of S. xylosus biofilm in vitro. Previous studies have observed that inhibiting imidazole glycerol phosphate dehydratase (IGPD) concomitantly inhibited biofilm formation in S. xylosus. So, we designed experiments to target the formation of IGPD or inhibits its activities in S. xylosus ATCC 700404. The results indicated that the activity of IGPD and its histidine content decreased significantly under 1/2 MIC (40 μg/mL) ISL, and the expression of IGPD gene (hisB) and IGPD protein was significantly down-regulated. Furthermore, Bio-layer interferometry experiments showed that ISL directly interacted with IGPD protein (with strong affinity; KD = 234 μM). In addition, molecular docking was used to predict the binding mode of ISL and IGPD. In vivo tests revealed that, ISL significantly reduced TNF-α and IL-6 levels, mitigated the destruction of the mammary glands and reversed the production of inflammatory cells in mice. The results of the study suggest that, ISL may inhibit S. xylosus growth by acting on IGPD, which can be used as a target protein to treat infections caused by S. xylosus.
Collapse
Affiliation(s)
- Qianwei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Jinpeng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Wenqiang Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Yonghui Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Xiaoxu Xing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Ruixiang Che
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Xin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Xueying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - God’spower Bello-Onaghise
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Chunliu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Zhengze Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, P. R. China
| | - Xiubo Li
- Feed Research Institute Chinese Academy of Agricultural Science, Harbin, Heilongjiang, P. R. China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
- * E-mail:
| |
Collapse
|
42
|
Multiple Virtual Screening Strategies for the Discovery of Novel Compounds Active Against Dengue Virus: A Hit Identification Study. Sci Pharm 2019. [DOI: 10.3390/scipharm88010002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dengue infection is caused by a mosquito-borne virus, particularly in children, which may even cause death. No effective prevention or therapeutic agents to cure this disease are available up to now. The dengue viral envelope (E) protein was discovered to be a promising target for inhibition in several steps of viral infection. Structure-based virtual screening has become an important technique to identify first hits in a drug screening process, as it is possible to reduce the number of compounds to be assayed, allowing to save resources. In the present study, pharmacophore models were generated using the common hits approach (CHA), starting from trajectories obtained from molecular dynamics (MD) simulations of the E protein complexed with the active inhibitor, flavanone (FN5Y). Subsequently, compounds presented in various drug databases were screened using the LigandScout 4.2 program. The obtained hits were analyzed in more detail by molecular docking, followed by extensive MD simulations of the complexes. The highest-ranked compound from this procedure was then synthesized and tested on its inhibitory efficiency by experimental assays.
Collapse
|
43
|
Papadopoulou A, Dalsgaard I, Wiklund T. Inhibition Activity of Compounds and Bacteriophages against Flavobacterium psychrophilum Biofilms In Vitro. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:225-238. [PMID: 31216387 DOI: 10.1002/aah.10069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Flavobacterium psychrophilum produces biofilms under laboratory conditions, and it has been inconclusively suggested that F. psychrophilum biofilms can be a potential reservoir for transmission of the pathogen to a fish population under fish farming conditions. Therefore, there is a need for anti-biofilm compounds. The main aim of this study was to determine the anti-biofilm properties of certain compounds and bacteriophages on F. psychrophilum biofilms under static conditions using a standard 96-well microtiter plate biofilm assay in vitro. Eight compounds (A-type proanthocyanidins, D-leucine, EDTA, emodin, fucoidan, L-alliin, parthenolide, and 2-aminoimidazole) at three sub-minimum inhibitory concentrations (sub-MICs), four bacteriophages (Fpv-3, Fpv-9, Fpv-10, and Fpv-21), and a phage combination (Fpv-9 + Fpv-10) were tested for inhibition of biofilm formation and reduction of the biomass of mature biofilms formed by two smooth isolates (P7-9/10 and P1-10B/10) and two rough isolates (P7-9/2R/10 and P1-10B/2R/10) of F. psychrophilum. The crystal violet staining method was used to stain the biofilms. Most of the compounds at sub-MICs inhibited the biofilm formation of mainly smooth isolates, attaining up to 80% inhibition. Additionally, the same reduction trend was also observed for 2-aminoimidazole, emodin, parthenolide, and D-leucine on the biomass of mature biofilms in a concentration-dependent manner. The anti-biofilm properties of the compounds are believed to lie in their ability to disturb the cellular interactions during biofilm formation and probably to cause cell dispersal in already formed biofilms. Lytic bacteriophages efficiently inhibited biofilm formation of F. psychrophilum, while they partially reduced the biomass of mature biofilms. However, the phage combination (Fpv-9 + Fpv-10) showed a successful reduction in the biomass of F. psychrophilum mature biofilms. We conclude that inhibiting compounds together with bacteriophages may supplement the use of disinfectants against bacterial biofilms (e.g., F. psychrophilum biofilms), leading to a reduced occurrence of bacterial coldwater disease outbreaks at fish farms.
Collapse
Affiliation(s)
- Anna Papadopoulou
- Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Åbo Akademi University, Tykistokatu 6, FI-20520, Turku, Finland
| | - Inger Dalsgaard
- National Institute of Aquatic Resources, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tom Wiklund
- Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Åbo Akademi University, Tykistokatu 6, FI-20520, Turku, Finland
| |
Collapse
|
44
|
Augustine C. Unravelling the Competence of Leucocyanidin in Free Radical Scavenging: A Theoretical Approach Based on Electronic Structure Calculations. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619020045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
45
|
Sarbu LG, Bahrin LG, Babii C, Stefan M, Birsa ML. Synthetic flavonoids with antimicrobial activity: a review. J Appl Microbiol 2019; 127:1282-1290. [PMID: 30934143 DOI: 10.1111/jam.14271] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/15/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023]
Abstract
The emergence of drug-resistant microbes left us with a great need for new antimicrobial agents. Flavonoids, with their wide range of biological activities, are good candidates in this respect. Although naturally occurring flavonoids are the most studied ones, semi-synthetic or synthetic flavonoids have proven to have great potential, inhibiting and even killing microbes at concentrations below 1 μg ml-1 . The substitution pattern of these flavonoids often includes hydroxy groups, halogens or other heteroatomic rings, such as pyridine, piperidine or 1,3-dithiolium cations. However, the great variety in substituents makes it difficult to draw any definitive conclusion regarding their structure-activity relationship.
Collapse
Affiliation(s)
- L G Sarbu
- Department of Chemistry, "Al. I. Cuza" University of Iasi, Iasi, Romania
| | - L G Bahrin
- Department of Chemistry, "Al. I. Cuza" University of Iasi, Iasi, Romania.,"Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - C Babii
- Department of Biology, "Al. I. Cuza" University of Iasi, Iasi, Romania.,Integrated Center for Environmental Sciences Studies - North Eastern, CERNESIM, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| | - M Stefan
- Department of Biology, "Al. I. Cuza" University of Iasi, Iasi, Romania
| | - M L Birsa
- Department of Chemistry, "Al. I. Cuza" University of Iasi, Iasi, Romania
| |
Collapse
|
46
|
Lopes LQS, de Almeida Vaucher R, Giongo JL, Gündel A, Santos RCV. Characterisation and anti-biofilm activity of glycerol monolaurate nanocapsules against Pseudomonas aeruginosa. Microb Pathog 2019; 130:178-185. [PMID: 30862561 DOI: 10.1016/j.micpath.2019.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 01/20/2023]
Abstract
Pseudomonas aeruginosa is a ubiquitous microorganism that commonly causes hospital-acquired infections, including pneumonia, bloodstream and urinary tract infections and it is well known for chronically colonising the respiratory tract of patients with cystic fibrosis, causing severe intermittent exacerbation of the condition. P. aeruginosa may appear in the free form cell but also grows in biofilm communities adhered to a surface. An alternative to conventional antimicrobial agents are nanoparticles that can act as carriers for antibiotics and other drugs. In this context, the study aimed to characterise and verify the anti-biofilm potential of GML Nanocapsules against P. aeruginosa. The nanocapsules showed a mean diameter of 190.7 nm, polydispersion index of 0.069, the zeta potential of -23.3 mV. The microdilution test showed a MIC of 62.5 μg/mL to GML and 15.62 μg/mL to GML Nanocapsules. The anti-biofilm experiments demonstrated the significant reduction of biomass, proteins, polysaccharide and viable P. aeruginosa in biofilm treated with GML Nanocapsules while the free GML did not cause an effect. The AFM images showed a decrease in a biofilm which received GML. The positive results suggest an alternative for the public health trouble related to infections associated with biofilm.
Collapse
Affiliation(s)
- Leonardo Quintana Soares Lopes
- Post Graduate Program in Nanosciences, Universidade Franciscana, Santa Maria, Brazil; Microbiology and Parasitology Department, Health Sciences Center, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Rodrigo de Almeida Vaucher
- Laboratory of Research in Biochemistry and Molecular Biology of Microorganisms, Post Graduate Program in Biochemistry and Bioprospecting, Universidade Federal de Pelotas, Capão Do Leão, Brazil
| | | | | | - Roberto Christ Vianna Santos
- Post Graduate Program in Nanosciences, Universidade Franciscana, Santa Maria, Brazil; Microbiology and Parasitology Department, Health Sciences Center, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
47
|
Kouidhi B, Hagar M, Radwan NR, Chaieb K. Synthesis and evaluation of antibacterial and antibiofilm activities of pyridin-2-yl hexanoate. Microb Pathog 2018; 125:205-209. [DOI: 10.1016/j.micpath.2018.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022]
|
48
|
Ravi GS, Charyulu RN, Dubey A, Prabhu P, Hebbar S, Mathias AC. Nano-lipid Complex of Rutin: Development, Characterisation and In Vivo Investigation of Hepatoprotective, Antioxidant Activity and Bioavailability Study in Rats. AAPS PharmSciTech 2018; 19:3631-3649. [PMID: 30280357 DOI: 10.1208/s12249-018-1195-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/21/2018] [Indexed: 01/25/2023] Open
Abstract
The current study was aimed to develop an amphiphilic drug-lipid nano-complex of rutin:egg phosphatidylcholine (EPC) to enhance its poor absorption and bioavailability, and investigated the impact of the complex on hepatoprotective and antioxidant activity. Rutin nano-complexes were prepared by solvent evaporation, salting out and lyophilisation methods and compared for the complex formation. For the selected lyophilisation method, principal solvent DMSO, co-solvent (t-butyl alcohol) and rutin:EPC ratios (1:1, 1:2 and 1:3) were selected after optimisation. The properties of the nano-complexes such as complexation, thermal behaviour, surface morphology, molecular crystallinity, particle size, zeta potential, drug content, solubility, in vitro stability study, in vitro drug release, in vitro and in vivo antioxidant study, in vivo hepatoprotective activity and oral bioavailability/pharmacokinetic studies were investigated. Rutin nano-complexes were developed successfully via the lyophilisation method and found to be in nanometric range. Rutin nano-complexes significantly improved the solubility and in vitro drug release, and kinetic studies confirmed the diffusion-controlled release of the drug from the formulation. The nano-complex showed better antioxidant activity in vitro and exhibited well in vitro stability in different pH media. The in vivo study showed better hepatoprotective activity of the formulation compared to pure rutin at the same dose levels with improved oral bioavailability. Carbon tetrachloride (CCl4)-treated animals (group II) failed to restore the normal levels of serum hepatic marker enzymes and liver antioxidant enzyme compared to the nano-complex-treated animals. The results obtained from solubility, hepatoprotective activity and oral bioavailability studies proved the better efficacy of the nano-complex compared to the pure drug.
Collapse
|
49
|
Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother Res 2018; 33:13-40. [PMID: 30346068 DOI: 10.1002/ptr.6208] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/05/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Based on World Health Organization reports, resistance of bacteria to well-known antibiotics is a major global health challenge now and in the future. Different strategies have been proposed to tackle this problem including inhibition of multidrug resistance pumps and biofilm formation in bacteria and development of new antibiotics with novel mechanism of action. Flavonoids are a large class of natural compounds, have been extensively studied for their antibacterial activity, and more than 150 articles have been published on this topic since 2005. Over the past decade, some promising results were obtained with the antibacterial activity of flavonoids. In some cases, flavonoids (especially chalcones) showed up to sixfold stronger antibacterial activities than standard drugs in the market. Some synthetic derivatives of flavonoids also exhibited remarkable antibacterial activities with 20- to 80-fold more potent activity than the standard drug against multidrug-resistant Gram-negative and Gram-positive bacteria (including Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). This review summarizes the ever changing information on antibacterial activity of flavonoids since 2005, with a special focus on the structure-activity relationship and mechanisms of actions of this broad class of natural compounds.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9:522-554. [PMID: 28362216 PMCID: PMC5955472 DOI: 10.1080/21505594.2017.1313372] [Citation(s) in RCA: 747] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby investigating its effective delivery in the host. It should also be ensured that minimum effective concentration of these molecules must be capable of eradicating biofilm infections with maximum potency without posing any adverse side effects on the host.
Collapse
Affiliation(s)
- Ranita Roy
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Monalisa Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Gianfranco Donelli
- b Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Vishvanath Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| |
Collapse
|