1
|
Liu S, Ruan Y, Chen X, He B, Chen Q. miR-137: a potential therapeutic target for lung cancer. Front Cell Dev Biol 2024; 12:1427724. [PMID: 39247624 PMCID: PMC11377224 DOI: 10.3389/fcell.2024.1427724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Lung cancer is a prevalent malignancy and the leading cause of cancer-related deaths, posing a significant threat to human health. Despite advancements in treatment, the prognosis for lung cancer patients remains poor due to late diagnosis, cancer recurrence, and drug resistance. Epigenetic research, particularly in microRNAs, has introduced a new avenue for cancer prevention and treatment. MicroRNAs, including miR-137, play a vital role in tumor development by regulating various cellular processes. MiR-137 has garnered attention for its tumor-suppressive properties, with studies showing its potential in inhibiting cancer progression. In lung cancer, miR-137 is of particular interest, with numerous reports exploring its role and mechanisms. A comprehensive review is necessary to consolidate current evidence. This review highlights recent studies on miR-137 in lung cancer, covering cell proliferation, migration, apoptosis, drug resistance, and therapy, emphasizing its potential as a biomarker and therapeutic target for lung cancer treatment and prognosis.
Collapse
Affiliation(s)
- Shuanshuan Liu
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yanyun Ruan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xu Chen
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bao He
- Department of Neurosurgery, The First People's hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Usta Saglam NG, Duz MB, Salman Yilmaz S, Ozen M, Balcioglu I. Comparison of microRNA expression levels in patients with schizophrenia before and after electroconvulsive therapy. Psychiatr Genet 2024; 34:79-85. [PMID: 38842000 DOI: 10.1097/ypg.0000000000000371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
OBJECTIVE Exploring the role of microRNAs in the antipsychotic efficacy of electroconvulsive therapy (ECT) will contribute to understanding the underlying mechanism through which ECT exerts its therapeutic effects. The primary objective of this study was to identify microRNA alterations before and after ECT in patients with schizophrenia. METHODS We compared microarray-based microRNA profiles in peripheral blood from eight patients with schizophrenia before and after ECT and eight healthy controls. Then, we aimed to validate selected differentially expressed microRNAs in 30 patients with schizophrenia following a course of ECT, alongside 30 healthy controls by using quantitative reverse-transcription PCR. RESULTS Microarray-based expression profiling revealed alterations in 681 microRNAs when comparing pre- and post-ECT samples. Subsequent quantitative reverse-transcription PCR analysis of the selected microRNAs (miR-20a-5p and miR-598) did not reveal any statistical differences between pre- and post-ECT samples nor between pre-ECT samples and those of healthy controls. CONCLUSION As neuroepigenetic studies on ECT are still in their infancy, the results reported in this study are best interpreted as exploratory outcomes. Additional studies are required to explore the potential epigenetic mechanisms underlying the therapeutic efficacy of ECT.
Collapse
Affiliation(s)
| | - Mehmet Bugrahan Duz
- Department of Medical Genetics, Istanbul Memorial Hospital
- Department of Medical Genetics, Istanbul Arel University
| | - Seda Salman Yilmaz
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa
- Department of Medical Services and Techniques Medical Monitoring Techniques Pr., Vocational School of Health Services, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mustafa Ozen
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
3
|
Martinez B, Peplow PV. MicroRNAs as potential biomarkers for diagnosis of schizophrenia and influence of antipsychotic treatment. Neural Regen Res 2024; 19:1523-1531. [PMID: 38051895 PMCID: PMC10883514 DOI: 10.4103/1673-5374.387966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Characterized by positive symptoms (such as changes in behavior or thoughts, including delusions and hallucinations), negative symptoms (such as apathy, anhedonia, and social withdrawal), and cognitive impairments, schizophrenia is a chronic, severe, and disabling mental disorder with late adolescence or early adulthood onset. Antipsychotics are the most commonly used drugs to treat schizophrenia, but those currently in use do not fully reverse all three types of symptoms characterizing this condition. Schizophrenia is frequently misdiagnosed, resulting in a delay of or inappropriate treatment. Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of schizophrenia. The recent studies reviewed included microRNA profiling in blood- and urine-based materials and nervous tissue materials. From the studies that had validated the preliminary findings, potential candidate biomarkers for schizophrenia in adults could be miR-22-3p, -30e-5p, -92a-3p, -148b-5p, -181a-3p, -181a-5p, -181b-5p, -199b-5p, -137 in whole blood, and miR-130b, -193a-3p in blood plasma. Antipsychotic treatment of schizophrenia patients was found to modulate the expression of certain microRNAs including miR-130b, -193a-3p, -132, -195, -30e, -432 in blood plasma. Further studies are warranted with adolescents and young adults having schizophrenia and consideration should be given to using animal models of the disorder to investigate the effect of suppressing or overexpressing specific microRNAs.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology, University of Nevada-Reno, Reno, NV, USA
- Department of Medicine, University of Nevada-Reno, Reno, NV, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Scatturice LA, Vázquez N, Strobl-Mazzulla PH. miR-137 confers robustness to the territorial restriction of the neural plate border. Development 2024; 151:dev202344. [PMID: 38828854 DOI: 10.1242/dev.202344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
The neural plate border (NPB) of vertebrate embryos is segregated from the neural plate (NP) and epidermal regions, and comprises an intermingled group of progenitors with multiple fate potential. Recent studies have shown that, during the gastrula stage, TFAP2A acts as a pioneer factor in remodeling the epigenetic landscape required to activate components of the NPB induction program. Here, we show that chick Tfap2a has two highly conserved binding sites for miR-137, and both display a reciprocal expression pattern at the NPB and NP, respectively. In addition, ectopic miR-137 expression reduced TFAP2A, whereas its functional inhibition expanded their territorial distribution overlapping with PAX7. Furthermore, we demonstrate that loss of the de novo DNA methyltransferase DNMT3A expanded miR-137 expression to the NPB. Bisulfite sequencing revealed a markedly elevated presence of non-canonical CpH methylation within the miR-137 promoter region when comparing NPB and NP samples. Our findings show that miR-137 contributes to the robustness of NPB territorial restriction in vertebrate development.
Collapse
Affiliation(s)
- Luciana A Scatturice
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM). Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires 7130, Argentina
| | - Nicolás Vázquez
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM). Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires 7130, Argentina
| | - Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM). Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires 7130, Argentina
| |
Collapse
|
5
|
Qin Q, Shan Z, Xing L, Jiang Y, Li M, Fan L, Zeng X, Ma X, Zheng D, Wang H, Wang H, Liu H, Liang S, Wu L, Liang S. Synergistic effect of mesenchymal stem cell-derived extracellular vesicle and miR-137 alleviates autism-like behaviors by modulating the NF-κB pathway. J Transl Med 2024; 22:446. [PMID: 38741170 PMCID: PMC11089771 DOI: 10.1186/s12967-024-05257-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder predominant in childhood. Despite existing treatments, the benefits are still limited. This study explored the effectiveness of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) loaded with miR-137 in enhancing autism-like behaviors and mitigating neuroinflammation. Utilizing BTBR mice as an autism model, the study demonstrated that intranasal administration of MSC-miR137-EVs ameliorates autism-like behaviors and inhibits pro-inflammatory factors via the TLR4/NF-κB pathway. In vitro evaluation of LPS-activated BV2 cells revealed that MSC-miR137-EVs target the TLR4/NF-κB pathway through miR-137 inhibits proinflammatory M1 microglia. Moreover, bioinformatics analysis identified that MSC-EVs are rich in miR-146a-5p, which targets the TRAF6/NF-κB signaling pathway. In summary, the findings suggest that the integration of MSC-EVs with miR-137 may be a promising therapeutic strategy for ASD, which is worthy of clinical adoption.
Collapse
Affiliation(s)
- Qian Qin
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Lei Xing
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Jiang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Mengyue Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Linlin Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xin Zeng
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xinrui Ma
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Danyang Zheng
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Han Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Hui Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Hao Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Shengjun Liang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
| | - Shuang Liang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
6
|
Han S, Li Y, Gao J. Peripheral blood MicroRNAs as biomarkers of schizophrenia: expectations from a meta-analysis that combines deep learning methods. World J Biol Psychiatry 2024; 25:65-81. [PMID: 37703215 DOI: 10.1080/15622975.2023.2258975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVES This study aimed at identifying reliable differentially expressed miRNAs (DEMs) for schizophrenia in blood via meta-analyses combined with deep learning methods. METHODS First, we meta-analysed published DEMs. Then, we enriched the pool of schizophrenia-associated miRNAs by applying two computational learning methods to identify candidate biomarkers and verified the results in external datasets. RESULTS In total, 27 DEMs were found to be statistically significant (p < .05). Ten candidate schizophrenia-associated miRNAs were identified through computational learning methods. The diagnostic efficiency was verified on a blood-miRNA dataset (GSE54578) with a random forest (RF) model and achieved an area under the curve (AUC) of 0.83 ± 0.14. Moreover, 855 experimentally validated target genes for these candidate miRNAs were retrieved, and 11 hub genes were identified. Enrichment analysis revealed that the main functions in which the target genes were enriched were those related to cell signalling, prenatal infections, cancers, cell deaths, oxidative stress, endocrine disorders, transcription regulation, and kinase activities. The diagnostic ability of the hub genes was reflected in a comparably good average AUC of 0.77 ± 0.09 for an external dataset (GSE38484). CONCLUSIONS A meta-analysis that combines computational and mathematical methods provides a reliable tool for identifying candidate biomarkers of schizophrenia.
Collapse
Affiliation(s)
- Shiyuan Han
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Jiang Y, Bian W, Chen J, Cao X, Dong C, Xiao Y, Xu B, Sun X. miRNA-137-5p improves spatial memory and cognition in Alzheimer's mice by targeting ubiquitin-specific peptidase 30. Animal Model Exp Med 2023; 6:526-536. [PMID: 38111333 PMCID: PMC10757218 DOI: 10.1002/ame2.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disorder causing progressive dementia. Research suggests that microRNAs (miRNAs) could serve as biomarkers and therapeutic targets for AD. Reduced levels of miR-137 have been observed in the brains of AD patients, but its specific role and downstream mechanisms remain unclear. This study sought to examine the therapeutic potential of miR-137-5p agomir in alleviating cognitive dysfunction induced in AD models and explore its potential mechanisms. METHODS This study utilized bioinformatic analysis and a dual-luciferase reporter assay to investigate the relationship between miR-137-5p and ubiquitin-specific peptidase 30 (USP30). In vitro experiments were conducted using SH-SY5Y cells to assess the impact of miR-137-5p on Aβ1-42 neurotoxicity. In vivo experiments on AD mice evaluated the effects of miR-137-5p on cognition, Aβ1-42 deposition, Tau hyperphosphorylation, and neuronal apoptosis, as well as its influence on USP30 levels. RESULTS It was discovered that miR-137-5p mimics efficiently counteract Aβ1-42 neurotoxicity in SH-SY5Y cells, a protective effect that is negated by USP30 overexpression. In vivo experiments demonstrated that miR-137-5p enhances the cognition and mobility of AD mice, significantly reducing Aβ1-42 deposition, Tau hyperphosphorylation, and neuronal apoptosis within the hippocampus and cortex regions. Mechanistically, miR-137-5p significantly suppresses USP30 levels in mice, though USP30 overexpression partially buffers against miR-137-5p-induced AD symptom improvement. CONCLUSION Our study proposes that miR-137-5p, by instigating the downregulation of USP30, has the potential to act as a novel and promising therapeutic target for AD.
Collapse
Affiliation(s)
- Yang Jiang
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
- Department of NeurologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangP.R. China
| | - Wei Bian
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
| | - Jing Chen
- Department of Neurology and NeuroscienceShenyang Tenth People's Hospital, Shenyang Chest HospitalShenyangP.R. China
| | - Xiaopan Cao
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
| | - ChunYao Dong
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
| | - Ying Xiao
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
| | - Bing Xu
- Department of Neurology and NeuroscienceShenyang Tenth People's Hospital, Shenyang Chest HospitalShenyangP.R. China
| | - XiaoHong Sun
- Department of NeurologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangP.R. China
- Science Experiment CenterChina Medical UniversityShenyangChina
| |
Collapse
|
8
|
Mehmood A, Shah S, Guo RY, Haider A, Shi M, Ali H, Ali I, Ullah R, Li B. Methyl-CpG-Binding Protein 2 Emerges as a Central Player in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Cell Mol Neurobiol 2023; 43:4071-4101. [PMID: 37955798 DOI: 10.1007/s10571-023-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
MECP2 and its product methyl-CpG binding protein 2 (MeCP2) are associated with multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), which are inflammatory, autoimmune, and demyelinating disorders of the central nervous system (CNS). However, the mechanisms and pathways regulated by MeCP2 in immune activation in favor of MS and NMOSD are not fully understood. We summarize findings that use the binding properties of MeCP2 to identify its targets, particularly the genes recognized by MeCP2 and associated with several neurological disorders. MeCP2 regulates gene expression in neurons, immune cells and during development by modulating various mechanisms and pathways. Dysregulation of the MeCP2 signaling pathway has been associated with several disorders, including neurological and autoimmune diseases. A thorough understanding of the molecular mechanisms underlying MeCP2 function can provide new therapeutic strategies for these conditions. The nervous system is the primary system affected in MeCP2-associated disorders, and other systems may also contribute to MeCP2 action through its target genes. MeCP2 signaling pathways provide promise as potential therapeutic targets in progressive MS and NMOSD. MeCP2 not only increases susceptibility and induces anti-inflammatory responses in immune sites but also leads to a chronic increase in pro-inflammatory cytokines gene expression (IFN-γ, TNF-α, and IL-1β) and downregulates the genes involved in immune regulation (IL-10, FoxP3, and CX3CR1). MeCP2 may modulate similar mechanisms in different pathologies and suggest that treatments for MS and NMOSD disorders may be effective in treating related disorders. MeCP2 regulates gene expression in MS and NMOSD. However, dysregulation of the MeCP2 signaling pathway is implicated in these disorders. MeCP2 plays a role as a therapeutic target for MS and NMOSD and provides pathways and mechanisms that are modulated by MeCP2 in the regulation of gene expression.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Arsalan Haider
- Key Lab of Health Psychology, Institute of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
9
|
Palumbo MC, Gautam M, Sonneborn A, Kim K, Wilmarth PA, Reddy AP, Shi X, Marks DL, Sahay G, Abbas AI, Janowsky A. MicroRNA137-loaded lipid nanoparticles regulate synaptic proteins in the prefrontal cortex. Mol Ther 2023; 31:2975-2990. [PMID: 37644723 PMCID: PMC10556225 DOI: 10.1016/j.ymthe.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Genome-wide association studies indicate that allele variants in MIR137, the host gene of microRNA137 (miR137), confer an increased risk of schizophrenia (SCZ). Aberrant expression of miR137 and its targets, many of which regulate synaptic functioning, are also associated with an increased risk of SCZ. Thus, miR137 represents an attractive target aimed at correcting the molecular basis for synaptic dysfunction in individuals with high genetic risk for SCZ. Advancements in nanotechnology utilize lipid nanoparticles (LNPs) to transport and deliver therapeutic RNA. However, there remains a gap in using LNPs to regulate gene and protein expression in the brain. To study the delivery of nucleic acids by LNPs to the brain, we found that LNPs released miR137 cargo and inhibited target transcripts of interest in neuroblastoma cells. Biodistribution of LNPs loaded with firefly luciferase mRNA remained localized to the mouse prefrontal cortex (PFC) injection site without circulating to off-target organs. LNPs encapsulating Cre mRNA preferentially co-expressed in neuronal over microglial or astrocytic cells. Using quantitative proteomics, we found miR137 modulated glutamatergic synaptic protein networks that are commonly dysregulated in SCZ. These studies support engineering the next generation of brain-specific LNPs to deliver RNA therapeutics and improve symptoms of central nervous system disorders.
Collapse
Affiliation(s)
- Michelle C Palumbo
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Milan Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Alex Sonneborn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kilsun Kim
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Xiao Shi
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel L Marks
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Portland, OR 97239, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Atheir I Abbas
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA; Research Service, Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - Aaron Janowsky
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA; Research Service, Veterans Affairs Portland Health Care System, Portland, OR 97239, USA.
| |
Collapse
|
10
|
Kołosowska KA, Schratt G, Winterer J. microRNA-dependent regulation of gene expression in GABAergic interneurons. Front Cell Neurosci 2023; 17:1188574. [PMID: 37213213 PMCID: PMC10196030 DOI: 10.3389/fncel.2023.1188574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Information processing within neuronal circuits relies on their proper development and a balanced interplay between principal and local inhibitory interneurons within those circuits. Gamma-aminobutyric acid (GABA)ergic inhibitory interneurons are a remarkably heterogeneous population, comprising subclasses based on their morphological, electrophysiological, and molecular features, with differential connectivity and activity patterns. microRNA (miRNA)-dependent post-transcriptional control of gene expression represents an important regulatory mechanism for neuronal development and plasticity. miRNAs are a large group of small non-coding RNAs (21-24 nucleotides) acting as negative regulators of mRNA translation and stability. However, while miRNA-dependent gene regulation in principal neurons has been described heretofore in several studies, an understanding of the role of miRNAs in inhibitory interneurons is only beginning to emerge. Recent research demonstrated that miRNAs are differentially expressed in interneuron subclasses, are vitally important for migration, maturation, and survival of interneurons during embryonic development and are crucial for cognitive function and memory formation. In this review, we discuss recent progress in understanding miRNA-dependent regulation of gene expression in interneuron development and function. We aim to shed light onto mechanisms by which miRNAs in GABAergic interneurons contribute to sculpting neuronal circuits, and how their dysregulation may underlie the emergence of numerous neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| |
Collapse
|
11
|
Mokhtari MA, Sargazi S, Saravani R, Heidari Nia M, Mirinejad S, Hadzsiev K, Bene J, Shakiba M. Genetic Polymorphisms in miR-137 and Its Target Genes, TCF4 and CACNA1C, Contribute to the Risk of Bipolar Disorder: A Preliminary Case-Control Study and Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:1886658. [PMID: 36193501 PMCID: PMC9526595 DOI: 10.1155/2022/1886658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022]
Abstract
Accumulating evidence has suggested that miR-137 and its target genes, CACNA1C, and TCF4, are amongst the most robustly implicated genes in psychiatric disorders. This preliminary study is aimed at investigating the effects of genetic variations in miR-137 (rs1625579A/C), TCF4 (rs1261084C/T), and CACNA1C (rs10774053A/G and rs10466907G/T) on BD susceptibility. We recruited 252 BD patients and 213 healthy subjects as the control group. Genotyping was performed using PCR-RFLP and ARMS-PCR methods. Enhanced risk of BD was found under the codominant homozygous, dominant, and allelic models of TCF4 rs1261084C/T, codominant homozygous and allelic models of CACNA1C rs10466907G/T polymorphisms, as well as codominant homozygous, dominant, recessive, and allelic models of the CACNA1C rs10774053A/G. Moreover, both TT/AG/GT/AA and TT/GG/GT/AC genotype combinations strongly increased the risk of BD in the participants. The bioinformatics analyses revealed that rs1261084C/T and rs10466907G/T created and disrupted binding sites of some miRNAs in the 3'-untranslated region of TCF4 and CACNA1C genes. In contrast, the rs10774053A/G created a new binding site for a major splicing factor and might have an effective role in the function of the CACNA1C protein. We have found that all the studied SNPs are positively associated with BD susceptibility. Replicated studies on different ethnicities are required to confirm these findings.
Collapse
Affiliation(s)
- Mohammad Ali Mokhtari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Ramin Saravani
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Kinga Hadzsiev
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs H-7624, Hungary
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs H-7624, Hungary
| | - Mansoor Shakiba
- Department of Psychiatry, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| |
Collapse
|
12
|
Yang M, Lu Z, Yu B, Zhao J, Li L, Zhu K, Ma M, Long F, Wu R, Hu G, Huang L, Chou J, Gong N, Yang K, Li X, Zhang Y, Lin C. COL5A1 Promotes the Progression of Gastric Cancer by Acting as a ceRNA of miR-137-3p to Upregulate FSTL1 Expression. Cancers (Basel) 2022; 14:3244. [PMID: 35805015 PMCID: PMC9264898 DOI: 10.3390/cancers14133244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) and their target genes have been shown to play an important role in gastric cancer but have not been fully clarified. Therefore, our goal was to identify the key miRNA-mRNA regulatory network in gastric cancer by utilizing a variety of bioinformatics analyses and experiments. A total of 242 miRNAs and 1080 genes were screened from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. Then, survival-related differentially expressed miRNAs and their differentially expressed target genes were screened. Twenty hub genes were identified from their protein-protein interaction network. After weighted gene co-expression network analysis was conducted, we selected miR-137-3p and its target gene, COL5A1, for further research. We found that miR-137-3p was significantly downregulated and that overexpression of miR-137-3p suppressed the proliferation, invasion, and migration of gastric cancer cells. Furthermore, we found that its target gene, COL5A1, could regulate the expression of another hub gene, FSTL1, by sponging miR-137-3p, which was confirmed by dual-luciferase reporter assays. Knockdown of COL5A1 inhibited the proliferation, invasion, and migration of gastric cancer cells, which could be rescued by the miR-137-3p inhibitor or overexpression of FSTL1. Ultimately, bioinformatics analyses showed that the expression of FSTL1 was highly correlated with immune infiltration.
Collapse
Affiliation(s)
- Ming Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Zhixing Lu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Bowen Yu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Jiajia Zhao
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Liang Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Kaiyu Zhu
- The Five-Year Program in Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China;
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Runliu Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Lihua Huang
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - Jing Chou
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Ni Gong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Kaiyan Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Yi Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| |
Collapse
|
13
|
The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio. Proc Natl Acad Sci U S A 2022; 119:e2112225119. [PMID: 35452310 PMCID: PMC9169915 DOI: 10.1073/pnas.2112225119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hypocretin (Hcrt, also known as orexin) neuropeptides regulate sleep and wake stability, and disturbances of Hcrt can lead to sleep disorders. MicroRNAs (miRNAs) are short noncoding RNAs that fine-tune protein expression levels, and miRNA-based therapeutics are emerging. We report a functional interaction between miRNA (miR-137) and Hcrt. We demonstrate that intracellular miR-137 levels in Hcrt neurons regulate Hcrt expression with downstream effects on wakefulness. Specifically, lowering of miR-137 levels increased wakefulness in mice. We further show that the miR-137:Hcrt interaction is conserved across mice and humans, that miR-137 also regulates sleep–wake balance in zebrafish, and that the MIR137 locus is genetically associated with sleep duration in humans. Together, our findings reveal an evolutionarily conserved sleep–wake regulatory role of miR-137. Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep–wake regulation.
Collapse
|
14
|
Baba R, Matsuda S, Maeda R, Murakami K, Yamamoto Y, Nakatani A, Kimura H. Investigating the Therapeutic Potential of LSD1 Enzyme Activity-Specific Inhibition by TAK-418 for Social and Memory Deficits in Rodent Disease Models. ACS Chem Neurosci 2022; 13:313-321. [PMID: 35061371 DOI: 10.1021/acschemneuro.1c00713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity is a promising approach to treat diseases associated with epigenetic dysregulation, such as neurodevelopmental disorders. However, this concept has not been fully validated because genetic LSD1 deletion causes embryonic lethality and conventional LSD1 inhibitors cause thrombocytopenia via the dissociation of LSD1-cofactor complex. To characterize the therapeutic potential of LSD1 enzyme inhibition, we used TAK-418 and T-448, the LSD1 enzyme activity-specific inhibitors with minimal impact on the LSD1-cofactor complex. TAK-418 and T-448, by inhibiting brain LSD1 enzyme activity, consistently improved social deficits in animal models of neurodevelopmental disorders without causing thrombocytopenia. Moreover, TAK-418 improved memory deficits caused by aging or amyloid precursor protein overexpression. In contrast, TAK-418 did not improve memory deficits caused by miR-137 overexpression. Thus, miR-137 modulation may be involved in memory improvement by LSD1 inhibition. TAK-418 warrants further investigation as a novel therapeutic agent for diseases with epigenetic dysregulation.
Collapse
Affiliation(s)
- Rina Baba
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoru Matsuda
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryota Maeda
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Koji Murakami
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukiko Yamamoto
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsushi Nakatani
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
15
|
Zhou J, Li J, Zhao Q, Ou P, Zhao W. Working memory deficits in children with schizophrenia and its mechanism, susceptibility genes, and improvement: A literature review. Front Psychiatry 2022; 13:899344. [PMID: 35990059 PMCID: PMC9389215 DOI: 10.3389/fpsyt.2022.899344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The negative influence on the cognitive ability of schizophrenia is one of the issues widely discussed in recent years. Working memory deficits are thought to be a core cognitive symptom of schizophrenia and lead to poorer social functions and worse academic performance. Previous studies have confirmed that working memory deficits tend to appear in the prodromal phase of schizophrenia. Therefore, considering that children with schizophrenia have better brain plasticity, it is critical to explore the development of their working memory. Although the research in this field developed gradually in recent years, few researchers have summarized these findings. The current study aims to review the recent studies from both behavior and neuroimaging aspects to summarize the working memory deficits of children with schizophrenia and to discuss the pathogenic factors such as genetic susceptibility. In addition, this study put forward some practicable interventions to improve cognitive symptoms of schizophrenia from psychological and neural perspectives.
Collapse
Affiliation(s)
- Jintao Zhou
- School of Psychology, Nanjing Normal University, Nanjing, China.,Department of Psychology, Fudan University, Shanghai, China
| | - Jingfangzhou Li
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Qi Zhao
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, Macao SAR, China
| | - Peixin Ou
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, Macao SAR, China
| | - Wan Zhao
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
16
|
Zhang D, Li H, Ding K, Zhang Z, Luo S, Li G. Polymorphisms in MicroRNA Genes Associated with Schizophrenia Susceptibility but Not with Effectiveness of MECT. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:1959172. [PMID: 34938351 PMCID: PMC8687787 DOI: 10.1155/2021/1959172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023]
Abstract
Schizophrenia (SCZ) is a common and complex psychiatric disease associated with hereditary and environmental risk factors. MicroRNAs (miRNAs or miRs) are small, noncoding RNA molecules that endogenously regulate gene expression. Single nucleotide polymorphisms (SNPs) in related miRNA genes are associated with susceptibility of the disorder. We wonder if the SNPs have influence on the effectiveness of modified electroconvulsive therapy (MECT) for SCZ. rs1625579 within miR-137, rs6577555 within miR-34, and rs2296616 within miR-107 were sequenced in 150 cases and 150 controls to check the potential association between the SNPs and SCZ. Our results showed that allele G in rs1625579 (p = 0.005, adjusted OR = 1.379, 95%CI = 1.108 - 1.634), allele A in rs6577555 (p = 0.014, adjusted OR = 1.246, 95%CI = 1.045 - 1.463), allele G in rs2296616 (p < 0.001, adjusted OR = 1.646, 95%CI = 1.374 - 1.879) are positively associated with the disorder risk. MECT courses did significantly decrease the level of the miRNAs, except for the variant of rs2296616 with the AA genotype. Schizophrenic phenotypes assessed by the positive and negative syndrome scale (PANSS) were improved after MECT, and there was no significant relevance observed between the effectiveness of MECT and the variants of these loci. Thus, our findings indicate that polymorphisms within the loci may be involved in the pathogenesis of SCZ, and MECT is effective and unbiased for patients harboring different genotypes of the loci.
Collapse
Affiliation(s)
- Danwei Zhang
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, Jiangsu Province, China
| | - Huihua Li
- Department of Psychology, Zhenjiang Mental Health Center, Zhenjiang, Jiangsu Province, China
| | - Kaimo Ding
- Department of Psychology, Zhenjiang Mental Health Center, Zhenjiang, Jiangsu Province, China
| | - Zhen Zhang
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, Jiangsu Province, China
| | - Si Luo
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, Jiangsu Province, China
| | - Guohai Li
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
17
|
Yin J, Ma G, Luo S, Luo X, He B, Liang C, Zuo X, Xu X, Chen Q, Xiong S, Tan Z, Fu J, Lv D, Dai Z, Wen X, Zhu D, Ye X, Lin Z, Lin J, Li Y, Chen W, Luo Z, Li K, Wang Y. Glyoxalase 1 Confers Susceptibility to Schizophrenia: From Genetic Variants to Phenotypes of Neural Function. Front Mol Neurosci 2021; 14:739526. [PMID: 34790095 PMCID: PMC8592033 DOI: 10.3389/fnmol.2021.739526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
This research aimed to investigate the role of glyoxalase 1 (Glo-1) polymorphisms in the susceptibility of schizophrenia. Using the real-time polymerase chain reaction (PCR) and spectrophotometric assays technology, significant differences in Glo-1 messenger ribonucleic acid (mRNA) expression (P = 3.98 × 10-5) and enzymatic activity (P = 1.40 × 10-6) were found in peripheral blood of first-onset antipsychotic-naïve patients with schizophrenia and controls. The following receiver operating characteristic (ROC) curves analysis showed that Glo-1 could predict the schizophrenia risk (P = 4.75 × 10-6 in mRNA, P = 1.43 × 10-7 in enzymatic activity, respectively). To identify the genetic source of Glo-1 risk in schizophrenia, Glo-1 polymorphisms (rs1781735, rs1130534, rs4746, and rs9470916) were genotyped with SNaPshot technology in 1,069 patients with schizophrenia and 1,023 healthy individuals. Then, the impact of risk polymorphism on the promoter activity, mRNA expression, and enzymatic activity was analyzed. The results revealed significant differences in the distributions of genotype (P = 0.020, false discovery rate (FDR) correction) and allele (P = 0.020, FDR correction) in rs1781735, in which G > T mutation significantly showed reduction in the promoter activity (P = 0.016), mRNA expression, and enzymatic activity (P = 0.001 and P = 0.015, respectively, GG vs. TT, in peripheral blood of patients with schizophrenia) of Glo-1. The expression quantitative trait locus (eQTL) findings were followed up with the resting-state functional magnetic resonance imaging (fMRI) analysis. The TT genotype of rs1781735, associated with lower RNA expression in the brain (P < 0.05), showed decreased neuronal activation in the left middle frontal gyrus in schizophrenia (P < 0.001). In aggregate, this study for the first time demonstrates how the genetic and biochemical basis of Glo-1 polymorphism culminates in the brain function changes associated with increased schizophrenia risk. Thus, establishing a combination of multiple levels of changes ranging from genetic variants, transcription, protein function, and brain function changes is a better predictor of schizophrenia risk.
Collapse
Affiliation(s)
- Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao SAR, China.,Department of Psychology, Faculty of Social Sciences, University of Macau, Macao SAR, China
| | - Guoda Ma
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China.,Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Shucun Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin He
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Xiang Zuo
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Xusan Xu
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Qing Chen
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhi Tan
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xia Wen
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoqing Ye
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - You Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Wubiao Chen
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zebin Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China.,Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Yajun Wang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
18
|
Wen X, Xu X, Luo X, Yin J, Liang C, Zhu J, Nong X, Zhu X, Ning F, Gu S, Xiong S, Fu J, Zhu D, Dai Z, Lv D, Lin Z, Lin J, Li Y, Ma G, Wang Y. Nucks1 gene polymorphism rs823114 is associated with the positive symptoms and neurocognitive function of patients with schizophrenia in parts of southern China. Psychiatr Genet 2021; 31:119-125. [PMID: 34030174 PMCID: PMC8265546 DOI: 10.1097/ypg.0000000000000285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/23/2021] [Indexed: 01/14/2023]
Abstract
Nuclear casein kinase and cyclin-dependent kinase substrate 1 (nucks1) are considered a potential susceptibility gene for certain neurological diseases, such as Parkinson's disease (PD). In our study, we genotyped three single nucleotide polymorphisms (SNPs) (rs4951261, rs823114 and rs951366) of the nucks1 gene in 774 schizophrenic patients and 819 healthy controls using the improved multiplex ligation detection reaction (imLDR) technique. Furthermore, we also studied the relationship between the above SNPs and the clinical psychiatric symptoms and neurocognitive function of the patients. Genotype distributions and allele frequencies of these SNPs showed no significant differences and were found between patients and healthy controls. However, in an analysis of the positive symptom score of rs823114 among male patients, we found that the score of the A/A genotype was lower than that of the G/A+G/G genotypes (P = 0.001, P(corr) = 0.003]. Additionally, we also found that among the female patients, G allele carriers with rs823114 had lower semantic fluency scores than subjects with the A/A genotype (P = 0.010, P(corr) = 0.030]. Our data show for the first time that rs823114 polymorphism of nucks1 may affect positive symptoms and neurocognitive function in patients with schizophrenia in parts of southern China.
Collapse
Affiliation(s)
- Xia Wen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan
| | - Xusan Xu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Jinwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Chunmei Liang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | | | | | - Xiudeng Zhu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Fan Ning
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Shanshan Gu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - You Li
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
| | - Guoda Ma
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjian
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan
| | - Yajun Wang
- Medical Genetics Laboratory, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
19
|
Ding C, Zhang C, Kopp R, Kuney L, Meng Q, Wang L, Xia Y, Jiang Y, Dai R, Min S, Yao WD, Wong ML, Ruan H, Liu C, Chen C. Transcription factor POU3F2 regulates TRIM8 expression contributing to cellular functions implicated in schizophrenia. Mol Psychiatry 2021; 26:3444-3460. [PMID: 32929213 PMCID: PMC7956165 DOI: 10.1038/s41380-020-00877-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/17/2023]
Abstract
Schizophrenia (SCZ) is a neuropsychiatric disorder with aberrant expression of multiple genes. However, identifying its exact causal genes remains a considerable challenge. The brain-specific transcription factor POU3F2 (POU domain, class 3, transcription factor 2) has been recognized as a risk factor for SCZ, but our understanding of its target genes and pathogenic mechanisms are still limited. Here we report that POU3F2 regulates 42 SCZ-related genes in knockdown and RNA-sequencing experiments of human neural progenitor cells (NPCs). Among those SCZ-related genes, TRIM8 (Tripartite motif containing 8) is located in SCZ-associated genetic locus and is aberrantly expressed in patients with SCZ. Luciferase reporter and electrophoretic mobility shift assays (EMSA) showed that POU3F2 induces TRIM8 expression by binding to the SCZ-associated SNP (single nucleotide polymorphism) rs5011218, which affects POU3F2-binding efficiency at the promoter region of TRIM8. We investigated the cellular functions of POU3F2 and TRIM8 as they co-regulate several pathways related to neural development and synaptic function. Knocking down either POU3F2 or TRIM8 promoted the proliferation of NPCs, inhibited their neuronal differentiation, and impaired the excitatory synaptic transmission of NPC-derived neurons. These results indicate that POU3F2 regulates TRIM8 expression through the SCZ-associated SNP rs5011218, and both genes may be involved in the etiology of SCZ by regulating neural development and synaptic function.
Collapse
Affiliation(s)
- Chaodong Ding
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China,Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Chunling Zhang
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Richard Kopp
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Liz Kuney
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Qingtuan Meng
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China,Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi, China
| | - Le Wang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China,Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yan Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China,Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Yi Jiang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Rujia Dai
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Shishi Min
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China,Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Wei-Dong Yao
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Ma-Li Wong
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Hongyu Ruan
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA.
| | - Chunyu Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA. .,School of Psychology, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Chao Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, the Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Molecular Precision Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Brum CB, Paixão-Côrtes VR, Carvalho AM, Martins-Silva T, Carpena MX, Ulguim KF, Luquez KYS, Salatino-Oliveira A, Tovo-Rodrigues L. Genetic variants in miRNAs differentially expressed during brain development and their relevance to psychiatric disorders susceptibility. World J Biol Psychiatry 2021; 22:456-467. [PMID: 33040684 DOI: 10.1080/15622975.2020.1834618] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs) play an important regulatory role in the expression of genes involved in brain functions during development. Genetic variants in miRNA genes may impact their regulatory function and lead to psychiatric disorders. To evaluate the role of genetic variants in genes of miRNAs differentially expressed during neurodevelopment on autism spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), schizophrenia (SCZ), and major depressive disorder (MDD). METHODS The miRNAs were identified in the literature. Summary statistics from the most recent genome-wide association studies to date were used to evaluate the association between the selected polymorphisms and each disorder in a look-up approach. In a global analysis, we compared the standardised risk effect of variants in neurodevelopment-related miRNAs with those in the remaining miRNAs from miRBase. RESULTS The global analysis showed that variants in neurodevelopment-related miRNAs had higher risk effects compared to the other miRNAs for SCZ (p = 0.010) and ADHD (p = 0.001). MIR33B, MIR29B2, MIR29C, MIR137, and MIR135A1 were significantly associated with SCZ, while 55.9% of the miRNAs were at least nominally associated with one or more psychiatric disorders (p < 0.05). CONCLUSIONS Genetic variants in neurodevelopment-related miRNAs play an important role in the genetic susceptibility of psychiatric disorders, mainly SCZ and ADHD.
Collapse
Affiliation(s)
- Clarice Brinck Brum
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | | | - Thais Martins-Silva
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Marina Xavier Carpena
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | | | - Angélica Salatino-Oliveira
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciana Tovo-Rodrigues
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil.,Human Development and Violence Research Centre, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
21
|
Wang L, Liu Y, Yu Z, Gong J, Deng Z, Ren N, Zhong Z, Cai H, Tang Z, Cheng H, Chen S, He Z. Mir-139-5p inhibits glioma cell proliferation and progression by targeting GABRA1. J Transl Med 2021; 19:213. [PMID: 34001135 PMCID: PMC8130534 DOI: 10.1186/s12967-021-02880-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/08/2021] [Indexed: 12/21/2022] Open
Abstract
Glioma is an extremely aggressive malignant neoplasm of the central nervous system. MicroRNA (miRNA) are known to bind to specific target mRNA to regulate post-transcriptional gene expression and are, therefore, currently regarded as promising biomarkers for glioma diagnosis and prognosis. The aim of the present study was to examine the pathogenesis and potential molecular markers of glioma by comparing the differential expression of miRNA and mRNA between glioma tissue and peritumor brain tissue. We explored the impact of screened core miRNA and mRNA on cell proliferation, invasion, and migration of glioma. An miRNA expression profile dataset (GSE90603) and a transcriptome profile dataset (GSE90598) were downloaded from combined miRNA-mRNA microarray chips in the Gene Expression Omnibus (GEO) database. Overall, 59 differentially expressed miRNAs (DEMs) and 419 differentially expressed genes (DEGs) were identified using the R limma software package. FunRich software was used to predict DEM target genes and miRNA-gene pairs, and Perl software was used to find overlapping genes between DEGs and DEM target genes. There were 129 overlapping genes regulated by nine miRNAs between target genes of the DEMs and DEGs. The Chinese Glioma Genome Atlas(CGGA) was analyzed in order to identify miRNAs with diagnostic and prognostic significance. MiR-139-5p, miR-137, and miR-338-3p were validated to be significantly linked to prognosis in glioma patients. Finally, we validated that miR-139-5p affected glioma malignant biological behavior via targeting gamma-aminobutyric acid A receptor alpha 1(GABRA1) through rescue experiments. Low miR-139-5p expression was correlated with survival probability and World Health Organization (WHO) grade. MiR-139-5p overexpression inhibited cell proliferation, migration, and invasion of glioma in vitro. GABRA1 was identified as a functional downstream target of miR-139-5p. Decreased GABRA1 expression was related to similar biological roles as miR-139-5p overexpression while upregulation of GABRA1 effectively reversed the inhibition effects of miR-139-5p. These results demonstrate a novel axis for miR-139-5p/GABRA1 in glioma progression and provide potential prognostic predictors and therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China.
| | - Yan Liu
- Department of Neurology, Changsha Central Hospital, University of South China, No.161 Shaoshan road, Yuhua district, Changsha, 410007, Hunan, China
| | - Zhengtao Yu
- Department of Neurosurgery, Haikou People's Hospital, The Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou, 570208, Hainan, China
| | - Jianwu Gong
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Zhiyong Deng
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Nianjun Ren
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Zhe Zhong
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Hao Cai
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Zhi Tang
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Haofeng Cheng
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Shuai Chen
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China
| | - Zhengwen He
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha, 410006, Hunan, China.
| |
Collapse
|
22
|
Huang W, Gu X, Wang Y, Bi Y, Yang Y, Wan G, Chen N, Li K. Effects of the co-administration of MK-801 and clozapine on MiRNA expression profiles in rats. Basic Clin Pharmacol Toxicol 2021; 128:758-772. [PMID: 33656787 DOI: 10.1111/bcpt.13576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022]
Abstract
MiRNAs are small, non-coding RNAs that can silence the expression of various target genes by binding their mRNAs and thus regulate a wide range of crucial bodily functions. However, the miRNA expression profile of schizophrenia after antipsychotic mediation is largely unknown. Non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonists such as MK-801 have provided useful animal models to investigate the effects of schizophrenia-like symptoms in rodent animals. Herein, the hippocampal miRNA expression profiles of Sprague-Dawley rats pretreated with MK-801 were examined after antipsychotic clozapine (CLO) treatment. Total hippocampal RNAs from three groups were subjected to next-generation sequencing (NGS), and bioinformatics analyses, including differential expression and enrichment analyses, were performed. Eight miRNAs were differentially expressed between the MK-801 and vehicle (VEH) control groups. Interestingly, 14 miRNAs were significantly differentially expressed between the CLO + MK-801 and MK-801 groups, among which rno-miR-184 was the most upregulated. Further analyses suggested that these miRNAs modulate target genes that are involved in endocytosis regulation, ubiquitin-mediated proteolysis, and actin cytoskeleton regulation and thus might play important roles in the pathogenesis of schizophrenia. Our results suggest that differentially expressed miRNAs play important roles in the complex pathophysiology of schizophrenia and subsequently impact brain functions.
Collapse
Affiliation(s)
- Wenhui Huang
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China.,Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xuefeng Gu
- Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yingying Wang
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Yuhan Bi
- Department of Pathology, Stanford University, Palo alto, CA, USA
| | - Yu Yang
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Guoqing Wan
- Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Nianhong Chen
- Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Keshen Li
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Ermakov EA, Kabirova EM, Buneva VN, Nevinsky GA. IgGs-Abzymes from the Sera of Patients with Multiple Sclerosis Recognize and Hydrolyze miRNAs. Int J Mol Sci 2021; 22:2812. [PMID: 33802122 PMCID: PMC8000798 DOI: 10.3390/ijms22062812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Autoantibodies-abzymes hydrolyzing DNA, myelin basic protein, and oligosaccharides have been revealed in the sera of patients with multiple sclerosis (MS). In MS, specific microRNAs are found in blood and cerebrospinal fluid, which are characterized by increased expression. Autoantibodies, specifically hydrolyzing four different miRNAs, were first detected in the blood of schizophrenia patients. Here, we present the first evidence that 23 IgG antibodies of MS patients effectively recognize and hydrolyze four neuroregulatory miRNAs (miR-137, miR-9-5p, miR-219-2-3p, and miR-219-5p) and four immunoregulatory miRNAs (miR-21-3p, miR-146a-3p, miR-155-5p, and miR-326). Several known criteria were checked to show that the recognition and hydrolysis of miRNAs is an intrinsic property of MS IgGs. The hydrolysis of all miRNAs is mostly site-specific. The major and moderate sites of the hydrolysis of each miRNA for most of the IgG preparations coincided; however, some of them showed other specific sites of splitting. Several individual IgGs hydrolyzed some miRNAs almost nonspecifically at nearly all internucleoside bonds or demonstrated a combination of site-specific and nonspecific splitting. Maximum average relative activity (RA) was observed in the hydrolysis of miR-155-5p for IgGs of patients of two types of MS-clinically isolated syndrome and relapsing-remitting MS-but was also high for patients with primary progressive and secondary progressive MS. Differences between RAs of IgGs of four groups of MS patients and healthy donors were statistically significant (p < 0.015). There was a tendency of decreasing efficiency of hydrolysis of all eight miRNAs during remission compared with the exacerbation of the disease.
Collapse
Affiliation(s)
| | | | | | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Ave, 630090 Novosibirsk, Russia; (E.A.E.); (E.M.K.); (V.N.B.)
| |
Collapse
|
24
|
Yin J, Luo X, Peng Q, Xiong S, Lv D, Dai Z, Fu J, Wang Y, Wei Y, Liang C, Xu X, Zhang D, Wang L, Zhu D, Wen X, Ye X, Lin Z, Lin J, Li Y, Wang J, Ma G, Li K, Wang Y. Sex-Specific Associations of MIR137 Polymorphisms With Schizophrenia in a Han Chinese Cohort. Front Genet 2021; 12:627874. [PMID: 33708240 PMCID: PMC7942225 DOI: 10.3389/fgene.2021.627874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/21/2021] [Indexed: 01/14/2023] Open
Abstract
Objective: To investigate the effects of microRNA-137 (MIR137) polymorphisms (rs1198588 and rs2660304) on the risk of schizophrenia in a Han Chinese population. Methods: Schizophrenia was diagnosed according to the DSM-5. Clinical symptoms and cognitive functions were assessed with the Positive and Negative Symptom Scale (PANSS) and Brief Assessment of Cognition in Schizophrenia (BACS), respectively. The polymorphisms were genotyped by improved multiplex ligation detection reaction (iMLDR) technology in 1,116 patients with schizophrenia and 1,039 healthy controls. Results: Significant associations were found between schizophrenia and MIR137 in the distributions of genotypes (p = 0.037 for rs1198588; p = 0.037 for rs2660304, FDR corrected) and alleles (p = 0.043 for rs1198588; p = 0.043 for rs2660304, FDR corrected) of two SNPs. When the population was stratified by sex, we found female-specific associations between MIR137 and schizophrenia in terms of genotype and allele distributions of rs1198588 (χ 2 = 4.41, p = 0.036 and χ 2 = 4.86, p = 0.029, respectively, FDR corrected) and rs2660304 (χ 2 = 4.74, p=0.036 and χ 2 = 4.80, p = 0.029, respectively, FDR corrected). Analysis of the MIR137 haplotype rs1198588-rs2660304 showed a significant association with schizophrenia in haplotype T-T [χ 2 = 4.60, p = 0.032, OR = 1.32, 95% CI (1.02-1.70)]. Then, significant female-specific associations were found with the haplotypes T-T and G-A [χ 2 = 4.92, p = 0.027, OR = 1.62, 95% CI (1.05-2.50); χ 2 = 4.42, p = 0.035, OR = 0.62, 95% CI (0.39-0.97), respectively]. When the TT genotype of rs1198588 was compared to the GT+GG genotype, a clinical characteristics analysis also showed a female-specific association in category instances (t = 2.76, p = 0.042, FDR corrected). Conclusion: The polymorphisms within the MIR137 gene are associated with susceptibility to schizophrenia, and a female-specific association of MIR137 with schizophrenia was reported in a Han Chinese population.
Collapse
Affiliation(s)
- Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, China
- Department of Psychology, Faculty of Social Sciences, University of Macau, Taipa, China
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qian Peng
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ying Wang
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yaxue Wei
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xusan Xu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dandan Zhang
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lulu Wang
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xia Wen
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoqing Ye
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - You Li
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiafeng Wang
- Maternal and Children’s Health Research Institute, Shunde Maternal and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
25
|
Methyl-CpG-binding protein 2 mediates overlapping mechanisms across brain disorders. Sci Rep 2020; 10:22255. [PMID: 33335218 PMCID: PMC7746753 DOI: 10.1038/s41598-020-79268-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
MECP2 and its product, Methyl-CpG binding protein 2 (MeCP2), are mostly known for their association to Rett Syndrome (RTT), a rare neurodevelopmental disorder. Additional evidence suggests that MECP2 may underlie other neuropsychiatric and neurological conditions, and perhaps modulate common presentations and pathophysiology across disorders. To clarify the mechanisms of these interactions, we develop a method that uses the binding properties of MeCP2 to identify its targets, and in particular, the genes recognized by MeCP2 and associated to several neurological and neuropsychiatric disorders. Analysing mechanisms and pathways modulated by these genes, we find that they are involved in three main processes: neuronal transmission, immuno-reactivity, and development. Also, while the nervous system is the most relevant in the pathophysiology of the disorders, additional systems may contribute to MeCP2 action through its target genes. We tested our results with transcriptome analysis on Mecp2-null models and cells derived from a patient with RTT, confirming that the genes identified by our procedure are directly modulated by MeCP2. Thus, MeCP2 may modulate similar mechanisms in different pathologies, suggesting that treatments for one condition may be effective for related disorders.
Collapse
|
26
|
Talebian S, Daghagh H, Yousefi B, Ȍzkul Y, Ilkhani K, Seif F, Alivand MR. The role of epigenetics and non-coding RNAs in autophagy: A new perspective for thorough understanding. Mech Ageing Dev 2020; 190:111309. [PMID: 32634442 DOI: 10.1016/j.mad.2020.111309] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/22/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Autophagy is a major self-degradative intracellular process required for the maintenance of homeostasis and promotion of survival in response to starvation. It plays critical roles in a large variety of physiological and pathological processes. On the other hand, aberrant regulation of autophagy can lead to various cancers and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Crohn's disease. Emerging evidence strongly supports that epigenetic signatures, related non-coding RNA profiles, and their cross-talking are significantly associated with the control of autophagic responses. Therefore, it may be helpful and promising to manage autophagic processes by finding valuable markers and therapeutic approaches. Although there is a great deal of information on the components of autophagy in the cytoplasm, the molecular basis of the epigenetic regulation of autophagy has not been completely elucidated. In this review, we highlight recent research on epigenetic changes through the expression of autophagy-related genes (ATGs), which regulate autophagy, DNA methylation, histone modifications as well as non-coding RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and their relationship with human diseases, that play key roles in causing autophagy-related diseases.
Collapse
Affiliation(s)
- Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Daghagh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusuf Ȍzkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology & Allergy, Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
miR-137: A Novel Therapeutic Target for Human Glioma. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:614-622. [PMID: 32736290 PMCID: PMC7393316 DOI: 10.1016/j.omtn.2020.06.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
MicroRNA (miR)-137 is highly expressed in the brain and plays a crucial role in the development and prognosis of glioma. In this review, we aim to summarize the latest findings regarding miR-137 in glioma cell apoptosis, proliferation, migration, invasion, angiogenesis, drug resistance, and cancer treatment. In addition, we focus on the identified miR-137 targets and pathways in the occurrence and development of glioma. Finally, future implications for the diagnostic and therapeutic potential of miR-137 in glioma were discussed.
Collapse
|
28
|
Two Thalamic Regions Screened Using Laser Capture Microdissection with Whole Human Genome Microarray in Schizophrenia Postmortem Samples. SCHIZOPHRENIA RESEARCH AND TREATMENT 2020; 2020:5176834. [PMID: 32566292 PMCID: PMC7285254 DOI: 10.1155/2020/5176834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022]
Abstract
We used whole human genome microarray screening of highly enriched neuronal populations from two thalamic regions in postmortem samples from subjects with schizophrenia and controls to identify brain region-specific gene expression changes and possible transcriptional targets. The thalamic anterior nucleus is reciprocally connected to anterior cingulate, a schizophrenia-affected cortical region, and is also thought to be schizophrenia affected; the other thalamic region is not. Using two regions in the same subject to identify disease-relevant gene expression differences was novel and reduced intersubject heterogeneity of findings. We found gene expression differences related to miRNA-137 and other SZ-associated microRNAs, ELAVL1, BDNF, DISC-1, MECP2 and YWHAG associated findings, synapses, and receptors. Manual curation of our data may support transcription repression.
Collapse
|
29
|
Velasco MX, Kosti A, Guardia GDA, Santos MC, Tegge A, Qiao M, Correa BRS, Hernández G, Kokovay E, Galante PAF, Penalva LOF. Antagonism between the RNA-binding protein Musashi1 and miR-137 and its potential impact on neurogenesis and glioblastoma development. RNA (NEW YORK, N.Y.) 2019; 25:768-782. [PMID: 31004009 PMCID: PMC6573790 DOI: 10.1261/rna.069211.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
RNA-binding proteins (RBPs) and miRNAs are critical gene expression regulators that interact with one another in cooperative and antagonistic fashions. We identified Musashi1 (Msi1) and miR-137 as regulators of a molecular switch between self-renewal and differentiation. Msi1 and miR-137 have opposite expression patterns and functions, and Msi1 is repressed by miR-137. Msi1 is a stem-cell protein implicated in self-renewal while miR-137 functions as a proneuronal differentiation miRNA. In gliomas, miR-137 functions as a tumor suppressor while Msi1 is a prooncogenic factor. We suggest that the balance between Msi1 and miR-137 is a key determinant in cell fate decisions and disruption of this balance could contribute to neurodegenerative diseases and glioma development. Genomic analyses revealed that Msi1 and miR-137 share 141 target genes associated with differentiation, development, and morphogenesis. Initial results pointed out that these two regulators have an opposite impact on the expression of their target genes. Therefore, we propose an antagonistic model in which this network of shared targets could be either repressed by miR-137 or activated by Msi1, leading to different outcomes (self-renewal, proliferation, tumorigenesis).
Collapse
Affiliation(s)
- Mitzli X Velasco
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Adam Kosti
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Gabriela D A Guardia
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Marcia C Santos
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Allison Tegge
- Department of Statistics, Virginia Tech, Blacksburg, Virginia 14080, USA
| | - Mei Qiao
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Bruna R S Correa
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Erzsebet Kokovay
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Pedro A F Galante
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Luiz O F Penalva
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
30
|
Zhu D, Yin J, Liang C, Luo X, Lv D, Dai Z, Xiong S, Fu J, Li Y, Lin J, Lin Z, Wang Y, Ma G. CACNA1C (rs1006737) may be a susceptibility gene for schizophrenia: An updated meta-analysis. Brain Behav 2019; 9:e01292. [PMID: 31033230 PMCID: PMC6576147 DOI: 10.1002/brb3.1292] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Schizophrenia is a serious mental illness with a genetic predisposition. Genome-wide association studies (GWAS) have identified the α-1C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene as a significant risk gene for schizophrenia. However, there are inconsistent conclusions in case-control studies. METHODS We performed a comprehensive meta-analysis of all available samples from existing studies under four different genetic models (recessive model, dominant model, additive model and allele model) to further confirm whether CACNA1C rs1006737 is an authentic risk single nucleotide polymorphism (SNP) for schizophrenia. RESULTS A statistically significant difference under the four models (all p < 0.05) was observed by pooling nine Asian and European studies, including a total of 12,744 cases and 16,460 controls. For European-decent samples, a significant difference was identified between patients and controls for the four models (all p < 0.05). We observed a significant difference between patients and controls for the recessive model and allele model (GG vs. GA + AA: p < 0.00001; G vs. A: p < 0.00001) using a fixed effect model, but the dominant model (GG + GA vs. AA: OR: p = 0.15) and additive model (GG vs. AA: p = 0.11) showed no significant difference between patients and controls in the Asian samples. CONCLUSION Our findings provide important evidence for the establishment of CACNA1C as a susceptibility gene for schizophrenia across world populations, but its roles in the pathogenesis of schizophrenia need to be further investigated.
Collapse
Affiliation(s)
- Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - You Li
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guoda Ma
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
31
|
Yin J, Zhu D, Li Y, Lv D, Yu H, Liang C, Luo X, Xu X, Fu J, Yan H, Dai Z, Zhou X, Wen X, Xiong S, Lin Z, Lin J, Zhao B, Wang Y, Li K, Ma G. Genetic Variability of TCF4 in Schizophrenia of Southern Chinese Han Population: A Case-Control Study. Front Genet 2019; 10:513. [PMID: 31191620 PMCID: PMC6546831 DOI: 10.3389/fgene.2019.00513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/10/2019] [Indexed: 12/30/2022] Open
Abstract
Objective: Schizophrenia is thought to be a neurodevelopmental disorder. As a key regulator in the development of the central nervous system, transcription factor 4 (TCF4) has been shown to be involved in the pathogenesis of schizophrenia. The aim of our study was to assay the association of TCF4 single nucleotide polymorphisms (SNPs) with schizophrenia and the effect of these SNPs on phenotypic variability in schizophrenia in Southern Chinese Han Population. Methods: Four SNPs (rs9960767, rs2958182, rs4309482, and rs12966547) of TCF4 were genotyped in 1137 schizophrenic patients and 1035 controls in a Southern Chinese Han population using the improved multiplex ligation detection reaction (iMLDR) technique. For patients with schizophrenia, the severity of symptom phenotypes was analyzed by the five-factor model of the Positive and Negative Symptom Scale (PANSS). Cognitive function was assessed using the Brief Assessment of Cognition in Schizophrenia (BACS) scale. Results: The results showed that the genotypes and alleles of the three SNPs (rs2958182, rs4309482, and rs12966547) were not significantly different between the control group and the case group (all P > 0.05). rs9960767 could not be included in the statistics for the extremely low minor allele frequency. However, the genotypes of rs4309482 shown a potential risk in the positive symptoms (P = 0.04) and excitement symptoms (P = 0.04) of the five-factor model of PANSS, but not survived in multiple test correction. The same potential risk was shown in the rs12966547 in positive symptoms of the PANSS (P = 0.03). Conclusion: Our results failed to find the associations of SNPs (rs2958182, rs4309482, and rs12966547) in TCF4 with schizophrenia in Southern Chinese Han Population.
Collapse
Affiliation(s)
- Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - You Li
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huajun Yu
- Experiment Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xusan Xu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haifeng Yan
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xia Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Xia Wen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China.,Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Guoda Ma
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
32
|
Guan Y, Guan X, An H, Baihetiya A, Wang W, Shao W, Yang H, Wang Y. Epigenetic silencing of miR-137 induces resistance to bicalutamide by targeting TRIM24 in prostate cancer cells. Am J Transl Res 2019; 11:3226-3237. [PMID: 31217891 PMCID: PMC6556665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Prostate cancer is an important hormone-dependent cancer affecting men. In the initial stages, prostate cancer is often treated using hormone therapy, including bicalutamide. Despite the initial effectiveness of this therapy, the tumor eventually acquires resistance, resulting in recurrence of castration-resistant prostate cancer (CRPC). Dysregulation of microRNA (miRNA) function is one of the putative underlying mechanisms of hormone therapy resistance. Reports have shown that miRNAs act as tumor suppressors in patients with prostate cancer, but the role of these molecules in bicalutamide resistance in prostate cancer cell lines remains unclear. We performed lentiviral miRNA library screening to identify novel miRNAs that modulate the response of human prostate cancer LNCaP cells to the antiandrogen bicalutamide. We found that the tumor suppressor miRNA miR-137 silenced signaling in a spectrum of human cancers and selectively targeted tripartite motif-containing 24 (TRIM24) to suppress tumor proliferation. Silencing of TRIM24 recapitulated the effect of miR-137 on cell proliferation, whereas overexpression of TRIM24 reversed this effect. Real-time reverse transcription PCR analysis revealed a reciprocal relationship between miR-137 and TRIM24 in prostate cancer cell lines and tissues. Mechanistic studies indicated that methyl CpG-binding protein 2 (MeCP2) and DNA methyltransferases (DNMTs) cooperate to promote methylation of the miR-137 promoter and the consequent decreased transcription, leading to enhanced TRIM24 expression and glutamine metabolism. These findings describe a novel mechanism that affects TRIM24 deregulation in human cancers and provide a molecular link between miR-137, TRIM24, and tumor proliferation in CRPC.
Collapse
Affiliation(s)
- Yonghui Guan
- Urological Center, NO1 Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| | - Xiaoyue Guan
- Department of Periodontitit, School of Dentistry of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| | - Hengqing An
- Urological Center, NO1 Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| | - Azhati Baihetiya
- Urological Center, NO1 Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| | - Wenguang Wang
- Urological Center, NO1 Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| | - Weimin Shao
- Urological Center, NO1 Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| | - Haiou Yang
- School of Clinical Medicine of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| | - Yujie Wang
- Urological Center, NO1 Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830054, Xinjiang, China
| |
Collapse
|
33
|
Bludau A, Royer M, Meister G, Neumann ID, Menon R. Epigenetic Regulation of the Social Brain. Trends Neurosci 2019; 42:471-484. [PMID: 31103351 DOI: 10.1016/j.tins.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Social behavior, a highly adaptive and crucial component of mammalian life, is regulated by particularly sensitive regulatory brain mechanisms. Substantial evidence implicates classical epigenetic mechanisms including histone modifications, DNA methylation, and nucleosome remodeling as well as nonclassical mechanisms mediated by noncoding RNA in the regulation of social behavior. These mechanisms collectively form the 'epigenetic network' that orchestrates genomic integration of salient and transient social experiences. Consequently, its dysregulation has been linked to behavioral deficits and psychopathologies. This review focuses on the role of the epigenetic network in regulating the enduring effects of social experiences during early-life, adolescence, and adulthood. We discuss research in animal models, primarily rodents, and associations between dysregulation of epigenetic mechanisms and human psychopathologies, specifically autism spectrum disorder (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Anna Bludau
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Melanie Royer
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany; Biochemistry Center Regensburg (BZR), Laboratory of RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory of RNA Biology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Rohit Menon
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
34
|
Liu J, Xiang C, Huang W, Mei J, Sun L, Ling Y, Wang C, Wang X, Dahlgren RA, Wang H. Neurotoxicological effects induced by up-regulation of miR-137 following triclosan exposure to zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:176-185. [PMID: 30496951 DOI: 10.1016/j.aquatox.2018.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Triclosan (TCS) is a prevalent anthropogenic contaminant in aquatic environments and its chronic exposure can lead to a series of neurotoxic effects in zebrafish. Both qRT-PCR and W-ISH identified that TCS exposure resulted in significant up-regulation of miR-137, but downregulation of its regulatory genes (bcl11aa, MAPK6 and Runx1). These target genes are mainly associated with neurodevelopment and the MAPK signaling pathway, and showed especially high expression in the brain. After overexpression or knockdown treatments by manual intervention of miR-137, a series of abnormalities were induced, such as ventricular abnormality, bent spine, yolk cyst, closure of swim sac and venous sinus hemorrhage. The most sensitive larval toxicological endpoint from intervened miR-137 expression was impairment of the central nervous system (CNS), ventricular abnormalities and notochord curvature. Microinjection of microRNA mimics or inhibitors of miR-137 both caused zebrafish malformations. The posterior lateral line neuromasts became obscured and decreased in number in intervened miR-137 groups and TCS-exposure groups. Up-regulation of miR-137 led to more severe neurotoxic effects than its down-regulation. Behavioral observations demonstrated that both TCS exposure and miR-137 over-expression led to inhibited hearing or vision sensitivity. HE staining indicated that hearing and vision abnormalities induced by long-term TCS exposure originated from CNS injury, such as reduced glial cells and loose and hollow fiber structures. The findings of this study enhance our mechanistic understanding of neurotoxicity in aquatic animals in response to TCS exposure. These observations provide theoretical guidance for development of early intervention treatments for nervous system diseases.
Collapse
Affiliation(s)
- Jinfeng Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chenyan Xiang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Wenhao Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingyi Mei
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Limei Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuhang Ling
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Caihong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA95616, USA
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
35
|
Gao X, Mi Y, Guo N, Xu H, Jiang P, Zhang R, Xu L, Gou X. Glioma in Schizophrenia: Is the Risk Higher or Lower? Front Cell Neurosci 2018; 12:289. [PMID: 30233327 PMCID: PMC6129591 DOI: 10.3389/fncel.2018.00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
Whether persons with schizophrenia have a higher or lower incidence of cancer has been discussed for a long time. Due to the complex mechanisms and characteristics of different types of cancer, it is difficult to evaluate the exact relationship between cancers and schizophrenia without considering the type of tumor. Schizophrenia, a disabling mental illness that is now recognized as a neurodevelopmental disorder, is more correlated with brain tumors, such as glioma, than other types of tumors. Thus, we mainly focused on the relationship between schizophrenia and glioma morbidity. Glioma tumorigenesis and schizophrenia may share similar mechanisms; gene/pathway disruption would affect neurodevelopment and reduce the risk of glioma. The molecular defects of disrupted-in-schizophrenia-1 (DISC1), P53, brain-derived neurotrophic factor (BDNF) and C-X-C chemokine receptors type 4 (CXCR4) involved in schizophrenia pathogenesis might play opposite roles in glioma development. Many microRNAs (miRNAs) such as miR-183, miR-9, miR-137 and miR-126 expression change may be involved in the cross talk between glioma prevalence and schizophrenia. Finally, antipsychotic drugs may have antitumor effects. All these factors show that persons with schizophrenia have a decreased incidence of glioma; therefore, epidemiological investigation and studies comparing genetic and epigenetic aberrations involved in both of these complex diseases should be performed. These studies can provide more insightful knowledge about glioma and schizophrenia pathophysiology and help to determine the target/strategies for the prevention and treatment of the two diseases.
Collapse
Affiliation(s)
- Xingchun Gao
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Na Guo
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hao Xu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Pengtao Jiang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Ruisan Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lixian Xu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
36
|
Overexpression of miRNA-137 in the brain suppresses seizure activity and neuronal excitability: A new potential therapeutic strategy for epilepsy. Neuropharmacology 2018; 138:170-181. [DOI: 10.1016/j.neuropharm.2018.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/15/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
|
37
|
Abtahi A, Samaei NM, Gholipour N, Moradi N. No association between the SNP rs1625579 in miR-137 gene and schizophrenia in Iranian population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2017.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
38
|
Zhang J, He J, Zhang L. The down-regulation of microRNA-137 contributes to the up-regulation of retinoblastoma cell proliferation and invasion by regulating COX-2/PGE2 signaling. Biomed Pharmacother 2018; 106:35-42. [PMID: 29945115 DOI: 10.1016/j.biopha.2018.06.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNA-137 (miR-137) plays an important role in the development and progression of many types of human cancers; however, the role of miR-137 in retinoblastoma (RB) remains unclear. In this study, we aimed to investigate the functional significance and molecular mechanisms of miR-137 in RB. We reported that miR-137 was frequently down-regulated in RB tissues and cell lines. The overexpression of miR-137 inhibited RB cell proliferation and invasion, while the suppression of miR-137 promoted RB cell proliferation and invasion. Bioinformatic analysis predicted that cyclooxygenase-2 (COX-2) was a potential target gene of miR-137, which was validated by a dual-luciferase reporter assay. Moreover, our results showed that miR-137 negatively regulated the expression of COX-2 and the production of prostaglandin E2 (PGE2) in RB cells. The knockdown of COX-2 suppressed the proliferation and invasion of RB cells as well as the production of PGE2. The overexpression of COX-2 significantly reversed the inhibitory effect of miR-137 overexpression on RB cell proliferation and invasion. Taken together, these results suggest that miR-137 suppresses the proliferation and invasion of RB cells by targeting COX-2/PGE2. Our study reveals a tumor suppressive role of miR-137 in the progression of RB and suggests miR-137 as a potentially effective therapeutic target for the treatment of RB.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Jing He
- Department of Obstetrics, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China.
| | - Le Zhang
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| |
Collapse
|
39
|
MiRAR-miRNA Activity Reporter for Living Cells. Genes (Basel) 2018; 9:genes9060305. [PMID: 29921790 PMCID: PMC6027049 DOI: 10.3390/genes9060305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
microRNA (miRNA) activity and regulation are of increasing interest as new therapeutic targets. Traditional approaches to assess miRNA levels in cells rely on RNA sequencing or quantitative PCR. While useful, these approaches are based on RNA extraction and cannot be applied in real-time to observe miRNA activity with single-cell resolution. We developed a green fluorescence protein (GFP)-based reporter system that allows for a direct, real-time readout of changes in miRNA activity in live cells. The miRNA activity reporter (MiRAR) consists of GFP fused to a 3′ untranslated region containing specific miRNA binding sites, resulting in miRNA activity-dependent GFP expression. Using qPCR, we verified the inverse relationship of GFP fluorescence and miRNA levels. We demonstrated that this novel optogenetic reporter system quantifies cellular levels of the tumor suppressor miRNA let-7 in real-time in single Human embryonic kidney 293 (HEK 293) cells. Our data shows that the MiRAR can be applied to detect changes in miRNA levels upon disruption of miRNA degradation pathways. We further show that the reporter could be adapted to monitor another disease-relevant miRNA, miR-122. With trivial modifications, this approach could be applied across the miRNome for quantification of many specific miRNA in cell cultures, tissues, or transgenic animal models.
Collapse
|
40
|
Ermakov EA, Ivanova SA, Buneva VN, Nevinsky GA. Blood-Derived RNA- and microRNA-Hydrolyzing IgG Antibodies in Schizophrenia Patients. BIOCHEMISTRY (MOSCOW) 2018; 83:507-526. [PMID: 29738685 DOI: 10.1134/s0006297918050048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abzymes with various catalytic activities are the earliest statistically significant markers of existing and developing autoimmune diseases (AIDs). Currently, schizophrenia (SCZD) is not considered to be a typical AID. It was demonstrated recently that antibodies from SCZD patients efficiently hydrolyze DNA and myelin basic protein. Here, we showed for the first time that autoantibodies from 35 SCZD patients efficiently hydrolyze RNA (cCMP > poly(C) > poly(A) > yeast RNA) and analyzed site-specific hydrolysis of microRNAs involved in the regulation of several genes in SCZD (miR-137, miR-9-5p, miR-219-2-3p, and miR-219a-5p). All four microRNAs were cleaved by IgG preparations (n = 21) from SCZD patients in a site-specific manner. The RNase activity of the abzymes correlated with SCZD clinical parameters. The data obtained showed that SCZD patients might display signs of typical autoimmune processes associated with impaired functioning of microRNAs resulting from their hydrolysis by the abzymes.
Collapse
Affiliation(s)
- E A Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - S A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634014, Russia
| | - V N Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - G A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
41
|
Cosgrove D, Mothersill DO, Whitton L, Harold D, Kelly S, Holleran L, Holland J, Anney R, Richards A, Mantripragada K, Owen M, O'Donovan MC, Gill M, Corvin A, Morris DW, Donohoe G. Effects of MiR-137 genetic risk score on brain volume and cortical measures in patients with schizophrenia and controls. Am J Med Genet B Neuropsychiatr Genet 2018; 177:369-376. [PMID: 29418072 DOI: 10.1002/ajmg.b.32620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/08/2018] [Indexed: 11/10/2022]
Abstract
Multiple genome-wide association studies of schizophrenia have implicated genetic variants within the gene encoding microRNA-137. As risk variants within or regulated by MIR137 have been implicated in memory performance, we investigated the additive effects of schizophrenia-associated risk variants in genes empirically regulated by MIR137 on brain regions associated with memory function. A polygenic risk score (PRS) was calculated (at a p = 0.05 threshold), using this empirically regulated MIR137 gene set, to investigate associations between this PRS and structural brain measures. These measures included total brain volume, cortical thickness, cortical surface area, and hippocampal volume, in a sample of 216 individuals consisting of healthy participants (n = 171) and patients with psychosis (n = 45). We did not observe a significant association between MIR137 PRS and these cortical thickness, surface area or hippocampal volume measures linked to memory function; a significant association between increasing PRS and decreasing total brain volume, independent of diagnosis status (R2 = 0.008, Beta = -0.09, p = 0.029), was observed. This did not survive correction for multiple testing. In conclusion, our study yielded only suggestive evidence that risk variants interacting with MIR137 impacts on cortical structure.
Collapse
Affiliation(s)
- Donna Cosgrove
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - David O Mothersill
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Laura Whitton
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Denise Harold
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Sinead Kelly
- Beth Israel Deaconess Medical Center, Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Laurena Holleran
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Jessica Holland
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Richard Anney
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland.,Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | - Alex Richards
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Kiran Mantripragada
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael Owen
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Derek W Morris
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
42
|
Quinn RK, James MH, Hawkins GE, Brown AL, Heathcote A, Smith DW, Cairns MJ, Dayas CV. Temporally specific miRNA expression patterns in the dorsal and ventral striatum of addiction-prone rats. Addict Biol 2018; 23:631-642. [PMID: 28612502 DOI: 10.1111/adb.12520] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/18/2017] [Accepted: 03/30/2017] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) within the ventral and dorsal striatum have been shown to regulate addiction-relevant behaviours. However, it is unclear how cocaine experience alone can alter the expression of addiction-relevant miRNAs within striatal subregions. Further, it is not known whether differential expression of miRNAs in the striatum contributes to individual differences in addiction vulnerability. We first examined the effect of cocaine self-administration on the expression of miR-101b, miR-137, miR-212 and miR-132 in nucleus accumbens core and nucleus accumbens shell (NAcSh), as well as dorsomedial striatum and dorsolateral striatum (DLS). We then examined the expression of these same miRNAs in striatal subregions of animals identified as being 'addiction-prone', either immediately following self-administration training or following extinction and relapse testing. Cocaine self-administration was associated with changes in miRNA expression in a regionally discrete manner within the striatum, with the most marked changes occurring in the nucleus accumbens core. When we examined the miRNA profile of addiction-prone rats following self-administration, we observed increased levels of miR-212 in the dorsomedial striatum. After extinction and relapse testing, addiction-prone rats showed significant increases in the expression of miR-101b, miR-137, miR-212 and miR-132 in NAcSh, and miR-137 in the DLS. This study identifies temporally specific changes in miRNA expression consistent with the engagement of distinct striatal subregions across the course of the addiction cycle. Increased dysregulation of miRNA expression in NAcSh and DLS at late stages of the addiction cycle may underlie habitual drug seeking, and may therefore aid in the identification of targets designed to treat addiction.
Collapse
Affiliation(s)
- Rikki K. Quinn
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy and the Centre for Translational Neuroscience and Mental Health Research; University of Newcastle and the Hunter Medical Research Institute; Australia
| | - Morgan H. James
- Brain Health Institute; Rutgers University; USA
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Guy E. Hawkins
- Amsterdam Brain and Cognition Center; University of Amsterdam; The Netherlands
| | - Amanda L. Brown
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy and the Centre for Translational Neuroscience and Mental Health Research; University of Newcastle and the Hunter Medical Research Institute; Australia
| | - Andrew Heathcote
- School of Medicine, Division of Psychology; University of Tasmania; Australia
| | - Doug W. Smith
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy and the Centre for Translational Neuroscience and Mental Health Research; University of Newcastle and the Hunter Medical Research Institute; Australia
| | - Murray J. Cairns
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy and the Centre for Translational Neuroscience and Mental Health Research; University of Newcastle and the Hunter Medical Research Institute; Australia
| | - Christopher V. Dayas
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy and the Centre for Translational Neuroscience and Mental Health Research; University of Newcastle and the Hunter Medical Research Institute; Australia
| |
Collapse
|
43
|
Ermakov EA, Ivanova SA, Buneva VN, Nevinsky GA. Hydrolysis by catalytic IgGs of microRNA specific for patients with schizophrenia. IUBMB Life 2018; 70:153-164. [PMID: 29341394 DOI: 10.1002/iub.1712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022]
Abstract
Significant importance of autoimmune changes in the pathogenesis of schizophrenia (SCZ) is not established. Here, we present the first evidence that autoantibodies of 100% SCZ patients possess RNase activity: сCMP > poly(C) > poly(A) > yeast RNA. In addition, we have got an unexpected result: there was revealed site-specific hydrolysis of four known SCZ specific microRNAs (miR-137, miR-9-5p, miR-219-2-3p, and miR-219a-5p) playing an important role in the regulation of several genes functioning. Three major of cleavage sites are located in the microRNA loops or duplex parts directly articulated with the loops. RNase abzymes can contribute to decreasing of microRNAs effects on the functioning of numerous genes and the products of their transcription. Therefore, abzymes with RNase activity may be to some extent important for the development of schizophrenia. © 2018 IUBMB Life, 70(2):153-164, 2018.
Collapse
Affiliation(s)
- Evgeny A Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 4 Aleutskaya Ave., Tomsk, Russia
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, Russia
| |
Collapse
|
44
|
Kandratsenka H, Nestsiarovich A, Goloenko I, Danilenko N, Makarevich A, Obyedkov V, Davydenko O, Waszkiewicz N. Association of MIR137 With Symptom Severity and Cognitive Functioning in Belarusian Schizophrenia Patients. Front Psychiatry 2018; 9:295. [PMID: 30026708 PMCID: PMC6041593 DOI: 10.3389/fpsyt.2018.00295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNA-137 (miRNA-137; miR-137) is one of the important post-transcriptional regulators of the nervous system development, and its MIR137 gene rs1625579 polymorphism was reported to be a potential regulator for schizophrenia susceptibility. However, schizophrenia characteristics controlled by MIR137 rs1625579 polymorphism are still insufficiently understood. There were 3 groups included in the study: (a) subjects with diagnosis of schizophrenia (n = 150; 81-females, 69-males), (b) mentally healthy people (control group; n = 102; 66-females, 36-males) and (c) Belarusian indigenous male group (n = 295). Associations of rs1625579 with schizophrenia, symptom's severity and cognitive performance [by using Positive and Negative Syndrome Scale (PANSS) and Wisconsin Card Sorting Test (WCST), respectively] were studied, when compared to controls. Allele and genotype frequencies were investigated in Belarusian indigenous males. Rs1625579 displayed no association with schizophrenia in Belarusian population. Significant "symptom severity-genotype" interactions were revealed for schizophrenia patients. Patients with T/G genotype displayed lower severity of positive symptoms and general psychopathology compared to homozygous subjects. T/T genotype was associated with the highest symptom's severity. The negative symptom scores and the total PANSS-score were significantly higher in females carrying genotype T/T vs. T/G+G/G; no significant gene-phenotype associations were found in males. WCST parameters did not show any association with rs1625579 polymorphism. MIR137 rs1625579 polymorphism might be an important sex-dependent factor influencing severity of schizophrenia psychopathological manifestations. These findings also contribute to the knowledge on candidate gene effects on characteristics related to schizophrenia phenotype. As miR 137 is considered to be cancer therapeutic target, miR-137 may also explain the lower incidence of cancer in schizophrenia patients. Further studies with larger sample size are needed to confirm these novel findings.
Collapse
Affiliation(s)
- Hanna Kandratsenka
- Laboratory of Cytoplasmic Inheritance, Institute of Genetics and Cytology, National Academy of Sciences of the Republic of Belarus, Minsk, Belarus
| | - Anastasiya Nestsiarovich
- Department of Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM, United States
| | - Inna Goloenko
- Laboratory of Cytoplasmic Inheritance, Institute of Genetics and Cytology, National Academy of Sciences of the Republic of Belarus, Minsk, Belarus
| | - Nina Danilenko
- Laboratory of Cytoplasmic Inheritance, Institute of Genetics and Cytology, National Academy of Sciences of the Republic of Belarus, Minsk, Belarus
| | - Anna Makarevich
- Laboratory of Cytoplasmic Inheritance, Institute of Genetics and Cytology, National Academy of Sciences of the Republic of Belarus, Minsk, Belarus
| | - Victor Obyedkov
- Department of Psychiatry and Medical Psychology, Belarusian State Medical University, Minsk, Belarus
| | - Oleg Davydenko
- Laboratory of Cytoplasmic Inheritance, Institute of Genetics and Cytology, National Academy of Sciences of the Republic of Belarus, Minsk, Belarus
| | | |
Collapse
|
45
|
Chen L, Wang X, Huang W, Ying T, Chen M, Cao J, Wang M. MicroRNA-137 and its downstream target LSD1 inversely regulate anesthetics-induced neurotoxicity in dorsal root ganglion neurons. Brain Res Bull 2017; 135:1-7. [PMID: 28899795 DOI: 10.1016/j.brainresbull.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE Anesthetic reagents, such as bupivacaine (Bv), induce significant neurotoxicity in dorsal root ganglion neurons (DRGNs). In this study, we investigated the expression, function and cross-association of microRNA-137-3p (miR-137-3p) and lysine (K)-specific demethylase 1A (LSD1) in a murine model of Bv-induced neural injury in DRGNs. METHODS Murine DRGNs were culture in vitro and treated with Bv. QPCR was used to evaluate miR-137-3p expression in Bv-injured DRGNs. MiR-137-3p was genetically downregulated to evaluate its rescuing effect on Bv-induced DRGN apoptosis and neurite retraction. The association of miR-137-3p on its downstream target, LSD1 coding gene KDM1A, was evaluated by dual-luciferase activity assay and qPCR. In miR-137-3p-downregulated DRGNs, KDM1A was inhibited to evaluate its involvement in miR-137-3p-mediated modulation on Bv-induced DRGN neurotoxicity. Furthermore, KDM1A expression in Bv-injured DRGN was evaluated by qPCR, and LSD1 was overexpressed in DRGN to evaluate its direct effect on Bv-induced neurotoxicity. RESULTS MiR-137-3p was upregulated in Bv-injured DRGNs. MiR-137-3p downregulation rescued Bv-induced DRGN apoptosis and neurite retraction. LSD1 was demonstrated to be downstream to, and inversely modulated by miR-137-3p in DRGN. In Bv-injured DRGNs, LSD1 downregulation reversed miR-137-3p-downregualtion-induced neural protection. Furthermore, LSD1 upregulation directly rescued Bv-induced apoptosis and neurite retraction in DRGNs. CONCLUSIONS MiR-137-3p and its downstream target LSD1 are inversely associated to regulate anesthetics-induced neurotoxicity in DRGN. This signaling pathway may be a therapeutic candidate to reduce anesthetics-induced neurological damage in human patients.
Collapse
Affiliation(s)
- Lingyang Chen
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Xiaodan Wang
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Wenguang Huang
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Tingting Ying
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Minjuan Chen
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Jianbin Cao
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Mingcang Wang
- Department of Anesthesia, Zhejiang Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou 317000, China.
| |
Collapse
|
46
|
|
47
|
Song W, Tavitian A, Cressatti M, Galindez C, Liberman A, Schipper HM. Cysteine-rich whey protein isolate (Immunocal®) ameliorates deficits in the GFAP.HMOX1 mouse model of schizophrenia. Free Radic Biol Med 2017; 110:162-175. [PMID: 28603087 DOI: 10.1016/j.freeradbiomed.2017.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022]
Abstract
Schizophrenia is a neuropsychiatric disorder that features neural oxidative stress and glutathione (GSH) deficits. Oxidative stress is augmented in brain tissue of GFAP.HMOX1 transgenic mice which exhibit schizophrenia-relevant characteristics. The whey protein isolate, Immunocal® serves as a GSH precursor upon oral administration. In this study, we treated GFAP.HMOX1 transgenic mice daily with either Immunocal (33mg/ml drinking water) or equivalent concentrations of casein (control) between the ages of 5 and 6.5 months. Immunocal attenuated many of the behavioral, neurochemical and redox abnormalities observed in GFAP.HMOX1 mice. In addition to restoring GSH homeostasis in the CNS of the transgenic mice, the whey protein isolate augmented GSH reserves in the brains of wild-type animals. These results demonstrate that consumption of whey protein isolate augments GSH stores and antioxidant defenses in the healthy and diseased mammalian brain. Whey protein isolate supplementation (Immunocal) may constitute a safe and effective modality for the management of schizophrenia, an unmet clinical imperative.
Collapse
Affiliation(s)
- Wei Song
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Cote Ste. Catherine Road, Montreal, Quebec, Canada H3T 1E2.
| | - Ayda Tavitian
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Cote Ste. Catherine Road, Montreal, Quebec, Canada H3T 1E2; Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
| | - Marisa Cressatti
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Cote Ste. Catherine Road, Montreal, Quebec, Canada H3T 1E2; Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
| | - Carmela Galindez
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Cote Ste. Catherine Road, Montreal, Quebec, Canada H3T 1E2.
| | - Adrienne Liberman
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Cote Ste. Catherine Road, Montreal, Quebec, Canada H3T 1E2.
| | - Hyman M Schipper
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Cote Ste. Catherine Road, Montreal, Quebec, Canada H3T 1E2; Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
| |
Collapse
|
48
|
Chung CZ, Seidl LE, Mann MR, Heinemann IU. Tipping the balance of RNA stability by 3' editing of the transcriptome. Biochim Biophys Acta Gen Subj 2017; 1861:2971-2979. [PMID: 28483641 DOI: 10.1016/j.bbagen.2017.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND The regulation of active microRNAs (miRNAs) and maturation of messenger RNAs (mRNAs) that are competent for translation is a crucial point in the control of all cellular processes, with established roles in development and differentiation. Terminal nucleotidyltransferases (TNTases) are potent regulators of RNA metabolism. TNTases promote the addition of single or multiple nucleotides to an RNA transcript that can rapidly alter transcript stability. The well-known polyadenylation promotes transcript stability while the newly discovered but ubiquitious 3'-end polyuridylation marks RNA for degradation. Monoadenylation and uridylation are essential control mechanisms balancing mRNA and miRNA homeostasis. SCOPE OF REVIEW This review discusses the multiple functions of non-canonical TNTases, focusing on their substrate range, biological functions, and evolution. TNTases directly control mRNA and miRNA levels, with diverse roles in transcriptome stabilization, maturation, silencing, or degradation. We will summarize the current state of knowledge on non-canonical nucleotidyltransferases and their function in regulating miRNA and mRNA metabolism. We will review the discovery of uridylation as an RNA degradation pathway and discuss the evolution of nucleotidyltransferases along with their use in RNA labeling and future applications as therapeutic targets. MAJOR CONCLUSIONS The biochemically and evolutionarily highly related adenylyl- and uridylyltransferases play antagonizing roles in the cell. In general, RNA adenylation promotes stability, while uridylation marks RNA for degradation. Uridylyltransferases evolved from adenylyltransferases in multiple independent evolutionary events by the insertion of a histidine residue into the active site, altering nucleotide, but not RNA specificity. GENERAL SIGNIFICANCE Understanding the mechanisms regulating RNA stability in the cell and controlling the transcriptome is essential for efforts aiming to influence cellular fate. Selectively enhancing or reducing RNA stability allows for alterations in the transcriptome, proteome, and downstream cellular processes. Genetic, biochemical, and clinical data suggest TNTases are potent targets for chemotherapeutics and have been exploited for RNA labeling applications. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Christina Z Chung
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Lauren E Seidl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mitchell R Mann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
49
|
Cosgrove D, Harold D, Mothersill O, Anney R, Hill MJ, Bray NJ, Blokland G, Petryshen T, Richards A, Mantripragada K, Owen M, O'Donovan MC, Gill M, Corvin A, Morris DW, Donohoe G. MiR-137-derived polygenic risk: effects on cognitive performance in patients with schizophrenia and controls. Transl Psychiatry 2017; 7:e1012. [PMID: 28117840 PMCID: PMC5545742 DOI: 10.1038/tp.2016.286] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 01/04/2023] Open
Abstract
Variants at microRNA-137 (MIR137), one of the most strongly associated schizophrenia risk loci identified to date, have been associated with poorer cognitive performance. As microRNA-137 is known to regulate the expression of ~1900 other genes, including several that are independently associated with schizophrenia, we tested whether this gene set was also associated with variation in cognitive performance. Our analysis was based on an empirically derived list of genes whose expression was altered by manipulation of MIR137 expression. This list was cross-referenced with genome-wide schizophrenia association data to construct individual polygenic scores. We then tested, in a sample of 808 patients and 192 controls, whether these risk scores were associated with altered performance on cognitive functions known to be affected in schizophrenia. A subgroup of healthy participants also underwent functional imaging during memory (n=108) and face processing tasks (n=83). Increased polygenic risk within the empirically derived miR-137 regulated gene score was associated with significantly lower performance on intelligence quotient, working memory and episodic memory. These effects were observed most clearly at a polygenic threshold of P=0.05, although significant results were observed at all three thresholds analyzed. This association was found independently for the gene set as a whole, excluding the schizophrenia-associated MIR137 SNP itself. Analysis of the spatial working memory fMRI task further suggested that increased risk score (thresholded at P=10-5) was significantly associated with increased activation of the right inferior occipital gyrus. In conclusion, these data are consistent with emerging evidence that MIR137 associated risk for schizophrenia may relate to its broader downstream genetic effects.
Collapse
Affiliation(s)
- D Cosgrove
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland, Galway, Ireland
| | - D Harold
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - O Mothersill
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland, Galway, Ireland
| | - R Anney
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
- Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - M J Hill
- Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - N J Bray
- Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - G Blokland
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - T Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - A Richards
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - K Mantripragada
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - M Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - M C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - M Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - A Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - D W Morris
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland, Galway, Ireland
| | - G Donohoe
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland, Galway, Ireland
| |
Collapse
|
50
|
Agarwal S, Nagpure NS, Srivastava P, Kumar R, Pandey M, Srivastava S, Jena JK, Das P, Kushwaha B. In Silico Mining of Conserved miRNAs of Indian Catfish Clarias batrachus (Linnaeus, 1758) from the Contigs, ESTs, and BAC End Sequences. Appl Biochem Biotechnol 2016; 182:956-966. [DOI: 10.1007/s12010-016-2373-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
|