1
|
Guo J, Xue S, Wang X, Wang L, Wen SY. Emerging insights on the role of Elovl6 in human diseases: Therapeutic challenges and opportunities. Life Sci 2025; 361:123308. [PMID: 39675554 DOI: 10.1016/j.lfs.2024.123308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
ELOVL6, elongation-of-very-long-chain-fatty acids 6, a crucial enzyme in lipid metabolism, primarily responsible for the elongation of carbon chains of C12-C16 saturated fatty acids. It plays a significant role in various human diseases, particularly those associated with metabolic disorders related to fatty acid synthesis, such as insulin resistance, non-alcoholic fatty liver disease, cancer, and cardiovascular diseases. Emerging research also links ELOVL6 to kidney diseases, neurological conditions such as epilepsy, and pulmonary fibrosis. The enzyme's expression is regulated by various factors including diet, oxidative stress, and circadian rhythms. For instance, a high-carbohydrate diet can promote an increase in ELOVL6 expression. This abnormality leads to an accumulation of long-chain fatty acids and lipid deposition, ultimately resulting in pathological consequences across multiple systems in the body. As a biological target, ELOVL6 holds promise for diagnostic and therapeutic applications, with future research expected to uncover its mechanisms and therapeutic potential, paving the way for novel interventions in multiple disease areas. Here, the expression regulation and function of ELOVL6 in various human diseases are reviewed. This review underscores ELOVL6 as a significant therapeutic target for human diseases, with its potential for diagnostic and therapeutic applications anticipated to drive future research and enable innovative interventions in various pathological conditions.
Collapse
Affiliation(s)
- Jiao Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Shulan Xue
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Chen B, Shen K, Zhang T, Gao WC. ELOVL6 is associated with immunosuppression in lung adenocarcinoma through bioinformatics analysis. Medicine (Baltimore) 2023; 102:e35013. [PMID: 37682172 PMCID: PMC10489423 DOI: 10.1097/md.0000000000035013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
The aim of this paper was to reveal the correlation between the expression of ELOVL fatty acid elongase 6 (ELOVL6) gene in lung adenocarcinoma (LUAD) and its clinical significance, immune cell infiltration level and prognosis. Expression profile data of ELOVL6 mRNA were collected from the cancer genome atlas database to analyze the differences in ELOVL6 mRNA expression in LUAD tissues and normal lung tissues, and to analyze the correlation between ELOVL6 and information on clinicopathological features. Based on TIMER database, TISDIB database and GEPIA2 database, the correlation between ELOVL6 expression and tumor immune cell infiltration in LUAD was analyzed. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses of ELOVL6-related co-expressed genes were performed to identify the involved signaling pathways and to construct their co-expressed gene protein interaction networks. Drugs affected by ELOVL6 expression were screened based on the Cell Miner database. These findings suggest that ELOVL6 plays an important role in the course of LUAD, and the expression level of this gene has a close relationship with clinicopathological characteristics and survival prognosis, and has the potential to become a prognostic marker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Binyu Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kaiyu Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Tiantian Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wen-Cang Gao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Chhimwal J, Anand P, Mehta P, Swarnkar MK, Patial V, Pandey R, Padwad Y. Metagenomic signatures reveal the key role of phloretin in amelioration of gut dysbiosis attributed to metabolic dysfunction-associated fatty liver disease by time-dependent modulation of gut microbiome. Front Microbiol 2023; 14:1210517. [PMID: 37744933 PMCID: PMC10516607 DOI: 10.3389/fmicb.2023.1210517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
The importance of gut-liver axis in the pathophysiology of metabolic dysfunction-associated fatty liver disease (MAFLD) is being investigated more closely in recent times. However, the inevitable changes in gut microbiota during progression of the disease merits closer look. The present work intends to assess the time-dependent gut dysbiosis in MAFLD, its implications in disease progression and role of plant-derived prebiotics in its attenuation. Male C57BL/6J mice were given western diet (WD) for up to 16 weeks and phloretin was administered orally. The fecal samples of mice were collected every fourth week for 16 weeks. The animals were sacrificed at the end of the study and biochemical and histological analyses were performed. Further, 16S rRNA amplicon sequencing analysis was performed to investigate longitudinal modification of gut microbiome at different time points. Findings of our study corroborate that phloretin alleviated the metabolic changes and mitigated circulating inflammatory cytokines levels. Phloretin treatment resists WD induced changes in microbial diversity of mice and decreased endotoxin content. Prolonged exposure of WD changed dynamics of gut microbiota abundance and distribution. Increased abundance of pathogenic taxa like Desulfovibrionaceae, Peptostreptococcus, Clostridium, and Terrisporobacter was noted. Phloretin treatment not only reversed this dysbiosis but also modulated taxonomic signatures of beneficial microbes like Ruminococcus, Lactobacillus, and Alloprevotella. Therefore, the potential of phloretin to restore gut eubiosis could be utilized as an intervention strategy for the prevention of MAFLD and related metabolic disorders.
Collapse
Affiliation(s)
- Jyoti Chhimwal
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prince Anand
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka Mehta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Yogendra Padwad
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Zhao Y, Xu X, Wang Y, Wu LD, Luo RL, Xia RP. Tumor purity-associated genes influence hepatocellular carcinoma prognosis and tumor microenvironment. Front Oncol 2023; 13:1197898. [PMID: 37434985 PMCID: PMC10330704 DOI: 10.3389/fonc.2023.1197898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Tumor purity takes on critical significance to the progression of solid tumors. The aim of this study was at exploring potential prognostic genes correlated with tumor purity in hepatocellular carcinoma (HCC) by bioinformatics analysis. Methods The ESTIMATE algorithm was applied for determining the tumor purity of HCC samples from The Cancer Genome Atlas (TCGA). The tumor purity-associated genes with differential expression (DEGs) were identified based on overlap analysis, weighted gene co-expression network analysis (WGCNA), and differential expression analysis. The prognostic genes were identified in terms of the prognostic model construction based on the Kaplan-Meier (K-M) survival analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses. The expression of the above-described genes was further validated by the GSE105130 dataset from the Gene Expression Omnibus (GEO) database. We also characterized the clinical and immunophenotypes of prognostic genes. Gene set enrichment analysis (GSEA) was carried out for exploring the biological signaling pathway. Results A total of 26 tumor purity-associated DEGs were identified, which were involved in biological processes such as immune/inflammatory responses and fatty acid elongation. Ultimately, we identified ADCK3, HK3, and PPT1 as the prognostic genes for HCC. Moreover, HCC patients exhibiting higher ADCK3 expression and lower HK3 and PPT1 expressions had a better prognosis. Furthermore, high HK3 and PPT1 expressions and low ADCK3 expression resulted in high tumor purity, high immune score, high stromal score, and high ESTIMATE score. GSEA showed that the abovementioned prognostic genes showed a significant correlation with immune-inflammatory response, tumor growth, and fatty acid production/degradation. Discussion In conclusion, this study identified novel predictive biomarkers (ADCK3, HK3, and PPT1) and studied the underlying molecular mechanisms of HCC pathology initially.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Organ Transplantation, Kunming Medical University First Affiliated Hospital, Kunming, China
| | - Xu Xu
- Department of Urology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yue Wang
- Department of Organ Transplantation, Kunming Medical University First Affiliated Hospital, Kunming, China
| | - Lin D. Wu
- Department of Organ Transplantation, Kunming Medical University First Affiliated Hospital, Kunming, China
| | - Rui L. Luo
- Department of Urology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ren P. Xia
- Department of Organ Transplantation, Kunming Medical University First Affiliated Hospital, Kunming, China
| |
Collapse
|
5
|
Wiesenthal AA, Legroux TM, Richter C, Junker BH, Hecksteden A, Kessler SM, Hoppstädter J, Kiemer AK. Endotoxin Tolerance Acquisition and Altered Hepatic Fatty Acid Profile in Aged Mice. BIOLOGY 2023; 12:biology12040530. [PMID: 37106731 PMCID: PMC10135800 DOI: 10.3390/biology12040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
(1) Background: Aging is linked to an altered immune response and metabolism. Inflammatory conditions, such as sepsis, COVID-19, and steatohepatitis are more prevalent in the elderly and steatosis is linked both to severe COVID-19 and sepsis. We hypothesized that aging is linked to a loss of endotoxin tolerance, which normally protects the host from excessive inflammation, and that this is accompanied by elevated levels of hepatic lipids. (2) Methods: An in vivo lipopolysaccharide (LPS) tolerance model in young and old mice was used and the cytokine serum levels were measured by ELISA. Cytokine and toll-like receptor gene expression was determined by qPCR in the lungs and the liver; hepatic fatty acid composition was assessed by GC–MS. (3) Results: The old mice showed a distinct potential for endotoxin tolerance as suggested by the serum cytokine levels and gene expression in the lung tissue. Endotoxin tolerance was less pronounced in the livers of the aged mice. However, the fatty acid composition strongly differed in the liver tissues of the young and old mice with a distinct change in the ratio of C18 to C16 fatty acids. (4) Conclusions: Endotoxin tolerance is maintained in advanced age, but changes in the metabolic tissue homeostasis may lead to an altered immune response in old individuals.
Collapse
Affiliation(s)
- Amanda A. Wiesenthal
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
- Marine Biology, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany
| | - Thierry M. Legroux
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Chris Richter
- Biosynthesis of Active Substances, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Björn H. Junker
- Biosynthesis of Active Substances, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Anne Hecksteden
- Institute of Sports and Preventive Medicine, Saarland University, D-66123 Saarbrücken, Germany
| | - Sonja M. Kessler
- Experimental Pharmacology for Natural Sciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Jessica Hoppstädter
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Alexandra K. Kiemer
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| |
Collapse
|
6
|
An Investigation of the Prognostic Role of Genes Related to Lipid Metabolism in Head and Neck Squamous Cell Carcinoma. Int J Genomics 2023; 2023:9708282. [PMID: 36818393 PMCID: PMC9937776 DOI: 10.1155/2023/9708282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/06/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has become a prevalent malignancy, and its incidence and mortality rate are increasing worldwide. Accumulating evidence has indicated that lipid metabolism-related genes (LMRGs) are involved in the occurrence and development of HNSCC. This study investigated the latent association of lipid metabolism with HNSCC and established a prognostic signature based on LMRGs. A prognostic risk model composed of eight differentially expressed LMRGs (PHYH, CYP4F8, INMT, ELOVL6, PLPP3, BCHE, TPTE, and STAR) was constructed through The Cancer Genome Atlas database. Then, ELOVL6 expression was validated in oral squamous cell carcinoma (OSCC), which is a common type of HNSCC, by immunohistochemical analysis. ELOVL6 expression in the OSCC II/III group was significantly higher than that in the other three groups (normal, dysplasia, and OSCC I), and OSCC patients with high ELOVL6 expression had poorer survival than those with low ELOVL6 expression. In summary, the LMRG-based prognostic feature had prognostic predictive capacity. ELOVL6 may be a potential prognostic factor for HNSCC patients.
Collapse
|
7
|
Sawong S, Pekthong D, Suknoppakit P, Winitchaikul T, Kaewkong W, Somran J, Intapa C, Parhira S, Srisawang P. Calotropis gigantea stem bark extracts inhibit liver cancer induced by diethylnitrosamine. Sci Rep 2022; 12:12151. [PMID: 35840761 PMCID: PMC9287404 DOI: 10.1038/s41598-022-16321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Several fractions of Calotropis gigantea extracts have been proposed to have potential anticancer activity in many cancer models. The present study evaluated the anticancer activity of C. gigantea stem bark extracts in liver cancer HepG2 cells and diethylnitrosamine (DEN)-induced primary liver cancer in rats. The carcinogenesis model induced by DEN administration has been widely used to study pathophysiological features and responses in rats that are comparable to those seen in cancer patients. The dichloromethane (CGDCM), ethyl acetate, and water fractions obtained from partitioning crude ethanolic extract were quantitatively analyzed for several groups of secondary metabolites and calactin contents. A combination of C. gigantea stem bark extracts with doxorubicin (DOX) was assessed in this study to demonstrate the enhanced cytotoxic effect to cancer compared to the single administration. The combination of DOX and CGDCM, which had the most potential cytotoxic effect in HepG2 cells when compared to the other three fractions, significantly increased cytotoxicity through the apoptotic effect with increased caspase-3 expression. This combination treatment also reduced ATP levels, implying a correlation between ATP and apoptosis induction. In a rat model of DEN-induced liver cancer, treatment with DOX, C. gigantea at low (CGDCM-L) and high (CGDCM-H) doses, and DOX + CGDCM-H for 4 weeks decreased the progression of liver cancer by lowering the liver weight/body weight ratio and the occurrence of liver hyperplastic nodules, fibrosis, and proliferative cells. The therapeutic applications lowered TNF-α, IL-6, TGF-β, and α-SMA inflammatory cytokines in a similar way, implying that CGDCM had a curative effect against the inflammation-induced liver carcinogenesis produced by DEN exposure. Furthermore, CGDCM and DOX therapy decreased ATP and fatty acid synthesis in rat liver cancer, which was correlated with apoptosis inhibition. CGDCM reduced cleaved caspase-3 expression in liver cancer rats when used alone or in combination with DOX, implying that apoptosis-inducing hepatic carcinogenesis was suppressed. Our results also verified the low toxicity of CGDCM injection on the internal organs of rats. Thus, this research clearly demonstrated a promising, novel anticancer approach that could be applied in future clinical studies of CGDCM and combination therapy.
Collapse
Affiliation(s)
- Suphunwadee Sawong
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Pennapha Suknoppakit
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thanwarat Winitchaikul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chaidan Intapa
- Department of Oral Diagnosis, Faculty of Dentistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Supawadee Parhira
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
8
|
Hamada S, Takata T, Yamada K, Yamamoto M, Mae Y, Iyama T, Ikeda S, Kanda T, Sugihara T, Isomoto H. Steatosis is involved in the progression of kidney disease in a high-fat-diet-induced non-alcoholic steatohepatitis mouse model. PLoS One 2022; 17:e0265461. [PMID: 35294499 PMCID: PMC8926260 DOI: 10.1371/journal.pone.0265461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
Chronic kidney disease (CKD) and non-alcoholic steatohepatitis (NASH) are major health issues associated with the metabolic syndrome. Although NASH is a known risk factor of CKD, the mechanisms linking these two diseases remain poorly understood. We aimed to investigate alterations in the kidney complicated with dyslipidemia in an established NASH mouse model. Male C57BL6/J mice were fed with control diet or high-fat diet (HFD), containing 40% fat, 22% fructose, and 2% cholesterol for 16 weeks. Metabolic characteristics, histological changes in the kidney, endoplasmic reticulum (ER) stress, apoptosis, and fibrosis were evaluated by histological analysis, immunoblotting, and quantitative reverse transcription-polymerase chain reaction. Levels of serum aspartate aminotransferase, alanine aminotransferase, alkali-phosphatase, total cholesterol, and urinary albumin were significantly higher in mice fed with HFD. Remarkable steatosis, glomerular hypertrophy, and interstitial fibrosis were also shown in in the kidney by leveraging HFD. Furthermore, HFD increased the mRNA expression levels of Casp3, Tgfb1, and Nfe2l2 and the protein level of BiP. We observed the early changes of CKD and speculate that the underlying mechanisms that link CKD and NASH are the induction of ER stress and apoptosis. Further, we observed the activation of Nfe2l2 in the steatosis-induced CKD mouse model. This NASH model holds implications in investigating the mechanisms linking dyslipidemia and CKD.
Collapse
Affiliation(s)
- Shintaro Hamada
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Tomoaki Takata
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
- * E-mail:
| | - Kentaro Yamada
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Marie Yamamoto
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Yukari Mae
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Takuji Iyama
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Suguru Ikeda
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Tsutomu Kanda
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Takaaki Sugihara
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| |
Collapse
|
9
|
Köhler N, Höring M, Czepukojc B, Rose TD, Buechler C, Kröhler T, Haybaeck J, Liebisch G, Pauling JK, Kessler SM, Kiemer AK. Kupffer cells are protective in alcoholic steatosis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166398. [DOI: 10.1016/j.bbadis.2022.166398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
|
10
|
Dahlem C, Abuhaliema A, Kessler SM, Kröhler T, Zoller BGE, Chanda S, Wu Y, Both S, Müller F, Lepikhov K, Kirsch SH, Laggai S, Müller R, Empting M, Kiemer AK. First Small-Molecule Inhibitors Targeting the RNA-Binding Protein IGF2BP2/IMP2 for Cancer Therapy. ACS Chem Biol 2022; 17:361-375. [PMID: 35023719 DOI: 10.1021/acschembio.1c00833] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The RNA-binding protein IGF2BP2/IMP2/VICKZ2/p62 is overexpressed in several tumor entities, promotes tumorigenesis and tumor progression, and has been suggested to worsen the disease outcome. The aim of this study is to (I) validate IMP2 as a potential target for colorectal cancer, (II) set up a screening assay for small-molecule inhibitors of IMP2, and (III) test the biological activity of the obtained hit compounds. Analyses of colorectal and liver cancer gene expression data showed reduced survival in patients with a high IMP2 expression and in patients with a higher IMP2 expression in advanced tumors. In vitro target validation in 2D and 3D cell cultures demonstrated a reduction in cell viability, migration, and proliferation in IMP2 knockout cells. Also, xenotransplant tumor cell growth in vivo was significantly reduced in IMP2 knockouts. Different compound libraries were screened for IMP2 inhibitors using a fluorescence polarization assay, and the results were confirmed by the thermal shift assay and saturation-transfer difference NMR. Ten compounds, which belong to two classes, that is, benzamidobenzoic acid class and ureidothiophene class, were validated in vitro and showed a biological target specificity. The three most active compounds were also tested in vivo and exhibited reduced tumor xenograft growth in zebrafish embryos. In conclusion, our findings support that IMP2 represents a druggable target to reduce tumor cell proliferation.
Collapse
Affiliation(s)
- Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Ali Abuhaliema
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Sonja M. Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Martin Luther University Halle-Wittenberg, Halle 06108, Germany
| | - Tarek Kröhler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Ben G. E. Zoller
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken 66123, Germany
| | - Shilpee Chanda
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Yingwen Wu
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken 66123, Germany
| | - Simon Both
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Fabian Müller
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
| | | | - Susanne H. Kirsch
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Saarbrücken 66123, Germany
| | - Stephan Laggai
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Martin Empting
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
11
|
Yang X, Sheng S, Du X, Su W, Tian J, Zhao X. Hepatocyte-specific TAZ deletion downregulates p62/ Sqstm1 expression in nonalcoholic steatohepatitis. Biochem Biophys Res Commun 2021; 535:60-65. [PMID: 33341674 DOI: 10.1016/j.bbrc.2020.12.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/11/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is characterized by inflammation, hepatocellular injury, and different degrees of fibrosis. Previous studies have indicated that the transcriptional coactivator with PDZ-binding motif TAZ (WWTR1) is correlated with the increased level of liver cholesterol which suppresses TAZ proteasomal degradation and promotes fibrotic NASH by activating soluble adenylyl cyclase -calcium-RhoA pathway. However, the exact mechanism by which TAZ promotes inflammatory and hepatocyte injury has not yet been fully addressed. Reportedly, p62/Sqstm1plays a pivotal role in inflammatory and hepatocyte injury during NASH development. Here, we demonstrated that p62/Sqstm1 was overexpressed in the livers of mouse NASH models in a TAZ-dependent manner. In addition, hepatocyte-specific TAZ deletion reduced p62/Sqstm1 both in vitro and in vivo. Strikingly, luciferase reporter data demonstrated that p62/Sqstm1 is a TAZ/TEAD target gene and can be transcriptionally regulated by TAZ, indicating that hepatocyte-specific TAZ deletion downregulates p62/Sqstm1 expression in NASH.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Siqi Sheng
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xingchen Du
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wentao Su
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jue Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xunxia Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| |
Collapse
|
12
|
Remodeling Lipids in the Transition from Chronic Liver Disease to Hepatocellular Carcinoma. Cancers (Basel) 2020; 13:cancers13010088. [PMID: 33396945 PMCID: PMC7795670 DOI: 10.3390/cancers13010088] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) has poor prognosis. We studied blood lipids by comparing healthy volunteers to patients with chronic liver disease (CLD), and to patients with HCC caused by viral infections. We contrasted our findings in blood to lipid alterations in liver tumor and nontumor tissue samples from HCC patients. In blood, most lipid species were found at increased levels in CLD patients compared to healthy volunteers. This trend was mostly reversed in HCC versus CLD patients. In liver tumor tissues, levels of many lipids were decreased compared to paired nontumor liver tissues. Differences in lipid levels were further defined by alterations in the degree of saturation in the fatty acyl chains. Some lipids, including free fatty acids, saturated lysophosphatidylcholines and saturated triacylglycerides, showed a continuous trend in the transition from the blood of healthy controls to CLD and HCC patients. For HCC patients, phosphatidylglycerides showed similar alterations in both blood and tissues. Abstract Hepatocellular carcinoma (HCC) is a worldwide health problem. HCC patients show a 50% mortality within two years of diagnosis. To better understand the molecular pathogenesis at the level of lipid metabolism, untargeted UPLC MS—QTOF lipidomics data were acquired from resected human HCC tissues and their paired nontumor hepatic tissues (n = 46). Blood samples of the same HCC subjects (n = 23) were compared to chronic liver disease (CLD) (n = 15) and healthy control (n = 15) blood samples. The participants were recruited from the National Liver Institute in Egypt. The lipidomics data yielded 604 identified lipids that were divided into six super classes. Five-hundred and twenty-four blood lipids were found as significantly differentiated (p < 0.05 and qFDR p < 0.1) between the three study groups. In the blood of CLD patients compared to healthy control subjects, almost all lipid classes were significantly upregulated. In CLD patients, triacylglycerides were found as the most significantly upregulated lipid class at qFDR p = 1.3 × 10−56, followed by phosphatidylcholines at qFDR p = 3.3 × 10−51 and plasmalogens at qFDR p = 1.8 × 10-46. In contrast, almost all blood lipids were significantly downregulated in HCC patients compared to CLD patients, and in HCC tissues compared to nontumor hepatic tissues. Ceramides were found as the most significant lipid class (qFDR p = 1 × 10−14) followed by phosphatidylglycerols (qFDR p = 3 × 10−9), phosphatidylcholines and plasmalogens. Despite these major differences, there were also common trends in the transitions between healthy controls, CLD and HCC patients. In blood, several mostly saturated triacylglycerides showed a continued increase in the trajectory towards HCC, accompanied by reduced levels of saturated free fatty acids and saturated lysophospatidylcholines. In contrast, the largest overlaps of lipid alterations that were found in both HCC tissue and blood comparisons were decreased levels of phosphatidylglycerols and sphingolipids. This study highlights the specific impact of HCC tumors on the circulating lipids. Such data may be used to target lipid metabolism for prevention, early detection and treatment of HCC in the background of viral-related CLD etiology.
Collapse
|
13
|
Zhang J, Gu J, Guo S, Huang W, Zheng Y, Wang X, Zhang T, Zhao W, Ni B, Fan Y, Wang H. Establishing and validating a pathway prognostic signature in pancreatic cancer based on miRNA and mRNA sets using GSVA. Aging (Albany NY) 2020; 12:22840-22858. [PMID: 33197892 PMCID: PMC7746356 DOI: 10.18632/aging.103965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
Pancreatic cancer (PC) is a severe disease with the highest mortality rate among various cancers. It is urgent to find an effective and accurate way to predict the survival of PC patients. Gene set variation analysis (GSVA) was used to establish and validate a miRNA set-based pathway prognostic signature for PC (miPPSPC) and a mRNA set-based pathway prognostic signature for PC (mPPSPC) in independent datasets. An optimized miPPSPC was constructed by combining clinical parameters. The miPPSPC, optimized miPPSPC and mPPSPC were established and validated to predict the survival of PC patients and showed excellent predictive ability. Four metabolic pathways and one oxidative stress pathway were identified in the miPPSPC, whereas linoleic acid metabolism and the pentose phosphate pathway were identified in the mPPSPC. Key factors of the pentose phosphate pathway and linoleic acid metabolism, G6PD and CYP2C8/9/18/19, respectively, are related to the survival of PC patients according to our tissue microarray. Thus, the miPPSPC, optimized miPPSPC and mPPSPC can predict the survival of PC patients efficiently and precisely. The metabolic and oxidative stress pathways may participate in PC progression.
Collapse
Affiliation(s)
- Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401120, P R China
| | - Jianyou Gu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, P R China
| | - Shixiang Guo
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401120, P R China
| | - Wenjie Huang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, P R China
| | - Yao Zheng
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401120, P R China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401120, P R China
| | - Tao Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401120, P R China
| | - Weibo Zhao
- PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of PLA), Beijing 100101, P R China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P R China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, P R China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, P R China
| | - Yingfang Fan
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, P R China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401120, P R China
| |
Collapse
|
14
|
Hu B, Yang XB, Sang XT. Construction of a lipid metabolism-related and immune-associated prognostic signature for hepatocellular carcinoma. Cancer Med 2020; 9:7646-7662. [PMID: 32813933 PMCID: PMC7571839 DOI: 10.1002/cam4.3353] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most lethal malignancies. We aimed to identify a robust lipid metabolism-related signature associated with the HCC microenvironment to improve the prognostic prediction of HCC patients. METHODS We analyzed the gene expression profiles of lipid metabolism from Molecular Signatures Database and information of patients from The Cancer Genome Atlas. Gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and principal component analysis (PCA) were employed for functional annotation. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to verify the expression of model genes in HCC and adjacent tissues. RESULTS As a result, a lipid metabolism-related signature consisting of acyl-CoA synthetase long-chain family member 6 (ACSL6), lysophosphatidylcholine acyltransferase 1, phospholipase A2 group 1B, lecithin-cholesterol acyltransferase (LCAT), and sphingomyelin phosphodiesterase 4 (SMPD4) was identified among HCC patients. Lysophosphatidylcholine acyltransferase 1, PLA2G1B, and SMPD4 were proved significantly high expression while ACSL6 and LCAT were remarkably low expression in our 15 pairs of matched HCC and normal tissues by qRT-PCR. Under different conditions, the overall survival (OS) of patients in low-risk group was prolonged than that in high-risk group. Moreover, the as-constructed signature was an independent factor, which was remarkably associated with gender, histologic grade, and platelet level of HCC patients. In addition, the receiver operating characteristic (ROC) curve analysis confirmed the good potency of the model. Functional enrichment analysis further revealed that lower fatty acid (FA) oxidation and higher infiltration of immunocytes were detected in patients from the high-risk group compared with those in the low-risk group. CONCLUSIONS Our findings indicate that the lipid metabolism-related signature shows prognostic significance for HCC.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Hassan R. Kupffer cells in hepatotoxicity. EXCLI JOURNAL 2020; 19:1156-1157. [PMID: 33088252 PMCID: PMC7573177 DOI: 10.17179/excli2020-2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 11/23/2022]
Affiliation(s)
- Reham Hassan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
16
|
The mRNA-binding Protein TTP/ZFP36 in Hepatocarcinogenesis and Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111754. [PMID: 31717307 PMCID: PMC6896064 DOI: 10.3390/cancers11111754] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatic lipid deposition and inflammation represent risk factors for hepatocellular carcinoma (HCC). The mRNA-binding protein tristetraprolin (TTP, gene name ZFP36) has been suggested as a tumor suppressor in several malignancies, but it increases insulin resistance. The aim of this study was to elucidate the role of TTP in hepatocarcinogenesis and HCC progression. Employing liver-specific TTP-knockout (lsTtp-KO) mice in the diethylnitrosamine (DEN) hepatocarcinogenesis model, we observed a significantly reduced tumor burden compared to wild-type animals. Upon short-term DEN treatment, modelling early inflammatory processes in hepatocarcinogenesis, lsTtp-KO mice exhibited a reduced monocyte/macrophage ratio as compared to wild-type mice. While short-term DEN strongly induced an abundance of saturated and poly-unsaturated hepatic fatty acids, lsTtp-KO mice did not show these changes. These findings suggested anti-carcinogenic actions of TTP deletion due to effects on inflammation and metabolism. Interestingly, though, investigating effects of TTP on different hallmarks of cancer suggested tumor-suppressing actions: TTP inhibited proliferation, attenuated migration, and slightly increased chemosensitivity. In line with a tumor-suppressing activity, we observed a reduced expression of several oncogenes in TTP-overexpressing cells. Accordingly, ZFP36 expression was downregulated in tumor tissues in three large human data sets. Taken together, this study suggests that hepatocytic TTP promotes hepatocarcinogenesis, while it shows tumor-suppressive actions during hepatic tumor progression.
Collapse
|
17
|
Jiang YP, Tang YL, Wang SS, Wu JS, Zhang M, Pang X, Wu JB, Chen Y, Tang YJ, Liang XH. PRRX1-induced epithelial-to-mesenchymal transition in salivary adenoid cystic carcinoma activates the metabolic reprogramming of free fatty acids to promote invasion and metastasis. Cell Prolif 2019; 53:e12705. [PMID: 31657086 PMCID: PMC6985691 DOI: 10.1111/cpr.12705] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/14/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives Increasing evidences demonstrate a close correlation between epithelial‐to‐mesenchymal transition (EMT) induction and cancer lipid metabolism. However, the molecular mechanisms have not been clarified. Materials and methods In our study, the relative expression level of PRRX1 was detected, its relationship with free fatty acid (FFA) and PPARG2 was analysed in 85 SACC tissues and 15 salivary glands from the benign salivary tumours. We also compared the FFAs composition and levels in these SACC cells. PPARG2 was detected in PRRX1‐induced FFAs treatment as well as Src and MMP‐9 were detected in FFAs treatment–induced invasion and migration of SACC cells, and ChIP test was performed to identify the target interactions. Results Our data showed that overexpression of PRRX1 induced EMT and facilitated the invasion and migration of SACC cells, and PRRX1 expression was closely associated with high FFAs level and poor prognosis of SACC patients. Furthermore, PRRX1 silence led to the increase of PPARG2 and the reduction of FFAs level and the migration and invasion of SACC cells. And inhibition of PPARG2 rescued FFAs level and migration and invasion capabilities of SACC cells. Free fatty acids treatment induced an increase of Stat5‐DNA binding activity via Src‐ and MMP‐9‐dependent pathway. Conclusions Collectively, our findings showed that the PRRX1/PPARG2/FFAs signalling in SACC was important for accelerating tumour metastasis through the induction of EMT and the metabolic reprogramming of FFAs.
Collapse
Affiliation(s)
- Ya-Ping Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China.,Department of Implant, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Sha-Sha Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Jing-Biao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| |
Collapse
|
18
|
Li H, Wang X, Tang J, Zhao H, Duan M. Decreased expression levels of ELOVL6 indicate poor prognosis in hepatocellular carcinoma. Oncol Lett 2019; 18:6214-6220. [PMID: 31788097 DOI: 10.3892/ol.2019.10974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate the expression of elongation of very long-chain fatty acids family member 6 (ELOVL6) in hepatocellular carcinoma (HCC) tissues, and to determine its role in the development of HCC. A total of 377 HCC specimens were collected for tissue microarray and immunohistochemistry analyses. The ELOVL6 IHC score for HCC tissues was 0.97±0.71, which was significantly lower than that of the matched adjacent normal tissues (1.32±0.68; P<0.001). Patients with low levels of ELOVL6 expression were older (P=0.014) and possessed larger sized tumors (P=0.039) than patients with high expression levels. Additionally, Kaplan-Meier analysis revealed that patients with low ELOVL6 expression levels also had significantly poorer overall (P<0.001) and disease-free (P=0.029) survival times, and a greater probability of recurrence. The tumor size, tumor-node-metastasis (TNM) stage, vascular invasion and ELOVL6 expression were all shown to be prognostic variables for overall survival in patients with HCC. Multivariate analysis revealed that vascular invasion (P<0.001), TNM stage (P<0.001) and ELOVL6 expression (P=0.001) were independent prognostic variables for overall survival. In addition, vascular invasion (P=0.032) and ELOVL6 expression (P=0.041) were independent risk factors for disease-free survival, and vascular invasion (P=0.019) and ELOVL6 expression (P=0.045) were independent risk factors associated with HCC recurrence. The present study revealed that in patients with HCC, ELOVL6 expression level was reduced in HCC tissues, and that higher ELOVL6 expression levels correlated with longer survival times. This indicates that ELOVL6 may serves as an independent marker of poor patient outcome.
Collapse
Affiliation(s)
- Hui Li
- Invasive Technology Department, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Xianling Wang
- Invasive Technology Department, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jun Tang
- Invasive Technology Department, Shandong Medical Imaging Research Institute, Jinan, Shandong 250021, P.R. China
| | - Haibo Zhao
- Invasive Technology Department, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Min Duan
- Department of Physical Examination, Jining First People's Hospital, Jining, Shandong 272000, P.R. China
| |
Collapse
|
19
|
Mo M, Liu S, Ma X, Tan C, Wei L, Sheng Y, Song Y, Zeng X, Huang D, Qiu X. A liver-specific lncRNA, FAM99B, suppresses hepatocellular carcinoma progression through inhibition of cell proliferation, migration, and invasion. J Cancer Res Clin Oncol 2019; 145:2027-2038. [PMID: 31243545 DOI: 10.1007/s00432-019-02954-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/10/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Increasing evidence has shown that long non-coding RNAs (lncRNAs) are important in hepatocellular carcinoma (HCC) development and progression. In this study, we aim to evaluate the expression of lncRNA FAM99B and its biological function in HCC. METHODS The expression level of FAM99B in HCC was assessed based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), verified using quantitative real-time polymerase chain reaction (qRT-PCR). HCCLM3 was transfected with lentivirus containing full-length FAM99B to obtain stable overexpressing cell line. Cell Counting Kit 8, clone formation, and transwell assays were used to investigate the effects of FAM99B in HCC progression. In addition, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and PANTHER pathway analyses were conducted to investigate the underlying molecular mechanisms. RESULTS FAM99B was found to be downregulated in HCC tissues compared with adjacent normal tissues based on TCGA, GEO, and qRT-PCR data. Our results revealed that downregulated FAM99B was significantly associated with vascular invasion, advanced histologic grade, and T stage. Kaplan-Meier analysis using TCGA data indicated that decreased FAM99B levels were significantly associated with poor overall survival in patients with HCC. Moreover, overexpression of FAM99B significantly inhibited cell proliferation, migration, and invasion in vitro. Pathway analyses showed that the co-expressed genes of FAM99B mainly participated in the pathways "Metabolic pathways" and "Blood coagulation". CONCLUSION Our results suggest that FAM99B may serve as a tumor suppressor in HCC and may provide a promising therapy target for patients with HCC.
Collapse
Affiliation(s)
- Meile Mo
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Shun Liu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiaoyun Ma
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Chao Tan
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, 541004, Guangxi, People's Republic of China
| | - Liangjia Wei
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Yonghong Sheng
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Yanye Song
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiaoyun Zeng
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiaoqiang Qiu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
20
|
Yang H, Li T, Liu L, Li N, Guan M, Zhang Y, Wang Z, Zhao Z. Metal-organic frameworks as affinity agents to enhance the microdialysis sampling efficiency of fatty acids. Analyst 2019; 143:2157-2164. [PMID: 29667690 DOI: 10.1039/c8an00238j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microdialysis (MD) has been extensively used for in vivo sampling of hydrophilic analytes such as neurotransmitters and drug metabolites. In contrast, there have been few reports on sampling of lipophilic analytes by MD. Lipophilic analytes are easily adsorbed on the surfaces of the dialysis membrane and the inner wall of tubing, which leads to a very low relative recovery (RR). In this work, a strategy to develop an enhanced MD sampling of fatty acids (FAs) by using metal-organic frameworks (MOFs) as affinity agents in the perfusion fluid was investigated. Two MOFs, MIL-101 and ZIF-8, were synthesized and tested for the first time. A 2 times higher RR, about 70% RR, was obtained. The FT-IR experiment showed that the unsaturated metal sites in MOFs could coordinate with FAs, therefore the FAs were encapsulated into MOFs, avoiding FAs to be absorbed on the surfaces of the dialysis membrane and the inner wall of tubing. Moreover, incorporation of FAs into MOFs led to a decrease of free concentration of FAs inside the MD membrane and an increase of concentration gradient, allowing more FAs to diffuse across the membrane. Consequentially, an enhanced RR was obtained. The approach was successfully used to monitor the time profile of targeted FAs in cell culture media after lipopolysaccharide (LPS)-induced inflammation.
Collapse
Affiliation(s)
- Hui Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Shibasaki Y, Horikawa M, Ikegami K, Kiuchi R, Takeda M, Hiraide T, Morita Y, Konno H, Takeuchi H, Setou M, Sakaguchi T. Stearate-to-palmitate ratio modulates endoplasmic reticulum stress and cell apoptosis in non-B non-C hepatoma cells. Cancer Sci 2018; 109:1110-1120. [PMID: 29427339 PMCID: PMC5891190 DOI: 10.1111/cas.13529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/25/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
The increased prevalence of hepatocellular carcinoma (HCC) without viral infection, namely, NHCC, is a major public health issue worldwide. NHCC is frequently derived from non‐alcoholic fatty liver (NAFL) and non‐alcoholic steatohepatitis, which exhibit dysregulated fatty acid (FA) metabolism. This raises the possibility that NHCC evolves intracellular machineries to adapt to dysregulated FA metabolism. We herein aim to identify NHCC‐specifically altered FA and key molecules to achieve the adaptation. To analyze FA, imaging mass spectrometry (IMS) was performed on 15 HCC specimens. The composition of saturated FA (SFA) in NHCC was altered from that in typical HCC. The stearate‐to‐palmitate ratio (SPR) was significantly increased in NHCC. Associated with the SPR increase, the ELOVL6 protein level was upregulated in NHCC. The knockdown of ELOVL6 reduced SPR, and enhanced endoplasmic reticulum stress, inducing apoptosis of Huh7 and HepG2 cells. In conclusion, NHCC appears to adapt to an FA‐rich environment by modulating SPR through ELOVL6.
Collapse
Affiliation(s)
- Yasushi Shibasaki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Makoto Horikawa
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Koji Ikegami
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ryota Kiuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Makoto Takeda
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takanori Hiraide
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yoshifumi Morita
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroyuki Konno
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroya Takeuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takanori Sakaguchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
22
|
Wu J. Utilization of animal models to investigate nonalcoholic steatohepatitis-associated hepatocellular carcinoma. Oncotarget 2018; 7:42762-42776. [PMID: 27072576 PMCID: PMC5173170 DOI: 10.18632/oncotarget.8641] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) comprises a spectrum of liver disorders with fat accumulation from simple fatty liver, nonalcoholic steatohepatitis (NASH), fibrosis/cirrhosis and NAFLD/NASH-associated hepatocellular carcinoma (HCC). NASH is a progressive form of NAFLD and requires medical attention. One of 5-10 NASH patients may progress to end-state liver disease (ESLD or cirrhosis) in 5-10 years; meanwhile, life-threatening complications of ESLD and HCC account for major mortality. An increasing burden of NAFLD in clinics, elucidation of its pathogenesis and progression, and assessment of the efficacy of potential therapeutics demand reliable animal models. Most NASH-associated HCC occurs in cirrhotic subjects; however, HCC does appear in NASH patients without cirrhosis. Lipotoxicity, oxidant stress, insulin resistance, endoplasmic reticulum stress, altered adipokine and lymphokine profiles and gut microbiome changes affect NAFLD progression and constitute key pathobiologic interplays. How these factors promote malignant transformation in a microenvironment of steatotic inflammation and fibrosis/cirrhosis, and lead to development of neoplasms is one of critical questions faced in the hepatology field. The present review summarizes the characteristics of emerging rodent NASH-HCC models, and discusses the challenges in utilizing these models to unveil the mysteries of NASH-associated HCC development.
Collapse
Affiliation(s)
- Jian Wu
- Key Laboratory of Molecular Virology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Li Z, Guan M, Lin Y, Cui X, Zhang Y, Zhao Z, Zhu J. Aberrant Lipid Metabolism in Hepatocellular Carcinoma Revealed by Liver Lipidomics. Int J Mol Sci 2017; 18:ijms18122550. [PMID: 29182572 PMCID: PMC5751153 DOI: 10.3390/ijms18122550] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The aim of this study was to characterize the disorder of lipid metabolism in hepatocellular carcinoma (HCC). HCC is a worldwide disease. The research into the disorder of lipid metabolism in HCC is very limited. Study of lipid metabolism in liver cancer tissue may have the potential to provide new insight into HCC mechanisms. METHODS A lipidomics study of HCC based on Ultra high performance liquid chromatography-electronic spray ionization-QTOF mass spectrometer (UPLC-ESI-QTOF MS) and Matrix assisted laser desorption ionization-fourier transform ion cyclotron resonance mass spectrometer (MALDI-FTICR MS) was performed. RESULTS Triacylglycerols (TAGs) with the number of double bond (DB) > 2 (except 56:5 and 56:4 TAG) were significantly down-regulated; conversely, others (except 52:2 TAG) were greatly up-regulated in HCC tissues. Moreover, the more serious the disease was, the higher the saturated TAG concentration and the lower the polyunsaturated TAG concentration were in HCC tissues. The phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) were altered in a certain way. Sphingomyelin (SM) was up-regulated and ceramide (Cer) were down-regulated in HCC tissues. CONCLUSIONS To our knowledge, this is the first such report showing a unique trend of TAG, PC, PE and PI. The use of polyunsaturated fatty acids, like eicosapentanoic and docosahexanoic acid, as supplementation, proposed for the treatment of Non-alcoholic steatohepatitis (NASH), may also be effective for the treatment of HCC.
Collapse
Affiliation(s)
- Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China.
| | - Ming Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Xiao Cui
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China.
| | - Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
24
|
Chang JJ, Chung DJ, Lee YJ, Wen BH, Jao HY, Wang CJ. Solanum nigrum Polyphenol Extracts Inhibit Hepatic Inflammation, Oxidative Stress, and Lipogenesis in High-Fat-Diet-Treated Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9255-9265. [PMID: 28982243 DOI: 10.1021/acs.jafc.7b03578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Patients with diabetes, obesity, and hyperlipidemia are all high-risk groups for fatty liver; however, the mechanism of fatty liver formation is not completely understood. Studies have indicated that abnormal fat metabolism, oxidative stress, and insulin resistance are positively correlated with peroxidation and abnormal cytokine production. Recent studies have revealed that Solanum nigrum extracts (SNE) possess anti-inflammatory, antioxidation, antihyperlipidemia, and liver protection abilities. Therefore, the present study investigated the in vivo and in vitro effects of an SNE on nonalcoholic fatty liver (NAFL)-induced hepatitis. In vivo data demonstrated that the SNE reduced blood triglyceride, sugar, and cholesterol levels, as well as fat accumulation, oxidative stress, and lipid peroxidation in high-fat-diet-treated mice. The results indicated that the SNE downregulated the expression of fatty acid synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), and sterol regulatory element-binding proteins (SREBPs) through the AMP-activated protein kinase (AMPK) pathway and upregulated the expression of carnitine palmitoyltransferase 1 (CPT1) and peroxisome proliferator-activated receptor alpha. Furthermore, we prepared a Solanum nigrum polyphenol extract (SNPE) from the SNE; the SNPE reduced hepatic lipid (oleic acid) accumulation. Therefore, SNE have the potential to alleviate NAFL-induced hepatitis, and polyphenolic compounds are the main components of SNE. Moreover, SNE can be used to develop health-food products for preventing NAFL disease.
Collapse
Affiliation(s)
- Ja-Jen Chang
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University , Number 110, Section 1, Jianguo North Road, Taichung 402, Taiwan
| | - Dai-Jung Chung
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University , Number 110, Section 1, Jianguo North Road, Taichung 402, Taiwan
| | - Yi-Ju Lee
- Institute of Medicine, Chung-Shan Medical University , Number 110, Section 1, Jianguo North Road, Taichung 402, Taiwan
| | - Bo-Han Wen
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University , Number 110, Section 1, Jianguo North Road, Taichung 402, Taiwan
| | - Hsing-Yu Jao
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University , Number 110, Section 1, Jianguo North Road, Taichung 402, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University , Number 110, Section 1, Jianguo North Road, Taichung 402, Taiwan
- Department of Medical Research, Chung-Shan Medical University Hospital , Number 110, Section 1, Jianguo North Road, Taichung 402, Taiwan
| |
Collapse
|
25
|
Schultheiss CS, Laggai S, Czepukojc B, Hussein UK, List M, Barghash A, Tierling S, Hosseini K, Golob-Schwarzl N, Pokorny J, Hachenthal N, Schulz M, Helms V, Walter J, Zimmer V, Lammert F, Bohle RM, Dandolo L, Haybaeck J, Kiemer AK, Kessler SM. The long non-coding RNA H19 suppresses carcinogenesis and chemoresistance in hepatocellular carcinoma. Cell Stress 2017; 1:37-54. [PMID: 31225433 PMCID: PMC6551655 DOI: 10.15698/cst2017.10.105] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The long non-coding RNA (lncRNA) H19 represents a maternally expressed and epigenetically regulated imprinted gene product and is discussed to have either tumor-promoting or tumor-suppressive actions. Recently, H19 was shown to be regulated under inflammatory conditions. Therefore, aim of this study was to determine the function of H19 in hepatocellular carcinoma (HCC), an inflammation-associated type of tumor. In four different human HCC patient cohorts H19 was distinctly downregulated in tumor tissue compared to normal or non-tumorous adjacent tissue. We therefore determined the action of H19 in three different human hepatoma cell lines (HepG2, Plc/Prf5, and Huh7). Clonogenicity and proliferation assays showed that H19 overexpression could suppress tumor cell survival and proliferation after treatment with either sorafenib or doxorubicin, suggesting chemosensitizing actions of H19. Since HCC displays a highly chemoresistant tumor entity, cell lines resistant to doxorubicin or sorafenib were established. In all six chemoresistant cell lines H19 expression was significantly downregulated. The promoter methylation of the H19 gene was significantly different in chemoresistant cell lines compared to their sensitive counterparts. Chemoresistant cells were sensitized after H19 overexpression by either increasing the cytotoxic action of doxorubicin or decreasing cell proliferation upon sorafenib treatment. An H19 knockout mouse model (H19Δ3) showed increased tumor development and tumor cell proliferation after treatment with the carcinogen diethylnitrosamine (DEN) independent of the reciprocally imprinted insulin-like growth factor 2 (IGF2). In conclusion, H19 suppresses hepatocarcinogenesis, hepatoma cell growth, and HCC chemoresistance. Thus, mimicking H19 action might be a potential target to overcome chemoresistance in future HCC therapy.
Collapse
Affiliation(s)
| | - Stephan Laggai
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Beate Czepukojc
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Usama K Hussein
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany.,Faculty of Science, Beni-Suef University, Bani Suwaif, Egypt
| | - Markus List
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
| | - Ahmad Barghash
- School of Electrical Engineering and Information Technology, German Jordanian University, Amman, Jordan
| | - Sascha Tierling
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Kevan Hosseini
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | | | - Juliane Pokorny
- Institute of Pathology, Saarland University, Campus Homburg, Homburg (Saar), Germany
| | - Nina Hachenthal
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Marcel Schulz
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.,Cluster of Excellence in Multimodal Computing and Interaction, Saarland Informatics Campus, Saarbrücken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Vincent Zimmer
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg (Saar), Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg (Saar), Germany
| | - Rainer M Bohle
- Institute of Pathology, Saarland University, Campus Homburg, Homburg (Saar), Germany
| | - Luisa Dandolo
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz, Graz, Austria.,Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany.,Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
26
|
A distinct function of the retinoblastoma protein in the control of lipid composition identified by lipidomic profiling. Oncogenesis 2017. [PMID: 28650445 PMCID: PMC5519198 DOI: 10.1038/oncsis.2017.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Here, by combining lipidomics with transcriptome analysis, we demonstrate that Rb depletion in mouse embryonic fibroblastss induces significant alterations in their lipid composition. We discovered that Rb depletion induced increase in lysophosphatidylserine, diacylglycerol (DAG), fatty acid (FA), acylcarnitine, phosphatidylcholine (PC), arachidonoyl ethanolamine, and decrease in phosphatidylglycerol, monoacylglycerol, without change in total lipid per protein levels. Analysis of the acyl chain composition of DAG, PC and phosphatidylserine revealed increase of saturated and mono-unsaturated acyl chains with specific carbon chain length. Consistently, we observed that Rb depletion increased the levels of fatty acids with the corresponding carbon chain length and number of carbon-carbon double bondssuch as myristic acid (14:0), palmitic acid (16:0), stearic acid (18:0) and all forms of FA 18:1. Microarray analysis revealed that Rb depletion induced significant upregulation of enzymes involved in elongation and desaturation of fatty acids. Among these, we found that elongation of long chain fatty acid family member 6 (Elovl6) and stearoyl-CoA desaturase 1 (Scd1) are the most robustly controlled by Rb possibly through E2F and sterol regulatory element-binding protein transcription factors. Depletion of Elovl6 or Scd1 significantly suppressed colony formation, sphere formation and xenograft tumor growth of Rb-deficient tumor cells. Suppression of self-renewal by the SCD1 inhibitor was rescued upon supplementation of the mono-unsaturated fatty acids generated by this enzyme. This study suggests a novel role for Rb in suppressing the malignant progression of tumors by controlling the lipid composition.
Collapse
|
27
|
Dembek A, Laggai S, Kessler SM, Czepukojc B, Simon Y, Kiemer AK, Hoppstädter J. Hepatic interleukin-6 production is maintained during endotoxin tolerance and facilitates lipid accumulation. Immunobiology 2017; 222:786-796. [DOI: 10.1016/j.imbio.2017.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/23/2016] [Accepted: 01/17/2017] [Indexed: 02/08/2023]
|
28
|
Mika A, Kobiela J, Czumaj A, Chmielewski M, Stepnowski P, Sledzinski T. Hyper-Elongation in Colorectal Cancer Tissue - Cerotic Acid is a Potential Novel Serum Metabolic Marker of Colorectal Malignancies. Cell Physiol Biochem 2017; 41:722-730. [PMID: 28214830 DOI: 10.1159/000458431] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/27/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUNDS/AIMS Colorectal cancer (CRC) cells show some alterations of lipid metabolism. Elongation of fatty acids (FA) has not been studied in CRC tissues thus far. The aim of this study was to verify if CRC specimens and normal colon mucosa differ in terms of their levels of very long-chain FAs, a product of FA elongation. Moreover, the expression of elongase genes has been studied in normal tissue and CRC. Finally, we searched for some specific products of FA elongation in serum of CRC patients. METHODS The specimens of normal colon mucosa and CRC were obtained from nineteen CRC patients differ in terms of FA elongation. We also searched for some specific products of FA elongation in serum of CRC patients and from healthy volunteers. Tissue and serum FA profiles were determined by means of gas chromatography-mass spectrometry (GC/MS), and the tissue expression of elongases (ELOVLs) was analyzed with real-time PCR. RESULTS Compared to normal colon tissue, CRC specimens showed significantly higher levels of 22-, 24- and 26-carbon FAs, stronger expressions of ELOVL1 and ELOVL6 (4- and 9-fold elevated respectively), and higher values of 18: 0/16: 0 elongation index. We also demonstrated presence of cerotic acid (26: 0) in serum of all CRC patients but in none of the healthy controls. CONCLUSIONS CRC tissue seems to be characterized by enhanced FA elongation (hyper-elongation). Presence of cerotic acid in CRC patients sera and absence of this FA in healthy subjects points to this compound as a strong candidate for specific metabolic marker of colorectal malignancies.
Collapse
|
29
|
Li W, Chen X, Lin M, Huang D. Up-regulated HOTAIR induced by fatty acids inhibits PTEN expression and increases triglycerides accumulation in HepG2 cells. Food Nutr Res 2017; 61:1412794. [DOI: 10.1080/16546628.2017.1412794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Weiping Li
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medcial College, Shantou, China
| | - Xiaoge Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medcial College, Shantou, China
| | - Miaozhi Lin
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medcial College, Shantou, China
| | - Dongyang Huang
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| |
Collapse
|
30
|
Wijesundera KK, Izawa T, Tennakoon AH, Golbar HM, Tanaka M, Kuwamura M, Yamate J. M1-/M2-macrophage polarization in pseudolobules consisting of adipohilin-rich hepatocytes in thioacetamide (TAA)-induced rat hepatic cirrhosis. Exp Mol Pathol 2016; 101:133-42. [PMID: 27453055 DOI: 10.1016/j.yexmp.2016.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/31/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Liver steatosis is the most frequent liver disease and may further develop into non-alcoholic steatohepatitis (NASH), liver cirrhosis, and finally hepatocellular carcinoma. Adipophilin (Adp) is localized on lipid droplet membrane in cytoplasm, and its increased expression is related to development of steatosis and NASH. The relationship between M1-/M2-macrophage polarization and Adp-rich hepatocyte-consisting pseudolobules (PLs) was investigated in thioacetamide (TAA)-induced rat cirrhosis. MATERIALS AND METHOD F344 rats were injected twice weekly with TAA (100mg/kg bodyweight) and sacrificed at post-first injection (PFI) weeks 5, 10, 15, 20, 25 and 32. Macrophage immunophenotypes and Adp-containing hepatocytes were analyzed by single immunolabeling. Adp and M1-/M2-related factors were analyzed by real -time RT-PCR. RESULTS PLs consisting exclusively of Adp-containing hepatocytes (Adp-positive) and PLs consisting of few Adp-containing hepatocytes (Adp-negative) were clearly distinguishable at PFI week 20 onwards. The numbers of M1-macrophages (reacting to CD68 and Iba1) and M2- macrophages (reacting to CD163, CD204 and Gal-3) were considerably greater in Adp-positive PLs. Expressions for both M1 (TNF-α, MCP-1, and Iba1)- and M2 (IL-4, TGF-β1, Gal-3, and Hsp25)-related factors were markedly higher in Adp-positive PLs at PFI week 25. Interestingly, MHC class II-positive macrophages/dendritic cells were increased in Adp-positive clusters/foci at the early stages at PFI weeks 5 and 10, and the level was gradually decreased thereafter. CONCLUSIONS M1-/M2-macrophages may simultaneously participate in the pathogenesis of steatosis in TAA-induced cirrhosis through M1- and M2-related factors. MHC class II cells may be responsible for steatosis at early stages, suggesting different functions from the above M1-/M2-macropahges.
Collapse
Affiliation(s)
- Kavindra Kumara Wijesundera
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan; Veterinary Pathology, Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka, 20000
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Anusha Hemamali Tennakoon
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan; Teaching Hospital Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Hossain Md Golbar
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan.
| |
Collapse
|
31
|
Feng YH, Chen WY, Kuo YH, Tung CL, Tsao CJ, Shiau AL, Wu CL. Elovl6 is a poor prognostic predictor in breast cancer. Oncol Lett 2016; 12:207-212. [PMID: 27347126 DOI: 10.3892/ol.2016.4587] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 04/29/2016] [Indexed: 12/26/2022] Open
Abstract
Elongation of long chain fatty acids family member 6 (Elovl6) has been demonstrated to be involved in insulin resistance, obesity and lipogenesis. In addition, it has been reported that the protein is upregulated in human hepatocellular carcinoma and is implicated in nonalcoholic steatohepatitis-associated liver carcinogenesis. Excess body weight has been associated with an increased risk of postmenopausal breast cancer and poor prognosis. However, the connection between Elovl6 expression and outcome of breast cancer remains uncertain. Therefore, the present study used immunohistochemical analysis to investigate the expression of Elovl6 in breast cancer tissues from patients who had undergone curative mastectomy. Out of a total of 70 patients, 37.1% of patients exhibited positive Elovl6 expression in breast cancer tissue, whilst 62.9% were considered as negative. Positive Elov16 expression correlated with positive lymph node involvement and shorter recurrence-free survival. However, Elovl6 expression had no association with primary tumor size, lymph node metastasis, stage, grade, estrogen receptor, progesterone receptor, HER2 and age. Therefore, positive Elovl6 expression is a poor prognostic factor in patients with breast cancer that have previously undergone surgery, and may function as a potential therapeutic approach in the future, particularly in the scope of obesity related disease.
Collapse
Affiliation(s)
- Yin-Hsun Feng
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan 71004, Taiwan R.O.C.; Department of Nursing, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan R.O.C
| | - Wei-Yu Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan 71004, Taiwan R.O.C
| | - Yu-Hsuan Kuo
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan 71004, Taiwan R.O.C
| | - Chao-Ling Tung
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan 71004, Taiwan R.O.C
| | - Chao-Jung Tsao
- Department of Hematology and Oncology, Chi-Mei Medical Center, Tainan 73657, Taiwan R.O.C
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan R.O.C
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan R.O.C
| |
Collapse
|
32
|
Fengler VHI, Macheiner T, Kessler SM, Czepukojc B, Gemperlein K, Müller R, Kiemer AK, Magnes C, Haybaeck J, Lackner C, Sargsyan K. Susceptibility of Different Mouse Wild Type Strains to Develop Diet-Induced NAFLD/AFLD-Associated Liver Disease. PLoS One 2016; 11:e0155163. [PMID: 27167736 PMCID: PMC4863973 DOI: 10.1371/journal.pone.0155163] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Although non-alcoholic and alcoholic fatty liver disease have been intensively studied, concerning pathophysiological mechanisms are still incompletely understood. This may be due to the use of different animal models and resulting model-associated variation. Therefore, this study aimed to compare three frequently used wild type mouse strains in their susceptibility to develop diet-induced features of non-alcoholic/alcoholic fatty liver disease. Fatty liver disease associated clinical, biochemical, and histological features in C57BL/6, CD-1, and 129Sv WT mice were induced by (i) high-fat diet feeding, (ii) ethanol feeding only, and (iii) the combination of high-fat diet and ethanol feeding. Hepatic and subcutaneous adipose lipid profiles were compared in CD-1 and 129Sv mice. Additionally hepatic fatty acid composition was determined in 129Sv mice. In C57BL/6 mice dietary regimens resulted in heterogeneous hepatic responses, ranging from pronounced steatosis and inflammation to a lack of any features of fatty liver disease. Liver-related serum biochemistry showed high deviations within the regimen groups. CD-1 mice did not exhibit significant changes in metabolic and liver markers and developed no significant steatosis or inflammation as a response to dietary regimens. Although 129Sv mice showed no weight gain, this strain achieved most consistent features of fatty liver disease, apparent from concentration alterations of liver-related serum biochemistry as well as moderate steatosis and inflammation as a result of all dietary regimens. Furthermore, the hepatic lipid profile as well as the fatty acid composition of 129Sv mice were considerably altered, upon feeding the different dietary regimens. Accordingly, diet-induced non-alcoholic/alcoholic fatty liver disease is most consistently promoted in 129Sv mice compared to C57BL/6 and CD-1 mice. As a conclusion, this study demonstrates the importance of genetic background of used mouse strains for modeling diet-induced non-alcoholic/alcoholic fatty liver disease.
Collapse
MESH Headings
- Alanine Transaminase/metabolism
- Animals
- Aspartate Aminotransferases/metabolism
- Biomarkers/metabolism
- Cholesterol/metabolism
- Diet, High-Fat/adverse effects
- Dietary Fats/administration & dosage
- Disease Models, Animal
- Disease Susceptibility
- Ethanol/administration & dosage
- Fatty Acids, Nonesterified/metabolism
- Fatty Liver, Alcoholic/etiology
- Fatty Liver, Alcoholic/genetics
- Fatty Liver, Alcoholic/metabolism
- Fatty Liver, Alcoholic/pathology
- Liver/metabolism
- Liver/pathology
- Liver Function Tests
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/genetics
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/pathology
- Species Specificity
- Subcutaneous Fat/metabolism
- Subcutaneous Fat/pathology
- Triglycerides/metabolism
- Weight Gain
Collapse
Affiliation(s)
| | - Tanja Macheiner
- BioPersMed/Biobank Graz, Medical University of Graz, Graz, Austria
| | - Sonja M. Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Beate Czepukojc
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Katja Gemperlein
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology (HZI), Saarbrücken, Germany
| | - Rolf Müller
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology (HZI), Saarbrücken, Germany
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Christoph Magnes
- Institute for Biomedicine and Health Sciences, Joanneum Research, Graz, Austria
| | | | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Karine Sargsyan
- BioPersMed/Biobank Graz, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
33
|
Wang MD, Wu H, Fu GB, Zhang HL, Zhou X, Tang L, Dong LW, Qin CJ, Huang S, Zhao LH, Zeng M, Wu MC, Yan HX, Wang HY. Acetyl-coenzyme A carboxylase alpha promotion of glucose-mediated fatty acid synthesis enhances survival of hepatocellular carcinoma in mice and patients. Hepatology 2016; 63:1272-86. [PMID: 26698170 DOI: 10.1002/hep.28415] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Solid tumors often suffer from suboptimal oxygen and nutrient supplies. This stress underlies the requirement for metabolic adaptation. Aberrantly activated de novo lipogenesis is critical for development and progression of human hepatocellular carcinoma (HCC). However, whether de novo lipogenesis influences biological behaviors of HCCs under conditions of metabolic stress are still poorly understood. Here, we show that HCCs display distinct levels of glucose-derived de novo lipogenesis, which are positively correlated with their survival responses to glucose limitation. The enhanced lipogenesis in HCCs is characterized by an increased expression of rate-limiting enzyme acetyl-coenzyme A carboxylase alpha (ACCα). ACCα-mediated fatty acid (FA) synthesis determines the intracellular lipid content that is required to maintain energy hemostasis and inhibit cell death by means of FA oxidation (FAO) during metabolic stress. In accord, overexpression of ACCα facilitates tumor growth. ACCα forms a complex with carnitine palmitoyltransferase 1A (CPT1A) and prevents its mitochondria distribution under nutrient-sufficient conditions. During metabolic stress, phosphorylation of ACCα leads to dissociation of the complex and mitochondria localization of CPT1A, thus promoting FAO-mediated cell survival. Therefore, ACCα could provide both the substrate and enzyme storage for FAO during glucose deficiency. Up-regulation of ACCα is also significantly correlated with poorer overall survival and disease recurrence postsurgery. Multivariate Cox's regression analysis identified ACCα as an effective predictor of poor prognosis. CONCLUSION These results present novel mechanistic insight into a pivotal role of ACCα in maintaining HCC survival under metabolic stress. It could be exploited as a novel diagnostic marker and therapeutic target.
Collapse
Affiliation(s)
- Ming-Da Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Han Wu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Gong-Bo Fu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hui-Lu Zhang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xu Zhou
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Liang Tang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Li-Wei Dong
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Chen-Jie Qin
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shuai Huang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ling-Hao Zhao
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Min Zeng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Meng-Chao Wu
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - He-Xin Yan
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Hong-Yang Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| |
Collapse
|
34
|
Marien E, Meister M, Muley T, del Pulgar TG, Derua R, Spraggins JM, Van de Plas R, Vanderhoydonc F, Machiels J, Binda MM, Dehairs J, Willette-Brown J, Hu Y, Dienemann H, Thomas M, Schnabel PA, Caprioli RM, Lacal JC, Waelkens E, Swinnen JV. Phospholipid profiling identifies acyl chain elongation as a ubiquitous trait and potential target for the treatment of lung squamous cell carcinoma. Oncotarget 2016; 7:12582-97. [PMID: 26862848 PMCID: PMC4914306 DOI: 10.18632/oncotarget.7179] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/04/2016] [Indexed: 01/19/2023] Open
Abstract
Lung cancer is the leading cause of cancer death. Beyond first line treatment, few therapeutic options are available, particularly for squamous cell carcinoma (SCC). Here, we have explored the phospholipidomes of 30 human SCCs and found that they almost invariably (in 96.7% of cases) contain phospholipids with longer acyl chains compared to matched normal tissues. This trait was confirmed using in situ 2D-imaging MS on tissue sections and by phospholipidomics of tumor and normal lung tissue of the L-IkkαKA/KA mouse model of lung SCC. In both human and mouse, the increase in acyl chain length in cancer tissue was accompanied by significant changes in the expression of acyl chain elongases (ELOVLs). Functional screening of differentially expressed ELOVLs by selective gene knockdown in SCC cell lines followed by phospholipidomics revealed ELOVL6 as the main elongation enzyme responsible for acyl chain elongation in cancer cells. Interestingly, inhibition of ELOVL6 drastically reduced colony formation of multiple SCC cell lines in vitro and significantly attenuated their growth as xenografts in vivo in mouse models. These findings identify acyl chain elongation as one of the most common traits of lung SCC discovered so far and pinpoint ELOVL6 as a novel potential target for cancer intervention.
Collapse
Affiliation(s)
- Eyra Marien
- KU Leuven – University of Leuven, LKI - Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Michael Meister
- Thoraxklinik at University Hospital Heidelberg, Translational Research Unit, Heidelberg, Germany
- TLRC-H – Translational Lung Research Center Heidelberg, Member of The German Center for Lung Research, Heidelberg, Germany
| | - Thomas Muley
- Thoraxklinik at University Hospital Heidelberg, Translational Research Unit, Heidelberg, Germany
- TLRC-H – Translational Lung Research Center Heidelberg, Member of The German Center for Lung Research, Heidelberg, Germany
| | | | - Rita Derua
- KU Leuven – University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, Leuven, Belgium
| | - Jeffrey M. Spraggins
- Vanderbilt University Medical Center, Department of Biochemistry and Mass Spectrometry Research Center, Nashville, TN, USA
| | - Raf Van de Plas
- Vanderbilt University Medical Center, Department of Biochemistry and Mass Spectrometry Research Center, Nashville, TN, USA
- Delft University of Technology, Delft Center for Systems and Control, Delft, The Netherlands
| | - Frank Vanderhoydonc
- KU Leuven – University of Leuven, LKI - Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Jelle Machiels
- KU Leuven – University of Leuven, LKI - Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Maria Mercedes Binda
- KU Leuven – University of Leuven, LKI - Leuven Cancer Institute, Department of Oncology, Abdominal Surgical Oncology, Leuven, Belgium
| | - Jonas Dehairs
- KU Leuven – University of Leuven, LKI - Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Jami Willette-Brown
- National Cancer Institute, Centre for Cancer Research, Cancer and Inflammation Program, Frederick, MD, USA
| | - Yinling Hu
- National Cancer Institute, Centre for Cancer Research, Cancer and Inflammation Program, Frederick, MD, USA
| | - Hendrik Dienemann
- TLRC-H – Translational Lung Research Center Heidelberg, Member of The German Center for Lung Research, Heidelberg, Germany
- Thoraxklinik at University Hospital Heidelberg, Department of Surgery, Heidelberg, Germany
| | - Michael Thomas
- TLRC-H – Translational Lung Research Center Heidelberg, Member of The German Center for Lung Research, Heidelberg, Germany
- Thoraxklinik at University Hospital Heidelberg, Department of Thoracic Oncology, Heidelberg, Germany
| | - Philipp A. Schnabel
- TLRC-H – Translational Lung Research Center Heidelberg, Member of The German Center for Lung Research, Heidelberg, Germany
- University of The Saarland, Institut für Allgemeine und Spezielle Pathologie, Homburg/Saar, Germany
| | - Richard M. Caprioli
- Vanderbilt University Medical Center, Department of Biochemistry and Mass Spectrometry Research Center, Nashville, TN, USA
| | - Juan Carlos Lacal
- Fundación Jiménez Díaz, Division of Translational Oncology, Madrid, Spain
| | - Etienne Waelkens
- KU Leuven – University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, Leuven, Belgium
| | - Johannes V. Swinnen
- KU Leuven – University of Leuven, LKI - Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| |
Collapse
|
35
|
Charrez B, Qiao L, Hebbard L. Hepatocellular carcinoma and non-alcoholic steatohepatitis: The state of play. World J Gastroenterol 2016; 22:2494-2502. [PMID: 26937137 PMCID: PMC4768195 DOI: 10.3748/wjg.v22.i8.2494] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is now the fifth cancer of greatest frequency and the second leading cause of cancer related deaths worldwide. Chief amongst the risks of HCC are hepatitis B and C infection, aflatoxin B1 ingestion, alcoholism and obesity. The latter can promote non-alcoholic fatty liver disease (NAFLD), that can lead to the inflammatory form non-alcoholic steatohepatitis (NASH), and can in turn promote HCC. The mechanisms by which NASH promotes HCC are only beginning to be characterized. Here in this review, we give a summary of the recent findings that describe and associate NAFLD and NASH with the subsequent HCC progression. We will focus our discussion on clinical and genomic associations that describe new risks for NAFLD and NASH promoted HCC. In addition, we will consider novel murine models that clarify some of the mechanisms that drive NASH HCC formation.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Humans
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/etiology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Non-alcoholic Fatty Liver Disease/complications
- Non-alcoholic Fatty Liver Disease/genetics
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/pathology
- Risk Factors
- Signal Transduction
Collapse
|
36
|
Risør LM, Fenger M, Olsen NV, Møller S. Hepatic erythropoietin response in cirrhosis. A contemporary review. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 76:183-9. [PMID: 26919118 DOI: 10.3109/00365513.2016.1143563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The main function of erythropoietin (EPO) is to maintain red blood cell mass, but in recent years, increasing evidence has suggested a wider biological role not solely related to erythropoiesis, e.g. angiogenesis and tissue protection. EPO is produced in the liver during fetal life, but the main production shifts to the kidney after birth. The liver maintains a production capacity of up to 10% of the total EPO synthesis in healthy controls, but can be up-regulated to 90-100%. However, the hepatic EPO synthesis has been shown not to be adequate for correction of anemia in the absence of renal-derived EPO. Elevated circulating EPO has been reported in a number of diseases, but data from cirrhotic patients are sparse and the level of plasma EPO in patients with cirrhosis is controversial. Cirrhosis is characterized by liver fibrosis, hepatic dysfunction and the release of proinflammatory cytokines, which lead to arterial hypotension, hepatic nephropathy and anemia. An increase in EPO due to renal hypoperfusion, hypoxia and anemia or an EPO-mediated hepato-protective and regenerative mechanism is plausible. However, poor hepatic synthesis capacity, a decreasing co-factor level and inflammatory feedback mechanisms may explain a potential insufficient EPO response in end-stage cirrhosis. Finally, the question remains as to whether a potential increase in EPO production in certain stages of cirrhosis originates from the kidney or liver. This paper aims to review contemporary aspects of EPO relating to chronic liver disease.
Collapse
Affiliation(s)
- Louise Madeleine Risør
- a Department of Clinical Physiology and Nuclear Medicine, Center of Functional and Diagnostic Imaging and Research 260 , Hvidovre Hospital, University of Copenhagen
| | - Mogens Fenger
- b Department of Clinical Biochemistry, Hvidovre; Faculty of Health Sciences , University of Copenhagen
| | - Niels Vidiendal Olsen
- c Department of Neuroanaesthesia, the Neuroscience Centre , University Hospital of Copenhagen (Rigshospitalet), and ;,d Department of Neuroscience and Pharmacology, the Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Søren Møller
- a Department of Clinical Physiology and Nuclear Medicine, Center of Functional and Diagnostic Imaging and Research 260 , Hvidovre Hospital, University of Copenhagen
| |
Collapse
|
37
|
Kessler SM, Laggai S, Barghash A, Schultheiss CS, Lederer E, Artl M, Helms V, Haybaeck J, Kiemer AK. IMP2/p62 induces genomic instability and an aggressive hepatocellular carcinoma phenotype. Cell Death Dis 2015; 6:e1894. [PMID: 26426686 PMCID: PMC4632283 DOI: 10.1038/cddis.2015.241] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the third leading cause of cancer-related deaths and commonly develops in inflammatory environments. The IGF2 mRNA-binding protein IMP2-2/IGF2BP2-2/p62 was originally identified as an autoantigen in HCC. Aim of this study was to investigate a potential pathophysiological role of p62 in hepatocarcinogenesis. Human HCC tissue showed overexpression of IMP2, which strongly correlated with the fetal markers AFP and DLK1/Pref-1/FA-1 and was particularly elevated in tumors with stem-like features and hypervascularization. Molecular classification of IMP2-overexpressing tumors revealed an aggressive phenotype. Livers of mice overexpressing the IMP2 splice variant p62 highly expressed the stem cell marker DLK1 and secreted DLK1 into the blood. p62 was oncogenic: diethylnitrosamine (DEN)-treated p62 transgenic mice exhibited a higher tumor incidence and multiplicity than wild types. Tumors of transgenics showed a more aggressive and stem-like phenotype and displayed more oncogenic chromosomal aberrations determined with aCGH analysis. DEN-treated p62 transgenic mice exhibited distinct signs of inflammation, such as inflammatory cytokine expression and oxidative stress markers, that is, thiobarbituric acid-reactive substance (TBARS) levels. Reactive oxygen species (ROS) production was elevated in HepG2 cells, which either overexpressed p62 or were treated with DLK1. p62 induced this ROS production by a DLK1-dependent induction and activation of the small Rho-GTPase RAC1, activating NADPH oxidase and being overexpressed in human HCC. Our data indicate that p62/IMP2 promotes hepatocarcinogenesis by an amplification of inflammation.
Collapse
Affiliation(s)
- S M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany.,Institute of Pathology, Medical University of Graz, Graz, Austria
| | - S Laggai
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - A Barghash
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany.,Saarbruecken Graduate School of Computer Science, Saarbruecken, Germany
| | - C S Schultheiss
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - E Lederer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - M Artl
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - V Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - J Haybaeck
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - A K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| |
Collapse
|
38
|
Laggai S, Kessler SM, Boettcher S, Lebrun V, Gemperlein K, Lederer E, Leclercq IA, Mueller R, Hartmann RW, Haybaeck J, Kiemer AK. The IGF2 mRNA binding protein p62/IGF2BP2-2 induces fatty acid elongation as a critical feature of steatosis. J Lipid Res 2014; 55:1087-97. [PMID: 24755648 DOI: 10.1194/jlr.m045500] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Indexed: 12/12/2022] Open
Abstract
Liver-specific overexpression of the insulin-like growth factor 2 (IGF2) mRNA binding protein p62/IGF2BP2-2 induces a fatty liver, which highly expresses IGF2 Because IGF2 expression is elevated in patients with steatohepatitis, the aim of our study was to elucidate the role and interconnection of p62 and IGF2 in lipid metabolism. Expression of p62 and IGF2 highly correlated in human liver disease. p62 induced an elevated ratio of C18:C16 and increased fatty acid elongase 6 (ELOVL6) protein, the enzyme catalyzing the elongation of C16 to C18 fatty acids and promoting nonalcoholic steatohepatitis in mice and humans. The p62 overexpression induced the activation of the ELOVL6 transcriptional activator sterol regulatory element binding transcription factor 1 (SREBF1). Recombinant IGF2 induced the nuclear translocation of SREBF1 and a neutralizing IGF2 antibody reduced ELOVL6 and mature SREBF1 protein levels. Concordantly, p62 and IGF2 correlated with ELOVL6 in human livers. Decreased palmitoyl-CoA levels, as found in p62 transgenic livers, can explain the lipogenic action of ELOVL6. Accordingly, p62 represents an inducer of hepatic C18 fatty acid production via a SREBF1-dependent induction of ELOVL6. These findings underline the detrimental role of p62 in liver disease.
Collapse
Affiliation(s)
- Stephan Laggai
- Department of Pharmacy, Pharmaceutical Biology, Department of Pharmacy, Pharmaceutical, Saarland University, Saarbrücken, Germany
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Department of Pharmacy, Pharmaceutical, Saarland University, Saarbrücken, Germany Medicinal Chemistry, Saarland University, Saarbrücken, Germany Laboratory of Hepato-gastroenterology, Institut de Recherche expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | | | - Valérie Lebrun
- Laboratory of Hepato-gastroenterology, Institut de Recherche expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Katja Gemperlein
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Eva Lederer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Isabelle A Leclercq
- Laboratory of Hepato-gastroenterology, Institut de Recherche expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Rolf Mueller
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Rolf W Hartmann
- Medicinal Chemistry, Saarland University, Saarbrücken, Germany Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | | | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Department of Pharmacy, Pharmaceutical, Saarland University, Saarbrücken, Germany
| |
Collapse
|