1
|
Ghuloum FI, Stevens LA, Johnson CA, Riobo-Del Galdo NA, Amer MH. Towards modular engineering of cell signalling: Topographically-textured microparticles induce osteogenesis via activation of canonical hedgehog signalling. BIOMATERIALS ADVANCES 2023; 154:213652. [PMID: 37837904 DOI: 10.1016/j.bioadv.2023.213652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Polymer microparticles possess great potential as functional building blocks for advanced bottom-up engineering of complex tissues. Tailoring the three-dimensional architectural features of culture substrates has been shown to induce osteogenesis in mesenchymal stem cells in vitro, but the molecular mechanisms underpinning this remain unclear. This study proposes a mechanism linking the activation of Hedgehog signalling to the osteoinductive effect of surface-engineered, topographically-textured polymeric microparticles. In this study, mesenchymal progenitor C3H10T1/2 cells were cultured on smooth and dimpled poly(D,l-lactide) microparticles to assess differences in viability, cellular morphology, proliferation, and expression of a range of Hedgehog signalling components and osteogenesis-related genes. Dimpled microparticles induced osteogenesis and activated the Hedgehog signalling pathway relative to smooth microparticles and 2D-cultured controls without the addition of exogenous biochemical factors. We observed upregulation of the osteogenesis markers Runt-related transcription factor2 (Runx2) and bone gamma-carboxyglutamate protein 2 (Bglap2), as well as the Hedgehog signalling components, glioma associated oncogene homolog 1 (Gli1), Patched1 (Ptch1), and Smoothened (Smo). Treatment with the Smo antagonist KAAD-cyclopamine confirmed the involvement of Smo in Gli1 target gene activation, with a significant reduction in the expression of Gli1, Runx2 and Bglap2 (p ≤ 0.001) following KAAD-cyclopamine treatment. Overall, our study demonstrates the role of the topographical microenvironment in the modulation of Hedgehog signalling, highlighting the potential for tailoring substrate topographical design to offer cell-instructive 3D microenvironments. Topographically-textured microparticles allow the modulation of Hedgehog signalling in vitro without adding exogenous biochemical agonists, thereby eliminating potential confounding artefacts in high-throughput drug screening applications.
Collapse
Affiliation(s)
- Fatmah I Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Lee A Stevens
- Low Carbon Energy and Resources Technologies Research Group, Faculty of Engineering, University of Nottingham, UK
| | - Colin A Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
2
|
Florea DA, Grumezescu V, Bîrcă AC, Vasile BȘ, Iosif A, Chircov C, Stan MS, Grumezescu AM, Andronescu E, Chifiriuc MC. Bioactive Hydroxyapatite-Magnesium Phosphate Coatings Deposited by MAPLE for Preventing Infection and Promoting Orthopedic Implants Osteointegration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7337. [PMID: 36295401 PMCID: PMC9609740 DOI: 10.3390/ma15207337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, we used the matrix-assisted pulsed laser evaporation (MAPLE) technique to obtain hydroxyapatite (Ca10(PO4)6(OH)2) and magnesium phosphate (Mg3(PO4)2) thin coatings containing bone morphogenetic protein (BMP4) for promoting implants osteointegration and further nebulized with the antibiotic ceftriaxone (CXF) to prevent peri-implant infections. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), infrared microscopy (IRM) and Fourier-transform infrared spectroscopy (FT-IR). Furthermore, the antimicrobial properties were evaluated on Staphylococcus aureus biofilms and the cytocompatibility on the MC3T3-E1 cell line. The obtained results proved the potential of the obtained coatings for bone implant applications, providing a significant antimicrobial and antibiofilm effect, especially in the first 48 h, and cytocompatibility in relation to murine osteoblast cells.
Collapse
Affiliation(s)
- Denisa Alexandra Florea
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Valentina Grumezescu
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Andrei Iosif
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Miruna S. Stan
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- The Romanian Academy, Calea Victoriei 25, District 1, 010071 Bucharest, Romania
| |
Collapse
|
3
|
BMP2 as a promising anticancer approach: functions and molecular mechanisms. Invest New Drugs 2022; 40:1322-1332. [PMID: 36040572 DOI: 10.1007/s10637-022-01298-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Bone morphogenetic protein 2 (BMP2), a pluripotent factor, is a member of the transforming growth factor-beta (TGF-β) superfamily and is implicated in embryonic development and postnatal homeostasis in tissues and organs. Experimental research in the contexts of physiology and pathology has indicated that BMP2 can induce macrophages to differentiate into osteoclasts and accelerate the osteolytic mechanism, aggravating cancer cell bone metastasis. Emerging studies have stressed the potent regulatory effect of BMP2 in cancer cell differentiation, proliferation, survival, and apoptosis. Complicated signaling networks involving multiple regulatory proteins imply the significant biological functions of BMP2 in cancer. In this review, we comprehensively summarized and discussed the current evidence related to the modulation of BMP2 in tumorigenesis and development, including evidence related to the roles and molecular mechanisms of BMP2 in regulating cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer angiogenesis and the tumor microenvironment (TME). All these findings suggest that BMP2 may be an effective therapeutic target for cancer and a new marker for assessing treatment efficacy.
Collapse
|
4
|
Enhanced Effect of SiC Nanoparticles Combined with Nanohydroxyapatite Material to Stimulate Bone Regenerations in Femoral Fractures Treatment. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02298-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Xu G, Shen C, Lin H, Zhou J, Wang T, Wan B, Binshabaib M, Forouzanfar T, Xu G, Alharbi N, Wu G. Development, In-Vitro Characterization and In-Vivo Osteoinductive Efficacy of a Novel Biomimetically-Precipitated Nanocrystalline Calcium Phosphate With Internally-Incorporated Bone Morphogenetic Protein-2. Front Bioeng Biotechnol 2022; 10:920696. [PMID: 35935495 PMCID: PMC9354744 DOI: 10.3389/fbioe.2022.920696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
The repair of large-volume bone defects (LVBDs) remains a great challenge in the fields of orthopedics and maxillofacial surgery. Most clinically available bone-defect-filling materials lack proper degradability and efficient osteoinductivity. In this study, we synthesized a novel biomimetically-precipitated nanocrystalline calcium phosphate (BpNcCaP) with internally incorporated bone morphogenetic protein-2 (BpNcCaP + BMP-2) with an aim to develop properly degradable and highly osteoinductive granules to repair LVBDs. We first characterized the physicochemical properties of the granules with different incorporation amounts of BMP-2 using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. We evaluated the cytotoxicity and cytocompatibility of BpNcCaP by assessing the viability and adhesion of MC3T3-E1 pre-osteoblasts using PrestoBlue assay, Rhodamine-Phalloidin and DAPI staining, respectively. We further assessed the in-vivo osteoinductive efficacy in a subcutaneous bone induction model in rats. In-vitro characterization data showed that the BpNcCaP + BMP-2 granules were comprised of hexagonal hydroxyapatite with an average crystallite size ranging from 19.7 to 25.1 nm and a grain size at 84.13 ± 28.46 nm. The vickers hardness of BpNcCaP was 32.50 ± 3.58 HV 0.025. BpNcCaP showed no obvious cytotoxicity and was favorable for the adhesion of pre-osteoblasts. BMP-2 incorporation rate could be as high as 65.04 ± 6.01%. In-vivo histomorphometric analysis showed that the volume of new bone induced by BpNcCaP exhibited a BMP-2 amount-dependent increasing manner. The BpNcCaP+50 μg BMP-2 exhibited significantly more degradation and fewer foreign body giant cells in comparison with BpNcCaP. These data suggested a promising application potential of BpNcCaP + BMP-2 in repairing LVBDs.
Collapse
Affiliation(s)
- Gaoli Xu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Department of Stomatology, Zhejiang Hospital, Hangzhou, China
| | - Chenxi Shen
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Hangzhou Huibo Science and Technology Co. Ltd., Xinjie Science Park, Hangzhou, China
| | - Haiyan Lin
- Department of Implantology, Hangzhou Stomatology Hospital, Hangzhou, China
- Savid School of Stomatology, Hangzhou Medical College, Hangzhou, China
| | - Jian Zhou
- Department of Implantology, Hangzhou Stomatology Hospital, Hangzhou, China
| | - Ting Wang
- Department of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ben Wan
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Hangzhou Huibo Science and Technology Co. Ltd., Xinjie Science Park, Hangzhou, China
| | - Munerah Binshabaib
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
| | - Guochao Xu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, China
| | - Nawal Alharbi
- Department of Prosthetic Dental Sciences, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Nawal Alharbi, ; Gang Wu,
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, Netherlands
- *Correspondence: Nawal Alharbi, ; Gang Wu,
| |
Collapse
|
6
|
Li M, Wu G, Wang M, Hunziker EB, Liu Y. Crystalline Biomimetic Calcium Phosphate Coating on Mini-Pin Implants to Accelerate Osseointegration and Extend Drug Release Duration for an Orthodontic Application. NANOMATERIALS 2022; 12:nano12142439. [PMID: 35889663 PMCID: PMC9324071 DOI: 10.3390/nano12142439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023]
Abstract
Miniscrew implants (MSIs) have been widely used as temporary anchorage devices in orthodontic clinics. However, one of their major limitations is the relatively high failure rate. We hypothesize that a biomimetic calcium phosphate (BioCaP) coating layer on mini-pin implants might be able to accelerate the osseointegration, and can be a carrier for biological agents. A novel mini-pin implant to mimic the MSIs was used. BioCaP (amorphous or crystalline) coatings with or without the presence of bovine serum albumin (BSA) were applied on such implants and inserted in the metaphyseal tibia in rats. The percentage of bone to implant contact (BIC) in histomorphometric analysis was used to evaluate the osteoconductivity of such implants from six different groups (n=6 rats per group): (1) no coating no BSA group, (2) no coating BSA adsorption group, (3) amorphous BioCaP coating group, (4) amorphous BioCaP coating-incorporated BSA group, (5) crystalline BioCaP coating group, and (6) crystalline BioCaP coating-incorporated BSA group. Samples were retrieved 3 days, 1 week, 2 weeks, and 4 weeks post-surgery. The results showed that the crystalline BioCaP coating served as a drug carrier with a sustained release profile. Furthermore, the significant increase in BIC occurred at week 1 in the crystalline coating group, but at week 2 or week 4 in other groups. These findings indicate that the crystalline BioCaP coating can be a promising surface modification to facilitate early osseointegration and increase the success rate of miniscrew implants in orthodontic clinics.
Collapse
Affiliation(s)
- Menghong Li
- Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (M.L.); (G.W.); (M.W.)
| | - Gang Wu
- Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (M.L.); (G.W.); (M.W.)
| | - Mingjie Wang
- Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (M.L.); (G.W.); (M.W.)
| | - Ernst B. Hunziker
- Centre of Regenerative Medicine for Skeletal Tissues, Department of Clinical Research, University of Bern, 3010 Bern, Switzerland;
- Group for Bone Biology, Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (M.L.); (G.W.); (M.W.)
- Correspondence: ; Tel.: +31-2-0598-0626
| |
Collapse
|
7
|
Uijlenbroek HJJ, Lin X, Liu T, Zheng Y, Wismeijer D, Liu Y. Bone morphogenetic protein-2 incorporated calcium phosphate graft promotes peri-implant bone defect healing in dogs: A pilot study. Clin Exp Dent Res 2022; 8:1092-1102. [PMID: 35796096 PMCID: PMC9562579 DOI: 10.1002/cre2.613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/12/2022] Open
Abstract
Objectives The evaluation of three different drug delivery modes of bone morphogenetic protein‐2 (BMP‐2) in healing peri‐implant bone defects in beagle dogs. BMP‐2 was incorporated in or onto calcium phosphate (CaP) granules in various ways: (i) directly on the outer layer of granules CaP: as an adsorbed depot; (ii) during the entire precipitation process of CaP: an internally incorporated depot; or (iii) during the biomimetic coating precipitation of BMP‐2 on the surface of CaP granules: as a coating incorporated depot. Material and Methods After extraction of the lower molars and wound healing in 6 male beagle dogs, 36 implants were placed (n = 6 animal per group). Peri‐implant bone defects were induced. The following treatment groups were evaluated: no treatment; air abrasive surface cleaning (SC) using hydroxyapatite; SC and the subsequent filling of the defect with CaP without BMP‐2; SC plus the subsequent filling of the defect with CaP adsorbed BMP‐2; SC plus the subsequent filling of the defect with CaP internally incorporated BMP‐2; SC plus the subsequent filling of the defect with CaP coating incorporated BMP‐2. Histological and histomorphometric analyses were carried out to quantify and compare the changes in bone tissue surrounding the treated implants. Results In Group 1 with no treatment, four implants were lost. Group 5 with the SC and the subsequent filling of the defect with internally incorporated BMP‐2 biomimetically prepared CaP (BioCaP), whereby the BMP‐2 is incorporated in the entire volume of all BioCaP particles, showed overall the best results to regenerate bone around the implants. Conclusion This study concluded that the group treated with SC plus the subsequent filling of the defect with CaP BMP‐2 internally incorporated BMP‐2, whereby BMP‐2 has been incorporated in the entire volume of all CaP particles, showed overall the best results when aiming to regenerate bone around the implants.
Collapse
Affiliation(s)
- Henri J J Uijlenbroek
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Xingnan Lin
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tie Liu
- Department of Oral Implantology, the Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanna Zheng
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Daniel Wismeijer
- Private Practice prof. dr. D. Wismeijer, Ellecom, The Netherlands
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| |
Collapse
|
8
|
Liu H, Chen J, Qiao S, Zhang W. Carbon-Based Nanomaterials for Bone and Cartilage Regeneration: A Review. ACS Biomater Sci Eng 2021; 7:4718-4735. [PMID: 34586781 DOI: 10.1021/acsbiomaterials.1c00759] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the main load-bearing structure in the human body, bone and cartilage are susceptible to damage in sports and other activities. The repair and regeneration of bone and articular cartilage have been extensively studied in the past decades. Traditional approaches have been widely applied in clinical practice, but the effect varies from person to person and may cause side effects. With the rapid development of tissue engineering and regenerative medicine, various biomaterials show great potential in the regeneration of bone and cartilage. Carbon-based nanomaterials are solid materials with different structures and properties composed of allotropes of carbon, which are classified into zero-, one-, and two-dimensional ones. This Review systemically summarizes the different types of carbon-based nanomaterials, including zero-dimensional (fullerene, carbon dots, nanodiamonds), one-dimensional (carbon nanotubes), and two-dimensional (graphenic materials) as well as their applications in bone, cartilage, and osteochondral regeneration. Current limitations and future perspectives of carbon-based nanomaterials are also discussed.
Collapse
Affiliation(s)
- Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421 Homburg, Germany
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
9
|
Wang P, Lin H. [Research progress of nanomaterials in osteomyelitis treatment]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:648-655. [PMID: 33998221 DOI: 10.7507/1002-1892.202012044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the related studies on the application of nanomaterials in the treatment of osteomyelitis, and to provide new ideas for the research and clinical treatment of osteomyelitis. Methods The literature about the treatment of osteomyelitis with nanomaterials at home and abroad in recent years was reviewed and analyzed. Results At present, surgical treatment and antibiotic application are the main treatment options for osteomyelitis. But there are many defects such as antibiotic resistance, residual bone defect, and low effective concentration of local drugs. The application of nanomaterials can make up for the above defects. In recent years, nanomaterials play an important role in the treatment of osteomyelitis by filling bone defects, establishing local drug delivery system, and self-antibacterial properties. Conclusion It will provide a new idea and an important research direction for the treatment of osteomyelitis to fully study the related characteristics of nanomaterials and select beneficial materials to make drug delivery system or substitute drugs.
Collapse
Affiliation(s)
- Peilin Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai, 200080, P.R.China
| | - Haodong Lin
- Department of Orthopaedics, Shanghai General Hospital, Shanghai, 200080, P.R.China
| |
Collapse
|
10
|
Fayed O, van Griensven M, Tahmasebi Birgani Z, Plank C, Balmayor ER. Transcript-Activated Coatings on Titanium Mediate Cellular Osteogenesis for Enhanced Osteointegration. Mol Pharm 2021; 18:1121-1137. [PMID: 33492959 PMCID: PMC7927143 DOI: 10.1021/acs.molpharmaceut.0c01042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteointegration is one of the most important factors for implant success. Several biomolecules have been used as part of drug delivery systems to improve implant integration into the surrounding bone tissue. Chemically modified mRNA (cmRNA) is a new form of therapeutic that has been used to induce bone healing. Combined with biomaterials, cmRNA can be used to develop transcript-activated matrices for local protein production with osteoinductive potential. In this study, we aimed to utilize this technology to create bone morphogenetic protein 2 (BMP2) transcript-activated coatings for titanium (Ti) implants. Therefore, different coating methodologies as well as cmRNA incorporation strategies were evaluated. Three different biocompatible biomaterials were used for the coating of Ti, namely, poly-d,l-lactic acid (PDLLA), fibrin, and fibrinogen. cmRNA-coated Ti disks were assayed for transfection efficiency, cmRNA release, cell viability and proliferation, and osteogenic activity in vitro. We found that cmRNA release was significantly delayed in Ti surfaces previously coated with biomaterials. Consequently, the transfection efficiency was greatly improved. PDLLA coating improved the transfection efficiency in a concentration-dependent manner. Lower PDLLA concentration used for the coating of Ti resulted in higher transfection efficiency. Fibrin and fibrinogen coatings showed even higher transfection efficiencies compared to all PDLLA concentrations. In those disks, not only the expression was up to 24-fold higher but also the peak of maximal expression was delayed from 24 h to 5 days, and the duration of expression was also extended until 7 days post-transfection. For fibrin, higher transfection efficiencies were obtained in the coatings with the lowest thrombin amounts. Accordingly, fibrinogen coatings gave the best results in terms of cmRNA transfection. All biomaterial-coated Ti surfaces showed improved cell viability and proliferation, though this was more noticeable in the fibrinogen-coated disks. The latter was also the only coating to support significant amounts of BMP2 produced by C2C12 cells in vitro. Osteogenesis was confirmed using BMP2 cmRNA fibrinogen-coated Ti disks, and it was dependent of the cmRNA amount present. Alkaline phosphatase (ALP) activity of C2C12 increased when using fibrinogen coatings containing 250 ng of cmRNA or more. Similarly, mineralization was also observed that increased with increasing cmRNA concentration. Overall, our results support fibrinogen as an optimal material to deliver cmRNA from titanium-coated surfaces.
Collapse
Affiliation(s)
- Omnia Fayed
- Institute of Molecular Immunology and Experimental Oncology-Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Ethris GmbH, 82152 Planegg, Germany
| | - Martijn van Griensven
- cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands.,Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Zeinab Tahmasebi Birgani
- IBE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Christian Plank
- Institute of Molecular Immunology and Experimental Oncology-Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Ethris GmbH, 82152 Planegg, Germany
| | - Elizabeth R Balmayor
- IBE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands.,Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
11
|
Ion R, Necula MG, Mazare A, Mitran V, Neacsu P, Schmuki P, Cimpean A. Drug Delivery Systems Based on Titania Nanotubes and Active Agents for Enhanced Osseointegration of Bone Implants. Curr Med Chem 2020; 27:854-902. [PMID: 31362646 DOI: 10.2174/0929867326666190726123229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 01/16/2019] [Accepted: 05/04/2019] [Indexed: 12/31/2022]
Abstract
TiO2 nanotubes (TNTs) are attractive nanostructures for localized drug delivery. Owing to their excellent biocompatibility and physicochemical properties, numerous functionalizations of TNTs have been attempted for their use as therapeutic agent delivery platforms. In this review, we discuss the current advances in the applications of TNT-based delivery systems with an emphasis on the various functionalizations of TNTs for enhancing osteogenesis at the bone-implant interface and for preventing implant-related infection. Innovation of therapies for enhancing osteogenesis still represents a critical challenge in regeneration of bone defects. The overall concept focuses on the use of osteoconductive materials in combination with the use of osteoinductive or osteopromotive factors. In this context, we highlight the strategies for improving the functionality of TNTs, using five classes of bioactive agents: growth factors (GFs), statins, plant derived molecules, inorganic therapeutic ions/nanoparticles (NPs) and antimicrobial compounds.
Collapse
Affiliation(s)
- Raluca Ion
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Madalina Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Anca Mazare
- University of Erlangen-Nuremberg, Department of Materials Science, Erlangen, Germany
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Patricia Neacsu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Patrik Schmuki
- University of Erlangen-Nuremberg, Department of Materials Science, Erlangen, Germany
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
12
|
Li X, Yin HM, Luo E, Zhu S, Wang P, Zhang Z, Liao GQ, Xu JZ, Li ZM, Li JH. Accelerating Bone Healing by Decorating BMP-2 on Porous Composite Scaffolds. ACS APPLIED BIO MATERIALS 2019; 2:5717-5726. [PMID: 35021565 DOI: 10.1021/acsabm.9b00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hua-Mo Yin
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Gui-Qing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ji-Hua Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Graphene oxide: A growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Acta Biomater 2019; 96:271-280. [PMID: 31325577 DOI: 10.1016/j.actbio.2019.07.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/21/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Abstract
Cartilage engineering with stem cells in 3D scaffolds is a promising future therapy to treat cartilage defects. One challenge in the field is to design carriers to efficaciously deliver biological factors in 3D scaffolds containing stem cells to appropriately guide differentiation of these cells in same scaffolds and promote specific tissue synthesis. Graphene-based 2D nanomaterials have recently attracted extensive interest for their biomedical applications as they can adsorb a plethora of biological molecules, thus offering high potential as delivery carriers. This study utilized graphene oxide (GO) flakes to adsorb transforming growth factor β3 (TGF-β3), which were then incorporated into a collagen hydrogel. Human mesenchymal stem cells (hMSCs) were encapsulated in the same gel and chondrogenic differentiation assessed. The study showed GO flakes adsorbed > 99% TGF-β3 with <1.7% release. Adsorbed TGF-β3 retained a similar conformation to its dissolved counterpart (free protein) but importantly demonstrated greater conformational stability. Smad2 phosphorylation was promoted, and higher chondrogenic gene expression and cartilage-specific extracellular matrix deposition were achieved compared to exogenously delivering TGF-β3 in culture media. Effects were sustained in long-term 28-day culture. The results demonstrate GO flakes as highly-efficient for delivering GFs in 3D to guide cells in the same scaffold and induce tissue formation. The ability of GO flakes to provide sustained local delivery makes this material attractive for tissue engineering strategies, in particular for regionally-specific MSC differentiation (e.g. osteochondral tissue engineering). STATEMENT OF SIGNIFICANCE: Cartilage engineering involving stem cells in 3D scaffolds is a promising future therapy to treat cartilage defects which can lead to debilitating conditions such as osteoarthritis. However, this field faces the challenge to design delivery carriers to efficaciously deliver biological factors inside these 3D cell-containing scaffolds for appropriately-guided cell differentiation. Graphene-based 2D nanomaterials offer high potential as delivery carriers, but to date studies using them to deliver biological factors have been restricted to 2D substrates, non-scaffold cell masses, or acellular 3D scaffolds. Our study for the first time demonstrated simultaneously incorporating both human mesenchymal stem cells (hMSCs) and GO (graphene oxide)-adsorbed growth factor TGFβ3 into a 3D scaffold, where GO-adsorbed TGFβ3 enhanced chondrogenic differentiation of hMSCs and cartilage-tissue synthesis throughout the scaffold without needing to repeatedly supply TGFβ3 exogenously.
Collapse
|
14
|
Li T, Li XL, Hu SX, Wu J. Enhanced osteoporotic effect of silicon carbide nanoparticles combine with nano-hydroxyapatite coated anodized titanium implant on healthy bone regeneration in femoral fracture. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111515. [PMID: 31255939 DOI: 10.1016/j.jphotobiol.2019.111515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 11/28/2022]
Abstract
An extraordinary arrangement of research is as yet going on in the area of orthopedic implants advancement to determine different issues being looked by the engineering today. In spite of a few detriments of the orthopedic metallic inserts, they keep on being utilized, essentially as a result of their unrivaled mechanical properties. We investigated the conceivable utilization of silicon carbide (SiC) as a nano-ceramic covering material of titanium (Ti)-based all out femoral substitution implants. The thought is to keep wear garbage arrangement from the delicate titanium exterior. Silicon carbide is a hard and firmly holding bio-ceramic surface substance, and in light of these physico-chemical properties, it isn't actually degradable, just like the case with apatite (HA). To improve cytocompatibility and osseous-integration, we deposited anodized titanium nanotubes (TiO2) inserts, by electrochemical deposition method (EDM), with silicon carbide (SiC) with apatite (SiC@HA). The deposition was affirmed by SEM, while phase composition properties were assessed by XRD. Calcium affidavit, osteocalcin creation, and articulation of bone genes were essentially higher in rodent osteoblast cell culture on SiC@HA-covered anodized titanium nanotubes than in cells cultured on uncoated anodized titanium nanotubes. Implantation into rodent femurs likewise demonstrated that the SiC@HA-covered substance had unrivaled osseous-integration movement in correlation with that of customary inserts, as evaluated by in vivo tomography and histology. Therefore, anodized titanium nanotubes covered with SiC@HA holds guarantee as an orthopedic implant substance.
Collapse
Affiliation(s)
- Tao Li
- Department of Emergency Trauma Surgery, Jining No.1 People's Hospital, Jining 272011, Shandong, China
| | - Xing-Long Li
- Department of Orthopedics, Yankuang Group Genaral Hospital, Zoucheng 273500, Shandong, China
| | - Shi-Xiang Hu
- Department of Orthopedics, The People's Hospital of Lingcheng District, Dezhou 253500, Shandong, China
| | - Jing Wu
- Department of Emergency Trauma Surgery, Jining No.1 People's Hospital, Jining 272011, Shandong, China.
| |
Collapse
|
15
|
High Concentrations of Polyelectrolyte Complex Nanoparticles Decrease Activity of Osteoclasts. Molecules 2019; 24:molecules24122346. [PMID: 31242715 PMCID: PMC6630339 DOI: 10.3390/molecules24122346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022] Open
Abstract
Fracture treatment in osteoporotic patients is still challenging. Osteoporosis emerges when there is an imbalance between bone formation and resorption in favor of resorption by osteoclasts. Thus, new implant materials for osteoporotic fracture treatment should promote bone formation and reduce bone resorption. Nanoparticles can serve as drug delivery systems for growth factors like Brain-Derived Neurotrophic Factor (BDNF), which stimulated osteoblast differentiation. Therefore, polyelectrolyte complex nanoparticles (PEC-NPs) consisting of poly(l-lysine) (PLL) and cellulose sulfate (CS), with or without addition of BDNF, were used to analyze their effect on osteoclasts in vitro. Live cell images showed that osteoclast numbers decreased after application of high PLL/CS PEC-NPs concentrations independent of whether BDNF was added or not. Real-time RT-PCR revealed that relative mRNA expression of cathepsin K and calcitonin receptor significantly declined after incubation of osteoclasts with high concentrations of PLL/CS PEC-NPs. Furthermore, Enzyme-Linked Immunosorbent Assay indicated that tartrate-resistant acidic phosphatase 5b activity was significantly reduced in the presence of high PLL/CS PEC-NPs concentrations. Consistent with these results, the pit formation analysis showed that less hydroxyapatite was resorbed by osteoclasts after incubation with high concentrations of PLL/CS PEC-NPs. BDNF had no influence on osteoclasts. We conclude that highly concentrated PLL/CS PEC-NPs dosages decreased osteoclastogenesis and osteoclasts activity. Moreover, BDNF might be a promising growth factor for osteoporotic fracture treatment since it did not increase osteoclast activity.
Collapse
|
16
|
Surface Immobilization of TiO 2 Nanotubes with Bone Morphogenetic Protein-2 Synergistically Enhances Initial Preosteoblast Adhesion and Osseointegration. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5697250. [PMID: 31032352 PMCID: PMC6457305 DOI: 10.1155/2019/5697250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/10/2019] [Indexed: 11/18/2022]
Abstract
Although titanium (Ti) alloys have been widely used as implant materials, the bioinertness of pristine Ti impairs their bioactivity and early osseointegration. In the present work, we prepared TiO2 nanotubes (TNT) layer on the titanium (Ti) surface by anodic oxidation. The anodized surface was functionalized with human bone morphogenetic protein-2 coating to form the hBMP-2/TNT surface. The release behavior of hBMP-2 on the hBMP-2/TNT surface displayed a controlled and sustained pattern, compared to that on the hBMP-2/Ti surface, which showed a rapid release. In vitro cellular activity tests demonstrated that both TNT and hBMP-2/Ti surfaces, particularly the hBMP-2/TNT surface, enhanced adhesion, proliferation, and differentiation of osteoblast cells. Increased cell adhesion, improved cytoskeleton organization, and immunofluorescence staining of vinculin were observed on the modified surfaces. The TNT, hBMP-2/Ti, and hBMP-2/TNT surfaces, especially the hBMP-2/TNT surface, further displayed an upregulated gene expression of adhesion and osteogenic markers vinculin, collagen type 1, osteopontin, and osteocalcin, compared to the pristine Ti surface. In vivo experiments using a rat model demonstrated that the TNT and hBMP-2/Ti surfaces, in particular the hBMP-2/TNT surface, improved osseointegration and showed a superior bone bonding ability compared to Ti. Our study revealed a synergistic role played by TiO2 nanotubes nanotopography and hBMP-2 in promoting initial osteoblast adhesion, proliferation, differentiation, and osseointegration, thus suggesting a promising method for better modifying the implant surface.
Collapse
|
17
|
Xi Y, Miao X, Li Y, Lai K, Du X, Jiang Z, Wang Y, Yang G. BMP2-mimicking peptide modified with E7 coupling to calcined bovine bone enhanced bone regeneration associating with activation of the Runx2/SP7 signaling axis. J Biomed Mater Res B Appl Biomater 2019; 108:80-93. [PMID: 30912295 DOI: 10.1002/jbm.b.34368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Commercial bone substitute, such as calcined bovine bone (CBB), is currently extensively used as an alternative to autogenous bone. However, CBB lacks osteoinductivity and merely serves as a scaffold for native bone formation. To address this issue, we designed and prepared a heptaglutamate (E7)-modified BMP2-mimicking peptide (7E) and carried out a series of comprehensive physical characterizations and in vivo and in vitro studies to evaluate its role in the repair of cranial defects. The data elucidated that the amount of peptide anchoring to the bone graft materials was remarkably increased after modified with E7. Of note, 7E had a relatively stable and durable release, which promoted the osteogenic differentiation of rat derived bone marrow mesenchymal stem cells (BMSCs) and enhanced the bone regeneration of a rabbit calvarial defect by regulating the expression of the Runx2/SP7 axis. In summary, the composite biomaterials incorporating the E7-modified BMP2-mimicking peptide and CBB prepared in this study is a novel bone augmentation material with the merits of non-immunotoxicity, convenience, and low cost. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:80-93, 2020.
Collapse
Affiliation(s)
- Yue Xi
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoyan Miao
- Department of Science and Education, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yongzheng Li
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Kaichen Lai
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xue Du
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhiwei Jiang
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ying Wang
- Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
18
|
Cruz ACC, Cardozo FTGDS, Magini RDS, Simões CMO. Retinoic acid increases the effect of bone morphogenetic protein type 2 on osteogenic differentiation of human adipose-derived stem cells. J Appl Oral Sci 2019; 27:e20180317. [PMID: 30810639 PMCID: PMC6382324 DOI: 10.1590/1678-7757-2018-0317] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/26/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Bone morphogenetic protein type 2 (BMP-2) and retinoic acid (RA) are osteoinductive factors that stimulate endogenous mechanisms of bone repair which can be applied on management of osseous defects in oral and maxillofacial fields. OBJECTIVE Considering the different results of RA on osteogenesis and its possible use to substitute/potency BMP-2 effects, this study evaluated the outcomes of BMP-2, RA, and BMP-2+RA treatments on in vitro osteogenic differentiation of human adipose-derived stem cells (ASCs) and the signaling pathway(s) involved. MATERIAL AND METHODS ASCs were treated every other day with basic osteogenic medium (OM) alone or supplemented with BMP-2, RA, or BMP-2+RA. Alkaline phosphatase (ALP) activity was determined using the r-nitrophenol method. Extracellular matrix mineralization was evaluated using von Kossa staining and calcium quantification. Expression of osteonectin and osteocalcin mRNA were determined using qPCR. Smad1, Smad4, phosphorylated Smad1/5/8, BMP-4, and BMP-7 proteins expressions were analyzed using western blotting. Signaling pathway was evaluated using the IPA® software. RESULTS RA promoted the highest ALP activity at days 7, 14, 21, and 28, in comparison to BMP-2 and BMP-2+RA. BMP-2+RA best stimulated phosphorylated Smad1/5/8 protein expression at day 7 and Smad4 expression at days 7, 14, 21, and 28. Osteocalcin and osteonectin mRNA expressions were best stimulated by BMP-2+RA at day 7. Matrix mineralization was most improved by BMP-2+RA at days 12 and 32. Additionally, BMP-2+RA promoted the highest BMP signaling pathway activation at days 7 and 14, and demonstrated more activation of differentiation of bone-forming cells than OM alone. CONCLUSIONS In summary, RA increased the effect of BMP-2 on osteogenic differentiation of human ASCs.
Collapse
Affiliation(s)
- Ariadne Cristiane Cabral Cruz
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Odontologia, Departamento de Odontologia, Florianópolis, Santa Catarina,Brasil
| | | | - Ricardo de Souza Magini
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Odontologia, Departamento de Odontologia, Florianópolis, Santa Catarina,Brasil
| | - Cláudia Maria Oliveira Simões
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Florianópolis, Santa Catarina,Brasil
| |
Collapse
|
19
|
Yu X, Huang W, Zhao D, Yang K, Tan L, Zhang X, Li J, Zhang M, Zhang S, Liu T, Wu B, Qu M, Duan R, Yuan Y. Study of engineered low-modulus Mg/PLLA composites as potential orthopaedic implants: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2019; 174:280-290. [DOI: 10.1016/j.colsurfb.2018.10.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 01/05/2023]
|
20
|
Vieira WA, McCusker CD. Regenerative Models for the Integration and Regeneration of Head Skeletal Tissues. Int J Mol Sci 2018; 19:E3752. [PMID: 30486286 PMCID: PMC6321600 DOI: 10.3390/ijms19123752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
Disease of, or trauma to, the human jaw account for thousands of reconstructive surgeries performed every year. One of the most popular and successful treatment options in this context involves the transplantation of bone tissue from a different anatomical region into the affected jaw. Although, this method has been largely successful, the integration of the new bone into the existing bone is often imperfect, and the integration of the host soft tissues with the transplanted bone can be inconsistent, resulting in impaired function. Unlike humans, several vertebrate species, including fish and amphibians, demonstrate remarkable regenerative capabilities in response to jaw injury. Therefore, with the objective of identifying biological targets to promote and engineer improved outcomes in the context of jaw reconstructive surgery, we explore, compare and contrast the natural mechanisms of endogenous jaw and limb repair and regeneration in regenerative model organisms. We focus on the role of different cell types as they contribute to the regenerating structure; how mature cells acquire plasticity in vivo; the role of positional information in pattern formation and tissue integration, and limitations to endogenous regenerative and repair mechanisms.
Collapse
Affiliation(s)
- Warren A Vieira
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| | - Catherine D McCusker
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| |
Collapse
|
21
|
Kim HY, Lee JH, Lee HAR, Park JS, Woo DK, Lee HC, Rho GJ, Byun JH, Oh SH. Sustained Release of BMP-2 from Porous Particles with Leaf-Stacked Structure for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21091-21102. [PMID: 29863327 DOI: 10.1021/acsami.8b02141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sustained release of bioactive molecules from delivery systems is a common strategy for ensuring their prolonged bioactivity and for minimizing safety issues. However, residual toxic reagents, the use of harsh organic solvents, and complex fabrication procedures in conventional delivery systems are considered enormous impediments toward clinical use. Herein, we describe bone morphogenetic protein-2 (BMP-2)-immobilized porous polycaprolactone particles with unique leaf-stacked structures (LSS particles) prepared using clinically feasible materials and procedures. The BMP-2 immobilized in these LSS particles is continuously released up to 36 days to provide an appropriate environment for osteogenic differentiation of human periosteum-derived cells and new bone formation. Thus, the leaf-stacked structures of these LSS particles provide a simple but clinically applicable platform for effectively delivering a variety of bioactive molecules, such as growth factors, hormones, cytokines, peptides, etc.
Collapse
Affiliation(s)
| | - Jin Ho Lee
- Department of Advanced Materials , Hannam University , Daejeon 34054 , Republic of Korea
| | | | | | | | | | | | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences , Gyeongsang National University , Jinju 52727 , Republic of Korea
| | | |
Collapse
|
22
|
Glenske K, Donkiewicz P, Köwitsch A, Milosevic-Oljaca N, Rider P, Rofall S, Franke J, Jung O, Smeets R, Schnettler R, Wenisch S, Barbeck M. Applications of Metals for Bone Regeneration. Int J Mol Sci 2018; 19:E826. [PMID: 29534546 PMCID: PMC5877687 DOI: 10.3390/ijms19030826] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023] Open
Abstract
The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.
Collapse
Affiliation(s)
- Kristina Glenske
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, D-35392 Giessen, Germany.
| | | | | | - Nada Milosevic-Oljaca
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, D-35392 Giessen, Germany.
| | | | - Sven Rofall
- Botiss Biomaterials, D-12109 Berlin, Germany.
| | - Jörg Franke
- Clinic for Trauma Surgery and Orthopedics, Elbe Kliniken Stade-Buxtehude, D-21682 Stade, Germany.
| | - Ole Jung
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg- Eppendorf, D-20246 Hamburg, Germany.
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg- Eppendorf, D-20246 Hamburg, Germany.
| | | | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, D-35392 Giessen, Germany.
| | - Mike Barbeck
- Botiss Biomaterials, D-12109 Berlin, Germany.
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg- Eppendorf, D-20246 Hamburg, Germany.
| |
Collapse
|
23
|
Gohil SV, Wang L, Rowe DW, Nair LS. Spatially controlled rhBMP-2 mediated calvarial bone formation in a transgenic mouse model. Int J Biol Macromol 2018; 106:1159-1165. [DOI: 10.1016/j.ijbiomac.2017.08.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022]
|
24
|
Synergistic effects of BMP-2, BMP-6 or BMP-7 with human plasma fibronectin onto hydroxyapatite coatings: A comparative study. Acta Biomater 2017; 55:481-492. [PMID: 28434979 DOI: 10.1016/j.actbio.2017.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/20/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023]
Abstract
Design of new osteoinductive biomaterials to reproduce an optimized physiological environment capable of recruiting stem cells and instructing their fate towards the osteoblastic lineage has become a priority in orthopaedic surgery. This work aims at evaluating the bioactivity of BMP combined with human plasma fibronectin (FN/BMP) delivered in solution or coated onto titanium-hydroxyapatite (TiHA) surfaces. Herein, we focus on the comparison of in vitro osteogenic efficacy in mouse C2C12 pre-osteoblasts of three BMP members, namely: BMP-2, BMP-6 and BMP-7. In parallel, we evaluated the molecular binding strength between each BMP with FN using the Surface Plasmon Resonance (SPR) technology. The affinity of BMPs for FN was found totally different and dependent on BMP type. Indeed, the combination of FN with BMP-2 on TiHA surfaces potentiates the burst of gene-mediated osteogenic induction, while it prolongs the osteogenic activity of BMP-6 and surprisingly annihilates the BMP-7 one. These results correlate with FN/BMP affinity for TiHA, since BMP-6>BMP-2>BMP-7. In addition, by analyzing the osteogenic activity in the peri-implant environment, we showed that osteoinductive paracrine effects were significantly decreased upon (FN/BMP-6), as opposed to (FN/BMP-2) coatings. Altogether, our results support the use of FN/BMP-6 to develop a biomimetic microenvironment capable to induce osteogenic activity under physiological conditions, with minimum paracrine signalization. STATEMENT OF SIGNIFICANCE The originality of our paper relies on the first direct comparison of the in vitro osteogenic potential of three osteogenic BMPs (BMP-2, -6 and -7) combined with native human plasma fibronectin delivered in solution or coated by laser transfer onto titanium hydroxyapatite surfaces. We confirm that BMP association with fibronectin enhances the osteogenic activity of BMP-2, -6 and -7, but with essential discrepancies, depending on the BMP member, and in agreement with the affinity of BMPs for fibronectin. Moreover, we bring elements to explain the origin of the BMP-2 medical life-threatening side-effects by analyzing in vitro paracrine effects. Finally, this work supports the alternative use of FN/BMP-6 to induce osteogenic activity under physiological conditions, with minimum side effects.
Collapse
|
25
|
Wu MH, Lee TH, Lee HP, Li TM, Lee IT, Shieh PC, Tang CH. Kuei-Lu-Er-Xian-Jiao extract enhances BMP-2 production in osteoblasts. Biomedicine (Taipei) 2017; 7:2. [PMID: 28474578 PMCID: PMC5439337 DOI: 10.1051/bmdcn/2017070102] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a common skeletal disorder, resulting from an imbalance in bone resorption relative to formation. Bone morphogenetic protein (BMP) is a key regulator in bone formation and osteoblastic differentiation. Hence, compounds that promote BMP expression may be suitable candidates for osteoporosis treatment. This study examined the effects of the traditional Chinese medicinal agent, Kuei-Lu-Er-Xian-Jiao (KLEXJ), on BMP-2 production in osteoblasts. We found that KLEXJ extract promoted osteoblastic differentiation marker ALP activity and increased BMP-2 production; pretreatment with PI3K and Akt inhibitors, or small interfering RNA (siRNA), reduced these effects. KLEXJ also enhanced PI3K and Akt phosphorylation. Treatment of osteoblastic cells with NF-κB inhibitors (TPCK or PDTC) markedly inhibited KLEXJ-enhancement of ALP activity and BMP-2 production. KLEXJ also significantly promoted p65 phosphorylation, while treatment with PI3K and Akt inhibitors antagonized KLEXJ-enhanced p65 phosphorylation. Thus, KLEXJ enhances ALP activity and BMP-2 production of osteoblasts through the PI3K/Akt/ NF-κB signaling pathway and hence may be suitable in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Min-Huan Wu
- Physical Education Office, Tunghai University, Taichung 407, Taiwan - Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung 407, Taiwan
| | - Ting-Hsuan Lee
- School of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Hsiang-Ping Lee
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan - Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Te-Mao Li
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - I-Tee Lee
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan - Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan - Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
| | - Po-Chuen Shieh
- School of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan - Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan - Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan
| |
Collapse
|
26
|
Tobin EJ. Recent coating developments for combination devices in orthopedic and dental applications: A literature review. Adv Drug Deliv Rev 2017; 112:88-100. [PMID: 28159606 DOI: 10.1016/j.addr.2017.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/30/2016] [Accepted: 01/30/2017] [Indexed: 02/06/2023]
Abstract
Orthopedic and dental implants have been used successfully for decades to replace or repair missing or damaged bones, joints, and teeth, thereby restoring patient function subsequent to disease or injury. However, although device success rates are generally high, patient outcomes are sometimes compromised due to device-related problems such as insufficient integration, local tissue inflammation, and infection. Many different types of surface coatings have been developed to address these shortcomings, including those that incorporate therapeutic agents to provide localized delivery to the surgical site. While these coatings hold enormous potential for improving device function, the list of requirements that an ideal combination coating must fulfill is extensive, and no single coating system today simultaneously addresses all of the criteria. Some of the primary challenges related to current coatings are non-optimal release kinetics, which most often are too rapid, the potential for inducing antibiotic resistance in target organisms, high susceptibility to mechanical abrasion and delamination, toxicity, difficult and expensive regulatory approval pathways, and high manufacturing costs. This review provides a survey of the most recent developments in the field, i.e., those published in the last 2-3years, with a particular focus on technologies that have potential for overcoming the most significant challenges facing therapeutically-loaded coatings. It is concluded that the ideal coating remains an unrealized target, but that advances in the field and emerging technologies are bringing it closer to reality. The significant amount of research currently being conducted in the field provides a level of optimism that many functional combination coatings will ultimately transition into clinical practice, significantly improving patient outcomes.
Collapse
|
27
|
Fujii K, Ito A, Mutsuzaki H, Murai S, Sogo Y, Hara Y, Yamazaki M. Reducing the risk of impaired bone apposition to titanium screws with the use of fibroblast growth factor-2-apatite composite layer coating. J Orthop Surg Res 2017; 12:1. [PMID: 28057033 PMCID: PMC5217243 DOI: 10.1186/s13018-016-0501-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/06/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Loosening of screws is a common problem in orthopedic and maxillofacial surgery. Modifying the implant surface to improve the mechanical strength of screws has been tried and reported. We developed screws coated with fibroblast growth factor-2 (FGF-2)-apatite composite layers. We then showed, in a percutaneous external fixation model, that this composite layer had the ability to hold and release FGF-2 slowly, thereby reducing the risk of pin tract infection of the percutaneous external fixation. The objective of the current study was to clarify the effect of FGF-2-apatite composite layers on titanium screws on bone formation around the screw. METHODS We analyzed samples of previously performed animal experiments. The screws were coated with FGF-2-apatite composite layers by immersing them in supersaturated calcium phosphate solutions containing FGF-2. Then, the uncoated, apatite-coated, and FGF-2-apatite composite layer-coated screws were implanted percutaneously in rabbits. Finally, using inflammation-free histological sections, we histomorphometrically assessed them for the presence of bone formation. Weibull plot analysis was then applied to the data. RESULTS On average, screws coated with FGF-2-apatite composite layers showed a significantly higher bone apposition rate than the uncoated or apatite-coated screws. Although the difference in the average bone apposition rate was small, the FGF-2-apatite composite layers produced a significant, marked reduction in the incidence of impaired bone formation around the screw compared with the incidence in the absence of FGF-2 (uncoated and apatite-coated screws). The probability of resulting in a bone apposition rate equal to or less than 63.75%, for example, is 3.5 × 10-4 for screws coated with the FGF-2-apatite composite layers versus 0.05 for screws in the absence of FGF-2. CONCLUSIONS FGF-2-apatite composite layer coating significantly reduced the risk of impaired bone apposition to the screw. Thus, it is feasible to use titanium screws coated with FGF-2-apatite composite layers as internal fixation screws to decrease the risk of loosening.
Collapse
Affiliation(s)
- Kengo Fujii
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Atsuo Ito
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Hirotaka Mutsuzaki
- Department of Orthopaedic Surgery, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan
| | - Shinji Murai
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yu Sogo
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yuki Hara
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
28
|
Kim S, Park C, Moon BS, Kim HE, Jang TS. Enhancement of osseointegration by direct coating of rhBMP-2 on target-ion induced plasma sputtering treated SLA surface for dental application. J Biomater Appl 2016; 31:807-818. [DOI: 10.1177/0885328216679761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Owing to the excellent bioactive properties of recombinant human bone morphogenetic proteins (rhBMPs), dentistry considers them as a fascinating adjuvant alternative for enhancing bone regeneration and bone-to-implant junction in the early implantation stages. However, stable loading and delivery efficiency of rhBMPs on the implant surfaces involve major concerns because of the harsh wearing condition under load during implantation. In this study, to achieve successful rhBMP-2 delivery, a nanoporous surface structure is introduced on the sandblasting with large grit and acid-etching (SLA)-treated titanium (Ti) surface via the tantalum (Ta) target-ion induced plasma sputtering (TIPS) technique. Unlike oxidation-induced surface nanoporous fabrications on a Ti surface, TIPS-treated surfaces provide excellent structural unity of the nanoporous structure with the substrate due to their etching-based fabrication mechanism. SLA/TIPS-treated Ti exhibits distinct nanoporous structures on the microscale surface geometry and better hydrophilicity compared with SLA-treated Ti. A sufficiently empty nanoporous surface structure combined with the hydrophilic property of SLA/TIPS-treated Ti facilitates the formation of a thick and uniform coating layer of rhBMP-2 on the surface without any macro- and microcoagulation. Compared with the SLA-treated Ti surface, the amount of coated rhBMP-2 increases up to 63% on the SLA/TIPS-treated Ti surface. As a result, the in vitro pre-osteoblast cell response of the SLA/TIPS-treated Ti surface, especially cell adhesion and differentiation behaviors, improves remarkably. A bone-regenerating direct comparison between the rhBMP-2-coated SLA-treated and SLA/TIPS-treated Ti is conducted on a defective dog mandible model. After 8 weeks of implantation surgery, SLA/TIPS-treated Ti with rhBMP-2 exhibits a better degree of contact area for the implanted bone, which mineralizes new bones around the implant. Quantitative results of bone-in-contact ratio and new bone volume also show significantly higher values for the SLA/TIPS-treated Ti with the rhBMP-2 specimen. These results confirm that an SLA/TIPS-treated surface is a suitable rhBMP-2 carrier for a dental implant to achieve early and strong osseointegration of Ti dental implants.
Collapse
Affiliation(s)
- Sungwon Kim
- Department of Materials Science and Engineering, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Cheonil Park
- Department of Materials Science and Engineering, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Byeong-Seok Moon
- Department of Materials Science and Engineering, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Tae-Sik Jang
- Department of Materials Science and Engineering, Seoul National University, Gwanak-gu, Seoul, Korea
| |
Collapse
|
29
|
Slowly Delivered Icariin/Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells to Promote the Healing of Calvarial Critical-Size Bone Defects. Stem Cells Int 2016; 2016:1416047. [PMID: 27721833 PMCID: PMC5040948 DOI: 10.1155/2016/1416047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/04/2016] [Accepted: 08/11/2016] [Indexed: 11/17/2022] Open
Abstract
Bone tissue engineering technique is a promising strategy to repair large-volume bone defects. In this study, we developed a 3-dimensional construct by combining icariin (a small-molecule Chinese medicine), allogeneic bone marrow-derived mesenchymal stem cells (BMSCs), and a siliceous mesostructured cellular foams-poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (SMC-PHBHHx) composite scaffold. We hypothesized that the slowly released icariin could significantly promote the efficacy of SMC-PHBHHx/allogeneic BMSCs for repairing critical-size bone defects in rats. In in vitro cellular experiments, icariin at optimal concentration (10-6 mol/L) could significantly upregulate the osteogenesis- and angiogenesis-related genes and proteins, such as Runx2, ALP, osteocalcin, vascular endothelial growth factors, and fibroblast growth factors, as well as the mineralization of BMSCs. Icariin that was adsorbed onto the SMC-PHBHHx scaffold showed a slow release profile within a 2-week monitoring span. Eight weeks after implantation in calvarial critical-size bone defects, the constructs with icariin were associated with significantly higher bone volume density, trabecular thickness, trabecular number, and significantly lower trabecular separation than the constructs without icariin. Histomorphometric analysis showed that icariin was also associated with a significantly higher density of newly formed blood vessels. These data suggested a promising application potential of the icariin/SMC-PHBHHx/allogeneic BMSCs constructs for repairing large-volume bone defects in clinic.
Collapse
|
30
|
Abstract
Chordin-mediated regulation of bone morphogenetic protein (BMP) family growth factors is essential in early embryogenesis and adult homoeostasis. Chordin binds to BMPs through cysteine-rich von Willebrand factor type C (vWC) homology domains and blocks them from interacting with their cell surface receptors. These domains also self-associate and enable chordin to target related proteins to fine-tune BMP regulation. The chordin–BMP inhibitory complex is strengthened by the secreted glycoprotein twisted gastrulation (Tsg); however, inhibition is relieved by cleavage of chordin at two specific sites by tolloid family metalloproteases. As Tsg enhances this cleavage process, it serves a dual role as both promoter and inhibitor of BMP signalling. Recent developments in chordin research suggest that rather than simply being by-products, the cleavage fragments of chordin continue to play a role in BMP regulation. In particular, chordin cleavage at the C-terminus potentiates its anti-BMP activity in a type-specific manner.
Collapse
|
31
|
Kim HY, Lee JH, Yun JW, Park JH, Park BW, Rho GJ, Jang SJ, Park JS, Lee HC, Yoon YM, Hwang TS, Lee DH, Byun JH, Oh SH. Development of Porous Beads to Provide Regulated BMP-2 Stimulation for Varying Durations: In Vitro and In Vivo Studies for Bone Regeneration. Biomacromolecules 2016; 17:1633-42. [PMID: 27068184 DOI: 10.1021/acs.biomac.6b00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is commonly accepted that the sustained release of bone morphogenetic protein-2 (BMP-2) can enhance bone regeneration and minimize its safety issues. However, little is known regarding the appropriate duration of BMP-2 stimulation for sufficient osteogenic differentiation and new bone formation because of the short half-life of BMP-2 in the physiological environment and the lack of a well-defined delivery matrix that can regulate the release period of BMP-2. In this study, we prepared porous poly(lactic-co-glycolic acid) (PLGA) beads with different surface pore sizes that can regulate the release period of BMP-2 (i.e., 7, 17, and 30 days) while providing the BMP-2 concentration required for bone regeneration. Our findings in both in vitro cell culture and in vivo animal studies using these BMP-2-loaded beads demonstrate that release of BMP-2 within 7 days affects only the initial differentiation of human periosteum-derived cells (hPDCs) and does not significantly enhance their subsequent differentiation into mature functional cells. However, extending the duration of BMP-2 stimulation over 17 days can provide a suitable environment for osteogenic differentiation of hPDCs and new bone formation.
Collapse
Affiliation(s)
- Ho Yong Kim
- Department of Nanobiomedical Science, Dankook University , Cheonan 330-714, Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University , Daejeon 305-811, Korea
| | - Jeong-Won Yun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University , Jinju 660-702, Korea
| | - Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University , Jinju 660-702, Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University , Jinju 660-702, Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University , Jinju 660-701, Korea
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University , Jinju 660-701, Korea
| | - Ji-Sung Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University , Jinju 660-701, Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University , Jinju 660-701, Korea
| | - Young Min Yoon
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University , Jinju 660-701, Korea
| | - Tae Sung Hwang
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University , Jinju 660-701, Korea
| | - Dong Hoon Lee
- Department of Anatomy, Gyeongsang National University School of Medicine, Institute of Health Sciences, Gyeongsang National University , Jinju 660-702, Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University , Jinju 660-702, Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University , Cheonan 330-714, Korea
| |
Collapse
|
32
|
Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects. Int J Mol Sci 2016; 17:334. [PMID: 26950123 PMCID: PMC4813196 DOI: 10.3390/ijms17030334] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties.
Collapse
Affiliation(s)
- Haiping Lu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yi Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam 1081LA, The Netherlands.
| | - Jing Guo
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Huiling Wu
- The First Affiliated Hospital, Medical School, Zhejiang University, Hangzhou 310003, China.
| | - Jingxiao Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam 1081LA, The Netherlands.
| |
Collapse
|
33
|
Quinlan E, Thompson EM, Matsiko A, O'Brien FJ, López-Noriega A. Long-term controlled delivery of rhBMP-2 from collagen–hydroxyapatite scaffolds for superior bone tissue regeneration. J Control Release 2015; 207:112-9. [DOI: 10.1016/j.jconrel.2015.03.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 01/11/2023]
|
34
|
Chen C, Watkins-Curry P, Smoak M, Hogan K, Deese S, McCandless GT, Chan JY, Hayes DJ. Targeting Calcium Magnesium Silicates for Polycaprolactone/Ceramic Composite Scaffolds. ACS Biomater Sci Eng 2015. [DOI: 10.1021/ab500011x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cong Chen
- Department
of Biological Engineering, Louisiana State University and Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| | - Pilanda Watkins-Curry
- Department
of Chemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mollie Smoak
- Department
of Biological Engineering, Louisiana State University and Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| | - Katie Hogan
- Department
of Biological Engineering, Louisiana State University and Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| | - Steve Deese
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Gregory T. McCandless
- Department
of Chemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Julia Y. Chan
- Department
of Chemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Daniel J. Hayes
- Department
of Biological Engineering, Louisiana State University and Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|