1
|
Hu H, Zhang T, Wang J, Guo J, Jiang Y, Liao Q, Chen L, Lu Q, Liu P, Zhong K, Liu J, Chen J, Yang J. The dynamic TaRACK1B-TaSGT1-TaHSP90 complex modulates NLR-protein-mediated antiviral immunity in wheat. Cell Rep 2024; 43:114765. [PMID: 39306845 DOI: 10.1016/j.celrep.2024.114765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/07/2024] [Accepted: 08/30/2024] [Indexed: 10/26/2024] Open
Abstract
Nucleotide-binding leucine-rich repeat (NLR) proteins contribute widely to plant immunity by regulating defense mechanisms through the elicitation of a hypersensitive response (HR). Here, we find that TaRACK1B (the receptor for activated C-kinase 1B) regulates wheat immune response against Chinese wheat mosaic virus (CWMV) infection. TaRACK1B recruits TaSGT1 and TaHSP90 to form the TaRACK1B-TaSGT1-TaHSP90 complex. This complex is essential for maintaining NLR proteins' stability (TaRGA5-like and TaRGH1A-like) in order to control HR activation and inhibit viral infection. However, the cysteine-rich protein encoded by CWMV can disrupt TaRACK1B-TaSGT1-TaHSP90 complex formation, leading to the reduction of NLR-protein stability and suppression of HR activation, thus promoting CWMV infection. Interestingly, the 7K protein of wheat yellow mosaic virus also interferes with this antiviral immunity. Our findings show a shared viral counter-defense strategy whereby two soil-borne viruses may disrupt the TaRACK1B-TaSGT1-TaHSP90 complex, suppressing NLR-protein-mediated broad-spectrum antiviral immunity and promoting viral infection in wheat.
Collapse
Affiliation(s)
- Haichao Hu
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jinnan Wang
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun Guo
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Qiansheng Liao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lu Chen
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Qisen Lu
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Gressel J, Mbogo P, Kanampiu F, Christou P. Maize yields have stagnated in sub-Sahara Africa: a possible transgenic solution to weed, pathogen and insect constraints. PEST MANAGEMENT SCIENCE 2024; 80:4156-4162. [PMID: 38843468 DOI: 10.1002/ps.8224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 08/10/2024]
Abstract
Despite major breeding efforts by various national and international agencies, yields for the ~40 million hectares of maize, the major food crop in sub-Saharan Africa, have stagnated at <2 tons/ha/year for the past decade, one-third the global average. Breeders have succeeded in breeding increased yield with a modicum of tolerance to some single-weed or pathogen stresses. There has been minimal adoption of these varieties because introgressing polygenic yield and tolerance traits into locally adapted material is very challenging. Multiple traits to deal with pests (weeds, pathogens, and insects) are needed for farmer acceptance, because African fields typically encounter multiple pest constraints. Also, maize has no inherent resistance to some of these pest constraints, rendering them intractable to traditional breeding. The proposed solution is to simultaneously engineer multiple traits into one genetic locus. The dominantly inherited multi-pest resistance trait single locus can be bred simply into locally adapted, elite high-yielding material, and would be valuable for farmers, vastly increasing maize yields, and allowing for more than regional maize sufficiency. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan Gressel
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Paul Christou
- University of Lleida & Agrotecnio CERCA Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
3
|
Yuan S, Zhou G, Xu G. Translation machinery: the basis of translational control. J Genet Genomics 2024; 51:367-378. [PMID: 37536497 DOI: 10.1016/j.jgg.2023.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Messenger RNA (mRNA) translation consists of initiation, elongation, termination, and ribosome recycling, carried out by the translation machinery, primarily including tRNAs, ribosomes, and translation factors (TrFs). Translational regulators transduce signals of growth and development, as well as biotic and abiotic stresses, to the translation machinery, where global or selective translational control occurs to modulate mRNA translation efficiency (TrE). As the basis of translational control, the translation machinery directly determines the quality and quantity of newly synthesized peptides and, ultimately, the cellular adaption. Thus, regulating the availability of diverse machinery components is reviewed as the central strategy of translational control. We provide classical signaling pathways (e.g., integrated stress responses) and cellular behaviors (e.g., liquid-liquid phase separation) to exemplify this strategy within different physiological contexts, particularly during host-microbe interactions. With new technologies developed, further understanding this strategy will speed up translational medicine and translational agriculture.
Collapse
Affiliation(s)
- Shu Yuan
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guilong Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Dawane A, Deshpande S, Vijayaraghavreddy P, Vemanna RS. Polysome-bound mRNAs and translational mechanisms regulate drought tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108513. [PMID: 38513519 DOI: 10.1016/j.plaphy.2024.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Plants evolved several acquired tolerance traits for drought stress adaptation to maintain the cellular homeostasis. Drought stress at the anthesis stage in rice affects productivity due to the inefficiency of protein synthesis machinery. The effect of translational mechanisms on different pathways involved in cellular tolerance plays an important role. We report differential responses of translation-associated mechanisms in rice using polysome bound mRNA sequencing at anthesis stage drought stress in resistant Apo and sensitive IR64 genotypes. Apo maintained higher polysomes with 60 S-to-40 S and polysome-to-monosome ratios which directly correlate with protein levels under stress. IR64 has less protein levels under stress due to defective translation machinery and reduced water potential. Many polysome-bound long non-coding RNAs (lncRNA) were identified in both genotypes under drought, influencing translation. Apo had higher levels of N6-Methyladenosine (m6A) mRNA modifications that contributed for sustained translation. Translation machinery in Apo could maintain higher levels of photosynthetic machinery-associated proteins in drought stress, which maintain gas exchange, photosynthesis and yield under stress. The protein stability and ribosome biogenesis mechanisms favoured improved translation in Apo. The phytohormone signalling and transcriptional responses were severely affected in IR64. Our results demonstrate that, the higher translation ability of Apo favours maintenance of photosynthesis and physiological responses that are required for drought stress adaptation.
Collapse
Affiliation(s)
- Akashata Dawane
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | - Sanjay Deshpande
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | | | - Ramu S Vemanna
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India.
| |
Collapse
|
5
|
Proteomic Analysis of Proteins Related to Defense Responses in Arabidopsis Plants Transformed with the rolB Oncogene. Int J Mol Sci 2023; 24:ijms24031880. [PMID: 36768198 PMCID: PMC9915171 DOI: 10.3390/ijms24031880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
During Agrobacterium rhizogenes-plant interaction, the rolB gene is transferred into the plant genome and is stably inherited in the plant's offspring. Among the numerous effects of rolB on plant metabolism, including the activation of secondary metabolism, its effect on plant defense systems has not been sufficiently studied. In this work, we performed a proteomic analysis of rolB-expressing Arabidopsis thaliana plants with particular focus on defense proteins. We found a total of 77 overexpressed proteins and 64 underexpressed proteins in rolB-transformed plants using two-dimensional gel electrophoresis and MALDI mass spectrometry. In the rolB-transformed plants, we found a reduced amount of scaffold proteins RACK1A, RACK1B, and RACK1C, which are known as receptors for activated C-kinase 1. The proteomic analysis showed that rolB could suppress the plant immune system by suppressing the RNA-binding proteins GRP7, CP29B, and CP31B, which action are similar to the action of type-III bacterial effectors. At the same time, rolB plants induce the massive biosynthesis of protective proteins VSP1 and VSP2, as well as pathogenesis-related protein PR-4, which are markers of the activated jasmonate pathway. The increased contents of glutathione-S-transferases F6, F2, F10, U19, and DHAR1 and the osmotin-like defense protein OSM34 were found. The defense-associated protein PCaP1, which is required for oligogalacturonide-induced priming and immunity, was upregulated. Moreover, rolB-transformed plants showed the activation of all components of the PYK10 defense complex that is involved in the metabolism of glucosinolates. We hypothesized that various defense systems activated by rolB protect the host plant from competing phytopathogens and created an effective ecological niche for A. rhizogenes. A RolB → RACK1A signaling module was proposed that might exert most of the rolB-mediated effects on plant physiology. Our proteomics data are available via ProteomeXchange with identifier PXD037959.
Collapse
|
6
|
Wang Q, Kawano Y. Improving disease resistance to rice false smut without yield penalty by manipulating the expression of effector target. MOLECULAR PLANT 2022; 15:1834-1837. [PMID: 36415132 DOI: 10.1016/j.molp.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/20/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Qiong Wang
- School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yoji Kawano
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan; Kihara Institute for Biological Research, Yokohama City University, Kanagawa 244-0813, Japan.
| |
Collapse
|
7
|
Li GB, He JX, Wu JL, Wang H, Zhang X, Liu J, Hu XH, Zhu Y, Shen S, Bai YF, Yao ZL, Liu XX, Zhao JH, Li DQ, Li Y, Huang F, Huang YY, Zhao ZX, Zhang JW, Zhou SX, Ji YP, Pu M, Qin P, Li S, Chen X, Wang J, He M, Li W, Wu XJ, Xu ZJ, Wang WM, Fan J. Overproduction of OsRACK1A, an effector-targeted scaffold protein promoting OsRBOHB-mediated ROS production, confers rice floral resistance to false smut disease without yield penalty. MOLECULAR PLANT 2022; 15:1790-1806. [PMID: 36245122 DOI: 10.1016/j.molp.2022.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Grain formation is fundamental for crop yield but is vulnerable to abiotic and biotic stresses. Rice grain production is threatened by the false smut fungus Ustilaginoidea virens, which specifically infects rice floral organs, disrupting fertilization and seed formation. However, little is known about the molecular mechanisms of the U. virens-rice interaction and the genetic basis of floral resistance. Here, we report that U. virens secretes a cytoplasmic effector, UvCBP1, to facilitate infection of rice flowers. Mechanistically, UvCBP1 interacts with the rice scaffold protein OsRACK1A and competes its interaction with the reduced nicotinamide adenine dinucleotide phosphate oxidase OsRBOHB, leading to inhibition of reactive oxygen species (ROS) production. Although the analysis of natural variation revealed no OsRACK1A variants that could avoid being targeted by UvCBP1, expression levels of OsRACK1A are correlated with field resistance against U. virens in rice germplasm. Overproduction of OsRACK1A restores the OsRACK1A-OsRBOHB association and promotes OsRBOHB phosphorylation to enhance ROS production, conferring rice floral resistance to U. virens without yield penalty. Taken together, our findings reveal a new pathogenic mechanism mediated by an essential effector from a flower-specific pathogen and provide a valuable genetic resource for balancing disease resistance and crop yield.
Collapse
Affiliation(s)
- Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Xue He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin-Long Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuai Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi-Fei Bai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zong-Lin Yao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - De-Qiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Fu Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun-Peng Ji
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Qin
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Weitao Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xian-Jun Wu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng-Jun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Receptor for Activated C Kinase1B (OsRACK1B) Impairs Fertility in Rice through NADPH-Dependent H2O2 Signaling Pathway. Int J Mol Sci 2022; 23:ijms23158455. [PMID: 35955593 PMCID: PMC9368841 DOI: 10.3390/ijms23158455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The scaffold protein receptor for Activated C Kinase1 (RACK1) regulates multiple aspects of plants, including seed germination, growth, environmental stress responses, and flowering. Recent studies have revealed that RACK1 is associated with NADPH-dependent reactive oxygen species (ROS) signaling in plants. ROS, as a double-edged sword, can modulate several developmental pathways in plants. Thus, the resulting physiological consequences of perturbing the RACK1 expression-induced ROS balance remain to be explored. Herein, we combined molecular, pharmacological, and ultrastructure analysis approaches to investigate the hypothesized connection using T-DNA-mediated activation-tagged RACK1B overexpressed (OX) transgenic rice plants. In this study, we find that OsRACK1B-OX plants display reduced pollen viability, defective anther dehiscence, and abnormal spikelet morphology, leading to partial spikelet sterility. Microscopic observation of the mature pollen grains from the OX plants revealed abnormalities in the exine and intine structures and decreased starch granules in the pollen, resulting in a reduced number of grains per locule from the OX rice plants as compared to that of the wild-type (WT). Histochemical staining revealed a global increase in hydrogen peroxide (H2O2) in the leaves and roots of the transgenic lines overexpressing OsRACK1B compared to that of the WT. However, the elevated H2O2 in tissues from the OX plants can be reversed by pre-treatment with diphenylidonium (DPI), an NADPH oxidase inhibitor, indicating that the source of H2O2 could be, in part, NADPH oxidase. Expression analysis showed a differential expression of the NADPH/respiratory burst oxidase homolog D (RbohD) and antioxidant enzyme-related genes, suggesting a homeostatic mechanism of H2O2 production and antioxidant enzyme activity. BiFC analysis demonstrated that OsRACK1B interacts with the N-terminal region of RbohD in vivo. Taken together, these data indicate that elevated OsRACK1B accumulates a threshold level of ROS, in this case H2O2, which negatively regulates pollen development and fertility. In conclusion, we hypothesized that an optimal expression of RACK1 is critical for fertility in rice plants.
Collapse
|
9
|
Liu Y, Gong X, Zhou Q, Liu Y, Liu Z, Han J, Dong J, Gu S. Comparative proteomic analysis reveals insights into the dynamic responses of maize (Zea mays L.) to Setosphaeria turcica infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110811. [PMID: 33568308 DOI: 10.1016/j.plantsci.2020.110811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Maize (Zea mays L.) production is severely affected by northern corn leaf blight (NCLB), which is a destructive foliar disease caused by Setosphaeria turcica. In recent years, studies on the interaction between maize and S. turcica have been focused at the transcription level, with no research yet at the protein level. Here, we applied tandem mass tag labelling and liquid chromatography-tandem mass spectrometry to investigate the proteomes of maize leaves at 24 h and 72 h post-inoculation (hpi) with S. turcica. In total, 4740 proteins encoded by 4711 genes were quantified in this study. Clustering analyses provided an understanding of the dynamic reprogramming of leaves proteomes by revealing the functions of different proteins during S. turcica infection. Screening and classification of differentially expressed proteins (DEPs) revealed that numerous defense-related proteins, including defense marker proteins and proteins related to the phenylpropanoid lignin biosynthesis, benzoxazine biosynthesis and the jasmonic acid signalling pathway, participated in the defense responses of maize to S. turcica infection. Furthermore, the earlier induction of GST family proteins contributed to the resistance to S. turcica. In addition, the protein-protein interaction network of DEPs suggests that some defense-related proteins, for example, ZmGEB1, a hub node, play key roles in defense responses against S. turcica infection. Our study findings provide insight into the complex responses triggered by S. turcica at the protein level and lay the foundation for studying the interaction process between maize and S. turcica infection.
Collapse
Affiliation(s)
- Yuwei Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Xiaodong Gong
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Qihui Zhou
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Yajie Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Zhenpan Liu
- Economic Forsetry Research Institute of Liaoning Province, China
| | - Jianmin Han
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Shouqin Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China.
| |
Collapse
|
10
|
Ramu VS, Dawane A, Lee S, Oh S, Lee H, Sun L, Senthil‐Kumar M, Mysore KS. Ribosomal protein QM/RPL10 positively regulates defence and protein translation mechanisms during nonhost disease resistance. MOLECULAR PLANT PATHOLOGY 2020; 21:1481-1494. [PMID: 32964634 PMCID: PMC7548997 DOI: 10.1111/mpp.12991] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 05/06/2023]
Abstract
Ribosomes play an integral part in plant growth, development, and defence responses. We report here the role of ribosomal protein large (RPL) subunit QM/RPL10 in nonhost disease resistance. The RPL10-silenced Nicotiana benthamiana plants showed compromised disease resistance against nonhost pathogen Pseudomonas syringae pv. tomato T1. The RNA-sequencing analysis revealed that many genes involved in defence and protein translation mechanisms were differentially affected due to silencing of NbRPL10. Arabidopsis AtRPL10 RNAi and rpl10 mutant lines showed compromised nonhost disease resistance to P. syringae pv. tomato T1 and P. syringae pv. tabaci. Overexpression of AtRPL10A in Arabidopsis resulted in reduced susceptibility against host pathogen P. syringae pv. tomato DC3000. RPL10 interacts with the RNA recognition motif protein and ribosomal proteins RPL30, RPL23, and RPS30 in the yeast two-hybrid assay. Silencing or mutants of genes encoding these RPL10-interacting proteins in N. benthamiana or Arabidopsis, respectively, also showed compromised disease resistance to nonhost pathogens. These results suggest that QM/RPL10 positively regulates the defence and translation-associated genes during nonhost pathogen infection.
Collapse
Affiliation(s)
- Vemanna S. Ramu
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
- Labortory of Plant Functional GenomicsRegional Centre for BiotechnologyFaridabadIndia
| | - Akashata Dawane
- Labortory of Plant Functional GenomicsRegional Centre for BiotechnologyFaridabadIndia
| | - Seonghee Lee
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
- Present address:
Gulf Coast Research and Education CenterInstitute of Food and Agricultural ScienceUniversity of FloridaWimaumaFloridaUSA
| | - Sunhee Oh
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
| | | | - Liang Sun
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
| | - Muthappa Senthil‐Kumar
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
- Present address:
National Institute of Plant Genome ResearchNew DelhiIndia
| | | |
Collapse
|
11
|
Wang C, Zhang H, Xia Q, Yu J, Zhu D, Zhao Q. ZmGLR, a cell membrane localized microtubule-associated protein, mediated leaf morphogenesis in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110248. [PMID: 31623783 DOI: 10.1016/j.plantsci.2019.110248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Microtubule arrays play notable roles in cell division, cell movement, cell morphogenesis and signal transduction. Due to their important regulation of microtubule dynamic instability and array-ordering processes, microtubule-associated proteins have been a cutting-edge issue in research. Here, a new maize microtubule-associated protein, ZmGLR (Zea mays glutamic acid- and lysine-rich), was found. ZmGLR bundles microtubules in vitro and targets the cell membrane through an interaction between 24 conserved N-terminal amino acids and specific phosphatidylinositol phosphates (PtdInsPs). Increased Ca2+ levels in the cytoplasm lead to ZmGLR partially dissociating from the cell membrane and moving into the cytoplasm to associate with microtubule. Overexpression and RNAi of ZmGLR both resulted in misoriented microtubule arrays, which led to dwarf maize plants and curved leaves. In addition, the expression of ZmGLR was regulated by BR and auxin through ZmBES1 and ZmARF9, respectively. This study reveals that the microtubule-associated protein ZmGLR plays a crucial role in cortical microtubule reorientation and maize leaf morphogenesis.
Collapse
Affiliation(s)
- Chenchen Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qi Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dengyun Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qian Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
12
|
Liu C, Zhu P, Fan W, Feng Y, Kou M, Hu J, Zhao A. Functional analysis of drought and salt tolerance mechanisms of mulberry RACK1 gene. TREE PHYSIOLOGY 2019; 39:2055-2069. [PMID: 31728533 DOI: 10.1093/treephys/tpz108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/08/2019] [Accepted: 09/24/2019] [Indexed: 05/15/2023]
Abstract
The receptor for activated C kinase 1 (RACK1) protein acts as a central hub for the integration of many physiological processes in eukaryotic organisms. Plant RACK1 is implicated in abiotic stress responses, but the underlying molecular mechanisms of stress adaptation remain largely unknown. Here, the overexpression of the mulberry (Morus alba L.) RACK1 gene in Arabidopsis decreased tolerance to drought and salt stresses and MaRACK1 overexpression changed expression levels of genes in response to stress and stimuli. We developed a simple and efficient transient transformation system in mulberry, and the mulberry seedlings transiently expressing MaRACK1 were hypersensitive to drought and salt stresses. The expression levels of guanine nucleotide-binding protein (G-protein) encoding genes in mulberry and Arabidopsis were not affected by MaRACK1 overexpression. The interactions between RACK1 and G-proteins were confirmed, and the RACK1 proteins from mulberry and Arabidopsis could not interact with their respective G-proteins, which indicated that RACK1 may regulate stress responses independently of G-proteins. Additionally, MaRACK1 may regulate drought and salt stress tolerances by interacting with a fructose 1, 6-bisphosphate aldolase. Our findings provide new insights into the mechanisms underlying RACK1 functions in abiotic stress responses and important information for their further characterization.
Collapse
Affiliation(s)
- Changying Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, P.R. China
| | - Panpan Zhu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, P.R. China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, P.R. China
| | - Yang Feng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, P.R. China
| | - Min Kou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, P.R. China
| | - Jie Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, P.R. China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
13
|
Wegary D, Teklewold A, Prasanna BM, Ertiro BT, Alachiotis N, Negera D, Awas G, Abakemal D, Ogugo V, Gowda M, Semagn K. Molecular diversity and selective sweeps in maize inbred lines adapted to African highlands. Sci Rep 2019; 9:13490. [PMID: 31530852 PMCID: PMC6748982 DOI: 10.1038/s41598-019-49861-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/28/2019] [Indexed: 11/08/2022] Open
Abstract
Little is known on maize germplasm adapted to the African highland agro-ecologies. In this study, we analyzed high-density genotyping by sequencing (GBS) data of 298 African highland adapted maize inbred lines to (i) assess the extent of genetic purity, genetic relatedness, and population structure, and (ii) identify genomic regions that have undergone selection (selective sweeps) in response to adaptation to highland environments. Nearly 91% of the pairs of inbred lines differed by 30-36% of the scored alleles, but only 32% of the pairs of the inbred lines had relative kinship coefficient <0.050, which suggests the presence of substantial redundancy in allelic composition that may be due to repeated use of fewer genetic backgrounds (source germplasm) during line development. Results from different genetic relatedness and population structure analyses revealed three different groups, which generally agrees with pedigree information and breeding history, but less so by heterotic groups and endosperm modification. We identified 944 single nucleotide polymorphic (SNP) markers that fell within 22 selective sweeps that harbored 265 protein-coding candidate genes of which some of the candidate genes had known functions. Details of the candidate genes with known functions and differences in nucleotide diversity among groups predicted based on multivariate methods have been discussed.
Collapse
Affiliation(s)
- Dagne Wegary
- International Maize and Wheat Improvement Center (CIMMYT) - Ethiopia Office, ILRI Campus, CMC Road, Gurd Sholla, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Adefris Teklewold
- International Maize and Wheat Improvement Center (CIMMYT) - Ethiopia Office, ILRI Campus, CMC Road, Gurd Sholla, P.O. Box 5689, Addis Ababa, Ethiopia.
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue, Gigiri, P.O. Box 1041-00621, Nairobi, Kenya
| | - Berhanu T Ertiro
- Bako National Maize Research Center, Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Nikolaos Alachiotis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
| | - Demewez Negera
- International Maize and Wheat Improvement Center (CIMMYT) - Ethiopia Office, ILRI Campus, CMC Road, Gurd Sholla, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Geremew Awas
- International Maize and Wheat Improvement Center (CIMMYT) - Ethiopia Office, ILRI Campus, CMC Road, Gurd Sholla, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Demissew Abakemal
- Ambo Agricultural Research Center, P.O. Box 37, West Shoa, Ambo, Ethiopia
| | - Veronica Ogugo
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue, Gigiri, P.O. Box 1041-00621, Nairobi, Kenya
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue, Gigiri, P.O. Box 1041-00621, Nairobi, Kenya
| | - Kassa Semagn
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue, Gigiri, P.O. Box 1041-00621, Nairobi, Kenya.
- Africa Rice Center (AfricaRice), M'bé Research Station, 01 B.P. 2551, Bouaké 01, Côte d'Ivoire.
| |
Collapse
|
14
|
Wang W, Wang X, Wang X, Ahmed S, Hussain S, Zhang N, Ma Y, Wang S. Integration of RACK1 and ethylene signaling regulates plant growth and development in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:31-40. [PMID: 30824009 DOI: 10.1016/j.plantsci.2018.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 05/20/2023]
Abstract
Arabidopsis RACK1 (Receptors for Activated C Kinase 1) are versatile scaffold proteins that have been shown to be involved in the regulation of plant response to plant hormones including auxin, ABA, gibberellin and brassinosteroid, but not ethylene. By characterizing the double and triple mutants of RACK1 genes, we found that rack1 mutants showed reduced sensitivity to ethylene. By characterizing double and high order mutants generated between ein2, a loss-of-function mutant of the key ethylene signaling regulator gene EIN2 (Ethylene INsensitive 2), and rack1 mutants, we found that loss-of-function of EIN2 partially recovered some phenotypes observed in the rack1 mutants, such as low-fertility and reduced root length and rosette size. On the other hand, the ein2 rack1 mutants produced more rosette leaves, and flowered late when compared with ein2 and the corresponding rack1 mutants. We also found that the curled leaves and twisted petioles phenotypes observed in the ein2 mutants were enhanced in the ein2 rack1 mutants. However, assays in yeast indicated that EIN2 may not physically interact with RACK1. On the other hand, RT-PCR results showed that the expression level of EIN2 was reduced in the rack1 mutants. Taken together, our results suggest that RACKl may integrate ethylene signaling to regulate plant growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| | - Xiaoping Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| | - Sajjad Ahmed
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| | - Yanxing Ma
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China; College of Life Science, Linyi University, Linyi, China.
| |
Collapse
|
15
|
Hyodo K, Suzuki N, Okuno T. Hijacking a host scaffold protein, RACK1, for replication of a plant RNA virus. THE NEW PHYTOLOGIST 2019; 221:935-945. [PMID: 30169907 DOI: 10.1111/nph.15412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/25/2018] [Indexed: 05/23/2023]
Abstract
Receptor for activated C kinase 1 (RACK1) is strictly conserved across eukaryotes and acts as a versatile scaffold protein involved in various signaling pathways. Plant RACK1 is known to exert important functions in innate immunity against fungal and bacterial pathogens. However, the role of the RACK1 in plant-virus interactions remains unknown. Here, we addressed the role of RACK1 of Nicotiana benthamiana during infection by red clover necrotic mosaic virus (RCNMV), a plant positive-stranded RNA virus. NbRACK1 was shown to be recruited by the p27 viral replication protein into endoplasmic reticulum-derived aggregated structures (possible replication sites). Downregulation of NbRACK1 by virus-induced gene silencing inhibited viral cap-independent translation and p27-mediated reactive oxygen species (ROS) accumulation, which are prerequisite for RCNMV replication. We also found that NbRACK1 interacted with a host calcium-dependent protein kinase (NbCDPKiso2) that activated a ROS-generating enzyme. Interestingly, NbRACK1 was required for the interaction of p27 with NbCDPKiso2, suggesting that NbRACK1 acts as a bridge between the p27 viral replication protein and NbCDPKiso2. Collectively, our findings provide an example of a viral strategy in which a host multifaceted scaffold protein RACK1 is highjacked for promoting viral protein-triggered ROS production necessary for robust viral replication.
Collapse
Grants
- 15H04456 JSPS KAKENHI
- 17K15229 JSPS KAKENHI
- 16H06429 Ministry of Education, Culture, Science, Sports and Technology (MEXT)
- 16K21723 Ministry of Education, Culture, Science, Sports and Technology (MEXT)
- 16H06436 Ministry of Education, Culture, Science, Sports and Technology (MEXT)
- 17H05818 Ministry of Education, Culture, Science, Sports and Technology (MEXT)
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| |
Collapse
|
16
|
Li DH, Shen FJ, Li HY, Li W. Kale BoRACK1 is involved in the plant response to salt stress and Peronospora brassicae Gaumann. JOURNAL OF PLANT PHYSIOLOGY 2017; 213:188-198. [PMID: 28411489 DOI: 10.1016/j.jplph.2017.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
The receptor for activated C kinase 1 (RACK1) belongs to a protein subfamily containing a tryptophan-aspartic acid-domain (WD) repeat structure. Compelling evidence indicates that RACK1 can interact with many signal molecules and affect different signal transduction pathways. In this study, a kale (Brassica oleracea var. acephala f.tricolor) RACK1 gene (BoRACK1) was cloned by RT-PCR. The amino acid sequence of BoRACK1 had seven WD repeats in which there were typical GH (glycine-histidine) and WD dipeptides. Comparison with AtRACK1 from Arabidopsis revealed 87.1% identity at the amino acid level. Expression pattern analysis by RT-PCR showed that BoRACK1 was expressed in all analyzed tissues of kale and that its transcription in leaves was down-regulated by salt, abscisic acid, and H2O2 at a high concentration. Overexpression of BoRACK1 in kale led to a reduction in symptoms caused by Peronospora brassicae Gaumann on kale leaves. The expression levels of the pathogenesis-related protein genes, PR-1 and PRB-1, increased 2.5-4-fold in transgenic kale, and reactive oxygen species production was more active than in the wild-type. They also exhibited increased tolerance to salt stress in seed germination. H2O2 may also be involved in the regulation of BoRACK1 during seed germination under salt stress. Quantitative real-time PCR analyses showed that the transcript levels of BoRbohs genes were significantly higher in overexpression of BoRACK1 transgenic lines. Yeast two-hybrid assays showed that BoRACK1 could interact with WNK8, eIF6, RAR1, and SGT1. This study and previous work lead us to believe that BoRACK1 may form a complex with regulators of plant salt and disease resistance to coordinate kale reactions to pathogens.
Collapse
Affiliation(s)
- Da-Hong Li
- Department of Biological Engineering, Huanghuai University, Zhumadian, China
| | - Fu-Jia Shen
- Department of Biological Engineering, Huanghuai University, Zhumadian, China
| | - Hong-Yan Li
- Department of Biological Engineering, Huanghuai University, Zhumadian, China.
| | - Wei Li
- Department of Biological Engineering, Huanghuai University, Zhumadian, China
| |
Collapse
|
17
|
Dhakal R, Chai C, Karan R, Windham GL, Williams WP, Subudhi PK. Expression Profiling Coupled with In-silico Mapping Identifies Candidate Genes for Reducing Aflatoxin Accumulation in Maize. FRONTIERS IN PLANT SCIENCE 2017; 8:503. [PMID: 28428796 PMCID: PMC5382453 DOI: 10.3389/fpls.2017.00503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/22/2017] [Indexed: 05/31/2023]
Abstract
Aflatoxin, produced by Aspergillus flavus, is hazardous to health of humans and livestock. The lack of information about large effect QTL for resistance to aflatoxin accumulation is a major obstacle to employ marker-assisted selection for maize improvement. The understanding of resistance mechanisms of the host plant and the associated genes is necessary for improving resistance to A. flavus infection. A suppression subtraction hybridization (SSH) cDNA library was made using the developing kernels of Mp715 (resistant inbred) and B73 (susceptible inbred) and 480 randomly selected cDNA clones were sequenced to identify differentially expressed genes (DEGs) in response to A. flavus infection and map these clones onto the corn genome by in-silico mapping. A total of 267 unigenes were identified and majority of genes were related to metabolism, stress response, and disease resistance. Based on the reverse northern hybridization experiment, 26 DEGs were selected for semi-quantitative RT-PCR analysis in seven inbreds with variable resistance to aflatoxin accumulation at two time points after A. flavus inoculation. Most of these genes were highly expressed in resistant inbreds. Quantitative RT-PCR analysis validated upregulation of PR-4, DEAD-box RNA helicase, and leucine rich repeat family protein in resistant inbreds. Fifty-six unigenes, which were placed on linkage map through in-silico mapping, overlapped the QTL regions for resistance to aflatoxin accumulation identified in a mapping population derived from the cross between B73 and Mp715. Since majority of these mapped genes were related to disease resistance, stress response, and metabolism, these should be ideal candidates to investigate host pathogen interaction and to reduce aflatoxin accumulation in maize.
Collapse
Affiliation(s)
- Ramesh Dhakal
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural CenterBaton Rouge, LA, USA
| | - Chenglin Chai
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural CenterBaton Rouge, LA, USA
| | - Ratna Karan
- Department of Agronomy, University of FloridaGainesville, FL, USA
| | - Gary L. Windham
- USDA-ARS Corn Host Plant Resistance Research UnitMississippi State, MS, USA
| | | | - Prasanta K. Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural CenterBaton Rouge, LA, USA
| |
Collapse
|
18
|
Urano D, Czarnecki O, Wang X, Jones AM, Chen JG. Arabidopsis receptor of activated C kinase1 phosphorylation by WITH NO LYSINE8 KINASE. PLANT PHYSIOLOGY 2015; 167:507-16. [PMID: 25489024 PMCID: PMC4326752 DOI: 10.1104/pp.114.247460] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Receptor of activated C kinase1 (RACK1) is a versatile scaffold protein that binds to numerous proteins to regulate diverse cellular pathways in mammals. In Arabidopsis (Arabidopsis thaliana), RACK1 has been shown to regulate plant hormone signaling, stress responses, and multiple processes of growth and development. However, little is known about the molecular mechanism underlying these regulations. Here, we show that an atypical serine (Ser)/threonine (Thr) protein kinase, WITH NO LYSINE8 (WNK8), phosphorylates RACK1. WNK8 physically interacted with and phosphorylated RACK1 proteins at two residues: Ser-122 and Thr-162. Genetic epistasis analysis of rack1 wnk8 double mutants indicated that RACK1 acts downstream of WNK8 in the glucose responsiveness and flowering pathways. The phosphorylation-dead form, RACK1A(S122A/T162A), but not the phosphomimetic form, RACK1A(S122D/T162E), rescued the rack1a null mutant, implying that phosphorylation at Ser-122 and Thr-162 negatively regulates RACK1A function. The transcript of RACK1A(S122D/T162E) accumulated at similar levels as those of RACK1(S122A/T162A). However, although the steady-state level of the RACK1A(S122A/T162A) protein was similar to wild-type RACK1A protein, the RACK1A(S122D/T162E) protein was nearly undetectable, suggesting that phosphorylation affects the stability of RACK1A proteins. Taken together, these results suggest that RACK1 is phosphorylated by WNK8 and that phosphorylation negatively regulates RACK1 function by influencing its protein stability.
Collapse
Affiliation(s)
- Daisuke Urano
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| | - Olaf Czarnecki
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| | - Xiaoping Wang
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| | - Alan M Jones
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| | - Jin-Gui Chen
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| |
Collapse
|
19
|
Chen JG. Phosphorylation of RACK1 in plants. PLANT SIGNALING & BEHAVIOR 2015; 10:e1022013. [PMID: 26322575 PMCID: PMC4622689 DOI: 10.1080/15592324.2015.1022013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
Receptor for Activated C Kinase 1 (RACK1) is a versatile scaffold protein that interacts with a large, diverse group of proteins to regulate various signaling cascades. RACK1 has been shown to regulate hormonal signaling, stress responses and multiple processes of growth and development in plants. However, little is known about the molecular mechanism underlying these regulations. Recently, it has been demonstrated that Arabidopsis RACK1 is phosphorylated by an atypical serine/threonine protein kinase, WITH NO LYSINE 8 (WNK8). Furthermore, RACK1 phosphorylation by WNK8 negatively regulates RACK1 function by influencing its protein stability. These findings promote a new regulatory system in which the action of RACK1 is controlled by phosphorylation and subsequent protein degradation.
Collapse
Affiliation(s)
- Jin-Gui Chen
- Biosciences Division; Oak Ridge National Laboratory; Oak Ridge, TN USA
| |
Collapse
|
20
|
Nagaraj S, Senthil-Kumar M, Ramu VS, Wang K, Mysore KS. Plant Ribosomal Proteins, RPL12 and RPL19, Play a Role in Nonhost Disease Resistance against Bacterial Pathogens. FRONTIERS IN PLANT SCIENCE 2015; 6:1192. [PMID: 26779226 PMCID: PMC4702080 DOI: 10.3389/fpls.2015.01192] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/11/2015] [Indexed: 05/20/2023]
Abstract
Characterizing the molecular mechanism involved in nonhost disease resistance is important to understand the adaptations of plant-pathogen interactions. In this study, virus-induced gene silencing (VIGS)-based forward genetics screen was utilized to identify genes involved in nonhost resistance in Nicotiana benthamiana. Genes encoding ribosomal proteins, RPL12 and RPL19, were identified in the screening. These genes when silenced in N. benthamiana caused a delay in nonhost bacteria induced hypersensitive response (HR) with concurrent increase in nonhost bacterial multiplication. Arabidopsis mutants of AtRPL12 and AtRPL19 also compromised nonhost resistance. The studies on NbRPL12 and NbRPL19 double silenced plants suggested that both RPL12 and RPL19 act in the same pathway to confer nonhost resistance. Our work suggests a role for RPL12 and RPL19 in nonhost disease resistance in N. benthamiana and Arabidopsis. In addition, we show that these genes also play a minor role in basal resistance against virulent pathogens.
Collapse
Affiliation(s)
- Satish Nagaraj
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc.Ardmore, OK, USA
| | - Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc.Ardmore, OK, USA
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Vemanna S. Ramu
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc.Ardmore, OK, USA
| | - Keri Wang
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc.Ardmore, OK, USA
| | - Kirankumar S. Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc.Ardmore, OK, USA
- *Correspondence: Kirankumar S. Mysore
| |
Collapse
|
21
|
Islas-Flores T, Rahman A, Ullah H, Villanueva MA. The Receptor for Activated C Kinase in Plant Signaling: Tale of a Promiscuous Little Molecule. FRONTIERS IN PLANT SCIENCE 2015; 6:1090. [PMID: 26697044 PMCID: PMC4672068 DOI: 10.3389/fpls.2015.01090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/20/2015] [Indexed: 05/21/2023]
Abstract
Two decades after the first report of the plant homolog of the Receptor for Activated C Kinase 1 (RACK1) in cultured tobacco BY2 cells, a significant advancement has been made in the elucidation of its cellular and molecular role. The protein is now implicated in many biological functions including protein translation, multiple hormonal responses, developmental processes, pathogen infection resistance, environmental stress responses, and miRNA production. Such multiple functional roles are consistent with the scaffolding nature of the plant RACK1 protein. A significant advance was achieved when the β-propeller structure of the Arabidopsis RACK1A isoform was elucidated, thus revealing that its conserved seven WD repeats also assembled into this typical topology. From its crystal structure, it became apparent that it shares the structural platform for the interaction with ligands identified in other systems such as mammals. Although RACK1 proteins maintain conserved Protein Kinase C binding sites, the lack of a bona fide PKC adds complexity and enigma to the nature of the ligand partners with which RACK1 interacts in plants. Nevertheless, ligands recently identified using the split-ubiquitin based and conventional yeast two-hybrid assays, have revealed that plant RACK1 is involved in several processes that include defense response, drought and salt stress, ribosomal function, cell wall biogenesis, and photosynthesis. The information acquired indicates that, in spite of the high degree of conservation of its structure, the functions of the plant RACK1 homolog appear to be distinct and diverse from those in yeast, mammals, insects, etc. In this review, we take a critical look at the novel information regarding the many functions in which plant RACK1 has been reported to participate, with a special emphasis on the information on its currently identified and missing ligand partners.
Collapse
Affiliation(s)
- Tania Islas-Flores
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoPuerto Morelos, México
| | | | - Hemayet Ullah
- Department of Biology, Howard UniversityWashington, DC, USA
| | - Marco A. Villanueva
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoPuerto Morelos, México
- *Correspondence: Marco A. Villanueva
| |
Collapse
|