1
|
Yu P, Tang X, Chen B, Chen Z, Cui W, Xing Y, Li Y, Zhang F, Barroso JB, Rodriguez LG, Yao Y, Gao Y. The melatonin synthase-encoding gene ASMT mediates poplar resistance to drought stress and fungi Dothiorella gregaria. Gene 2025; 937:149154. [PMID: 39647802 DOI: 10.1016/j.gene.2024.149154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
In recent years, the increase in extreme climates, such as persistent high temperatures and drought, has adversely affected the growth and development of fast-growing trees. Melatonin (MT) plays an important role in plant responses to biotic and abiotic stresses, yet there is a lack of research on the specific role of limiting enzyme genes for MT biosynthesis in fast-growing woody plants. In this study, we investigated the function of PtoASMT, a key rate-limiting enzyme encoding gene for MT biosynthesis, which can be induced by drought, salt, and the phytohormones ABA, SA and JA. Our results show that: (1) PtoASMT was widely expressed in all tissues of poplar, but was highly expressed in petioles, moderately expressed in roots, stems, shoots and young leaves, exhibiting a typical diurnal expression rhythm in leaves, with the encoded protein localized on chloroplasts; (2) the content of MT was significantly promoted in overexpressing PtoASMT transgenic poplar plants, but there were no obvious differences in their growth and development; (3) overexpressing PtoASMT plants exhibited stronger drought tolerance, accumulating less reactive oxygen species (ROS) under drought stress relative to wild-type plants, whereas knockout PtoASMT plants were more sensitive and accumulated more ROS; (4) overexpressing PtoASMT plants were more resistant to fungi Dothiorella gregaria than WT plants, while knockout plants showed higher sensitivity; meanwhile, the expression of disease resistance-related genes (PRs and JAZ10) was significantly altered. We conclude that PtoASMT enhances the resistance of poplar to drought and Dothiorella gregaria by mediating MT biosynthesis in poplar. These findings contribute to a better understanding the role of ASMT gene in MT accumulation and stress resistance in poplar.
Collapse
Affiliation(s)
- Peizhi Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Xia Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Banglan Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Zihao Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Wenli Cui
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yuhang Xing
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Ying Li
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Fangfang Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Lucas Gutierrez Rodriguez
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China.
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China.
| |
Collapse
|
2
|
Yu HR, Tsai CY, Chen WL, Liu PY, Tain YL, Sheen JM, Huang YS, Tiao MM, Chiu CY. Exploring Oxidative Stress and Metabolic Dysregulation in Lung Tissues of Offspring Rats Exposed to Prenatal Polystyrene Microplastics: Effects of Melatonin Treatment. Antioxidants (Basel) 2024; 13:1459. [PMID: 39765788 PMCID: PMC11672973 DOI: 10.3390/antiox13121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolomics research provides a clearer understanding of an organism's metabolic state and enables a more accurate representation of its functional performance. This study aimed to investigate changes in the metabolome of lung tissues resulting from prenatal exposure to polystyrene microplastics (PS-MPs) and to understand the underlying mechanisms of lung damage in rat offspring. We conducted metabolomic analyses of lung tissue from seven-day-old rat pups exposed to prenatal PS-MPs. Our findings revealed that prenatal exposure to PS-MPs led to significantly increased oxidative stress in lung tissues, characterized by notable imbalances in nucleic acid metabolism and altered profiles of specific amino acids. Furthermore, we evaluated the therapeutic effects of melatonin treatment on lung function in 120-day-old offspring and found that melatonin treatment significantly improved lung function and histologic change in the affected offspring. This study provides valuable biological insights into the mechanisms underlying lung damage caused by prenatal PS-MPs exposure. Future studies should focus on validating the results of animal experiments in humans, exploring additional therapeutic mechanisms of melatonin, and developing suitable protocols for clinical use.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Wei-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Po-Yu Liu
- School of Medicine, College of Medicine, The Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung 807, Taiwan;
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Jiunn-Ming Sheen
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yi-Siang Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Mao-Meng Tiao
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chih-Yung Chiu
- Division of Pediatric Pulmonology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Shaffique S, Shah AA, Kang SM, Injamum-Ul-Hoque M, Shahzad R, Azzawi TNIA, Yun BW, Lee IJ. Melatonin: dual players mitigating drought-induced stress in tomatoes via modulation of phytohormones and antioxidant signaling cascades. BMC PLANT BIOLOGY 2024; 24:1101. [PMID: 39563264 DOI: 10.1186/s12870-024-05752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
Drought stress significantly retards the plant production. Melatonin is a vital hormone, signaling molecule, and bio-regulator of diverse physiological growth and development processes. Its role in boosting agronomic traits under diverse stress conditions has received considerable attention. However, the underlying molecular mechanism of action and how they increase drought stress tolerance has not been fully interpreted. The current study aimed to ascertain the protective role of melatonin in fortifying the antioxidant defense system, modulating the phytohormone profile, and improving agronomic traits of tomato seedlings under drought stress. After the V1 stage (1st leaf fully emerged), tomato seedlings were exposed to PEG-6000 to mimic drought-induced stress (DR 10% and DR 20%), followed by exogenous application of 100 µM soil drench. Drought-induced stress negatively impacted tomato seedlings by reducing growth and development and biomass accumulation, diminishing salicylic acid (SA) and chlorophyll levels, and dramatically lowering the antioxidant defense ability. However, melatonin protected them by activating the defense system, which decreased the oxidative burst and increased the activities of SOD, CAT, and APX. Administration of 100 µM melatonin by soil drench most remarkably downregulated the transcription factors of SlDREB3 and SlNCED3. This study has validated the moderating potential of melatonin against drought-induced stress by maintaining plant growth and development, enhancing hormone levels, elevating antioxidant enzyme activities, and suppressing the relative expression of drought-responsive genes. These findings also provide a basis for the potential use of MT in agricultural research and other relevant fields of study.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Md Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Raheem Shahzad
- Department of Horticulture, The University of Haripur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | | | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
4
|
Muñoz-Jurado A, Escribano BM. Presence of melatonin in foods of daily consumption: The benefit of this hormone for health. Food Chem 2024; 458:140172. [PMID: 38943958 DOI: 10.1016/j.foodchem.2024.140172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Melatonin (MLT) is a hormone that exists in all living organisms, including bacteria, yeast, fungi, animals, and plants, many of which are ingested daily in the diet. However, the exact concentrations of melatonin in each of the foods and the effect on health of the intake of foods rich in MLT are not known. Therefore, the aim of this review was to gather the available information on the melatonin content of different foods and to evaluate the effect that this hormone has on different pathologies. The amount of MLT may vary depending on the variety, origin, heat treatment, processing, and analysis technique, among other factors. Dietary interventions with foods rich in MLT report health benefits, but there is no evidence that hormone is partially responsible for the clinical improvement. Therefore, it is necessary to evaluate the MLT content in more foods, as well as the effect that cooking/processing has on the amount of MLT, to estimate its total intake in a typical diet and better explore its potential impact on the health.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| |
Collapse
|
5
|
Dehghanian Z, Ahmadabadi M, Asgari Lajayer B, Bagheri N, Chamani M, Gougerdchi V, Hamedpour-Darabi M, Shu W, Price GW, Dell B. Role of Neurotransmitters (Biomediators) in Plant Responses to Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3134. [PMID: 39599343 PMCID: PMC11597453 DOI: 10.3390/plants13223134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024]
Abstract
Plants possess a complex signaling system that enables them to sense and adapt to various environmental stressors, including abiotic factors like extreme temperatures, drought, salinity, and toxic heavy metals. While the roles of hormones and signaling molecules in plant stress responses are well established, the involvement of neurotransmitters-traditionally linked to animal nervous systems-in plant stress physiology is a relatively underexplored area. Recent findings indicate that neurotransmitters such as gamma-aminobutyric acid, glutamate, serotonin, and dopamine play crucial roles in several physiological processes within plants. They regulate ion channels, adjust stomatal movements, modulate the production of reactive oxygen species, and influence gene expression. Evidence suggests that these neurotransmitters enhance antioxidant defense mechanisms and regulate stress-responsive pathways vital for plant stress tolerance. Additionally, under stressful conditions, neurotransmitters have been shown to impact plant growth, development, and reproductive activities. This review aims to illuminate the emerging understanding of neurotransmitters as key biomediators in plant responses to abiotic stress.
Collapse
Affiliation(s)
- Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | | | - Nazila Bagheri
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | - Masoud Chamani
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Vahideh Gougerdchi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | - Mohsen Hamedpour-Darabi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz 71946-84471, Iran
| | - Weixi Shu
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - G. W. Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Bernard Dell
- Centre for Crop and Food Innovation, Murdoch University, Murdoch 6150, Australia
| |
Collapse
|
6
|
Kabała K, Janicka M. Relationship between the GABA Pathway and Signaling of Other Regulatory Molecules. Int J Mol Sci 2024; 25:10749. [PMID: 39409078 PMCID: PMC11476557 DOI: 10.3390/ijms251910749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
GABA (gamma-aminobutyric acid) is an amino acid whose numerous regulatory functions have been identified in animal organisms. More and more research indicate that in plants, this molecule is also involved in controlling basic growth and development processes. As recent studies have shown, GABA plays an essential role in triggering plant resistance to unfavorable environmental factors, which is particularly important in the era of changing climate. The main sources of GABA in plant cells are glutamic acid, converted in the GABA shunt pathway, and polyamines subjected to oxidative degradation. The action of GABA is often related to the activity of other messengers, including phytohormones, polyamines, NO, H2O2, or melatonin. GABA can function as an upstream or downstream element in the signaling pathways of other regulators, acting synergistically or antagonistically with them to control cellular processes. Understanding the role of GABA and its interactions with other signaling molecules may be important for developing crop varieties with characteristics that enable adaptation to a changing environment.
Collapse
Affiliation(s)
| | - Małgorzata Janicka
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| |
Collapse
|
7
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
8
|
Andrani M, Dall’Olio E, De Rensis F, Tummaruk P, Saleri R. Bioactive Peptides in Dairy Milk: Highlighting the Role of Melatonin. Biomolecules 2024; 14:934. [PMID: 39199322 PMCID: PMC11352677 DOI: 10.3390/biom14080934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Melatonin, an endogenous indolamine derived from tryptophan, is primarily synthesized by the pineal gland in mammals and regulated by a complex neural system. Its release follows a circadian rhythm, which is crucial for regulating physiological processes in response to light-dark cycles in both humans and animals. In this review, we report that the presence of this hormone in bovine milk, with significant differences in concentration between daytime and nighttime milking, has increased interest in milk as a natural source of bioactive molecules. Melatonin lowers cortisol levels at night, reduces body temperature and blood pressure, coinciding with decreased alertness and performance, acts as an antioxidant and anti-inflammatory agent, modulates the immune system, offers neuroprotective benefits, and supports gastrointestinal health by scavenging free radicals and reducing oxidative stress in dairy cows. Many factors influence the release of melatonin, such as the intensity of artificial lighting during nighttime milking, the frequency of milkings, milk yield, and genetic differences between animals. Nocturnal milking under low-intensity light boosts melatonin, potentially reducing oxidative damage and mastitis risk. Additionally, ultra-high temperature (UHT) treatment does not significantly affect the melatonin content in milk. However, further research on its stability during milk processing and storage is crucial for ensuring product efficacy. In some countries, nighttime milk with naturally elevated melatonin content is already commercialized as a natural aid for sleep. Thus, naturally melatonin-rich milk may be a promising alternative to synthetic supplements for promoting better sleep and overall well-being.
Collapse
Affiliation(s)
- Melania Andrani
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Eleonora Dall’Olio
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Fabio De Rensis
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Padet Tummaruk
- Centre of Excellence in Swine Reproduction, Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| |
Collapse
|
9
|
Khan M, Hussain A, Yun BW, Mun BG. Melatonin: The Multifaceted Molecule in Plant Growth and Defense. Int J Mol Sci 2024; 25:6799. [PMID: 38928504 PMCID: PMC11203645 DOI: 10.3390/ijms25126799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Melatonin (MEL), a hormone primarily known for its role in regulating sleep and circadian rhythms in animals, has emerged as a multifaceted molecule in plants. Recent research has shed light on its diverse functions in plant growth and defense mechanisms. This review explores the intricate roles of MEL in plant growth and defense responses. MEL is involved in plant growth owing to its influence on hormone regulation. MEL promotes root elongation and lateral root formation and enhances photosynthesis, thereby promoting overall plant growth and productivity. Additionally, MEL is implicated in regulating the circadian rhythm of plants, affecting key physiological processes that influence plant growth patterns. MEL also exhibits antioxidant properties and scavenges reactive oxygen species, thereby mitigating oxidative stress. Furthermore, it activates defense pathways against various biotic stressors. MEL also enhances the production of secondary metabolites that contribute to plant resistance against environmental changes. MEL's ability to modulate plant response to abiotic stresses has also been extensively studied. It regulates stomatal closure, conserves water, and enhances stress tolerance by activating stress-responsive genes and modulating signaling pathways. Moreover, MEL and nitric oxide cooperate in stress responses, antioxidant defense, and plant growth. Understanding the mechanisms underlying MEL's actions in plants will provide new insights into the development of innovative strategies for enhancing crop productivity, improving stress tolerance, and combating plant diseases. Further research in this area will deepen our knowledge of MEL's intricate functions and its potential applications in sustainable agriculture.
Collapse
Affiliation(s)
- Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Adil Hussain
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
10
|
Bocheva G, Bakalov D, Iliev P, Tafradjiiska-Hadjiolova R. The Vital Role of Melatonin and Its Metabolites in the Neuroprotection and Retardation of Brain Aging. Int J Mol Sci 2024; 25:5122. [PMID: 38791160 PMCID: PMC11121732 DOI: 10.3390/ijms25105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
While primarily produced in the pineal gland, melatonin's influence goes beyond its well-known role in regulating sleep, nighttime metabolism, and circadian rhythms, in the field of chronobiology. A plethora of new data demonstrates melatonin to be a very powerful molecule, being a potent ROS/RNS scavenger with anti-inflammatory, immunoregulatory, and oncostatic properties. Melatonin and its metabolites exert multiple beneficial effects in cutaneous and systemic aging. This review is focused on the neuroprotective role of melatonin during aging. Melatonin has an anti-aging capacity, retarding the rate of healthy brain aging and the development of age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. Melatonin, as well as its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), can reduce oxidative brain damage by shielding mitochondria from dysfunction during the aging process. Melatonin could also be implicated in the treatment of neurodegenerative conditions, by modifying their characteristic low-grade neuroinflammation. It can either prevent the initiation of inflammatory responses or attenuate the ongoing inflammation. Drawing on the current knowledge, this review discusses the potential benefits of melatonin supplementation in preventing and managing cognitive impairment and neurodegenerative diseases.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Dimitar Bakalov
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Petar Iliev
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | | |
Collapse
|
11
|
Gong W, Liu J, Mu Q, Chahaer T, Liu J, Ding W, Bou T, Wu Z, Zhao Y. Melatonin promotes proliferation of Inner Mongolia cashmere goat hair follicle papilla cells through Wnt10b. Genomics 2024; 116:110844. [PMID: 38608737 DOI: 10.1016/j.ygeno.2024.110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The study demonstrated that melatonin (MT) can induce the development of secondary hair follicles in Inner Mongolian cashmere goats through the Wnt10b gene, leading to secondary dehairing. However, the mechanisms underlying the expression and molecular function of Wnt10b in dermal papilla cells (DPC) remain unknown. This research aimed to investigate the impact of MT on DPC and the regulation of Wnt10b expression, function, and molecular mechanisms in DPC. The findings revealed that MT promotes DPC proliferation and enhances DPC activity. Co-culturing DPC with overexpressed Wnt10b and MT showed a significant growth promotion. Subsequent RNA sequencing (RNA-seq) of overexpressed Wnt10b and control groups unveiled the regulatory role of Wnt10b in DPC. Numerous genes and pathways, including developmental pathways such as Wnt and MAPK, as well as processes like hair follicle morphogenesis and hair cycle, were identified. These results suggest that Wnt10b promotes the growth of secondary hair follicles in Inner Mongolian cashmere goats by regulating crucial factors and pathways in DPC proliferation.
Collapse
Affiliation(s)
- Wendian Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Junyang Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Qing Mu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Tergel Chahaer
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Jiasen Liu
- Department of Inner Mongolia Academy of Agricultural Animal & Husbandry Sciences, Hohhot, China
| | - Wenqi Ding
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Tugeqin Bou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Zixian Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China; Department of Inner Mongolia Academy of Agricultural Animal & Husbandry Sciences, Hohhot, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China.
| |
Collapse
|
12
|
Ribeiro Franco PI, do Carmo Neto JR, Guerra RO, Ferreira da Silva PE, Braga YLL, Nunes Celes MR, de Menezes LB, Miguel MP, Machado JR. Melatonin: A look at protozoal and helminths. Biochimie 2024; 219:96-109. [PMID: 37541568 DOI: 10.1016/j.biochi.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Melatonin is a pleiotropic neurohormone found in different animal, plant, and microorganism species. It is a product resulting from tryptophan metabolism in the pineal gland and is widely known for its ability to synchronize the circadian rhythm to antitumor functions in different types of cancers. The molecular mechanisms responsible for its immunomodulatory, antioxidant and cytoprotective effects involve binding to high-affinity G protein-coupled receptors and interactions with intracellular targets that modulate signal transduction pathways. In vitro and in vivo studies have reported the therapeutic potential of melatonin in different infectious and parasitic diseases. In this review, the protective and pathophysiological roles of melatonin in fighting protozoan and helminth infections and the possible mechanisms involved against these stressors will be discussed.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - José Rodrigues do Carmo Neto
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Rhanoica Oliveira Guerra
- Departamento de Biologia Celular, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Priscilla Elias Ferreira da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Yarlla Loyane Lira Braga
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Mara Rúbia Nunes Celes
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Liliana Borges de Menezes
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil; Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marina Pacheco Miguel
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil; Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
13
|
Kołodziejczyk I, Kaźmierczak A. Melatonin - This is important to know. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170871. [PMID: 38340815 DOI: 10.1016/j.scitotenv.2024.170871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
MEL (N-acetyl-5-methoxytryptamine) is a well-known natural compound that controls cellular processes in both plants and animals and is primarily found in plants as a neurohormone. Its roles have been described very broadly, from its antioxidant function related to the photoperiod and determination of seasonal rhythms to its role as a signalling molecule, imitating the action of plant hormones (or even being classified as a prohormone). MEL positively affects the yield and survival of plants by increasing their tolerance to unfavourable biotic and abiotic conditions, which makes MEL widely applicable in ecological farming as a stimulant of growth and development. Thus, it is called a phytobiostimulator. In this review, we discuss the genesis of MEL functions, the presence of MEL at the cellular level and its effects on gene expression and plant development, which can ensure the survival of plants under the conditions they encounter. Moreover, we consider the future application possibilities of MEL in agriculture.
Collapse
Affiliation(s)
- Izabela Kołodziejczyk
- Department of Geobotany and Plant Ecology, Institute of Ecology and Environmental Protection, University of Lodz, Lodz 90-236, Banacha 12/16, 90-237, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
14
|
Rusciano D, Russo C. The Therapeutic Trip of Melatonin Eye Drops: From the Ocular Surface to the Retina. Pharmaceuticals (Basel) 2024; 17:441. [PMID: 38675402 PMCID: PMC11054783 DOI: 10.3390/ph17040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is a ubiquitous molecule found in living organisms, ranging from bacteria to plants and mammals. It possesses various properties, partly due to its robust antioxidant nature and partly owed to its specific interaction with melatonin receptors present in almost all tissues. Melatonin regulates different physiological functions and contributes to the homeostasis of the entire organism. In the human eye, a small amount of melatonin is also present, produced by cells in the anterior segment and the posterior pole, including the retina. In the eye, melatonin may provide antioxidant protection along with regulating physiological functions of ocular tissues, including intraocular pressure (IOP). Therefore, it is conceivable that the exogenous topical administration of sufficiently high amounts of melatonin to the eye could be beneficial in several instances: for the treatment of eye pathologies like glaucoma, due to the IOP-lowering and neuroprotection effects of melatonin; for the prevention of other dysfunctions, such as dry eye and refractive defects (cataract and myopia) mainly due to its antioxidant properties; for diabetic retinopathy due to its metabolic influence and neuroprotective effects; for macular degeneration due to the antioxidant and neuroprotective properties; and for uveitis, mostly owing to anti-inflammatory and immunomodulatory properties. This paper reviews the scientific evidence supporting the use of melatonin in different ocular districts. Moreover, it provides data suggesting that the topical administration of melatonin as eye drops is a real possibility, utilizing nanotechnological formulations that could improve its solubility and permeation through the eye. This way, its distribution and concentration in different ocular tissues may support its pleiotropic therapeutic effects.
Collapse
Affiliation(s)
- Dario Rusciano
- Fidia Research Centre, c/o University of Catania, Via Santa Sofia 89, 95123 Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| |
Collapse
|
15
|
Zhang X, Huang T, Liang Y, Hussain S, Peng R, Wang T, Deng H, Wang J, Lv X, Liang D, Xia H. Melatonin and 14-hydroxyed brassinosteroid combined promote kiwifruit seedling growth by improving soil microbial distribution, enzyme activity and nutrients uptake. FRONTIERS IN PLANT SCIENCE 2024; 15:1336116. [PMID: 38390297 PMCID: PMC10881855 DOI: 10.3389/fpls.2024.1336116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Kiwifruit, a nutrient-dense fruit, has become increasingly popular with consumers in recent decades. However, kiwifruit trees are prone to stunted growth after a few years of planting, called early tree decline. In this study, melatonin (MT), pollen polysaccharide (SF), 14-hydroxyed brassinosteroid (14-HBR) were applied alone or in combination to investigate their influence on plant growth, nutrition absorption and rhizosphere bacterial abundance in kiwifruit seedlings. The results revealed that MT, SF and 14-HBR alone treatments significantly increased leaf chlorophyll content, photosynthetic capacity and activities of dismutase and catalase compared with the control. Among them, MT treatment significantly increased the dry root biomass by 35.7%, while MT+14-HBR treatment significant enhanced the dry shoot biomass by 36.9%. Furthermore, both MT and MT+14-HBR treatments markedly improved the activities of invertase, urease, protease and phosphatase in soil, as well as the abundance of Proteobacteria and Acidobacteria in rhizosphere microorganisms based on 16S rDNA sequencing. In addition, MT treatment improved the content of available K and organic matter in soil, and increased the uptake of P, K and Fe by seedlings. In summary, 14-HBR and MT combined had the best effect on promoting rhizosphere bacterial distribution, nutrient absorption and plant growth. These findings may provide valuable guidance for solving growth weakness problem in kiwifruit cultivation.
Collapse
Affiliation(s)
- Xiaoli Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ting Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shafiq Hussain
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Rui Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Tong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Honghong Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Hattori A, Suzuki N. Receptor-Mediated and Receptor-Independent Actions of Melatonin in Vertebrates. Zoolog Sci 2024; 41:105-116. [PMID: 38587523 DOI: 10.2108/zs230057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/02/2023] [Indexed: 04/09/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine that is synthesized from tryptophan in the pineal glands of vertebrates through four enzymatic reactions. Melatonin is a quite unique bioactive substance, characterized by a combination of both receptor-mediated and receptor-independent actions, which promote the diverse effects of melatonin. One of the main functions of melatonin, via its membrane receptors, is to regulate the circadian or seasonal rhythm. In mammals, light information, which controls melatonin synthesis, is received in the eye, and transmitted to the pineal gland, via the suprachiasmatic nucleus, where the central clock is located. Alternatively, in many vertebrates other than mammals, the pineal gland cells, which are involved in melatonin synthesis and secretion and in the circadian clock, directly receive light. Recently, it has been reported that melatonin possesses several metabolic functions, which involve bone and glucose, in addition to regulating the circadian rhythm. Melatonin improves bone strength by inhibiting osteoclast activity. It is also known to maintain brain activity during sleep by increasing glucose uptake at night, in an insulin-independent manner. Moreover, as a non-receptor-mediated action, melatonin has antioxidant properties. Melatonin has been proven to be a potent free radical scavenger and a broad-spectrum antioxidant, even protecting organisms against radiation from space. Melatonin is a ubiquitously distributed molecule and is found in bacteria, unicellular organisms, fungi, and plants. It is hypothesized that melatonin initially functioned as an antioxidant, then, in vertebrates, it combined this role with the ability to regulate rhythm and metabolism, via its receptors.
Collapse
Affiliation(s)
- Atsuhiko Hattori
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama 352-8558, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan,
| |
Collapse
|
17
|
Li F, Xi K, Li Y, Ming T, Huang Y, Zhang L. Genome-wide analysis of transmembrane 9 superfamily genes in wheat ( Triticum aestivum) and their expression in the roots under nitrogen limitation and Bacillus amyloliquefaciens PDR1 treatment conditions. FRONTIERS IN PLANT SCIENCE 2024; 14:1324974. [PMID: 38259936 PMCID: PMC10800943 DOI: 10.3389/fpls.2023.1324974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
Introduction Transmembrane 9 superfamily (TM9SF) proteins play significant roles in plant physiology. However, these proteins are poorly characterized in wheat (Triticum aestivum). The present study aimed at the genome-wide analysis of putative wheat TM9SF (TraesTM9SF) proteins and their potential involvement in response to nitrogen limitation and Bacillus amyloliquefaciens PDR1 treatments. Methods TraesTM9SF genes were retrieved from the wheat genome, and their physiochemical properties, alignment, phylogenetic, motif structure, cis-regulatory element, synteny, protein-protein interaction (PPI), and transcription factor (TF) prediction analyses were performed. Transcriptome sequencing and quantitative real-time polymerase reaction (qRT-PCR) were performed to detect gene expression in roots under single or combined treatments with nitrogen limitation and B. amyloliquefaciens PDR1. Results and discussion Forty-seven TraesTM9SF genes were identified in the wheat genome, highlighting the significance of these genes in wheat. TraesTM9SF genes were absent on some wheat chromosomes and were unevenly distributed on the other chromosomes, indicating that potential regulatory functions and evolutionary events may have shaped the TraesTM9SF gene family. Fifty-four cis-regulatory elements, including light-response, hormone response, biotic/abiotic stress, and development cis-regulatory elements, were present in the TraesTM9SF promoter regions. No duplication of TraesTM9SF genes in the wheat genome was recorded, and 177 TFs were predicted to target the 47 TraesTM9SF genes in a complex regulatory network. These findings offer valued data for predicting the putative functions of uncharacterized TM9SF genes. Moreover, transcriptome analysis and validation by qRT-PCR indicated that the TraesTM9SF genes are expressed in the root system of wheat and are potentially involved in the response of this plant to single or combined treatments with nitrogen limitation and B. amyloliquefaciens PDR1, suggesting their functional roles in plant growth, development, and stress responses. Conclusion These findings may be vital in further investigation of the function and biological applications of TM9SF genes in wheat.
Collapse
Affiliation(s)
- Fei Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Kuanling Xi
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuke Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tang Ming
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yufeng Huang
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Lijun Zhang
- Science and Technology Division, Guizhou Normal University, Guiyang, China
| |
Collapse
|
18
|
Wang L, Tanveer M, Wang H, Arnao MB. Melatonin as a key regulator in seed germination under abiotic stress. J Pineal Res 2024; 76:e12937. [PMID: 38241678 DOI: 10.1111/jpi.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Seed germination (SG) is the first stage in a plant's life and has an immense importance in sustaining crop production. Abiotic stresses reduce SG by increasing the deterioration of seed quality, and reducing germination potential, and seed vigor. Thus, to achieve a sustainable level of crop yield, it is important to improve SG under abiotic stress conditions. Melatonin (MEL) is an important biomolecule that interplays in developmental processes and regulates many adaptive responses in plants, especially under abiotic stresses. Thus, this review specifically summarizes and discusses the mechanistic basis of MEL-mediated SG under abiotic stresses. MEL regulates SG by regulating some stress-specific responses and some common responses. For instance, MEL induced stress specific responses include the regulation of ionic homeostasis, and hydrolysis of storage proteins under salinity stress, regulation of C-repeat binding factors signaling under cold stress, starch metabolism under high temperature and heavy metal stress, and activation of aquaporins and accumulation of osmolytes under drought stress. On other hand, MEL mediated regulation of gibberellins biosynthesis and abscisic acid catabolism, redox homeostasis, and Ca2+ signaling are amongst the common responses. Nonetheless factors such as endogenous MEL contents, plant species, and growth conditions also influence above-mentioned responses. In conclusion, MEL regulates SG under abiotic stress conditions by interacting with different physiological mechanisms.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Mohsin Tanveer
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hongling Wang
- CAS Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Marino B Arnao
- Phytohormones & Plant Development Laboratory, Department of Plant Biology (Plant Physiology), University of Murcia, Murcia, Spain
| |
Collapse
|
19
|
Slominski AT, Kim TK, Slominski RM, Song Y, Qayyum S, Placha W, Janjetovic Z, Kleszczyński K, Atigadda V, Song Y, Raman C, Elferink CJ, Hobrath JV, Jetten AM, Reiter RJ. Melatonin and Its Metabolites Can Serve as Agonists on the Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor Gamma. Int J Mol Sci 2023; 24:15496. [PMID: 37895177 PMCID: PMC10607054 DOI: 10.3390/ijms242015496] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Melatonin is widely present in Nature. It has pleiotropic activities, in part mediated by interactions with high-affinity G-protein-coupled melatonin type 1 and 2 (MT1 and MT2) receptors or under extreme conditions, e.g., ischemia/reperfusion. In pharmacological concentrations, it is given to counteract the massive damage caused by MT1- and MT2-independent mechanisms. The aryl hydrocarbon receptor (AhR) is a perfect candidate for mediating the latter effects because melatonin has structural similarity to its natural ligands, including tryptophan metabolites and indolic compounds. Using a cell-based Human AhR Reporter Assay System, we demonstrated that melatonin and its indolic and kynuric metabolites act as agonists on the AhR with EC50's between 10-4 and 10-6 M. This was further validated via the stimulation of the transcriptional activation of the CYP1A1 promoter. Furthermore, melatonin and its metabolites stimulated AhR translocation from the cytoplasm to the nucleus in human keratinocytes, as demonstrated by ImageStream II cytometry and Western blot (WB) analyses of cytoplasmic and nuclear fractions of human keratinocytes. These functional analyses are supported by in silico analyses. We also investigated the peroxisome proliferator-activated receptor (PPAR)γ as a potential target for melatonin and metabolites bioregulation. The binding studies using a TR-TFRET kit to assay the interaction of the ligand with the ligand-binding domain (LBD) of the PPARγ showed agonistic activities of melatonin, 6-hydroxymelatonin and N-acetyl-N-formyl-5-methoxykynuramine with EC50's in the 10-4 M range showing significantly lower affinities that those of rosiglitazone, e.g., a 10-8 M range. These interactions were substantiated by stimulation of the luciferase activity of the construct containing PPARE by melatonin and its metabolites at 10-4 M. As confirmed by the functional assays, binding mode predictions using a homology model of the AhR and a crystal structure of the PPARγ suggest that melatonin and its metabolites, including 6-hydroxymelatonin, 5-methoxytryptamine and N-acetyl-N-formyl-5-methoxykynuramine, are excellent candidates to act on the AhR and PPARγ with docking scores comparable to their corresponding natural ligands. Melatonin and its metabolites were modeled into the same ligand-binding pockets (LBDs) as their natural ligands. Thus, functional assays supported by molecular modeling have shown that melatonin and its indolic and kynuric metabolites can act as agonists on the AhR and they can interact with the PPARγ at high concentrations. This provides a mechanistic explanation for previously reported cytoprotective actions of melatonin and its metabolites that require high local concentrations of the ligands to reduce cellular damage under elevated oxidative stress conditions. It also identifies these compounds as therapeutic agents to be used at pharmacological doses in the prevention or therapy of skin diseases.
Collapse
Affiliation(s)
- Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Radomir M. Slominski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
- Brigham’s Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Wojciech Placha
- Department of Medicinal Biochemistry, Collegium Medicum, Jagiellonian University, 31-008 Kraków, Poland;
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48161 Münster, Germany;
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Cornelis J. Elferink
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 79567, USA;
| | | | - Anton M. Jetten
- Cell Biology Section, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA;
| |
Collapse
|
20
|
Li W, Wang Z, Cao J, Dong Y, Chen Y. Melatonin improves the homeostasis of mice gut microbiota rhythm caused by sleep restriction. Microbes Infect 2023; 25:105121. [PMID: 36804006 DOI: 10.1016/j.micinf.2023.105121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Insufficient sleep is regarded as a disruptor of circadian rhythm, and it also contributes to the occurrence of intestinal diseases. The physiological functions of the gut depend on the normal circadian rhythm of the intestinal microbiota. However, how lack of sleep affects intestinal circadian homeostasis is unclear. Therefore, we subjected mice to sleep restriction and found that chronic sleep loss disrupts the pattern of colonic microbial communities and reduces the proportion of gut microbiota with a circadian rhythm, with concomitant changes in the peak phase of the KEGG pathway. We then found that exogenous melatonin supplementation restored the proportion of gut microbiota with a circadian rhythm and increased the KEGG pathway with a circadian rhythm. And we screened for possible circadian oscillation families, Muribaculaceae and Lachnospiraceae, that are sensitive to sleep restriction and can be rescued by melatonin. Our results suggest that sleep restriction disrupts the circadian rhythm of the colonic microbiota. In contrast, melatonin ameliorates disturbances in the circadian rhythm homeostasis of the gut microbiota due to sleep restriction.
Collapse
Affiliation(s)
- Weitian Li
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
21
|
Khan D, Cai N, Zhu W, Li L, Guan M, Pu X, Chen Q. The role of phytomelatonin receptor 1-mediated signaling in plant growth and stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1142753. [PMID: 36968396 PMCID: PMC10036441 DOI: 10.3389/fpls.2023.1142753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Phytomelatonin is a pleiotropic signaling molecule that regulates plant growth, development, and stress response. In plant cells, phytomelatonin is synthesized from tryptophan via several consecutive steps that are catalyzed by tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acyltransferase (SNAT), and N-acetylserotonin methyltransferase (ASMT) and/or caffeic acid-3-O-methyltransferase (COMT). Recently, the identification of the phytomelatonin receptor PMTR1 in Arabidopsis has been considered a turning point in plant research, with the function and signal of phytomelatonin emerging as a receptor-based regulatory strategy. In addition, PMTR1 homologs have been identified in several plant species and have been found to regulate seed germination and seedling growth, stomatal closure, leaf senescence, and several stress responses. In this article, we review the recent evidence in our understanding of the PMTR1-mediated regulatory pathways in phytomelatonin signaling under environmental stimuli. Based on structural comparison of the melatonin receptor 1 (MT1) in human and PMTR1 homologs, we propose that the similarity in the three-dimensional structure of the melatonin receptors probably represents a convergent evolution of melatonin recognition in different species.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaojun Pu
- *Correspondence: Xiaojun Pu, ; ; Qi Chen, ;
| | - Qi Chen
- *Correspondence: Xiaojun Pu, ; ; Qi Chen, ;
| |
Collapse
|
22
|
Tan DX, Reiter RJ, Zimmerman S, Hardeland R. Melatonin: Both a Messenger of Darkness and a Participant in the Cellular Actions of Non-Visible Solar Radiation of Near Infrared Light. BIOLOGY 2023; 12:89. [PMID: 36671781 PMCID: PMC9855654 DOI: 10.3390/biology12010089] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Throughout the history of melatonin research, almost exclusive focus has been on nocturnally-generated pineal melatonin production, which accounts for its circadian rhythm in the blood and cerebrospinal fluid; these light/dark melatonin cycles drive the daily and seasonal photoperiodic alterations in organismal physiology. Because pineal melatonin is produced and secreted primarily at night, it is referred to as the chemical expression of darkness. The importance of the other sources of melatonin has almost been ignored. Based on current evidence, there are at least four sources of melatonin in vertebrates that contribute to the whole-body melatonin pool. These include melatonin produced by (1) the pineal gland; (2) extrapineal cells, tissues, and organs; (3) the microbiota of the skin, mouth, nose, digestive tract, and vagina as well as (4) melatonin present in the diet. These multiple sources of melatonin exhibit differentially regulated mechanisms for its synthesis. Visible light striking the retina or an intense physical stimulus can suppress nocturnal pineal melatonin levels; in contrast, there are examples where extrapineal melatonin levels are increased during heavy exercise in daylight, which contains the whole range of NIR radiation. The cumulative impact of all cells producing augmented extrapineal melatonin is sufficient to elevate sweat concentrations, and potentially, if the exposure is sustained, to also increasing the circulating values. The transient increases in sweat and plasma melatonin support the premise that extrapineal melatonin has a production capacity that exceeds by far what can be produced by the pineal gland, and is used to maintain intercellular homeostasis and responds to rapid changes in ROS density. The potential regulatory mechanisms of near infrared light (NIR) on melatonin synthesis are discussed in detail herein. Combined with the discovery of high levels of melanopsin in most fat cells and their response to light further calls into question pineal centric theories. While the regulatory processes related to microbiota-derived melatonin are currently unknown, there does seem to be crosstalk between melatonin derived from the host and that originating from microbiota.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | | | - Ruediger Hardeland
- Johann Friedric Blumenbach Institute of Zoology and Anthropology, University of Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
23
|
García-Valle KM, Ruíz-Herrera LF, Ravelo-Ortega G, López-Bucio JS, Guevara-García ÁA, López-Bucio J. MITOGEN-ACTIVATED PROTEIN KINASE PHOSPHATASE 1 mediates root sensing of serotonin through jasmonic acid signaling and modulating reactive oxygen species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111396. [PMID: 35878696 DOI: 10.1016/j.plantsci.2022.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Serotonin (5-hydroxytryptamine) acts as a neurotransmitter in mammals and is widely distributed in the plant kingdom, where it influences root growth and defense. Mitogen-Activated Protein Kinases (MAPKs) and MAPK phosphatases (MKPs) play critical functions in decoding hormonal signalling, but their possible roles in mediating serotonin responses await investigation. In this report, we unveiled positive roles for the MITOGEN-ACTIVATED PROTEIN KINASE PHOSPHATASE1 (MKP1) in the inhibition of the primary root growth, cell division, meristem structure, and differentiation events in Arabidopsis seedlings. mkp1 mutants were less sensitive to jasmonic acid applications that halted primary root growth in wild-type (WT) plants, and consistently, the neurotransmitter activated the expression of the JASMONATE ZIM-domain (JAZ) proteins JAZ1 and JAZ10, two critical proteins orchestrating jasmonic acid signalling. This effect correlated with exacerbated production of endogenous reactive oxygen species (ROS) in the WT, a process constitutively manifested in mkp1 mutants. These data help to clarify the relationship between serotonin and growth/defense trade-offs, and reveal the importance of the MAPK pathway in root development through ROS production.
Collapse
Affiliation(s)
- Karen Monserrat García-Valle
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| | - León Francisco Ruíz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| | - Gustavo Ravelo-Ortega
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| | - Jesús Salvador López-Bucio
- Investigador de Cátedras CONACYT, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, Mexico.
| | - Ángel Arturo Guevara-García
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, Mexico.
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| |
Collapse
|
24
|
Chen Q, Hou S, Pu X, Li X, Li R, Yang Q, Wang X, Guan M, Rengel Z. Dark secrets of phytomelatonin. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5828-5839. [PMID: 35522068 DOI: 10.1093/jxb/erac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Phytomelatonin is a newly identified plant hormone, and its primary functions in plant growth and development remain relatively poorly appraised. Phytomelatonin is a master regulator of reactive oxygen species (ROS) signaling and acts as a darkness signal in circadian stomatal closure. Plants exhibit at least three interrelated patterns of interaction between phytomelatonin and ROS production. Exogenous melatonin can induce flavonoid biosynthesis, which might be required for maintenance of antioxidant capacity under stress, after harvest, and in leaf senescence conditions. However, several genetic studies have provided direct evidence that phytomelatonin plays a negative role in the biosynthesis of flavonoids under non-stress conditions. Phytomelatonin delays flowering time in both dicot and monocot plants, probably via its receptor PMTR1 and interactions with the gibberellin, strigolactone, and ROS signaling pathways. Furthermore, phytomelatonin signaling also functions in hypocotyl and shoot growth in skotomorphogenesis and ultraviolet B (UV-B) exposure; the G protein α-subunit (Arabidopsis GPA1 and rice RGA1) and constitutive photomorphogenic1 (COP1) are important signal components during this process. Taken together, these findings indicate that phytomelatonin acts as a darkness signal with important regulatory roles in circadian stomatal closure, flavonoid biosynthesis, flowering, and hypocotyl and shoot growth.
Collapse
Affiliation(s)
- Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Suying Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaomin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongrong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xinjia Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| |
Collapse
|
25
|
Chen Q, Arnao MB. Phytomelatonin: an emerging new hormone in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5773-5778. [PMID: 36178429 PMCID: PMC9523825 DOI: 10.1093/jxb/erac307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
|
26
|
Davoodvandi A, Nikfar B, Reiter RJ, Asemi Z. Melatonin and cancer suppression: insights into its effects on DNA methylation. Cell Mol Biol Lett 2022; 27:73. [PMID: 36064311 PMCID: PMC9446540 DOI: 10.1186/s11658-022-00375-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Melatonin is an important naturally occurring hormone in mammals. Melatonin-mediated biological effects include the regulation of circadian rhythms, which is important for optimal human health. Also, melatonin has a broad range of immunoenhancing actions. Moreover, its oncostatic properties, especially regarding breast cancer, involve a variety cancer-inhibitory processes and are well documented. Due to their promising effects on the prognosis of cancer patients, anti-cancer drugs with epigenetic actions have attracted a significant amount of attention in recent years. Epigenetic modifications of cancers are categorized into three major processes including non-coding RNAs, histone modification, and DNA methylation. Hence, the modification of the latter epigenetic event is currently considered an effective strategy for treatment of cancer patients. Thereby, this report summarizes the available evidence that investigated melatonin-induced effects in altering the status of DNA methylation in different cancer cells and models, e.g., malignant glioma and breast carcinoma. Also, we discuss the role of artificial light at night (ALAN)-mediated inhibitory effects on melatonin secretion and subsequent impact on global DNA methylation of cancer cells.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
27
|
Genome-wide identification, characterization of Serotonin N-acetyltransferase and deciphering its importance under development, biotic and abiotic stress in soybean. Int J Biol Macromol 2022; 220:942-953. [PMID: 35998857 DOI: 10.1016/j.ijbiomac.2022.08.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
Abstract
Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme involved in plant melatonin biosynthesis. Identifying its expression under development and stress will reveal the regulatory role in the soybean. To identify and characterize SNAT, we employed genome-wide analysis, gene structure, cis-acting elements, expression, and enzyme activity. We identified seven putative genes by genome-wide analysis and found chloroplast signal peptides in three GmSNATs. To elucidate GmSNATs role, expression datasets of more than a hundred samples related to circadian rhythm, developmental stages, and stress conditions were analysed. Notably, the expression of GmSNAT1 did not show significant expression during biotic and abiotic stress. The GmSNAT1 sequence showed 67.8 and 72.2 % similarities with OsSNAT and AtSNAT, respectively. The Km and Vmax of the purified recombinant GmSNAT1 were 657 μM and 3780 pmol/min/mg, respectively. To further understand the GmSNAT1 role, we supplemented different concentrations of serotonin and melatonin to in-vitro cultures and seed priming. These studies revealed that the GmSNAT1 expression was significantly up-regulated at higher concentrations of serotonin and down-regulated at higher melatonin concentrations. We speculate that a high concentration of melatonin during abiotic, biotic stress, and in-vitro cultures are responsible for regulating GmSNAT1 expression, which may regulate them at the enzyme level during stress in soybean.
Collapse
|
28
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
29
|
Expression and distribution of MTNR1A in the hypothalamus-pituitary-gonadal axis of Tibetan sheep during the estrous cycle. Gene 2022; 839:146731. [PMID: 35835405 DOI: 10.1016/j.gene.2022.146731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022]
Abstract
The melatonin 1A receptor (MTNR1A) is a membrane receptor distributed across the mammalian gonadal axis-associated membrane. Melatonin (MT) can specifically bind with MTNR1A on the cell membrane and regulates mammalian reproductive activities. However, the role of MTNR1A in regulating the reproductive physiological activities of sheep in the Tibetan Plateau remains unclear. In this study, the MT content in Tibetan sheep blood during the estrous cycle was detected by ELISA. The distribution of MTNR1A in the hypothalamus-pituitary-gonadal axis (HPGA) was analyzed by immunohistochemistry and immunofluorescence. Western blot and qRT-PCR were used to detect dynamic changes of MTNR1A mRNA and protein expression, and the protein distributions in the HPGA. The results showed that the average secretion level of MT in Tibetan sheep blood was highest occurred during diestrus and the lowest during proestrus. Additionally, the secretion of MT at night was significantly higher than during the day. The immunopositive products of MTNR1A were primarily distributed around the glial cells in the dorsal hypothalamic nucleus region, chromophobe cells, and eosinophilic cytoplasm in the pituitary gland, follicular granular layer, follicular adventitia, tubal mucosa, cilia, endometrium, interstices, and glands in the uterus. The expression trends of MTNR1A mRNA and proteins in the HPGA during the estrous cycle were the same. The relative expression levels of MTNR1A mRNA and proteins in the hypothalamus and ovaries were the highest during proestrus and the lowest during metestrus; the highest during diestrus in the pituitary and oviducts; the highest during metestrus in the uterus. Collectively, the differences in the secretion of MT in Tibetan sheep blood and the expression of MTNR1A in HPGA suggest that they may be affected by steroid hormone secretion during the estrous cycle of Tibetan sheep, which has a potential impact on the regulation of animal estrous cycle.
Collapse
|
30
|
Tan DX, Reiter RJ. Mechanisms and clinical evidence to support melatonin's use in severe COVID-19 patients to lower mortality. Life Sci 2022; 294:120368. [PMID: 35108568 PMCID: PMC8800937 DOI: 10.1016/j.lfs.2022.120368] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
The fear of SARS-CoV-2 infection is due to its high mortality related to seasonal flu. To date, few medicines have been developed to significantly reduce the mortality of the severe COVID-19 patients, especially those requiring tracheal intubation. The severity and mortality of SARS-CoV-2 infection not only depend on the viral virulence, but are primarily determined by the cytokine storm and the destructive inflammation driven by the host immune reaction. Thus, to target the host immune response might be a better strategy to combat this pandemic. Melatonin is a molecule with multiple activities on a virus infection. These include that it downregulates the overreaction of innate immune response to suppress inflammation, promotes the adaptive immune reaction to enhance antibody formation, inhibits the entrance of the virus into the cell as well as limits its replication. These render it a potentially excellent candidate for treatment of the severe COVID-19 cases. Several clinical trials have confirmed that melatonin when added to the conventional therapy significantly reduces the mortality of the severe COVID-19 patients. The cost of melatonin is a small fraction of those medications approved by FDA for emergency use to treat COVID-19. Because of its self-administered, low cost and high safety margin, melatonin could be made available to every country in the world at an affordable cost. We recommend melatonin be used to treat severe COVID-19 patients with the intent of reducing mortality. If successful, it would make the SARS-CoV-2 pandemic less fearful and help to return life back to normalcy.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
31
|
Wang L, Wang C, Choi WS. Use of Melatonin in Cancer Treatment: Where Are We? Int J Mol Sci 2022; 23:ijms23073779. [PMID: 35409137 PMCID: PMC8998229 DOI: 10.3390/ijms23073779] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer represents a large group of diseases accounting for nearly 10 million deaths each year. Various treatment strategies, including surgical resection combined with chemotherapy, radiotherapy, and immunotherapy, have been applied for cancer treatment. However, the outcomes remain largely unsatisfying. Melatonin, as an endogenous hormone, is associated with the circadian rhythm moderation. Many physiological functions of melatonin besides sleep–wake cycle control have been identified, such as antioxidant, immunomodulation, and anti-inflammation. In recent years, an increasing number of studies have described the anticancer effects of melatonin. This has drawn our attention to the potential usage of melatonin for cancer treatment in the clinical setting, although huge obstacles still exist before its wide clinical administration is accepted. The exact mechanisms behind its anticancer effects remain unclear, and the specific characters impede its in vivo investigation. In this review, we will summarize the latest advances in melatonin studies, including its chemical properties, the possible mechanisms for its anticancer effects, and the ongoing clinical trials. Importantly, challenges for the clinical application of melatonin will be discussed, accompanied with our perspectives on its future development. Finally, obstacles and perspectives of using melatonin for cancer treatment will be proposed. The present article will provide a comprehensive foundation for applying melatonin as a preventive and therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Leilei Wang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
| | - Chuan Wang
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
| | - Wing Shan Choi
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
- Correspondence: ; Tel.: +852-28590266
| |
Collapse
|
32
|
Filippova YE, Malishevskaya TN, Kolomeichuk SN, Gubin DG, Vlasova AS. The severity of endothelial dysfunction, oxidative stress, lipid metabolism disorders, decreased elastic properties and tone of peripheral vessels in patients with different POAG course variants, depending on the polymorphism of the genes of the biological clock. RUSSIAN OPHTHALMOLOGICAL JOURNAL 2022; 15:78-88. [DOI: 10.21516/2072-0076-2022-15-1-78-88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The purpose is to find out the relations of the vascular endothelium dysfunction, atherosclerotic damage to the vessels of the upper and lower limbs, the state of the antioxidant and prooxidant systems, and the lipid profile in patients with different POAG course — carriers of biological clock gene polymorphism.Materials and methods. 47 patients with advanced POAG underwent an examination that included visometry, biomicroscopy, ophthalmoscopy, perimetry, tonometry, thermometry, as well as determination of lipid metabolism, indicators of oxidative stress and antioxidant system. All patients were also tested for the degree of endothelial dysfunction by reactive hyperemia method, and the elastic properties and vascular wall tone by the volumetric sphygmomanometry method. POAG progression was determined by static automated perimetry and optical coherence tomography. The hospitalized patients were examined for daily melatonin profile and key biological clock genes typed by real-time polymerase chain reaction. The genetic material was taken by buccal scraping. Polymorphic variants were identified for CLOCK rs1801260 3111T/C and MTNR1B genes. 16 patients (S-POAG — 8, A-POAG — 8) were tested for melatonin taken from saliva samples at different times of the day in laboratory conditions with controlled nutrition and lighting using the DLMO protocol.Results. The predictors of glaucoma progression were found to be pronounced endothelial dysfunction and oxidative stress, which contribute to the acceleration of atherogenesis and a decrease in the elastic properties of the vascular wall of peripheral vessels. Clock 3111t-c circadian gene polymorphism was found to be interrelated with lipid metabolism disorders and increased lipid peroxidation in patients with POAG progression. Carriers of the G allele of the MTNR1B gene tend to have a higher level of triglyceride (TG) which grows in the evening hours if glaucoma is progressing. We showed that the phasal and amplitude characteristics of daily melatonin level, rather than its average level, may affect the state of the vascular wall of peripheral vessels in POAG patients.Conclusion. POAG progression is associated with pronounced oxidative stress, weakened antioxidant protection and dyslipoproteinemia. Differences in the lipid profile (dyslipidemia) and the indicators of oxidative stress and antioxidant protection in patients with stable and progressing glaucoma course are mutually related with Clock 3111t-c gene polymorphism (CG genotype).
Collapse
Affiliation(s)
| | | | - S. N. Kolomeichuk
- Tyumen State Medical University; Karelian Scientific Center of the Russian Academy of Sciences
| | - D. G. Gubin
- Tyumen State Medical University; Tyumen Cardiology Research Center, branch of the Tomsk Medical Research Center of the Russian Academy of Sciences
| | - A. S. Vlasova
- West Siberian Institute of Postgraduate Medical Education; Regional Ocular Health Clinic
| |
Collapse
|
33
|
Akhzari M, Barazesh M, Jalili S. Melatonin as an antioxidant agent in disease prevention: A biochemical focus. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220325124451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Abstract:
In the recent years, free radicals and oxidative stress have been found to be associated with aging, cancer, atherosclerosis, neurodegenerative disorders, diabetes, and inflammatory diseases. Confirming the role of oxidants in numerous pathological situations including cancer, developing antioxidants as therapeutic platforms is needed. It has been well established that melatonin and its derived metabolites function as endogenous free-radical scavengers and broad spectrum antioxidants. To achieve this function, melatonin can directly detoxify reactive oxygen and reactive nitrogen species and indirectly overexpress antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. Many investigations have also confirmed the role of melatonin and its derivatives in different physiological processes and therapeutic functions such as controlling the circadian rhythm and immune functions. This review aimed to focus on melatonin as a beneficial agent for the stimulation of antioxidant enzymes and inhibition of lipid peroxidation and to evaluate its contribution to protection against oxidative damages. In addition, the clinical application of melatonin in several diseases is discussed. Finally, the safety and efficacy of melatonin in clinical backgrounds is also reviewed.
Collapse
Affiliation(s)
- Morteza Akhzari
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Sajad Jalili
- Department of Orthopedics, Faculty of Medicine, Ahvaz, Jundishapour University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
34
|
Functional Characterization of Serotonin N-Acetyltransferase in Archaeon Thermoplasma volcanium. Antioxidants (Basel) 2022; 11:antiox11030596. [PMID: 35326246 PMCID: PMC8945778 DOI: 10.3390/antiox11030596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Serotonin N-acetyltransferase is the penultimate enzyme in the melatonin biosynthetic pathway that catalyzes serotonin into N-acetylserotonin. Many SNAT genes have been cloned and characterized from organisms ranging from bacteria to plants and mammals. However, to date, no SNAT gene has been identified from Archaea. In this study, three archaeal SNAT candidate genes were synthesized and expressed in Escherichia coli, and SNAT enzyme activity was measured using their purified recombinant proteins. Two SNAT candidate genes, from Methanoregulaceae (Archaea) and Pyrococcus furiosus, showed no SNAT enzyme activity, whereas a SNAT candidate gene from Thermoplasma volcanium previously named TvArd1 exhibited SNAT enzyme activity. The substrate affinity and the maximum reaction rate of TvSNAT toward serotonin were 621 μM and 416 pmol/min/mg protein, respectively. The highest amine substrate was tyramine, followed by tryptamine, serotonin, and 5-methoxytryptamine, which were similar to those of plant SNAT enzymes. Homologs of TvSNAT were found in many Archaea families. Ectopic overexpression of TvSNAT in rice resulted in increased melatonin content, antioxidant activity, and seed size in conjunction with the enhanced expression of seed size-related gene. This study is the first to report the discovery of SNAT gene in Archaea. Future research avenues include the cloning of TvSNAT orthologs in different phyla, and identification of their regulation and functions related to melatonin biosynthesis in living organisms.
Collapse
|
35
|
Verde A, Míguez JM, Gallardo M. Role of Melatonin in Apple Fruit during Growth and Ripening: Possible Interaction with Ethylene. PLANTS (BASEL, SWITZERLAND) 2022; 11:688. [PMID: 35270158 PMCID: PMC8912437 DOI: 10.3390/plants11050688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
The role of melatonin during the growth and ripening of apple fruit was studied using local varieties. The evolution of the growth and ripening parameters, including fruit size and weight, firmness, color change, sugar content, and ethylene production, was different in the five varieties studied, with yellow apples (Reineta and Golden) initiating the ripening process earlier than reddish ones (Teórica, Sanroqueña, and Caguleira). Changes in the melatonin and melatonin isomer 2 contents during growth and ripening were studied in Golden apples, as was the effect of the melatonin treatment (500 µM, day 124 post-anthesis) on the apple tree. Melatonin content varied greatly, with higher value in the skin than in the flesh. In the skin, melatonin increased at day 132 post-anthesis, when ethylene synthesis started. In the flesh, melatonin levels were high at the beginning of the growth phase and at the end of ripening. Melatonin isomer 2 was also higher once the ripening started and when ethylene began to increase. The melatonin treatment significantly advanced the ethylene production and increased the fruit size, weight, sugar content, and firmness. The data suggest that melatonin stimulates fruit ripening through the induction of ethylene synthesis, while melatonin treatments before ripening improve the final fruit quality.
Collapse
Affiliation(s)
- Antía Verde
- Departamento de Biología Vegetal, C.C. del Suelo, Universidade de Vigo, 36310 Vigo, Spain;
| | - Jesús M. Míguez
- Departamento de Biología Funcional, C.C. de la Salud, Universidade de Vigo, 36310 Vigo, Spain;
| | - Mercedes Gallardo
- Departamento de Biología Vegetal, C.C. del Suelo, Universidade de Vigo, 36310 Vigo, Spain;
| |
Collapse
|
36
|
Protective Role of Melatonin and Its Metabolites in Skin Aging. Int J Mol Sci 2022; 23:ijms23031238. [PMID: 35163162 PMCID: PMC8835651 DOI: 10.3390/ijms23031238] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The skin, being the largest organ in the human body, is exposed to the environment and suffers from both intrinsic and extrinsic aging factors. The skin aging process is characterized by several clinical features such as wrinkling, loss of elasticity, and rough-textured appearance. This complex process is accompanied with phenotypic and functional changes in cutaneous and immune cells, as well as structural and functional disturbances in extracellular matrix components such as collagens and elastin. Because skin health is considered one of the principal factors representing overall “well-being” and the perception of “health” in humans, several anti-aging strategies have recently been developed. Thus, while the fundamental mechanisms regarding skin aging are known, new substances should be considered for introduction into dermatological treatments. Herein, we describe melatonin and its metabolites as potential “aging neutralizers”. Melatonin, an evolutionarily ancient derivative of serotonin with hormonal properties, is the main neuroendocrine secretory product of the pineal gland. It regulates circadian rhythmicity and also exerts anti-oxidative, anti-inflammatory, immunomodulatory, and anti-tumor capacities. The intention of this review is to summarize changes within skin aging, research advances on the molecular mechanisms leading to these changes, and the impact of the melatoninergic anti-oxidative system controlled by melatonin and its metabolites, targeting the prevention or reversal of skin aging.
Collapse
|
37
|
Jiang DL, Xu YL, Pan JQ, Fan D, Shen X, Li WY, Ou-Yang HJ, Xu DN, Tian YB, Huang YM. Effects of melatonin on testicular function in adult male mice under different photoperiods. Anim Reprod 2022; 19:e20220038. [PMID: 36189166 PMCID: PMC9524057 DOI: 10.1590/1984-3143-ar2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Dan-li Jiang
- Zhongkai University of Agriculture and Engineering, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, China
| | - Yang-long Xu
- Zhongkai University of Agriculture and Engineering, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, China
| | - Jian-qiu Pan
- Zhongkai University of Agriculture and Engineering, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, China
| | - Di Fan
- Zhongkai University of Agriculture and Engineering, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, China
| | - Xu Shen
- Zhongkai University of Agriculture and Engineering, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, China
| | - Wan-yan Li
- Zhongkai University of Agriculture and Engineering, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, China
| | - Hong-jia Ou-Yang
- Zhongkai University of Agriculture and Engineering, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, China
| | - Dan-ning Xu
- Zhongkai University of Agriculture and Engineering, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, China
| | - Yun-bo Tian
- Zhongkai University of Agriculture and Engineering, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, China
| | - Yun-mao Huang
- Zhongkai University of Agriculture and Engineering, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, China
| |
Collapse
|
38
|
Zuluaga-Dominguez CM, Fuenmayor CA. Bee bread and gut microbiota. BEE PRODUCTS AND THEIR APPLICATIONS IN THE FOOD AND PHARMACEUTICAL INDUSTRIES 2022:315-345. [DOI: 10.1016/b978-0-323-85400-9.00010-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Khattak WA, He J, Abdalmegeed D, Hu W, Wang Y, Zhou Z. Foliar melatonin stimulates cotton boll distribution characteristics by modifying leaf sugar metabolism and antioxidant activities during drought conditions. PHYSIOLOGIA PLANTARUM 2022; 174:e13526. [PMID: 34405415 DOI: 10.1111/ppl.13526] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
Drought is a severe abiotic stress affecting the plant's antioxidant system and interrupting compatible solute translocation processes, which leads to low productivity. Melatonin acts as a common growth regulator enhancing the plants defense system and regulates sugar metabolism in challenging environments. Melatonin treatments enable plants to be tolerant to abiotic stresses via enhancing their recovery potential, but its impact using various concentrations has not yet been studied in leaf physiological aspects when applied to cotton foliage during their peak flowering and boll loading stage. The overall objective of this research was to facilitate cotton boll distribution characteristics by modifying cotton leaf sugar metabolism and antioxidant activity by applying foliar melatonin (0, 25, 50, and 100 μmol l-1 ) under drought levels with a relative soil water content of 75%, 60%, and 45% ± 5 (FC1, FC2, and FC3, respectively). Higher rates of melatonin application (100 μmol l-1 ) enhanced boll distribution characteristics and controlled the boll shedding rate during drought conditions. An increase in melatonin rates proved to be more helpful in stimulating cotton sympodial leaf physiological attributes, including leaf gas exchange parameters, sugar metabolism, proline content, and antioxidants defense system as compared with less or no melatonin application during all FC conditions and showed the most significant effect at a higher melatonin concentration (M100) at 7-21 DAF. The total proline content and antioxidant activity were enhanced in the M100 treatment during all FC levels, which caused a reduction in the total malondialdehyde (MDA) contents and hydrogen peroxide (H2 O2 ) concentrations in cotton leaves. Moreover, sugar metabolism responsible genes GhSusA and SPS2 showed an upsurge in expression levels and enhanced sucrose degradation in M100 treatments during all FC levels. Furthermore, cotton boll attributes showed also a positive relation with leaf physiological and gas exchange attributes. The results suggested that foliar melatonin application during the flowering initiation stage improved the overall performance and is helpful for cotton crops productivity against drought stress.
Collapse
Affiliation(s)
- Wajid Ali Khattak
- Key laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaqi He
- Key laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dyaaaldin Abdalmegeed
- Microbiology Section, Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt
| | - Wei Hu
- Key laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| | - Youhua Wang
- Key laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| | - Zhiguo Zhou
- Key laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Emerling CA, Springer MS, Gatesy J, Jones Z, Hamilton D, Xia-Zhu D, Collin M, Delsuc F. Genomic evidence for the parallel regression of melatonin synthesis and signaling pathways in placental mammals. OPEN RESEARCH EUROPE 2021; 1:75. [PMID: 35967080 PMCID: PMC7613276 DOI: 10.12688/openreseurope.13795.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 11/20/2022]
Abstract
Background: The study of regressive evolution has yielded a wealth of examples where the underlying genes bear molecular signatures of trait degradation, such as pseudogenization or deletion. Typically, it appears that such disrupted genes are limited to the function of the regressed trait, whereas pleiotropic genes tend to be maintained by natural selection to support their myriad purposes. One such set of pleiotropic genes is involved in the synthesis ( AANAT, ASMT) and signaling ( MTNR1A, MTNR1B) of melatonin, a hormone secreted by the vertebrate pineal gland. Melatonin provides a signal of environmental darkness, thereby influencing the circadian and circannual rhythmicity of numerous physiological traits. Therefore, the complete loss of a pineal gland and the underlying melatonin pathway genes seems likely to be maladaptive, unless compensated by extrapineal sources of melatonin. Methods: We examined AANAT, ASMT, MTNR1A and MTNR1B in 123 vertebrate species, including pineal-less placental mammals and crocodylians. We searched for inactivating mutations and modelled selective pressures (dN/dS) to test whether the genes remain functionally intact. Results: We report that crocodylians retain intact melatonin genes and express AANAT and ASMT in their eyes, whereas all four genes have been repeatedly inactivated in the pineal-less xenarthrans, pangolins, sirenians, and whales. Furthermore, colugos have lost these genes, and several lineages of subterranean mammals have partial melatonin pathway dysfunction. These results are supported by the presence of shared inactivating mutations across clades and analyses of selection pressure based on the ratio of non-synonymous to synonymous substitutions (dN/dS), suggesting extended periods of relaxed selection on these genes. Conclusions: The losses of melatonin synthesis and signaling date to tens of millions of years ago in several lineages of placental mammals, raising questions about the evolutionary resilience of pleiotropic genes, and the causes and consequences of losing melatonin pathways in these species.
Collapse
Affiliation(s)
- Christopher A. Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- Biology Department, Reedley College, Reedley, CA, 93654, USA
| | - Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Zachary Jones
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Deana Hamilton
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - David Xia-Zhu
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Matt Collin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Frédéric Delsuc
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
41
|
Tan DX, Hardeland R. The Reserve/Maximum Capacity of Melatonin's Synthetic Function for the Potential Dimorphism of Melatonin Production and Its Biological Significance in Mammals. Molecules 2021; 26:7302. [PMID: 34885890 PMCID: PMC8659113 DOI: 10.3390/molecules26237302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/13/2023] Open
Abstract
In this article, we attempt to classify a potential dimorphism of melatonin production. Thus, a new concept of "reserve or maximum capacity of melatonin synthetic function" is introduced to explain the subtle dimorphism of melatonin production in mammals. Considering ASMT/ASMTL genes in the pseudoautosomal region of sex chromosomes with high prevalence of mutation in males, as well as the sex bias of the mitochondria in which melatonin is synthesized, we hypothesize the existence of a dimorphism in melatonin production to favor females, which are assumed to possess a higher reserve capacity for melatonin synthesis than males. Under physiological conditions, this subtle dimorphism is masked by the fact that cells or tissues only need baseline melatonin production, which can be accomplished without exploiting the full potential of melatonin's synthetic capacity. This capacity is believed to exceed the already remarkable nocturnal increase as observed within the circadian cycle. However, during aging or under stressful conditions, the reserve capacity of melatonin's synthetic function is required to be activated to produce sufficiently high levels of melatonin for protective purposes. Females seem to possess a higher reserve/maximum capacity for producing more melatonin than males. Thus, this dimorphism of melatonin production becomes manifest and detectable under these conditions. The biological significance of the reserve/maximum capacity of melatonin's synthetic function is to improve the recovery rate of organisms from injury, to increase resistance to pathogen infection, and even to enhance their chances of survival by maximizing melatonin production under stressful conditions. The higher reserve/maximum capacity of melatonin synthesis in females may also contribute to the dimorphism in longevity, favoring females in mammals.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany;
| |
Collapse
|
42
|
Empowering Melatonin Therapeutics with Drosophila Models. Diseases 2021; 9:diseases9040067. [PMID: 34698120 PMCID: PMC8544433 DOI: 10.3390/diseases9040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin functions as a central regulator of cell and organismal function as well as a neurohormone involved in several processes, e.g., the regulation of the circadian rhythm, sleep, aging, oxidative response, and more. As such, it holds immense pharmacological potential. Receptor-mediated melatonin function mainly occurs through MT1 and MT2, conserved amongst mammals. Other melatonin-binding proteins exist. Non-receptor-mediated activities involve regulating the mitochondrial function and antioxidant cascade, which are frequently affected by normal aging as well as disease. Several pathologies display diseased or dysfunctional mitochondria, suggesting melatonin may be used therapeutically. Drosophila models have extensively been employed to study disease pathogenesis and discover new drugs. Here, we review the multiple functions of melatonin through the lens of functional conservation and model organism research to empower potential melatonin therapeutics to treat neurodegenerative and renal diseases.
Collapse
|
43
|
Alamdari AF, Rahnemayan S, Rajabi H, Vahed N, Kashani HRK, Rezabakhsh A, Sanaie S. Melatonin as a promising modulator of aging related neurodegenerative disorders: Role of microRNAs. Pharmacol Res 2021; 173:105839. [PMID: 34418564 DOI: 10.1016/j.phrs.2021.105839] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
One of the host risk factors involved in aging-related diseases is coupled with the reduction of endogenous melatonin (MLT) synthesis in the pineal gland. MLT is considered a well-known pleiotropic regulatory hormone to modulate a multitude of biological processes such as the regulation of circadian rhythm attended by potent anti-oxidant, anti-inflammatory, and anti-cancer properties. It has also been established that the microRNAs family, as non-coding mRNAs regulating post-transcriptional processes, also serve a crucial role to promote MLT-related advantageous effects in both experimental and clinical settings. Moreover, the anti-aging impact of MLT and miRNAs participation jointly are of particular interest, recently. In this review, we aimed to scrutinize recent advances concerning the therapeutic implications of MLT, particularly in the brain tissue in the face of aging. We also assessed the possible interplay between microRNAs and MLT, which could be considered a therapeutic strategy to slow down the aging process in the nervous system.
Collapse
Affiliation(s)
- Arezoo Fathalizadeh Alamdari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Research Center for Translational Medicine, School of Medicine, Koç University, Istanbul, Turkey
| | - Nafiseh Vahed
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
44
|
Kim TK, Atigadda VR, Brzeminski P, Fabisiak A, Tang EKY, Tuckey RC, Reiter RJ, Slominski AT. Detection of Serotonin, Melatonin, and Their Metabolites in Honey. ACS FOOD SCIENCE & TECHNOLOGY 2021; 1:1228-1235. [PMID: 35449872 PMCID: PMC9017714 DOI: 10.1021/acsfoodscitech.1c00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Melatonin and serotonin, products of tryptophan metabolism, are endogenous neurotransmitters and hormones. We have identified and quantified these metabolites in natural honey from Australia, USA, and Poland using a Xevo G2 XS qTof LC-MS. To help ensure correct product identification, some samples were prepurified by RP-HPLC based on the retention times of standards, prior to LC-MS. The concentrations of the metabolites of interest depended on the source of the honey. For Australian honey, levels for melatonin and 2-hydroxymelatonin were 0.91 and 0.68 ng/g, respectively. Melatonin was detected in one brand of US commercial honey at 0.48 ng/g, while a second brand contained serotonin at 88.2 ng/g. In Polish natural honey, 20.6 ng/g of serotonin and 40.8 ng/g of N-acetylserotonin (NAS) were detected, while in Polish commercial honey 25.9 ng/g of serotonin and 7.30 ng/g of NAS were present. We suggest that addictive and health-related properties of honey may be in part dependent on the presence of serotonin, melatonin, and their metabolites, and that these compounds may play a role in the colony activities of bees.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; VA Medical Center, Birmingham, Alabama 35294, United States
| | - Venkatram R Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Pawel Brzeminski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Adrian Fabisiak
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Edith K Y Tang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas 77030, United States
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; VA Medical Center, Birmingham, Alabama 35294, United States
| |
Collapse
|
45
|
Robledo-Márquez K, Ramírez V, González-Córdova AF, Ramírez-Rodríguez Y, García-Ortega L, Trujillo J. Research opportunities: Traditional fermented beverages in Mexico. Cultural, microbiological, chemical, and functional aspects. Food Res Int 2021; 147:110482. [PMID: 34399478 DOI: 10.1016/j.foodres.2021.110482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022]
Abstract
In Mexico, close to 200 fermented products have been described, of which, approximately 20 are beverages. They were obtained through rustic and ancestral fermentation methods by different indigenous Mexican communities; most of them were used in ceremonies, agricultural work, and other occasions. For their elaboration, different substrates obtained from plants are used, where uncontrolled and low-scale spontaneous anaerobic fermentation occurs. In Mexico, some of these products are considered as nutritional sources and functional beverages; the study of those products has revealed the presence of multiple compounds of biological importance. Additionally, elder generations attribute healing properties against diverse illnesses to these beverages. The aim of this review is to highlight the available information on twelve traditional Mexican fermented beverages, their traditional uses, and their fermentation processes along with toxicological, chemical, nutritional, and functional studies as seen from different areas of investigation. In the literature, pulque, cocoa, and pozol were the beverages with the greatest amount of described health properties; sendechó and guarapo were less characterized. Polyphenols, gallic and ferulic acid, anthocyanins and saponins were the most abundant molecules in all beverages. Finally, it is important to continue this research in order to determine the microorganisms that are involved in the fermentation process, as well as the organoleptic and beneficial properties they lend to the traditional Mexican fermented beverages.
Collapse
Affiliation(s)
- K Robledo-Márquez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí 78216, Mexico
| | - V Ramírez
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México 14080, Mexico
| | - A F González-Córdova
- Laboratorio de Calidad, Autenticidad y Trazabilidad de los Alimentos y de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Y Ramírez-Rodríguez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí 78216, Mexico; Consejo Nacional de Ciencia y Tecnología-Instituto Potosino de Investigación Científica y Tecnológica-Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas (CONACYT-CIIDZA-IPICYT), San Luis Potosí 78216, Mexico
| | - L García-Ortega
- Departamento de Ingeniería Genética. Centro de Investigación y Estudios Avanzados de IPN (Cinvestav), Irapuato, Guanajuato 36824, Mexico
| | - J Trujillo
- Consejo Nacional de Ciencia y Tecnología-Instituto Potosino de Investigación Científica y Tecnológica-Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas (CONACYT-CIIDZA-IPICYT), San Luis Potosí 78216, Mexico.
| |
Collapse
|
46
|
Role of Melatonin in Angiotensin and Aging. Molecules 2021; 26:molecules26154666. [PMID: 34361818 PMCID: PMC8347812 DOI: 10.3390/molecules26154666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
The cellular utilization of oxygen leads to the generation of free radicals in organisms. The accumulation of these free radicals contributes significantly to aging and several age-related diseases. Angiotensin II can contribute to DNA damage through oxidative stress by activating the NAD(P)H oxidase pathway, which in turn results in the production of reactive oxygen species. This radical oxygen-containing molecule has been linked to aging and several age-related disorders, including renal damage. Considering the role of angiotensin in aging, melatonin might relieve angiotensin-II-induced stress by enhancing the mitochondrial calcium uptake 1 pathway, which is crucial in preventing the mitochondrial calcium overload that may trigger increased production of reactive oxygen species and oxidative stress. This review highlights the role and importance of melatonin together with angiotensin in aging and age-related diseases.
Collapse
|
47
|
Negri S, Commisso M, Avesani L, Guzzo F. The case of tryptamine and serotonin in plants: a mysterious precursor for an illustrious metabolite. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5336-5355. [PMID: 34009335 DOI: 10.1093/jxb/erab220] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Indolamines are tryptophan-derived specialized metabolites belonging to the huge and ubiquitous indole alkaloids group. Serotonin and melatonin are the best-characterized members of this family, given their many hormonal and physiological roles in animals. Following their discovery in plants, the study of plant indolamines has flourished and their involvement in important processes, including stress responses, growth and development, and reproduction, has been proposed, leading to their classification as a new category of phytohormones. However, the complex indolamine puzzle is far from resolved, particularly the biological roles of tryptamine, the early serotonin precursor representing the central hub of many downstream indole alkaloids. Tryptophan decarboxylase, which catalyzes the synthesis of tryptamine, strictly regulates the flux of carbon and nitrogen from the tryptophan pool into the indolamine pathway. Furthermore, tryptamine accumulates to high levels in the reproductive organs of many plant species and therefore cannot be classed as a mere intermediate but rather as an end product with potentially important functions in fruits and seeds. This review summarizes current knowledge on the role of tryptamine and its close relative serotonin, emphasizing the need for a clear understanding of the functions of, and mutual relations between, these indolamines and their biosynthesis pathways in plants.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| |
Collapse
|
48
|
Jaworek AK, Szepietowski JC, Hałubiec P, Wojas-Pelc A, Jaworek J. Melatonin as an Antioxidant and Immunomodulator in Atopic Dermatitis-A New Look on an Old Story: A Review. Antioxidants (Basel) 2021; 10:antiox10081179. [PMID: 34439427 PMCID: PMC8388892 DOI: 10.3390/antiox10081179] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Atopic dermatitis (AD) is common inflammatory dermatosis, typically with chronic and recurrent course, which significantly reduces the quality of life. Sleep disturbances are considered to be remarkably burdensome ailments in patients with AD, and are routinely included during assessment of disease severity. Therefore, endogenous substances engaged in the control of circadian rhythms might be important in pathogenesis of AD and, possibly, be used as biomarkers of disease severity or even in development of novel therapies. Melatonin (MT), the indoleamine produced by pineal gland (but also by multiple other tissues, including skin), plays a pivotal role in maintaining the sleep/wake homeostasis. Additionally, it possesses strong antioxidant and anti-inflammatory properties, which might directly link chronic skin inflammation and sleep abnormalities characteristic of AD. The objective of this work is to systematically present and summarize the results of studies (both experimental and clinical) that investigated the role of MT in the AD, with a focus on the antioxidant and immunomodulatory effects of MT.
Collapse
Affiliation(s)
- Andrzej Kazimierz Jaworek
- Department of Dermatology, Jagiellonian University Medical College, 31-501 Cracow, Poland;
- Correspondence:
| | - Jacek Cezary Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Przemysław Hałubiec
- Student Scientific Group, Department of Dermatology, Jagiellonian University Medical College, 31-501 Cracow, Poland;
| | - Anna Wojas-Pelc
- Department of Dermatology, Jagiellonian University Medical College, 31-501 Cracow, Poland;
| | - Jolanta Jaworek
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Cracow, Poland;
| |
Collapse
|
49
|
Evaluating the Impact of Viola spathulata in A Rat Model of Brain Ischemia/Reperfusion by Influencing Expression Level of Caspase-3 and Cyclooxygenase-2. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Possible benefits of exogenous melatonin for individuals on dialysis: a narrative review on potential mechanisms and clinical implications. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1599-1611. [PMID: 34097094 DOI: 10.1007/s00210-021-02099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Prevention of oxidative stress and inflammation in chronic kidney disease patients (CKD) on dialysis may reduce dialysis-associated complications. Administration of powerful antioxidants may improve the consequences of peritoneal dialysis (PD) and hemodialysis (HD). This narrative review aimed to show the potential therapeutic effects of melatonin (MLT) on the consequences of CKD patients receiving HD or PD. The results of preclinical and clinical studies have proven that CKD and dialysis are accompanied by reduced endogenous MLT levels and related complications such as sleep disorders. Enhanced oxidative stress, inflammation, cellular damages, and renal fibrosis, along with dysregulation of the renin-angiotensin system (RAS), have been observed in CKD and patients on dialysis. Results of studies have revealed that the restoration of MLT via the exogenous source may regulate oxidative stress, inflammation, and RAS functions, inhibit fibrosis, and improve complications in patients with long-term dialysis patients. In summary, treatment of patients with CKD and dialysis with exogenous MLT is suggested as a practical approach in reducing the outcomes and improving the quality of life in patients via antioxidant, anti-inflammatory, and anti-fibrotic signaling pathways. Therefore, this hormone can be considered in clinical practice to manage dialysis-related complications.
Collapse
|