1
|
Moreira J, Machado M, Dias-Teixeira M, Ferraz R, Delerue-Matos C, Grosso C. The neuroprotective effect of traditional Chinese medicinal plants-A critical review. Acta Pharm Sin B 2023; 13:3208-3237. [PMID: 37655317 PMCID: PMC10465969 DOI: 10.1016/j.apsb.2023.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 09/02/2023] Open
Abstract
Neurodegenerative and neuropsychiatric diseases are increasingly affecting individuals' quality of life, thus increasing their cost to social and health systems. These diseases have overlapping mechanisms, such as oxidative stress, protein aggregation, neuroinflammation, neurotransmission impairment, mitochondrial dysfunction, and excitotoxicity. Currently, there is no cure for neurodegenerative diseases, and the available therapies have adverse effects and low efficacy. For neuropsychiatric disorders, such as depression, the current therapies are not adequate to one-third of the patients, the so-called treatment-resistant patients. So, searching for new treatments is fundamental. Medicinal plants appear as a strong alternative and complement towards new treatment protocols, as they have been used for health purposes for thousands of years. Thus, the main goal of this review is to revisit the neuroprotective potential of some of the most predominant medicinal plants (and one fungus) used in traditional Chinese medicine (TCM), focusing on their proven mechanisms of action and their chemical compositions, to give clues on how they can be useful against neurodegeneration progression.
Collapse
Affiliation(s)
- João Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
| | - Mariana Machado
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Porto 4200-072, Portugal
| | - Mónica Dias-Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
- NICiTeS—Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, Lisboa 1950-396, Portugal
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Porto 4200-072, Portugal
- REQUIMTE/LAQV, Departamento de Química e Bioquímica Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
| |
Collapse
|
2
|
Mukherjee A, Pal S, Parhi S, Karki S, Ingole PG, Ghosh P. One-Pot Extraction of Bioresources from Human Hair via a Zero-Waste Green Route. ACS OMEGA 2023; 8:15759-15768. [PMID: 37151520 PMCID: PMC10157874 DOI: 10.1021/acsomega.3c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
In recent years, the extraction of bioresources from biowaste via green chemistry and their utilization for the production of materials has gained global momentum due to growing awareness of the concepts of sustainability. Herein, we report a benign process using an ionic liquid (IL), 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), for the simultaneous extraction of keratin and melanin from human hair. Chemical characterization, secondary structure studies, and thermal analysis of the regenerated protein were performed thoroughly. Hemolytic potential assays demonstrated hemocompatibility of the keratin, and thus, it can be used in blood-contacting biomaterials such as sealants, catheters, hemostats, tissue engineering scaffolds, and so on. Scanning electron microscopy showed retention of the ellipsoidal morphology of melanin after the extraction procedure. The pigment demonstrated the ability to reduce 2,2-diphenyl-1-picrylhydrazyl indicative of its free-radical scavenging activity. Notably, the IL could be recovered and recycled from the dialysis remains which also exhibited conductivity and can be potentially used for bioelectronics. Altogether, this work investigates an extraction process of biopolymers using green chemistry from abundantly available biowaste for the production of biomaterials and does not produce any noxious waste matter.
Collapse
Affiliation(s)
- Ashmita Mukherjee
- CSIR-Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, 700032 Kolkata, India
- Academy
of Scientific and Innovative Research, Kamla Nehru Nagar, 201002 Ghaziabad, India
| | - Sreyasi Pal
- CSIR-Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, 700032 Kolkata, India
| | - Shivangi Parhi
- CSIR-Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, 700032 Kolkata, India
- Academy
of Scientific and Innovative Research, Kamla Nehru Nagar, 201002 Ghaziabad, India
| | - Sachin Karki
- Academy
of Scientific and Innovative Research, Kamla Nehru Nagar, 201002 Ghaziabad, India
- CSIR-North
East Institute of Science and Technology, NH-37, Pulibor, Jorhat, 785006 Assam, India
| | - Pravin G. Ingole
- Academy
of Scientific and Innovative Research, Kamla Nehru Nagar, 201002 Ghaziabad, India
- CSIR-North
East Institute of Science and Technology, NH-37, Pulibor, Jorhat, 785006 Assam, India
| | - Paulomi Ghosh
- Institute
of Health Sciences, Presidency University, Plot No. DG/02/02, Action Area 1D,
Newtown, Kolkata, 700156 West Bengal, India
- ,
| |
Collapse
|
3
|
Enhanced Anti-Melanogenic Effect of Adlay Bran Fermented with Lactobacillus brevis MJM60390. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fermentation is a traditional technique used to increase nutrients, flavonoids, vitamins, minerals, and the flavor of raw materials. In this study, adlay bran was fermented by Lactobacillus brevis MJM60390 (FAB), and the anti-melanogenic effect was investigated. The results demonstrated that FAB significantly suppressed melanin accumulation in mouse melanogenic B16F10 cells, and the activity was higher than non-fermented adlay bran (NFAB). The molecular mechanism study showed that FAB inhibited melanin synthesis by suppressing the gene expression of melanocortin 1 receptor (Mc1r), melanocyte-inducing transcription factor (Mitf), tyrosinase (Tyr), tyrosinase-related protein-1 (Trp-1), and tyrosinase-related protein-2 (Trp-2) genes. Western blotting analysis showed that FAB strongly decreased the expression of Tyr, Trp-1, and Trp-2 compared to NFAB. Furthermore, phenolic compounds such as gallic acid, p-coumaric acid, ferulic acid, and sinapic acid, which are known for their anti-melanogenic effects, were significantly increased in FAB compared with NFAB. These findings suggest that FAB holds great potential as an anti-melanogenic agent and can be used for the development of whitening cosmetics.
Collapse
|
4
|
Merecz-Sadowska A, Sitarek P, Kowalczyk T, Zajdel K, Kucharska E, Zajdel R. The Modulation of Melanogenesis in B16 Cells Upon Treatment with Plant Extracts and Isolated Plant Compounds. Molecules 2022; 27:molecules27144360. [PMID: 35889231 PMCID: PMC9324663 DOI: 10.3390/molecules27144360] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Plants are a rich source of secondary metabolites that exhibit numerous desired properties. The compounds may influence the biology of melanocytes, pigment cells that produce melanin, by modulating numerous signaling pathways, including cAMP/PKA, MAPKs and PI3K/AKT. Its downstream target is microphthalmia-associated transcription factor, responsible for the expression of the tyrosinase enzyme, which plays a major role in melanogenesis. Therefore, this literature review aims to provide insights related to melanogenesis modulation mechanisms of plant extracts and isolated plant compounds in B16 cells. Database searches were conducted using online-based library search instruments from 2012 to 2022, such as NCBI-PubMed and Google Scholar. Upregulation or downregulation of signaling pathways by phytochemicals can influence skin hypo- and hyperpigmentation by changing the level of melanin production, which may pose a significant cosmetic issue. Therefore, plant extracts or isolated plant compounds may be used in the therapy of pigmentation disorders.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
- Correspondence:
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|
5
|
Goelzer Neto CF, do Nascimento P, da Silveira VC, Nunes de Mattos AB, Bertol CD. Natural Sources of Melanogenic Inhibitors: A Systematic Review. Int J Cosmet Sci 2022; 44:143-153. [PMID: 35048395 DOI: 10.1111/ics.12763] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Melanin gives some natural protection against the harmful effects of UV radiation, however, excessive production of melanin causes skin hyperpigmentation. Depigmenting cosmetics can be used to control this process, however, depigmenting agents commonly used have some disadvantages, such as low bioavailability, photosensitization, cellular toxicity, and insolubility. Natural sources of melanogenic inhibitors have become important alternatives to synthetic ones. The objective of this review was to summarise the results of studies on natural extracts that have been reported in the literature to inhibit the process of melanogenesis, giving a view on their suitability for potential use in new cosmetic formulations for skin-lightening. DATA SOURCES A systematic literature search was carried out using the descriptors: "melanogenesis", "tyrosinase", "tyrosinase inhibition", and "natural agents". STUDY SELECTION Publications were selected based on our designated inclusion and exclusion criteria and a total of fifteen studies were found which met these criteria. DATA EXTRACTION The following were used in the review of each paper which met the criteria: the name of the plant (all of the natural extracts turned out to be from plants), the method used to obtain the plant extract, the method for evaluating anti-tyrosinase activity, the main results and the conclusions. DATA SYNTHESIS All evaluated natural agents demonstrated anti-tyrosinase effect. The species Leathesia difformis, Morus alba, Orostachys japonicus, Heracleum moellendorffii, Coix lacryma-jobi (adlay), Inula brittanica, and Gailardia aristata stood out from the others due to their application as potential inhibitors of more than three proteins related to melanogenesis, including the cyclic adenosine monophosphate response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), tyrosinase-related protein-2 (TRP-2), and dopachrome tautomerase (DCT). CONCLUSION The plants present an anti-tyrosinase effect that must be better explored in the new cosmetic formulations. The anti-melanogenic effects of the plant are mainly related to presence of phenolic and antioxidant compounds.
Collapse
Affiliation(s)
| | | | | | | | - Charise Dallazem Bertol
- Human Aging, University of Passo Fundo, Rio Grande do Sul, Brazil.,College of Pharmacy, University of Passo Fundo, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Xu J, Hussain M, Su W, Yao Q, Yang G, Zhong Y, Zhou L, Huang X, Wang Z, Gu Q, Ren Y, Li H. Effects of novel cellulase (Cel 906) and probiotic yeast fermentation on antioxidant and anti-inflammatory activities of vine tea ( Ampelopsis grossedentata). Front Bioeng Biotechnol 2022; 10:1006316. [PMID: 36185429 PMCID: PMC9521311 DOI: 10.3389/fbioe.2022.1006316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 12/08/2022] Open
Abstract
Vine tea (Ampelopsis grossedentata) is a plant resource with good nutritional and medicinal, and is widely consumed in China. This study aimed to develop a functional vine tea fermentation broth using microbial fermentation and cellulase degradation. First, the most suitable probiotics for vine tea fermentation were screened, and the fermentation conditions were optimized. Then, a new cellulase (Cel 906, MW076177) was added to evaluate the changes in the contents of effective substances and to study its efficacy. The results show that saccharomyces cerevisiae Y-401 was identified as the best strain, the optimal fermentation conditions were a time of 94.60 h, feeding concentration of 115.21 g/L, and temperature of about 34.97°C. The vine tea fermentation broth has a strong inhibitory ability on 2,2'-azinobis3-ethylbenzothiazoline-6-sulfonic acid (ABTS) (99.73%), peroxyl (53.15%), superoxide anion radicals (84.13%), and 1,1-Diphenyl-2-trinitrophenylhydrazine (DPPH) (92.48%). It has a decent inhibitory impact on the cell viability, tyrosinase activity (32.25%), and melanin synthesis (63.52%) of B16-F10 melanoma cells induced by α-MSH. Inflammatory cell recruitment was reduced in a zebrafish inflammation model. Therefore, this vine tea fermented broth has strong antioxidant, anti-melanoma, and anti-inflammatory effects, and has healthcare potential as a probiotic tea.
Collapse
Affiliation(s)
- Jin Xu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, China
| | - Mubasher Hussain
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Wenfeng Su
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, China
| | - Qian Yao
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, China
| | - Guandong Yang
- CAS Testing Technical Services (Guangzhou) Co., Ltd., Guangzhou, China
| | - Yu Zhong
- CAS Testing Technical Services (Guangzhou) Co., Ltd., Guangzhou, China
| | - Lin Zhou
- CAS Testing Technical Services (Guangzhou) Co., Ltd., Guangzhou, China
| | - Xiaoting Huang
- Guangzhou Ruby Biotechnology Co., Ltd., Guangzhou, China
| | - Zhixiang Wang
- Guangdong Molecular Probe and Biomedical Imaging Engineering Technology Research Center, Guangzhou, China
| | - Quliang Gu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, China
| | - Yifei Ren
- Guangzhou Hua Shuo Biotechnology Co., Ltd., Guangzhou, China
- *Correspondence: Yifei Ren, ; He Li,
| | - He Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, China
- *Correspondence: Yifei Ren, ; He Li,
| |
Collapse
|
7
|
Ko CY, Chao J, Chen PY, Su SY, Maeda T, Lin CY, Chiang HC, Huang SS. Ethnobotanical Survey on Skin Whitening Prescriptions of Traditional Chinese Medicine in Taiwan. Front Pharmacol 2021; 12:736370. [PMID: 34916932 PMCID: PMC8670535 DOI: 10.3389/fphar.2021.736370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
The increasing interest and demand for skin whitening products globally, particularly in Asia, have necessitated rapid advances in research on skin whitening products used in traditional Chinese medicine (TCM). Herein, we investigated 74 skin whitening prescriptions sold in TCM pharmacies in Taiwan. Commonly used medicinal materials were defined as those with a relative frequency of citation (RFC) > 0.2 and their characteristics were evaluated. Correlation analysis of commonly used medicinal materials was carried out to identify the core component of the medicinal materials. Of the purchased 74 skin whitening prescriptions, 36 were oral prescriptions, 37 were external prescriptions, and one prescription could be used as an oral or external prescription. After analysis, 90 traditional Chinese medicinal materials were obtained. The Apiaceae (10%; 13%) and Leguminosae (9%; 11%) were the main sources of oral and external medicinal materials, respectively. Oral skin whitening prescriptions were found to be mostly warm (46%) and sweet (53%), while external skin whitening prescriptions included cold (43%) and bitter (29%) medicinal materials. Additionally, mainly tonifying and replenishing effects of the materials were noted. Pharmacological analysis indicated that these medicinal materials may promote wound healing, treat inflammatory skin diseases, or anti-hyperpigmentation. According to the Spearman correlation analysis on interactions among medicinal materials with an RFC > 0.2 in the oral skin whitening prescriptions, Paeonia lactiflora Pall. (white) and Atractylodes macrocephala Koidz. showed the highest correlation (confidence score = 0.93), followed by Ziziphus jujuba Mill. (red) and Astragalus propinquus Schischkin (confidence score = 0.91). Seven medicinal materials in external skin whitening prescriptions with an RFC > 0.2, were classified as Taiwan qī bái sàn (an herbal preparation), including Angelica dahurica (Hoffm.) Benth. & Hook. f. ex Franch. & Sav., Wolfiporia extensa (Peck) Ginns, Bletilla striata (Thunb.) Rchb. f., Atractylodes macrocephala Koidz., Ampelopsis japonica (Thunb.) Makino, Paeonia lactiflora Pall. (white), and Bombyx mori Linnaeus. Skin whitening prescriptions included multiple traditional Chinese medicinal materials. Despite the long history of use, there is a lack of studies concerning skin whitening products, possibly due to the complex composition of traditional Chinese medicine. Further studies are required to assess the efficacy and safety of these traditional Chinese medicinal materials for inclusion in effective, safe, and functional pharmacological products.
Collapse
Affiliation(s)
- Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jung Chao
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Master Program for Food and Drug Safety, China Medical University, Taichung, Taiwan
| | - Pei-Yu Chen
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tomoji Maeda
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan
| | - Chin-Yu Lin
- Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Hung-Che Chiang
- School of Pharmacy, China Medical University, Taichung, Taiwan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
8
|
Kim JK, Heo HY, Park S, Kim H, Oh JJ, Sohn EH, Jung SH, Lee K. Characterization of Phenethyl Cinnamamide Compounds from Hemp Seed and Determination of Their Melanogenesis Inhibitory Activity. ACS OMEGA 2021; 6:31945-31954. [PMID: 34870017 PMCID: PMC8637947 DOI: 10.1021/acsomega.1c04727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Hyperpigmentation is induced by the overactivation of tyrosinase, which is a rate-limiting enzyme in melanogenesis. The defatted extract of hemp (Cannabis sativa L.) seed is known to have inhibitory effects on melanogenesis; however, effective compounds in the extract have not been identified yet. In this study, three phenethyl cinnamamides present in hemp seed extract were prepared by purification and chemical synthesis and were assessed for their inhibitory effect on melanogenesis in B16F10 melanoma cells. A comparison of the anti-melanogenesis and anti-tyrosinase activity of hemp seed solvent fractions revealed that the ethyl acetate fraction possessed the greatest potential for suppressing melanogenesis in melanoma cells by decreasing tyrosinase activity. We tentatively identified 26 compounds in the ethyl acetate fraction by comparing spectroscopic data with the literature. Three phenethyl cinnamamides such as N-trans-caffeoyltyramine, N-trans-coumaroyltyramine, and N-trans-feruloyltyramine present abundantly in the ethyl acetate fraction were prepared and their anti-melanogenesis and anti-tyrosinase activities in melanoma cells were evaluated. We found that N-trans-caffeoyltyramine and N-trans-feruloyltyramine inhibited alpha melanocyte stimulating hormone (α-MSH)-induced melanogenesis without cytotoxicity, while N-trans-coumaroyltyramine inhibited melanogenesis with cytotoxicity. IC50 values of N-trans-caffeoyltyramine, N-trans-feruloyltyramine, and N-trans-coumaroyltyramine for inhibition of α-MSH-mediated tyrosinase activation were 0.8, 20.2, and 6.3 μM, respectively. Overall, N-trans-caffeoyltyramine possessed the strongest anti-melanogenesis activity among the three phenethyl cinnamamides evaluated. The inhibitory effect of N-trans-caffeoyltyramine was verified by determining the melanin content and tyrosinase activity in melanoma after treating the cells with synthetic compounds. Thus, N-trans-caffeoyltyramine isolated from hemp seed extract could be useful in cosmetics as a skin-whitening agent.
Collapse
Affiliation(s)
- Jae Kwon Kim
- Department
of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee-Young Heo
- Department
of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - SeonJu Park
- Chuncheon
Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea
| | - Haheon Kim
- Department
of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeong Ju Oh
- Department
of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun-Hwa Sohn
- Department
of Herbal Medicine Resource, Institute of Bioscience and Biotechnology, Kangwon National University, Samcheok 25949, Republic of Korea
| | - Se-Hui Jung
- Department
of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Research
Institute, K-medichem Co., Ltd., Chuncheon 24341, Republic of Korea
| | - Kooyeon Lee
- Department
of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Research
Institute, K-medichem Co., Ltd., Chuncheon 24341, Republic of Korea
| |
Collapse
|
9
|
Identification of Sitogluside as a Potential Skin-Pigmentation-Reducing Agent through Network Pharmacology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4883398. [PMID: 34603597 PMCID: PMC8483913 DOI: 10.1155/2021/4883398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
Many traditional Chinese medicines (TCMs) with skin-whitening properties have been recorded in the Ben-Cao-Gang-Mu and in folk prescriptions, and some literature confirms that their extracts do have the potential to inhibit pigmentation. However, no systematic studies have identified the specific regulatory mechanisms of the potential active ingredients. The aim of this study was to screen the ingredients in TCMs that inhibit skin pigmentation through a network pharmacology system and to explore underlying mechanisms. We identified 148 potential active ingredients from 14 TCMs, and based on the average “degree” of the topological parameters, the top five TCMs (Fructus Ligustri Lucidi, Hedysarum multijugum Maxim., Ampelopsis japonica, Pseudobulbus Cremastrae Seu Pleiones, and Paeoniae Radix Alba) that were most likely to cause skin-whitening through anti-inflammatory processes were selected. Sitogluside, the most common ingredient in the top five TCMs, inhibits melanogenesis in human melanoma cells (MNT1) and murine melanoma cells (B16F0) and decreases skin pigmentation in zebrafish. Furthermore, mechanistic research revealed that sitogluside is capable of downregulating tyrosinase (TYR) expression by inhibiting the ERK and p38 pathways and inhibiting TYR activity. These results demonstrate that network pharmacology is an effective tool for the discovery of natural compounds with skin-whitening properties and determination of their possible mechanisms. Sitogluside is a novel skin-whitening active ingredient with dual regulatory effects that inhibit TYR expression and activity.
Collapse
|
10
|
Anti-Melanogenic Properties of Velutin and Its Analogs. Molecules 2021; 26:molecules26103033. [PMID: 34069624 PMCID: PMC8160911 DOI: 10.3390/molecules26103033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022] Open
Abstract
Velutin, one of the flavones contained in natural plants, has various beneficial activities, such as skin whitening, as well as anti-inflammatory, anti-allergic, antioxidant, and antimicrobial activities. However, the relationship between the structure of velutin and its anti-melanogenesis activity is not yet investigated. In this study, we obtained 12 velutin derivatives substituted at C5, C7, C3′, and C4′ of the flavone backbone with hydrogen, hydroxyl, and methoxy functionalities by chemical synthesis, to perform SAR analysis of velutin structural analogues. The SAR study revealed that the substitution of functional groups at C5, C7, C3′, and C4′ of the flavone backbone affects biological activities related to melanin synthesis. The coexistence of hydroxyl and methoxy at the C5 and C7 position is essential for inhibiting tyrosinase activity. However, 1,2-diol compounds substituted at C3′ and C4′ of flavone backbone induce apoptosis of melanoma cells. Further, substitution at C3′ and C4′ with methoxy or hydrogen is essential for inhibiting melanogenesis. Thus, this study would be helpful for the development of natural-derived functional materials to regulate melanin synthesis.
Collapse
|
11
|
Igbokwe CJ, Wei M, Feng Y, Duan Y, Ma H, Zhang H. Coix Seed: A Review of Its Physicochemical Composition, Bioactivity, Processing, Application, Functionality, and Safety Aspects. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1892129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chidimma Juliet Igbokwe
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science and Technology, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Ming Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Xu L, Zhu L, Dai Y, Gao S, Wang Q, Wang X, Chen X. Impact of yeast fermentation on nutritional and biological properties of defatted adlay (Coix lachryma-jobi L.). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Kim HH, Kim JK, Kim J, Jung SH, Lee K. Characterization of Caffeoylquinic Acids from Lepisorus thunbergianus and Their Melanogenesis Inhibitory Activity. ACS OMEGA 2020; 5:30946-30955. [PMID: 33324802 PMCID: PMC7726789 DOI: 10.1021/acsomega.0c03752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Hyperpigmentation resulting from the overactivation of tyrosinase leads to darker spots or patches on the human skin. Although these phenomena are harmless, there is still great demand for melanogenesis inhibitors to prevent hyperpigmentation by inhibiting the tyrosinase, a rate-limiting enzyme in melanogenesis. Although Lepisorus thunbergianus has been used in folk remedies as a diuretic and hemostatic agent, its effect on melanogenesis has not yet been reported. In this study, we prepared an L. thunbergianus extract and its solvent fractions and evaluated their biological activity against free radical and melanin synthesis. The extract of L. thunbergianus inhibited mushroom tyrosinase activity more efficiently than, and with similar antioxidant activity to, arbutin in vitro. Comparative evaluation of the anti-melanogenesis and anti-tyrosinase activity of L. thunbergianus solvent fractions demonstrated that, by inhibiting tyrosinase activity, the butanol fraction has the highest potential for the inhibition of melanogenesis in melanoma cells. We found by structural analysis using high-performance liquid chromatography (HPLC) and NMR spectroscopy that the major compounds in butanol fraction were three caffeoylquinic acid derivatives. The three derivatives had similar radical scavenging and anti-tyrosinase activities in vitro, while only 5-caffeoylquinic acid had an inhibitory effect on α-MSH-induced melanogenesis. The inhibitory effect of 5-caffeoylquinic acid was verified by the determination of the melanin content and tyrosinase activity in melanoma after treating the cells with a commercial compound. Further, we revealed that 5-caffeoylquinic acid inhibited melanogenesis by chelating a copper cation from a copper-tyrosinase complex. Thus, 5-caffeoylquinic acid or butanol fraction isolated from L. thunbergianus might be useful in cosmetics as a skin-whitening agent.
Collapse
Affiliation(s)
- Hak Hyun Kim
- Department of Bio-Health
Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae Kwon Kim
- Department of Bio-Health
Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jaehyun Kim
- Department of Bio-Health
Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Se-Hui Jung
- Department of Bio-Health
Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kooyeon Lee
- Department of Bio-Health
Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
14
|
Chang WC, Hu YT, Huang Q, Hsieh SC, Ting Y. Development of a topical applied functional food formulation: Adlay bran oil nanoemulgel. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Ali A, Ashraf Z, Rafiq M, Kumar A, Jabeen F, Lee GJ, Nazir F, Ahmed M, Rhee M, Choi EH. Novel Amide Derivatives as Potent Tyrosinase Inhibitors; In-vitro, In-vivo Antimelanogenic Activity and Computational Studies. Med Chem 2019; 15:715-728. [PMID: 30892163 DOI: 10.2174/1573406415666190319101329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/01/2018] [Accepted: 03/03/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tyrosinase is involved in the melanin biosynthesis and the abnormal accumulation of melanin pigments leading to hyperpigmentation disorders. Controlling the melanogenesis could be an important strategy for treating abnormal pigmentation. METHODS In the present study, a series of amide derivatives (3a-e and 5a-e) were synthesized aiming to inhibit tyrosinase activity and melanin production. All derivatives were screened for tyrosinase inhibition in a cell-free system. The possible interactions of amide derivatives with tyrosinase enzyme and effect of these interactions on tyrosinase structure were checked by molecular docking in silico and by Circular Dichroism (CD) studies, respectively. The most potent amide derivative (5c) based on cell-free experiments, was further tested for cellular ROS inhibition and for tyrosinase activity using mouse skin melanoma (B16F10) cells. RESULTS The tyrosinase inhibitory concentration (IC50) for tested compounds was observed between the range of 68 to 0.0029 µg/ml with a lowest IC50 value of compound 5c which outperforms the reference arbutin and kojic acid. The cellular tyrosinase activity and melanin quantification assay demonstrate that 15µg/ml of 5c attenuates 36% tyrosinase, 24% melanin content of B16F10 cells without significant cell toxicity. Moreover, the zebrafish in vivo assay reveals that 5c effectively reduces melanogenesis without perceptible toxicity. Furthermore, the molecular docking demonstrates that compound 5c interacts with copper ions and multiple amino acids in the active site of tyrosinase with best glide score (-5.387 kcal/mol), essential for mushroom tyrosinase inhibition and the ability to diminish the melanin synthesis in-vitro and in-vivo. CONCLUSION Thus, we propose compound 5c as a potential candidate to control tyrosinase rooted hyperpigmentation in the future.
Collapse
Affiliation(s)
- Anser Ali
- Department of Zoology, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan.,Plasma Bioscience Research Center, Kwangwoon University, 20 Kwangwoon-gil, Nowon-gu, Seoul 139-701, South Korea
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Punjab, Pakistan
| | - Ajeet Kumar
- Department of Biological Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Farukh Jabeen
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, P3E 2C6, ON, Canada
| | - Goon Joon Lee
- Plasma Bioscience Research Center, Kwangwoon University, 20 Kwangwoon-gil, Nowon-gu, Seoul 139-701, South Korea
| | - Fahad Nazir
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, Pakistan
| | - Mushtaq Ahmed
- Department of Zoology, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan
| | - Myungchull Rhee
- Department of Biological Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, 20 Kwangwoon-gil, Nowon-gu, Seoul 139-701, South Korea
| |
Collapse
|
16
|
Ting Y, Hu Y, Hu J, Chang W, Huang Q, Hsieh S. Nanoemulsified adlay bran oil reduces tyrosinase activity and melanin synthesis in B16F10 cells and zebrafish. Food Sci Nutr 2019; 7:3216-3223. [PMID: 31660135 PMCID: PMC6804758 DOI: 10.1002/fsn3.1176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 11/30/2022] Open
Abstract
The efficacy of oily components is often difficult to evaluate due to their incompatibility with most models. Here, we emulsified adlay bran oil (ABO), processed it to a nanoscale, and investigated its anti-hyperpigmentation efficacy, assessed for its inhibitory effects against tyrosinase activity and melanin production, in an in vitro system (mouse melanoma B16F10 cells) and an in vivo system (zebrafish embryos). ABO induced dose-dependent reductions in tyrosinase activity and melanin production in both the melanoma cells and zebrafish, without affecting viability. The efficacy of ABO was strongly influenced by emulsion particle size in the zebrafish but not in the cells. These results indicate that ABO has potential as a tyrosinase inhibitor and anti-hyperpigmentation agent and that the emulsion system is an effective method for delivering the bioactive components of ABO to living systems that could be utilized for other oily components.
Collapse
Affiliation(s)
- Yuwen Ting
- Graduate Institute of Food Science and TechnologyNational Taiwan UniversityTaipei CityTaiwan
| | - Yin‐Ting Hu
- Graduate Institute of Food Science and TechnologyNational Taiwan UniversityTaipei CityTaiwan
| | - Jing‐Yu Hu
- Graduate Institute of Food Science and TechnologyNational Taiwan UniversityTaipei CityTaiwan
| | - Wen‐Chang Chang
- Graduate Institute of Food Science and TechnologyNational Taiwan UniversityTaipei CityTaiwan
- Department of Food ScienceNational Chiayi UniversityChiayi CityTaiwan
| | - Qingrong Huang
- Food Science DepartmentRutgers UniversityNew BrunswickNJUSA
| | - Shu‐Chen Hsieh
- Graduate Institute of Food Science and TechnologyNational Taiwan UniversityTaipei CityTaiwan
| |
Collapse
|
17
|
Lai YJ, Hsu KD, Huang TJ, Hsieh CW, Chan YH, Cheng KC. Anti-Melanogenic Effect from Submerged Mycelial Cultures of Ganoderma weberianum. MYCOBIOLOGY 2019; 47:112-119. [PMID: 30988994 PMCID: PMC6450578 DOI: 10.1080/12298093.2019.1568680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/25/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Compounds from Lingzhi has been demonstrated the ability for inhibiting tyrosinase (a key enzyme in melanogenesis) activity. In this study, we investigated the anti-melanogenic activity from the submerged mycelial culture of Ganoderma weberianum and elucidated the skin lightening mechanism by B16-F10 murine melanoma cells. From the cellular context, several fractionated mycelium samples exhibited anti-melanogenic activity by reducing more than 40% extracellular melanin content of B16-F10 melanoma cells. In particular, the fractionated chloroform extract (CF-F3) inhibited both secreted and intracellular melanin with the lowest dosage (25 ppm). Further analysis demonstrated that CF-F3 inhibited cellular tyrosinase activity without altering its protein expression. Taken together, our study has demonstrated that the chemical extracts from submerged mycelial culture of G. weberianum have the potential to serve as an alternative anti-melanogenic agent.
Collapse
Affiliation(s)
- Ying-Jang Lai
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Kai-Di Hsu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Tzu-Jung Huang
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hin Chan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
18
|
Identification of Anti-Melanogenesis Constituents from Morus alba L. Leaves. Molecules 2018; 23:molecules23102559. [PMID: 30297610 PMCID: PMC6222840 DOI: 10.3390/molecules23102559] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 12/31/2022] Open
Abstract
The individual parts of Morus alba L. including root bark, branches, leaves, and fruits are used as a cosmetic ingredient in many Asian countries. This study identified several anti-melanogenesis constituents in a 70% ethanol extract of M. alba leaves. The ethyl acetate fraction of the initial ethanol extract decreased the activity of tyrosinase, a key enzyme in the synthetic pathway of melanin. Twelve compounds were isolated from this fraction and their structures were identified based on spectroscopic spectra. Then, the authors investigated the anti-melanogenesis effects of the isolated compounds in B16-F10 mouse melanoma cells. Compounds 3 and 8 significantly inhibited not only melanin production but also intracellular tyrosinase activity in alpha-melanocyte-stimulating-hormone (α-MSH)-induced B16-F10 cells in a dose-dependent manner. These same compounds also inhibited melanogenesis-related protein expression such as microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1 (TRP-1). Compound 3 modulated the cAMP-responsive element-binding protein (CREB) and p38 signaling pathways in α-MSH-activated B16-F10 melanoma cells, which resulted in the anti-melanogenesis effects. These results suggest that compound 3, isolated from M. alba leaves, could be used to inhibit melanin production via the regulation of melanogenesis-related protein expression.
Collapse
|
19
|
Zhang P, Meng X, Tang X, Ren L, Liang J. The effect of a coix seed oil injection on cancer pain relief. Support Care Cancer 2018; 27:461-465. [PMID: 29971522 DOI: 10.1007/s00520-018-4313-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/06/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Pain is one of the most commonly reported symptoms in patients with advanced cancer, but is still less than optimally treated. The effect of traditional Chinese medicine in cancer pain treatment is nowadays getting more and more attention. OBJECTIVE To investigate the effect of a coix seed oil injection on cancer pain relief in a cancer center in a tertiary hospital in China. METHODS Patients in the treatment group received a coix seed oil injection for 2 weeks, while patients in the control group received equivalent 0.9% saline. The numeric rating scale was used to assess the pain level. The Quality of Life Questionnaire-Core 30 was used to assess life quality. The adverse drug reactions during the treatment process were observed. RESULTS Patients in the coix seed treatment group had significantly superior efficacy on pain control over those in the control group. Coix seed therapy significantly improved patients' scores reflecting by the Quality of Life Questionnaire-Core 30 (QLQ-C30) scale. In addition, the occurrence of adverse reactions such as constipation and nausea in the treatment group was significantly lower than that in the control group. CONCLUSION The coix seed oil injection effectively reduced the pain level of cancer patients, significantly improved their life quality, and had no obvious adverse effects.
Collapse
Affiliation(s)
- Peirong Zhang
- Department of Oncology, Peking University International Hospital, No. 1, Life Science Park Road, Beijing, 102206, China
| | - Xiaoyan Meng
- Department of Oncology, Peking University International Hospital, No. 1, Life Science Park Road, Beijing, 102206, China
| | - Xiaohua Tang
- Department of Oncology, Peking University International Hospital, No. 1, Life Science Park Road, Beijing, 102206, China
| | - Li Ren
- Department of Oncology, Peking University International Hospital, No. 1, Life Science Park Road, Beijing, 102206, China
| | - Jun Liang
- Department of Oncology, Peking University International Hospital, No. 1, Life Science Park Road, Beijing, 102206, China.
| |
Collapse
|
20
|
Selected Enzyme Inhibitory Effects of Euphorbia characias Extracts. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1219367. [PMID: 30003087 PMCID: PMC5996446 DOI: 10.1155/2018/1219367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
Extracts of aerial part of Euphorbia characias were examined to check potential inhibitors for three selected enzymes involved in several metabolic disorders. Water and ethanol extracts from leaves and flowers showed in vitro inhibitory activity toward α-amylase, α-glucosidase, and xanthine oxidase. IC50 values were calculated for all the extracts and the ethanolic extracts were found to exert the best effect. In particular, for the α-glucosidase activity, the extracts resulted to be 100-fold more active than the standard inhibitor. The inhibition mode was investigated by Lineweaver-Burk plot analysis. E. characias extracts display different inhibition behaviors toward the three enzymes acting as uncompetitive, noncompetitive, and mixed-type inhibitors. Moreover, ethanolic extracts of E. characias showed no cytotoxic activity and exhibited antioxidant capacity in a cellular model. The LC-DAD metabolic profile was also performed and it showed that leaves and flowers extracts contain high levels of quercetin derivatives. The results suggest that E. characias could be a promising source of natural inhibitors of the enzymes involved in carbohydrate uptake disorders and oxidative stress.
Collapse
|
21
|
Pongkai P, Saisavoey T, Sangtanoo P, Sangvanich P, Karnchanatat A. Effects of protein hydrolysate from chicken feather meal on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. Food Sci Biotechnol 2017; 26:1199-1208. [PMID: 30263653 PMCID: PMC6049799 DOI: 10.1007/s10068-017-0186-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 11/26/2022] Open
Abstract
Tyrosinase is a copper-containing enzyme that controls mammalian melanogenesis. Tyrosinase inhibitors are important for their potential application in cosmetic products. Chicken feather meal is a rich source of amino acids, which have been linked with tyrosinase inhibition activity. This study investigated the tyrosinase inhibitory properties of protein hydrolysates prepared from chicken feather meal. Protein hydrolysates prepared by pepsin-pancreatin with MW <3 kDa exhibited strong tyrosinase inhibition activity for both monophenolase (IC50 5.780 ± 0.188 µg/mL) and diphenolase activities (IC50 0.040 ± 0.024 µg/mL) in a cell-free mushroom tyrosinase system. These samples were uncompetitive inhibitors with Ki values of 18.149 and 27.189 µg/mL in monophenolase and diphenolase activities, respectively. A cell culture model showed that this hydrolysate had the strongest inhibition on the viability of B16F10 cells (IC50 1.124 ± 0.288 µg/mL) and 0.210 µg/mL of the sample exhibited inhibition of tyrosinase activity by 50.493% and melanin synthesis by 14.680% compared to the control.
Collapse
Affiliation(s)
- Puttaporn Pongkai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Tanatorn Saisavoey
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Papassara Sangtanoo
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Polkit Sangvanich
- Departmaent of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Aphichart Karnchanatat
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| |
Collapse
|
22
|
Jiang R, Xu XH, Wang K, Yang XZ, Bi YF, Yan Y, Liu JZ, Chen XN, Wang ZZ, Guo XL, Zhao DQ, Sun LW. Ethyl acetate extract from Panax ginseng C.A. Meyer and its main constituents inhibit α-melanocyte-stimulating hormone-induced melanogenesis by suppressing oxidative stress in B16 mouse melanoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:149-156. [PMID: 28689798 DOI: 10.1016/j.jep.2017.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/16/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperpigmentation disease involves darkening of the skin color due to melanin overproduction. Panax ginseng C.A. Meyer is a well-known traditional Chinese medicine and has a long history of use as a skin lightener to inhibit melanin formation in China, Korea and some other Asian countries. However, the constituents and the molecular mechanisms by which they affect melanogenesis are not fully clear. AIM OF THE STUDY The purpose of this study was to identify the active ingredient in Panax ginseng C.A. Meyer extract that inhibits mushroom tyrosinase activity and to investigate the antioxidative capacity and molecular mechanisms of the effective extract on melanogenesis in B16 mouse melanoma cells. MATERIALS AND METHODS Aqueous extracts of Panax ginseng C.A. Meyer were successively fractionated with an equal volume of chloroform, ethyl acetate, and n-butyl alcohol to determine the effects by examining the activity of mushroom tyrosinase. The effective fraction was analyzed using HPLC and LC-MS. The antioxidative capacity and the inhibitory effects on melanin content, cell intracellular tyrosinase activity, and melanogenesis protein levels were determined in α-melanocyte-stimulating hormone (α-MSH)-treated B16 mouse melanoma cells. RESULTS The ethyl acetate extract from Panax ginseng C.A. Meyer (PG-2) had the highest inhibiting effect on mushroom tyrosinase, mainly contained phenolic acids, including protocatechuic acid, vanillic acid, p-coumaric acid, salicylic acid, and caffeic acid, and exhibited apparent antioxidant activity in vitro. PG-2 and its main constituents significantly decreased melanin content, suppressed cellular tyrosinase activity, and reduced expression of tyrosinase protein to inhibit B16 cells melanogenesis induced by α-MSH, and no cytotoxic effects were observed. They also inhibited cellular reactive oxygen species (ROS) generation, increased superoxide dismutase (SOD) activity and glutathione (GSH) level in α-MSH-treated B16 cells effectively. And those activities of its main constituents could reach more than 80% of PG-2. The ROS scavengers N-acetyl-L-cysteine (NAC) had a similar inhibitory effect on melanogenesis. CONCLUSIONS These results suggest that ethyl acetate extract from Panax ginseng C.A. Meyer has the highest effect on inhibiting melanogenesis, and that its main components are polyphenolic compounds, which may inhibit melanogenesis by suppressing oxidative stress. This work provides new insight into the active constituents and molecular mechanisms underlying skin-lightening effect of Panax ginseng C.A. Meyer.
Collapse
Affiliation(s)
- Rui Jiang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin City, Jilin Province 132013, China
| | - Xiao-Hao Xu
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin City, Jilin Province 132013, China
| | - Ke Wang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin City, Jilin Province 132013, China
| | - Xin-Zhao Yang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin City, Jilin Province 132013, China
| | - Ying-Fei Bi
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin City, Jilin Province 132013, China
| | - Yao Yan
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin City, Jilin Province 132013, China
| | - Jian-Zeng Liu
- Changchun University of Chinese Medicine, Changchun, Jilin Province 130000, China
| | - Xue-Nan Chen
- Changchun University of Chinese Medicine, Changchun, Jilin Province 130000, China
| | - Zhen-Zhong Wang
- Kanion Group CO. LTD., Lianyungang, Jiangsu Province 222000, China
| | - Xiao-Li Guo
- Kanion Group CO. LTD., Lianyungang, Jiangsu Province 222000, China
| | - Da-Qing Zhao
- Changchun University of Chinese Medicine, Changchun, Jilin Province 130000, China
| | - Li-Wei Sun
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin City, Jilin Province 132013, China.
| |
Collapse
|
23
|
Inhibitory effects of Stichopus japonicus extract on melanogenesis of mouse cells via ERK phosphorylation. Mol Med Rep 2017; 16:1079-1086. [PMID: 28586027 PMCID: PMC5561873 DOI: 10.3892/mmr.2017.6686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 03/17/2017] [Indexed: 11/21/2022] Open
Abstract
Stichopus japonicus has been used as a folk medicine and as an ingredient in traditional food in East Asian countries. In recent years, the bioactive compounds found in S. japonicus have been reported to possess efficacy in wound healing and may be of potential use in the cosmeceutical, pharmaceutical and biomedical industries. Although the components and their functions require further investigation, S. japonicus extracts exhibit anti-inflammatory properties, and may be used for cancer prevention and treatment. Although several reports have examined different aspects of S. japonicus, the effects of S. japonicus extract on melanogenesis in the skin has not been reported to date. Therefore the present study aimed to investigate the effects of S. japonicus extract on melanogenesis. Treatment with a mixture of S. japonicus extracts (MSCE) reduced melanin synthesis and tyrosinase (TYR) activity in mouse melanocyte cells lines, B16F10 and Melan-A. In addition, MSCE treatment reduced the protein expression levels of TYR, tyrosinase-related protein-1 and tyrosinase-related protein-2. The reduced protein levels may be the result of decreased microphthalmia-associated transcription factor (MITF) expression, which is an important regulator of melanogenesis. The reduced expression level of MITF was associated with delayed phosphorylation of extracellular signal-regulated kinase (ERK) induced by MSCE treatment. A specific MEK inhibitor, PD98059, significantly blocked MSCE-mediated inhibition of melanin synthesis. In conclusion, these results indicate that MSCE may be useful as a potential skin-whitening compound in the skin medical industry.
Collapse
|
24
|
|
25
|
Emami SA, Yazdian-Robati R, Sadeghi M, Baharara J, Amini E, Salek F, Tayarani-Najaran Z. Inhibitory effects of different fractions of Nepeta satureioides on melanin synthesis through reducing oxidative stress. Res Pharm Sci 2017; 12:160-167. [PMID: 28515769 PMCID: PMC5385731 DOI: 10.4103/1735-5362.202455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nepeta satureioides Boiss. has been used in traditional medicine of eastern countries and is famous for its medicinal properties. The aim of this study was to evaluate the effect of methanol (MeOH), n-hexane and dichloromethane (CH2Cl2) fractions of the extract on melanin synthesis and oxidative stress in B16F10 melanoma cell line. The B16F10 cell line viability after treatment with increasing concentrations of different fractions of the plant (5-60 μg/mL) was measured using MTT assay. The inhibitory effect on synthesis of melanin, mushroom tyrosinase activity, cellular tyrosinase and oxidative stress were determined by the colorimetric and fluorometric methods. The data showed that at concentrations below 60 μg/mL, fractions did not show significant toxicity on melanoma cells. The amount of melanin synthesis by MeOH and CH2Cl2 fractions and mushroom tyrosinase activity by the MeOH fraction declined in B16F10 cells. In addition to the capacity of MeOH, n-hexane and CH2Cl2 fractions in decreasing the amount of reactive oxygen species (ROS) in melanoma cells, all fractions revealed remarkable antioxidant activity. The melanogenesis inhibitory and antioxidant effects of N. satureioides on B16F10 cells may suggest this plant as a new pharmaceutical agent in reducing skin pigment and skin aging in cosmetic industry.
Collapse
Affiliation(s)
- Seyed Ahmad Emami
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Rezvan Yazdian-Robati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Mohammad Sadeghi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Javad Baharara
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, I.R. Iran
| | - Elaheh Amini
- Research Center for Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, I.R. Iran
| | - Farzaneh Salek
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, I.R. Iran
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| |
Collapse
|
26
|
Delijewski M, Wrześniok D, Beberok A, Rok J, Otręba M, Buszman E. The effect of simultaneous exposure of HEMn-DP and HEMn-LP melanocytes to nicotine and UV-radiation on the cell viability and melanogenesis. ENVIRONMENTAL RESEARCH 2016; 151:44-49. [PMID: 27450998 DOI: 10.1016/j.envres.2016.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Nicotine is a main compound of tobacco plants and may affect more than a billion people all over the world that are permanently exposed to nicotine from cigarettes, various forms of smoking cessation therapies, electronic cigarettes or second-hand smoke. It is known that nicotine forms complexes with melanin what may lead to accumulation of this alkaloid in tissues of living organisms containing the pigment. This may affect the viability of cells and process of melanin biosynthesis that takes place in melanocytes. Although UV radiation is known to be a particular inductor of melanin biosynthesis, its simultaneous effect with nicotine on this process as well as the viability of human cells containing melanin have not been assessed so far. The aim of this study was to examine the simultaneous impact of nicotine and UV radiation on viability and melanogenesis in cultured normal human melanocytes dark (HEMn-DP) and light (HEMn-LP) pigmented. Nicotine together with UV radiation induced concentration-dependent loss in melanocytes viability. The higher cell loss was observed in dark pigmented melanocytes in comparison to light pigmented cells. Simultaneous exposure of cells to nicotine and UV radiation also caused changes in melanization process in both tested cell lines. The data suggest that simultaneous exposure of melanocytes to nicotine and UV radiation up-regulates melanogenesis and affects cell viability. Observed processes are more pronounced in dark pigmented cells.
Collapse
Affiliation(s)
- Marcin Delijewski
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Michał Otręba
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Ewa Buszman
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
27
|
Li LL, Li B, Ji HF, Ma Q, Wang LZ. Immunomodulatory activity of small molecular (≤3 kDa)Coixglutelin enzymatic hydrolysate. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1201147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Kang SJ, Choi BR, Lee EK, Kim SH, Yi HY, Park HR, Song CH, Lee YJ, Ku SK. Inhibitory Effect of Dried Pomegranate Concentration Powder on Melanogenesis in B16F10 Melanoma Cells; Involvement of p38 and PKA Signaling Pathways. Int J Mol Sci 2015; 16:24219-42. [PMID: 26473849 PMCID: PMC4632747 DOI: 10.3390/ijms161024219] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 01/15/2023] Open
Abstract
Plants rich in antioxidant substances may be useful for preventing skin aging. Pomegranates, containing flavonoids and other polyphenolic compounds, are widely consumed due to their beneficial properties. We examined the underlying mechanisms of dried pomegranate concentrate powder (PCP) on melanin synthesis in B16F10 melanoma cells. The antioxidant effects of PCP were determined by measuring free radical scavenging capacity and transcript levels of antioxidant enzymes. To explore the inhibitory effects of PCP on melanin synthesis, we measured tyrosinase activity and melanin content in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. In addition, the levels of tyrosinase-related protein-1 (TRP-1), TRP-2, tyrosinase, and microphthalmia-associated transcription factor (MITF) expression were determined by Western blotting. Changes in the phosphorylation status of protein kinase A (PKA), cAMP response element-binding protein (CREB), mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase Akt, and glycogen kinase 3β (GSK3β) were also examined. The free radical scavenging activity of PCP increased in a dose-dependent manner. In PCP-treated B16F10 cells, transcript levels of glutathione peroxidase-1 (GPx-1) were increased compared with α-MSH-stimulated cells. In addition, PCP led to the down-regulation of phospho-p38, phospho-PKA, phospho-CREB, phospho-GSK3β, MITF, and TRP-1 compared with α-MSH-stimulated B16F10 cells. We believe this effect may be associated with PCP activity, which leads to the inhibition of melanin production and tyrosinase activity. These results suggest that PCP decreases tyrosinase activity and melanin production via inactivation of the p38 and PKA signaling pathways, and subsequently decreases phosphorylation of CREB, MITF, and melanogenic enzymes. These observations provided new insights on the molecular mechanisms of the skin-whitening property of PCP.
Collapse
Affiliation(s)
- Su Jin Kang
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
- Department of Preventive Medicine, College of Korean Medicine, Deagu Haany University, Gyeongsan 712-715, Korea.
| | - Beom Rak Choi
- Research Institute, Health-Love Co., Ltd., Anyang 431-060, Korea.
| | - Eun Kyoung Lee
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
- Department of Preventive Medicine, College of Korean Medicine, Deagu Haany University, Gyeongsan 712-715, Korea.
| | - Seung Hee Kim
- Research Institute, Health-Love Co., Ltd., Anyang 431-060, Korea.
| | - Hae Yeon Yi
- Research Institute, Health-Love Co., Ltd., Anyang 431-060, Korea.
| | - Hye Rim Park
- Research Institute, Health-Love Co., Ltd., Anyang 431-060, Korea.
| | - Chang Hyun Song
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
| | - Young Joon Lee
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
- Department of Preventive Medicine, College of Korean Medicine, Deagu Haany University, Gyeongsan 712-715, Korea.
| | - Sae Kwang Ku
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
| |
Collapse
|
29
|
Yao Y, Zhu Y, Gao Y, Ren G. Effect of ultrasonic treatment on immunological activities of polysaccharides from adlay. Int J Biol Macromol 2015; 80:246-52. [DOI: 10.1016/j.ijbiomac.2015.06.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/02/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
|