1
|
Wang J, Wang R, Gao Y, Wang B, Dong S, Yuan L. Linear phenolic polymers with amide stabilized catechol moieties. Chem Commun (Camb) 2024; 61:89-92. [PMID: 39611240 DOI: 10.1039/d4cc05066e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Phenolic polymers with catechol groups easily undergo oxidative crosslinking. Through the incorporation of pendant amide groups, the thermal stability of linear phenolic polymers with catechol moieties was significantly improved with maintained antioxidation performance and solubility in THF after storing at 80 °C for 96 hours.
Collapse
Affiliation(s)
- Jie Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China.
| | - Rui Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China.
| | - Yan Gao
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China.
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China.
| | - Baoxia Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China.
| | - Shuqi Dong
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China.
| | - Liang Yuan
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China.
| |
Collapse
|
2
|
Al-Hilfi A, Li Z, Merz KM, Walker KD. Mg 2+-Ion Dependence Revealed for a BAHD 13- O-β-Aminoacyltransferase from Taxus Plants. JACS AU 2024; 4:4249-4262. [PMID: 39610752 PMCID: PMC11600153 DOI: 10.1021/jacsau.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/30/2024]
Abstract
A Taxus baccatin III:3-amino-3-phenylpropanoyltransferase (BAPT, Accession: AY082804) in clade 6 of the BAHD family catalyzed a Mg2+-dependent transfer of isoserines from their corresponding CoA thioesters. An advanced taxane baccatin III on the paclitaxel biosynthetic pathway in Taxus plants was incubated BAPT and phenylisoserine CoA or isobutenylisoserinyl CoA with and without MgCl2. BAPT biocatalytically converted baccatin III to its 13-O-phenylisoserinyl and 3-(1',1'-dimethylvinyl)isoserinyl analogs, an activity that abrogated when Mg2+ ions were omitted. Baccatin III analogs that are precursors to new generation taxanes were also assayed with BAPT, the Mg2+ cofactor, and 3-(1',1'-dimethylvinyl)isoserinyl CoA to make paclitaxel derivatives at k cat/K M ranging between 27 and 234 s-1 M-1. Molecular dynamics simulations of the BAPT active site modeled on the crystal structure of a BAHD family member (PDB: 4G0B) suggest that Mg2+ causes BAPT to use an unconventional active site space compared to those of other BAHD catalysts, studied over the last 25 years, that use a conserved catalytic histidine residue that is glycine in BAPT. The simulated six-membered Mg2+-coordination complex includes an interaction that disrupts an intramolecular hydrogen bond between the C13-hydroxyl and the carbonyl oxygen of the C4-acetate of baccatin III. A simulation snapshot captured an active site conformation showing the liberated C13-hydroxyl of baccatin III poised for acylation by BAPT through a potential substrate-assisted mechanism.
Collapse
Affiliation(s)
- Aimen Al-Hilfi
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zhen Li
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kenneth M. Merz
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Kevin D. Walker
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Polak DW, Turnbull LJP, Bass OD, Yang S, Ellis AM. Observation of metastable structures of the ethylene glycol-water dimer in helium nanodroplets. Phys Chem Chem Phys 2024; 26:26550-26555. [PMID: 39400231 DOI: 10.1039/d4cp02899f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Ethylene glycol (EG) is the simplest organic diol. Here we measure infrared spectra of the EG monomer and its dimer with water, the complex, EG(H2O), embedded in superfluid helium nanodroplets. For the monomer, only a single, gauche, conformation is observed. For EG(H2O), no trace of the global energy minimum is seen, a structure that would maximize the hydrogen bonding contacts. Instead, only metastable structures are formed, suggesting that dimerization in a superfluid environment leads to kinetic trapping in local energy minima. In addition, we obtain evidence for a dimer where the conformation of EG switches from gauche to trans on account of dimerization with a water molecule. This observation is assumed to be driven over an energy barrier by utilizing the energy released as hydrogen bonding occurs.
Collapse
Affiliation(s)
- Daniel W Polak
- School of Chemistry, George Porter Building, University Road, Leicester, LE1 7RH, UK.
| | - Lewis J P Turnbull
- School of Chemistry, George Porter Building, University Road, Leicester, LE1 7RH, UK.
| | - Owen D Bass
- School of Chemistry, George Porter Building, University Road, Leicester, LE1 7RH, UK.
| | - Shengfu Yang
- School of Chemistry, George Porter Building, University Road, Leicester, LE1 7RH, UK.
| | - Andrew M Ellis
- School of Chemistry, George Porter Building, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
4
|
Shokri S, Ebrahimi N, Sadeghi R. Combined experimental and computational investigation of tetrabutylammonium bromide-carboxylic acid-based deep eutectic solvents. J Mol Graph Model 2024; 131:108805. [PMID: 38838616 DOI: 10.1016/j.jmgm.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Aiming at shedding light on the molecular interactions in deep eutectic solvents (DESs), the DESs based on tetrabutylammonium bromide (TBAB) as hydrogen bond acceptor (HBA) and carboxylic acids (CAs) (formic acid (FA), oxalic acid (OA), and malonic acid (MA)) as hydrogen bond donor (HBD) were investigated by both experimental and theoretical techniques. The thermal behaviors of the prepared DESs were investigated by differential scanning calorimetry (DSC) method. In order to study the hydrogen bond formation between the DESs constituents, the FT-IR analysis was carried out. The large positive deviations of the iso solvent activity lines of ternary HBA + HBD + 2-propanol mixtures determined by the isopiestic technique from the semi-ideal behavior indicate that CAs interact strongly with TBAB and therefore they can form DESs. Molecular dynamics (MD) simulations were performed to present an atomic-scale image of the components and describe the microstructure of DESs. From the MD simulations, the radial distribution functions (RDFs), coordination numbers (CNs), combined distribution functions (CDFs), and spatial distribution functions (SDFs) were calculated to investigate the interaction between the components and three-dimensional visualization of the DESs. The obtained results confirmed the importance of hydrogen bonds in the formation of TBAB/CAs DESs.
Collapse
Affiliation(s)
- Sahar Shokri
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Nosaibah Ebrahimi
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Rahmat Sadeghi
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| |
Collapse
|
5
|
Afonin AV, Rusinska-Roszak D. Evidence for the O-H⋅⋅⋅O=C Resonance-Assisted Hydrogen Bond in Tropolones and Quantification of its σ- and π-Components Using Molecular Tailoring Approach. Chemphyschem 2024:e202400698. [PMID: 39147713 DOI: 10.1002/cphc.202400698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
For a series of tropolones, the nature of the intramolecular O-H⋅⋅⋅O=C hydrogen bond closing the five-membered quasi-cycle was studied. Enhancement of conjugation in the hydrogen-bonded rotamer was revealed. Quantification of hydrogen bond energy in tropolones via the molecular tailoring approach yields values in the range from 15 to 20 kcal/mol suggesting that the intramolecular interaction in tropolones has nature of the resonance-assisted hydrogen bond. The total resonance-assisted hydrogen bond energy in the tropolones was divided into σ- and π-components. The magnitudes of total energy of resonance-assisted hydrogen bond in the substituted tropolones can be controlled by the electronic properties of the substituents at the tropone ring. In 3-, 4-, and 5-substituted tropolones, the resonance-assisted hydrogen bond energy is raised due to electron-donating substituents and lowered due to electron-withdrawing ones. The opposite trend is observed in 7-substituted tropolones. The size of the π-shares plays a crucial role in establishing the total energy of resonance-assisted hydrogen bond. The reason for the occurrence of a resonance-assisted hydrogen bond in the tropolones is the molecular backbone aromaticity, since, in accordance with the Hückel rule, 10 π-electrons are delocalized.
Collapse
Affiliation(s)
- Andrei V Afonin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of Russian Academy of Sciences, 1 Favorsky St., Irkutsk, 664033, Russian Federation
| | - Danuta Rusinska-Roszak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, 60-965, Poland
| |
Collapse
|
6
|
Paul S, Chattopadhyay A. Distinction of Plasmonic Intrananoparticle and Internanoparticle Molecular Reaction Rates at the Three-Phase Contact Line of an Evaporating Sessile Droplet. J Phys Chem Lett 2024; 15:6812-6817. [PMID: 38916379 DOI: 10.1021/acs.jpclett.4c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Molecular reactions on the surface of a plasmonic nanoparticle (intrananoparticle) and between nanoparticles (internanoparticle) may differ in kinetics, dynamics, and product selectivity. We report that the difficulty in distinguishing the kinetics in a dispersion medium could be overcome by probing the reactions at the three-phase contact line (TPCL) of an evaporating sessile droplet using surface-enhanced Raman spectroscopy (SERS). Thus, when an evaporating aqueous droplet on glass containing 4-aminothiophenol-stabilized Ag nanoparticles was monitored by SERS at the TPCL, dimerization into 4,4'-dimercaptoazobenzene followed two steps, each preceded by the loss of H-bonded water accordingly. On the basis of the results, we assigned the first step with a higher relative kinetic rate (∼3 times) to be an intrananoparticle reaction and the second one as an internanoparticle reaction. In D2O medium, the ratio of the rates was ∼1.8. The observed vibrational signatures of the losses of water molecules before reactions and product formations were accounted for by using density functional theoretical calculations.
Collapse
Affiliation(s)
- Sujay Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Chattopadhyay
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
7
|
Sun H, Li X, Liu Q, Sheng H, Zhu L. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. J Drug Target 2024; 32:672-706. [PMID: 38682299 DOI: 10.1080/1061186x.2024.2349124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Recent advances in the field of drug delivery have opened new avenues for the development of novel nanodrug delivery systems (NDDS) in cancer therapy. Self-assembled nanoparticles (SANPs) based on tumour microenvironment have great advantages in improving antitumor effect, and pH-responsive SANPs prepared by the combination of pH-responsive nanomaterials and self-assembly technology can effectively improve the efficacy and reduce the systemic toxicity of antitumor drugs. In this review, we describe the characteristics of self-assembly and its driving force, the mechanism of pH-responsive NDDS, and the nanomaterials for pH-responsive SANPs type. A series of pH-responsive SANPs for tumour-targeted drug delivery are discussed, with an emphasis on the relation between structural features and theranostic performance.
Collapse
Affiliation(s)
- Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Zhang D, Kishimoto N. Theoretical Analysis of Coordination Geometries in Transition Metal-Histidine Complexes Using Quantum Chemical Calculations. Molecules 2024; 29:3003. [PMID: 38998956 PMCID: PMC11243457 DOI: 10.3390/molecules29133003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
A theoretical investigation utilizing density functional theory (DFT) calculations was conducted to explore the coordination complexes formed between histidine (His) ligands and various divalent transition metal ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+). Conformational exploration of the His ligand was initially performed to assess its stability upon coordination. Both 1:1 and 1:2 of metal-to-ligand complexes were scrutinized to elucidate their structural features and the relative stability of the complexes. This study examined the ability of His to act as a bidentate or tridentate coordinating ligand, along with the differences in coordination geometry when solvent effects were incorporated. The reduced density gradient (RDG) analysis and local electron attachment energy (LEAE) analysis were employed to elucidate the interaction planes and the nucleophilic and electrophilic properties. The electronic properties were analyzed through electrostatic potential (ESP) maps and natural population analysis (NPA) of atomic charge distributions. This computational study provides valuable insights into the diverse coordination modes of His and its interactions with divalent transition metal ions, contributing to a better understanding of the role of this amino acid ligand in the formation of transition metal complexes. The findings can aid in the design and construction of self-assembled structures involving His-metal coordination.
Collapse
Affiliation(s)
- Dapeng Zhang
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Naoki Kishimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Marasinghe D, Gurusinghe RM, Tubergen MJ. Identification of Two Stable Side-Chain Orientations of Valine Methyl Ester by Microwave Spectroscopy. J Phys Chem A 2024; 128:3266-3272. [PMID: 38631040 DOI: 10.1021/acs.jpca.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The rotational spectra of two valine methyl ester (ValOMe) conformers have been measured using a cavity-based Fourier-transform microwave spectrometer in the range of 9-18 GHz. Ten conformers of ValOMe were modeled using the ωB97XD/6-311++G(d,p) level of theory, and separate spectra arising from two lowest-energy conformations were observed and assigned. 44 rotational transitions were assigned to conformer I, the lowest-energy configuration, and were fit to Watson's A-reduced Hamiltonian: A = 2552.0145(5) MHz, B = 1041.8216(3) MHz, and C = 938.54890(22) MHz. 14N nuclear quadrupole hyperfine splittings were resolved, and 231 hyperfine components were fit to χaa = -4.187(7) MHz, and χbb-χcc = 1.269(5) MHz. The spectrum of conformer I also reveals tunneling splittings arising from the methyl rotor. XIAM was used to fit the barrier to the internal rotation of the methyl rotor, and the best-fit V3 barrier was found to be 401.64(19) cm-1. 47 rotational transitions were assigned for conformer II (ΔE = 2.08 kJ mol-1), and the fitted rotational constants are A = 2544.2837(3) MHz, B = 1092.3654(15) MHz, and C = 896.3131(12) MHz. 264 hyperfine components were fit to χaa = -4.187(7) MHz and χbb-χcc = 1.518(6) MHz, and the best-fit V3 barrier was found to be 409.74(16) cm-1.
Collapse
Affiliation(s)
- Dinesh Marasinghe
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Ranil M Gurusinghe
- Department of Chemistry, Tennessee Tech University, Cookeville, Tennessee 38505, United States
| | - Michael J Tubergen
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
10
|
Maufort A, Cerdá J, Van Hecke K, Deduytsche D, Verding A, Ruttens B, Li W, Detavernier C, Lutsen L, Quarti C, Vanderzande D, Beljonne D, Van Gompel WTM. Elucidating the Non-Covalent Interactions that Trigger Interdigitation in Lead-Halide Layered Hybrid Perovskites. Inorg Chem 2024; 63:5568-5579. [PMID: 38470041 DOI: 10.1021/acs.inorgchem.3c04536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Two-dimensional (2D) hybrid organic-inorganic perovskites constitute a versatile class of materials applied to a variety of optoelectronic devices. These materials are composed of alternating layers of inorganic lead halide octahedra and organic ammonium cations. Most perovskite research studies so far have focused on organic sublattices based on phenethylammonium and alkylammonium cations, which are packed by van der Waals cohesive forces. Here, we report a more complex organic sublattice containing benzotriazole-based ammonium cations packed through interdigitated π-π stacking and hydrogen bonding. Single crystals and thin films of four perovskite derivatives are studied in depth with optical spectroscopy and X-ray diffraction, supported by density-functional theory calculations. We quantify the lattice stabilization of interdigitation, dipole-dipole interactions, and inter- as well as intramolecular hydrogen bonding. Furthermore, we investigate the driving force behind interdigitation by defining a steric occupancy factor σ and tuning the composition of the organic and inorganic sublattice. We relate the phenomenon of interdigitation to the available lattice space and to weakened hydrogen bonding to the inorganic octahedra. Finally, we find that the stabilizing interactions in the organic sublattice slightly improve the thermal stability of the perovskite. This work sheds light on the design rules and structure-property relationships of 2D layered hybrid perovskites.
Collapse
Affiliation(s)
- Arthur Maufort
- Hybrid Materials Design, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Jesús Cerdá
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium
| | - Davy Deduytsche
- Conformal Coating of Nanomaterials, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, B-9000 Ghent, Belgium
| | - Arne Verding
- Hybrid Materials Design, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Bart Ruttens
- Imec-imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Wei Li
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Christophe Detavernier
- Conformal Coating of Nanomaterials, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, B-9000 Ghent, Belgium
| | - Laurence Lutsen
- Hybrid Materials Design, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
- Imec-imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Claudio Quarti
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Dirk Vanderzande
- Hybrid Materials Design, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
- Imec-imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Wouter T M Van Gompel
- Hybrid Materials Design, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| |
Collapse
|
11
|
Yuan W, Zhao Z, Kimura S, Toko K. Development of Taste Sensor with Lipid/Polymer Membranes for Detection of Umami Substances Using Surface Modification. BIOSENSORS 2024; 14:95. [PMID: 38392014 PMCID: PMC10887241 DOI: 10.3390/bios14020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
A taste sensor employs various lipid/polymer membranes with specific physicochemical properties for taste classification and evaluation. However, phosphoric acid di(2-ethylhexyl) ester (PAEE), employed as one of the lipids for the taste sensors, exhibits insufficient selectivity for umami substances. The pH of sample solutions impacts the dissociation of lipids to influence the membrane potential, and the response to astringent substances makes accurate measurement of umami taste difficult. This study aims to develop a novel taste sensor for detecting umami substances like monosodium L-glutamate (MSG) through surface modification, i.e., a methodology previously applied to taste sensors for non-charged bitter substance measurement. Four kinds of modifiers were tested as membrane-modifying materials. By comparing the results obtained from these modifiers, the modifier structure suitable for measuring umami substances was identified. The findings revealed that the presence of carboxyl groups at para-position of the benzene ring, as well as intramolecular H-bonds between the carboxyl group and hydroxyl group, significantly affect the effectiveness of a modifier in the umami substance measurement. The taste sensor treated with this type of modifier showed excellent selectivity for umami substances.
Collapse
Affiliation(s)
- Wenhao Yuan
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (W.Y.); (Z.Z.)
| | - Zeyu Zhao
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (W.Y.); (Z.Z.)
| | - Shunsuke Kimura
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kiyoshi Toko
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Zhang W, Chen Y. Self-assembled Janus base nanotubes: chemistry and applications. Front Chem 2024; 11:1346014. [PMID: 38374885 PMCID: PMC10876059 DOI: 10.3389/fchem.2023.1346014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
Janus base nanotubes are novel, self-assembled nanomaterials. Their original designs were inspired by DNA base pairs, and today a variety of chemistries has developed, distinguishing them as a new family of materials separate from DNA origami, carbon nanotubes, polymers, and lipids. This review article covers the principal examples of self-assembled Janus base nanotubes, which are driven by hydrogen-bond and π-π stacking interactions in aqueous environments. Specifically, self-complementary hydrogen bonds organize molecules into ordered arrays, forming macrocycles, while π-π interactions stack these structures to create tubular forms. This review elucidates the molecular interactions that govern the assembly of nanotubes and advances our understanding of nanoscale self-assembly in water.
Collapse
Affiliation(s)
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
13
|
Zhang L, Huang X, Cole T, Lu H, Hang J, Li W, Tang SY, Boyer C, Davis TP, Qiao R. 3D-printed liquid metal polymer composites as NIR-responsive 4D printing soft robot. Nat Commun 2023; 14:7815. [PMID: 38016940 PMCID: PMC10684855 DOI: 10.1038/s41467-023-43667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
4D printing combines 3D printing with nanomaterials to create shape-morphing materials that exhibit stimuli-responsive functionalities. In this study, reversible addition-fragmentation chain transfer polymerization agents grafted onto liquid metal nanoparticles are successfully employed in ultraviolet light-mediated stereolithographic 3D printing and near-infrared light-responsive 4D printing. Spherical liquid metal nanoparticles are directly prepared in 3D-printed resins via a one-pot approach, providing a simple and efficient strategy for fabricating liquid metal-polymer composites. Unlike rigid nanoparticles, the soft and liquid nature of nanoparticles reduces glass transition temperature, tensile stress, and modulus of 3D-printed materials. This approach enables the photothermal-induced 4D printing of composites, as demonstrated by the programmed shape memory of 3D-printed composites rapidly recovering to their original shape in 60 s under light irradiation. This work provides a perspective on the use of liquid metal-polymer composites in 4D printing, showcasing their potential for application in the field of soft robots.
Collapse
Affiliation(s)
- Liwen Zhang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Tim Cole
- Department of Electronic, Electrical, and Systems Engineering, University of Birmingham, Birmingham, UK
| | - Hongda Lu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jiangyu Hang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shi-Yang Tang
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
14
|
Venianakis T, Siskos MG, Papamokos G, Gerothanassis IP. Structural Studies of Monounsaturated and ω-3 Polyunsaturated Free Fatty Acids in Solution with the Combined Use οf NMR and DFT Calculations-Comparison with the Liquid State. Molecules 2023; 28:6144. [PMID: 37630396 PMCID: PMC10459368 DOI: 10.3390/molecules28166144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Molecular structures, in chloroform and DMSO solution, of the free fatty acids (FFAs) caproleic acid, oleic acid, α-linolenic acid, eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA) are reported with the combined use of NMR and DFT calculations. Variable temperature and concentration chemical shifts of the COOH protons, transient 1D NOE experiments and DFT calculations demonstrate the major contribution of low molecular weight aggregates of dimerized fatty acids through intermolecular hydrogen bond interactions of the carboxylic groups, with parallel and antiparallel interdigitated structures even at the low concentration of 20 mM in CDCl3. For the dimeric DHA, a structural model of an intermolecular hydrogen bond through carboxylic groups and an intermolecular hydrogen bond between the carboxylic group of one molecule and the ω-3 double bond of a second molecule is shown to play a role. In DMSO-d6 solution, NMR and DFT studies show that the carboxylic groups form strong intermolecular hydrogen bond interactions with a single discrete solvation molecule of DMSO. These solvation species form parallel and antiparallel interdigitated structures of low molecular weight, as in chloroform solution. This structural motif, therefore, is an intrinsic property of the FFAs, which is not strongly affected by the length and degree of unsaturation of the chain and the hydrogen bond ability of the solvent.
Collapse
Affiliation(s)
| | | | - George Papamokos
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.V.); (M.G.S.)
| | - Ioannis P. Gerothanassis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.V.); (M.G.S.)
| |
Collapse
|
15
|
Lenzi A, Biagini D, Ghimenti S, Vivaldi FM, Salvo P, Di Francesco F, Lomonaco T. HiSorb sorptive extraction for determining salivary short chain fatty acids and hydroxy acids in heart failure patients. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123826. [PMID: 37481789 DOI: 10.1016/j.jchromb.2023.123826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
Variations in salivary short-chain fatty acids and hydroxy acids (e.g., lactic acid, and 3-hydroxybutyric acid) levels have been suggested to reflect the dysbiosis of human gut microbiota, which represents an additional factor involved in the onset of heart failure (HF) disease. The physical-chemical properties of these metabolites combined with the complex composition of biological matrices mean that sample pre-treatment procedures are almost unavoidable. This work describes a reliable, simple, and organic solvent free protocol for determining short-chain fatty acids and hydroxy acids in stimulated saliva samples collected from heart failure, obese, and hypertensive patients. The procedure is based on in-situ pentafluorobenzyl bromide (PFB-Br) derivatization and HiSorb sorptive extraction coupled to thermal desorption and gas chromatography-tandem mass spectrometry. The HiSorb extraction device is completely compatible with aqueous matrices, thus saving on time and materials associated with organic solvent-extraction methods. A Central Composite Face-Centred experimental design was used for the optimization of the molar ratio between PFB-Br and target analytes, the derivatization temperature, and the reaction time which were 100, 60 °C, and 180 min, respectively. Detection limits in the range 0.1-100 µM were reached using a small amount of saliva (20 µL). The use of sodium acetate-1-13C as an internal standard improved the intra- and inter-day precision of the method which ranged from 10 to 23%. The optimized protocol was successfully applied for what we believe is the first time to evaluate the salivary levels of short chain fatty acids and hydroxy acids in saliva samples of four groups of patients: i) patients admitted to hospital with acute HF symptoms, ii) patients with chronic HF symptoms, iii) patients without HF symptoms but with obesity, and iv) patients without HF symptoms but with hypertension. The first group of patients showed significantly higher levels of salivary acetic acid and lactic acid at hospital admission as well as the lowest values of hexanoic acid and heptanoic acid. Moreover, the significant high levels of acetic acid, propionic acid, and butyric acid observed in HF respect to the other patients suggest the potential link between oral bacteria and gut dysbiosis.
Collapse
Affiliation(s)
- Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Federico M Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Pietro Salvo
- Institute of Clinical Physiology, CNR, Via Giuseppe Moruzzi 3, Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy.
| |
Collapse
|
16
|
Sabr MW, Ali DS, Smaoui S, Lorenzo JM. Spectrophotometric Determination of Loperamide Hydrochloride by Ion-Pair Formation with Rose Bengal Reagent. FOOD ANAL METHOD 2023; 16:1172-1179. [DOI: 10.1007/s12161-023-02498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2024]
|
17
|
Sharma P, Gopi P, Singh S, Rani MSS, Pandya P. Binding studies of sertraline hydrochloride with CT-DNA using experimental and computational techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122910. [PMID: 37257324 DOI: 10.1016/j.saa.2023.122910] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/02/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Sertraline Hydrochloride (STH) is an antidepressant drug that belongs to the selective serotonin reuptake inhibitor family (SSRIs), which inhibits serotonin uptake in presynaptic nerve fibers. The use of these medications without a legitimate prescription might result in adverse effects, and in rare circumstances, death. The interaction mechanism and binding mode of STH with duplex DNA were extensively investigated using spectroscopic and modeling techniques at different temperatures. The hypochromic shift of the absorption spectra of STH on binding with CT-DNA indicated groove binding. Fluorescence spectroscopic studies showed that CT-DNA quenches the fluorescence intensity of STH through a static quenching mechanism. The thermodynamic parameters indicated that the complex formation was spontaneous, and enthalpy driven. The competitive displacement binding study revealed that STH displaced DAPI from the minor groove of DNA. Molecular docking and molecular dynamics simulations also revealed that the complex was stable over 150 ns and that STH preferred the minor groove of DNA. The binding energy of the stable conformations were evaluated through MM/PBSA methods. A comparison of the bound poses at different timescales showed minor changes in STH structure upon DNA binding. Furthermore, a structural analysis of CT-DNA indicated that STH induced changes in the sugar-phosphate backbone had an impact on the minor groove's width which are in agreement with the CD spectroscopic results. This study provides a better understanding of STH binding with duplex DNA.
Collapse
Affiliation(s)
- Palak Sharma
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida 201303, India.
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida 201303, India.
| | - Shweta Singh
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida 201303, India.
| | - Majji Sai Sudha Rani
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida 201303, India.
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida 201303, India.
| |
Collapse
|
18
|
Duan C, Wang B, Li J, Xu J, Zeng J, Ying G, Chen K. Multidimensional dynamic regulation of cellulose coloration for digital recognition and humidity response. Int J Biol Macromol 2023; 234:123597. [PMID: 36796560 DOI: 10.1016/j.ijbiomac.2023.123597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Structural color is an eye-catching phenomenon in nature, which originates from the synergistic effect of cholesteric structure inside living organisms and light. However, biomimetic design and green construction of dynamically tunable structural color materials have been a great challenge in the field of photonic manufacturing. In this work, the new ability of L-lactic acid (LLA) to multi-dimensionally modulate the cholesteric structures constructed from cellulose nanocrystals (CNC) is revealed for the first time. By studying the molecular-scale hydrogen bonding mechanism, a novel strategy that electrostatic repulsion and hydrogen bonding forces jointly drive the uniform arrangement of cholesteric structures is proposed. Due to the flexible tunability and uniform alignment of the CNC cholesteric structure, different encoded messages were developed in the CNC/LLA (CL) pattern. Under different viewing conditions, the recognition information of different digits will continue to reversibly and rapidly switch until the cholesteric structure is destroyed. In addition, the LLA molecules facilitated the more sensitive response of the CL film to the humidity environment, making it exhibit reversible and tunable structural colors under different humidity. These excellent properties provide more possibilities for the application of CL materials in the fields of multi-dimensional display, anti-counterfeiting encryption, and environmental monitoring.
Collapse
Affiliation(s)
- Chengliang Duan
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 51006, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 51006, China.
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 51006, China.
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 51006, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 51006, China
| | - Guangdong Ying
- Shandong Sun Holdings Group, No. 1 Youyi Road, Yanzhou District, Jining 272100, China.
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 51006, China
| |
Collapse
|
19
|
Corinti D, Rotari L, Crestoni ME, Fornarini S, Oomens J, Berden G, Tintaru A, Chiavarino B. Protonated Forms of Naringenin and Naringenin Chalcone: Proteiform Bioactive Species Elucidated by IRMPD Spectroscopy, IMS, CID-MS, and Computational Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4005-4015. [PMID: 36849438 PMCID: PMC9999425 DOI: 10.1021/acs.jafc.2c07453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Naringenin (Nar) and its structural isomer, naringenin chalcone (ChNar), are two natural phytophenols with beneficial health effects belonging to the flavonoids family. A direct discrimination and structural characterization of the protonated forms of Nar and ChNar, delivered into the gas phase by electrospray ionization (ESI), was performed by mass spectrometry-based methods. In this study, we exploit a combination of electrospray ionization coupled to (high-resolution) mass spectrometry (HR-MS), collision-induced dissociation (CID) measurements, IR multiple-photon dissociation (IRMPD) action spectroscopy, density functional theory (DFT) calculations, and ion mobility-mass spectrometry (IMS). While IMS and variable collision-energy CID experiments hardly differentiate the two isomers, IRMPD spectroscopy appears to be an efficient method to distinguish naringenin from its related chalcone. In particular, the spectral range between 1400 and 1700 cm-1 is highly specific in discriminating between the two protonated isomers. Selected vibrational signatures in the IRMPD spectra have allowed us to identify the nature of the metabolite present in methanolic extracts of commercial tomatoes and grapefruits. Furthermore, comparisons between experimental IRMPD and calculated IR spectra have clarified the geometries adopted by the two protonated isomers, allowing a conformational analysis of the probed species.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Lucretia Rotari
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Jos Oomens
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, Nijmegen 6525ED, Netherlands
| | - Giel Berden
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, Nijmegen 6525ED, Netherlands
| | - Aura Tintaru
- CNRS,
Centre Interdisciplinaire de Nanoscience de Marseille, CINaM UMR 7325, Aix Marseille University, Marseille 13288, France
| | - Barbara Chiavarino
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
20
|
Methods and Characteristics of Drug Extraction from Ion-Exchange-Resin-Mediated Preparations: Influences, Thermodynamics, and Kinetics. Polymers (Basel) 2023; 15:polym15051191. [PMID: 36904432 PMCID: PMC10007538 DOI: 10.3390/polym15051191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Since the discovery of ion-exchange resins, they have been used in many fields, including pharmacy. Ion-exchange resin-mediated preparations can realize a series of functions, such as taste masking and regulating release. However, it is very difficult to extract the drug completely from the drug-resin complex because of the specific combination of the drug and resin. In this study, methylphenidate hydrochloride extended-release chewable tablets compounded by methylphenidate hydrochloride and ion-exchange resin were selected for a drug extraction study. The efficiency of drug extraction by dissociating with the addition of counterions was found to be higher than other physical extraction methods. Then, the factors affecting the dissociation process were studied to completely extract the drug from the methylphenidate hydrochloride extended-release chewable tablets. Furthermore, the thermodynamic and kinetic study of the dissociation process showed that the dissociation process obeys the second-order kinetic process, and it is nonspontaneous, entropy-decreasing, and endothermic. Meanwhile, the reaction rate was confirmed by the Boyd model, and the film diffusion and matrix diffusion were both shown to be rate-limiting steps. In conclusion, this study aims to provide technological and theoretical support for establishing a quality assessment and control system of ion-exchange resin-mediated preparations, promoting the applications of ion-exchange resins in the field of drug preparation.
Collapse
|
21
|
Chettri B, Jha S, Dey N. Tuning anion binding properties of Bis(indolyl)methane Receptors: Effect of substitutions on optical responses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:121979. [PMID: 36327812 DOI: 10.1016/j.saa.2022.121979] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Chromogenic probes based onoxidizedbis(indolyl)methanes have been synthesized with varying substituents (R = -Me [1], -OMe [2], -OH, [3]) on the central aryl ring. In addition to electronic influence, the involvement of substituents in ion-dipole and charge-assisted hydrogen bonding interactions significantly alters the solvatochromic response and pH-sensitive behavior. In polar aprotic solvents, like CH3CN, a concentration-dependent stepwise color change was observed with F- ions. In the case of2, a reversible hydrogen bonding interaction between the deprotonated probe and HF2- dimer might be responsible for that, while step-wise deprotonation caused by F- ions could be the probable reason with3. Since the formation of HF2- is energetically unfavorable in a polar protic solvent, the response of 2 with F- ions appears to be very different in EtOH medium. Interestingly, no such alteration in anion sensing behavior was noticed with3going from an aprotic to a protic solvent.
Collapse
Affiliation(s)
- Bimal Chettri
- Department of Chemistry, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Gangtok, Sikkim, India
| | - Satadru Jha
- Department of Chemistry, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Gangtok, Sikkim, India.
| | - Nilanjan Dey
- Department of Chemistry Birla Institute of Technology and Sciences-Pilani Hyderabad Campus, Shameerpet, Hyderabad 500078, Telangana, India.
| |
Collapse
|
22
|
Venianakis T, Siskos M, Papamokos G, Gerothanassis IP. NMR and DFT studies of monounsaturated and ω-3 polyunsaturated free fatty acids in the liquid state reveal a novel atomistic structural model of DHA. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
23
|
TOKO K. Research and development of taste sensors as a novel analytical tool. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:173-189. [PMID: 37331815 PMCID: PMC10319471 DOI: 10.2183/pjab.99.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/01/2023] [Indexed: 06/20/2023]
Abstract
Gustatory and olfactory receptors receive multiple chemical substances of different types simultaneously, but they can barely discriminate one chemical species from others. In this article, we describe a device used to measure taste, i.e., taste sensors. Toko and colleagues developed a taste sensor equipped with multiarray electrodes using a lipid/polymer membrane as the transducer in 1989. This sensor has a concept of global selectivity to decompose the characteristics of a chemical substance into taste qualities and to quantify them. The use of taste sensors has spread around the world. More than 600 examples of taste-sensing system have been used, while providing the first "taste scale" in the world. This article explains the principle of taste sensors and their application to foods and medicines, and also a novel type of taste sensor using allostery. Taste-sensor technology, the underlying principle of which is different from that of conventional analytical instruments, markedly affects many aspects including social economy as well as the food industry.
Collapse
Affiliation(s)
- Kiyoshi TOKO
- Institute for Advanced Study/Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Wu X, Toko K. Taste sensor with multiarray lipid/polymer membranes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Dhal K, Singh S, Talukdar M. Ultraacoustic and conductometric studies on the interactions of L-Glutamic acid with potassium sorbate and sodium benzoate in aqueous media. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Wang Y, Wang Z, Yang F, Liu S, Zhang S, Mao J, Guo Z. Electrolyte Engineering Enables High Performance Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107033. [PMID: 35191602 DOI: 10.1002/smll.202107033] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Zinc-ion batteries (ZIBs) feature high safety, low cost, environmental-friendliness, and promising electrochemical performance, and are therefore regarded as a potential technology to be applied in large-scale energy storage devices. However, ZIBs still face some critical challenges and bottlenecks. The electrolyte is an essential component of batteries and its properties affect the mass transport, energy storage mechanisms, reaction kinetics, and side reactions of ZIBs. The adjustment of electrolyte formulas usually has direct and obvious impacts on the overall output and performance. In this review, advanced electrolyte strategies are overviewed for optimizing the compatibility between cathode materials and electrolytes, inhibiting anode corrosion and dendrite growth, extending electrochemical stability windows, enabling wearable applications, and enhancing temperature tolerance. The underlying scientific mechanisms, electrolyte design principles, and recent progress are presented to provide a better understanding and inspiration to readers. In addition, a comprehensive perspective about electrolyte design and engineering for ZIBs is included.
Collapse
Affiliation(s)
- Yanyan Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Zhijie Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Fuhua Yang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Sailin Liu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Shilin Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Jianfeng Mao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Zaiping Guo
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
27
|
Volumetric, viscometric and spectroscopic studies of molecular interactions of glutamic acid with potassium sorbate and sodium benzoate in aqueous medium at T = 293.15–313.15 K. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Martínez‐Aguirre MA, Medrano F, Ramírez‐Rave S, Yatsimirsky AK. Analysis of the relative stability of trigonal and tetrahedral boronate cyclic esters in terms of boronic acid and diol acidities and the strain release effect. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Felipe Medrano
- Departamento de Ciencias químico‐biológicas Universidad de Sonora Hermosillo Sonora México
| | - Sandra Ramírez‐Rave
- Facultad de Química, Universidad Nacional Autónoma de México México D.F. México
| | | |
Collapse
|
29
|
Kobayashi M, Sim JH, Sato H. Conformational analyses of collagen-like Co-Glycine/L-proline oligopeptides by quantum chemical calculation (QCC): Sequence effects on conformations and intra-molecular hydrogen bonds. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Reek JNH, de Bruin B, Pullen S, Mooibroek TJ, Kluwer AM, Caumes X. Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chem Rev 2022; 122:12308-12369. [PMID: 35593647 PMCID: PMC9335700 DOI: 10.1021/acs.chemrev.1c00862] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metal catalysis is of utmost importance for the development of sustainable processes in academia and industry. The activity and selectivity of metal complexes are typically the result of the interplay between ligand and metal properties. As the ligand can be chemically altered, a large research focus has been on ligand development. More recently, it has been recognized that further control over activity and selectivity can be achieved by using the "second coordination sphere", which can be seen as the region beyond the direct coordination sphere of the metal center. Hydrogen bonds appear to be very useful interactions in this context as they typically have sufficient strength and directionality to exert control of the second coordination sphere, yet hydrogen bonds are typically very dynamic, allowing fast turnover. In this review we have highlighted several key features of hydrogen bonding interactions and have summarized the use of hydrogen bonding to program the second coordination sphere. Such control can be achieved by bridging two ligands that are coordinated to a metal center to effectively lead to supramolecular bidentate ligands. In addition, hydrogen bonding can be used to preorganize a substrate that is coordinated to the metal center. Both strategies lead to catalysts with superior properties in a variety of metal catalyzed transformations, including (asymmetric) hydrogenation, hydroformylation, C-H activation, oxidation, radical-type transformations, and photochemical reactions.
Collapse
Affiliation(s)
- Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tiddo J Mooibroek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | - Xavier Caumes
- InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
31
|
Verma P, Srivastava A, Tandon P, Shimpi MR. Experimental and Quantum Chemical Studies of Nicotinamide-Oxalic Acid Salt: Hydrogen Bonding, AIM and NBO Analysis. Front Chem 2022; 10:855132. [PMID: 35372271 PMCID: PMC8965448 DOI: 10.3389/fchem.2022.855132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
The computational modeling supported with experimental results can explain the overall structural packing by predicting the hydrogen bond interactions present in any cocrystals (active pharmaceutical ingredients + coformer) as well as salts. In this context, the hydrogen bonding synthons, physiochemical properties (chemical reactivity and stability), and drug-likeliness behavior of proposed nicotinamide-oxalic acid (NIC-OXA) salt have been reported by using vibrational spectroscopic signatures (IR and Raman spectra) and quantum chemical calculations. The NIC-OXA salt was prepared by reactive crystallization method. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) techniques were used for the characterization and validation of NIC-OXA salt. The spectroscopic signatures revealed that (N7-H8)/(N23-H24) of the pyridine ring of NIC, (C═O), and (C-O) groups of OXA were forming the intermolecular hydrogen bonding (N-H⋯O-C), (C-H⋯O═C), and (N-H⋯O═C), respectively, in NIC-OXA salt. Additionally, the quantum theory of atoms in molecules (QTAIM) showed that (C10-H22⋯O1) and (C26-H38⋯O4) are two unconventional hydrogen bonds present in NIC-OXA salt. Also, the natural bond orbital analysis was performed to find the charge transfer interactions and revealed the strongest hydrogen bonds (N7-H8⋯O5)/(N23-H24⋯O2) in NIC-OXA salt. The frontier molecular orbital (FMO) analysis suggested more reactivity and less stability of NIC-OXA salt in comparison to NIC-CA cocrystal and NIC. The global and local reactivity descriptors calculated and predicted that NIC-OXA salt is softer than NIC-CA cocrystal and NIC. From MESP of NIC-OXA salt, it is clear that electrophilic (N7-H8)/(N23-H24), (C6═O4)/(C3═O1) and nucleophilic (C10-H22)/(C26-H38), (C6-O5)/(C3-O2) reactive groups in NIC and OXA, respectively, neutralize after the formation of NIC-OXA salt, confirming the presence of hydrogen bonding interactions (N7-H8⋯O5-C6) and (N23-H24⋯O2-C3). Lipinski's rule was applied to check the activeness of salt as an orally active form. The results shed light on several features of NIC-OXA salt that can further lead to the improvement in the physicochemical properties of NIC.
Collapse
Affiliation(s)
- Priya Verma
- Department of Physics, University of Lucknow, Lucknow, India
| | | | - Poonam Tandon
- Department of Physics, University of Lucknow, Lucknow, India
| | - Manishkumar R. Shimpi
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Chemistry of Interfaces, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
32
|
Zhao Z, Ishida M, Onodera T, Toko K. Effect of Hydroxybenzoic Acids on Caffeine Detection Using Taste Sensor with Lipid/Polymer Membranes. SENSORS 2022; 22:s22041607. [PMID: 35214507 PMCID: PMC8876041 DOI: 10.3390/s22041607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023]
Abstract
A taste sensor with lipid/polymer membranes can objectively evaluate taste. As previously reported, caffeine can be detected electrically using lipid/polymer membranes modified with hydroxybenzoic acids (HBAs). However, a systematic understanding of how HBAs contribute to caffeine detection is still lacking. In this study, we used various HBAs such as 2,6–dihydroxybenzoic acid (2,6–DHBA) to modify lipid/polymer membranes, and we detected caffeine using a taste sensor with the modified membranes. The effect of the concentrations of the HBAs on caffeine detection was also discussed. The results of the caffeine detection indicated that the response to caffeine and the reference potential measured in a reference solution were affected by the log P and pKa of HBAs. Furthermore, the taste sensor displayed high sensitivity to caffeine when the reference potential was adjusted to an appropriate range by modification with 2,6–DHBA, where the slope of the change in reference potential with increasing 2,6–DHBA concentration was steep. This is helpful in order to improve the sensitivity of taste sensors to other taste substances, such as theophylline and theobromine, in the future.
Collapse
Affiliation(s)
- Zeyu Zhao
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (M.I.); (T.O.)
- Correspondence:
| | - Misaki Ishida
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (M.I.); (T.O.)
| | - Takeshi Onodera
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (M.I.); (T.O.)
| | - Kiyoshi Toko
- Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
33
|
Pandey S, Chakraborty S, Ghosh R, Radhakrishnan D, Peruncheralathan S, Ghosh A. The role of hydrogen bonding in tuning CEST contrast efficiency: a comparative study of intra- and inter-molecular hydrogen bonding. NEW J CHEM 2022. [DOI: 10.1039/d1nj04637c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A comparison of different diacetamide isomers shows the influence of hydrogen-bonding networks in tuning the diaCEST MRI contrast efficiency.
Collapse
Affiliation(s)
- Shalini Pandey
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha, India
| | - Subhayan Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha, India
| | - Rimilmandrita Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha, India
| | - Divya Radhakrishnan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha, India
| | - Saravanan Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha, India
| | - Arindam Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
34
|
Barquilla MDP, Mayes ML. Role of hydrogen bonding in bulk aqueous phase decomposition, complexation, and covalent hydration of pyruvic acid. Phys Chem Chem Phys 2022; 24:25151-25170. [DOI: 10.1039/d2cp03579k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The behavior of hydrogen bonding changes between the gas and aqueous phase, altering the mechanisms of various pyruvic acid processes and consequently affecting the aerosol formation in different environments.
Collapse
Affiliation(s)
- Michael Dave P. Barquilla
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Maricris L. Mayes
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| |
Collapse
|
35
|
Saini R, Kumar S, Sharma A, Kumar V, Sharma R, Janghu S, Suthar P. Deep eutectic solvents: The new generation sustainable and safe extraction systems for bioactive compounds in agri food sector: An update. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rajni Saini
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Satish Kumar
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Ajay Sharma
- Department of Chemistry Career Point University Hamirpur India
| | - Vikas Kumar
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Rakesh Sharma
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Sandeep Janghu
- Department of Food Product Development Indian Institute of Food Processing Technology Thanjavur India
| | - Priyanka Suthar
- Food Technology and Nutrition School of Agriculture Lovely Professional University Phagwara India
| |
Collapse
|
36
|
Prakash S, Mishra AK. Photophysics of faecal pigments stercobilin and urobilin in aliphatic alcohols: introduction of a sensitive method for their detection using solvent phase extraction and fluorometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5573-5588. [PMID: 34787126 DOI: 10.1039/d1ay01539g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Faecal pigments (FPs) are ubiquitous in the environment and are a primary contaminant in groundwater and surface water. This article presents a new analytical paradigm by a fluorescence coupled extraction-based method involving FP fluorescence enhancement and minimization of background fluorescence for high sensitivity detection. FPs show higher fluorescence intensity in aliphatic alcohols due to the breaking down of higher-order H-aggregates into lower-order H-aggregates (dimers). DFT studies using the B3LYP functional and LANL2DZ basis set show π-π stacking and hydrogen-bonding contributions towards forming H-aggregated dimers of FPs in the implicit and explicit solvent environments of 1-hexanol. This study is the first report on the extractability of FPs using 1-hexanol as an efficient extraction medium in comparison to higher-order aliphatic alcohols (1-butanol, 1-hexanol and 1-octanol). Furthermore, FP-Zn(II) complexes in 1-hexanol medium significantly enhance the fluorescence emission intensity (∼14-17 times), and the emission intensity remains stable over time. This further helps to increase the detection limit of FPs in the picomolar to sub-picomolar concentration range. This study proposes a protocol involving extraction of FPs by 1-hexanol followed by the complexation of FPs with Zn(II) in the alcohol media and subsequent fluorimetric detection of the FP-Zn(II) complex with a high level of sensitivity, enabled by reduced interference from the background fluorescence of humic acid. The complexation behaviour of FPs with various metal salts was also examined, which provided an understanding of the fluorescence behaviour of FPs with various other metal ions commonly present in natural environmental water. The proposed analytical method has been further validated using real water samples.
Collapse
Affiliation(s)
- Swayam Prakash
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
37
|
Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials. Molecules 2021; 26:molecules26185612. [PMID: 34577083 PMCID: PMC8470890 DOI: 10.3390/molecules26185612] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Molecular imprinting is a technique for creating artificial recognition sites on polymer matrices that complement the template in terms of size, shape, and spatial arrangement of functional groups. The main advantage of Molecularly Imprinted Polymers (MIP) as the polymer for use with a molecular imprinting technique is that they have high selectivity and affinity for the target molecules used in the molding process. The components of a Molecularly Imprinted Polymer are template, functional monomer, cross-linker, solvent, and initiator. Many things determine the success of a Molecularly Imprinted Polymer, but the Molecularly Imprinted Polymer component and the interaction between template-monomers are the most critical factors. This review will discuss how to find the interaction between template and monomer in Molecularly Imprinted Polymer before polymerization and after polymerization and choose the suitable component for MIP development. Computer simulation, UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Proton-Nuclear Magnetic Resonance (1H-NMR) are generally used to determine the type and strength of intermolecular interaction on pre-polymerization stage. In turn, Suspended State Saturation Transfer Difference High Resolution/Magic Angle Spinning (STD HR/MAS) NMR, Raman Spectroscopy, and Surface-Enhanced Raman Scattering (SERS) and Fluorescence Spectroscopy are used to detect chemical interaction after polymerization. Hydrogen bonding is the type of interaction that is becoming a focus to find on all methods as this interaction strongly contributes to the affinity of molecularly imprinted polymers (MIPs).
Collapse
|
38
|
Wang M, Li W, Tang G, Garciamendez-Mijares CE, Zhang YS. Engineering (Bio)Materials through Shrinkage and Expansion. Adv Healthc Mater 2021; 10:e2100380. [PMID: 34137213 PMCID: PMC8295236 DOI: 10.1002/adhm.202100380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Although various (bio)fabrication technologies have achieved revolutionary progress in the past decades, engineered constructs still fall short of expectations owing to their inability to attain precisely designable functions. Shrinkable and expandable (bio)materials feature unique characteristics leading to size-/shape-shifting and thus have exhibited a strong potential to equip current engineering technologies with promoted capacities toward applications in biomedicine. In this progress report, the advances of size-/shape-shifting (bio)materials enabled by various stimuli, are evaluated; furthermore, representative biomedical applications associated with size-/shape-shifting (bio)materials are also exemplified. Toward the future, the combination of size-/shape-shifting (bio)materials and 3D/4D fabrication technologies presents a wide range of possibilities for further development of intricate functional architectures.
Collapse
Affiliation(s)
- Mian Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
39
|
Raczyński K, Pihut A, Panek JJ, Jezierska A. Competition of Intra- and Intermolecular Forces in Anthraquinone and Its Selected Derivatives. Molecules 2021; 26:3448. [PMID: 34204133 PMCID: PMC8201066 DOI: 10.3390/molecules26113448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Intra- and intermolecular forces competition was investigated in the 9,10-anthraquinone (1) and its derivatives both in vacuo and in the crystalline phase. The 1,8-dihydroxy-9,10-anthraquinone (2) and 1,8-dinitro-4,5-dihydroxy-anthraquinone (3) contain Resonance-Assisted Hydrogen Bonds (RAHBs). The intramolecular hydrogen bonds properties were studied in the electronic ground and excited states employing Møller-Plesset second-order perturbation theory (MP2), Density Functional Theory (DFT) method in its classical formulation as well as its time-dependent extension (TD-DFT). The proton potential functions were obtained via scanning the OH distance and the dihedral angle related to the OH group rotation. The topological analysis was carried out on the basis of theories of Atoms in Molecules (AIM-molecular topology, properties of critical points, AIM charges) and Electron Localization Function (ELF-2D maps showing bonding patterns, calculation of electron populations in the hydrogen bonds). The Symmetry-Adapted Perturbation Theory (SAPT) was applied for the energy decomposition in the dimers. Finally, Car-Parrinello molecular dynamics (CPMD) simulations were performed to shed light onto bridge protons dynamics upon environmental influence. The vibrational features of the OH stretching were revealed using Fourier transformation of the autocorrelation function of atomic velocity. It was found that the presence of OH and NO2 substituents influenced the geometric and electronic structure of the anthraquinone moiety. The AIM and ELF analyses showed that the quantitative differences between hydrogen bonds properties could be neglected. The bridged protons are localized on the donor side in the electronic ground state, but the Excited-State Intramolecular Proton Transfer (ESIPT) was noticed as a result of the TD-DFT calculations. The hierarchy of interactions determined by SAPT method indicated that weak hydrogen bonds play modifying role in the organization of these crystal structures, but primary ordering factor is dispersion. The CPMD crystalline phase results indicated bridged proton-sharing in the compound 2.
Collapse
Affiliation(s)
| | | | | | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.R.); (A.P.); (J.J.P.)
| |
Collapse
|
40
|
Prakash S, Mishra AK. Stercobilin and Urobilin in Aqueous Media: Existence of Specific H-Aggregates and Nonspecific Higher Aggregates at Different Concentrations. J Phys Chem A 2020; 124:10053-10065. [PMID: 33211965 DOI: 10.1021/acs.jpca.0c08642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fecal matter is considered to be one of the primary sources of water pollution. Understanding the aggregation behavior of the fecal pigments (FPs) could play a critical role in their detection and analysis. This work shows that in aqueous media, the fluorescence of FPs indicates the presence of multiple emitting species, which have been assigned to monomers, lower-order H-aggregates (dimers), and higher-order H-aggregates. Steady-state absorbance, fluorescence and time-resolved fluorescence decay studies conclude that the emission of FPs in aqueous medium indicates H-type of aggregation, even up to nanomolar and sub-nanomolar concentrations. Four sets of independent experiments involving the variation of (i) concentration of FPs, (ii) temperature, (iii) pH, and (iv) ethanol/water composition as solvent media suggest the presence of monomer (540 nm), dimer (516 nm), and higher-order aggregates (500 nm) of FPs in aqueous solutions. The dimeric FP species appear to be present in the entire concentration range of 1 pM to 1 μM. Fluorescence lifetimes of H-aggregates are relatively longer as compared to the corresponding monomers. Hydrogen bonding appears to play an important role in forming H-aggregates in the aqueous phase of FPs as observed in the IR spectra of the FPs in dichloromethane. Density functional theory (DFT) calculations using the B3LYP functional and the LANL2DZ basis set show the contributions of π-π stacking and hydrogen-bonding interactions toward the formation of H-aggregated dimer of FPs in aqueous media.
Collapse
Affiliation(s)
- Swayam Prakash
- Department of Chemistry, IIT Madras, 600036 Chennai, India
| | | |
Collapse
|
41
|
Pinto AV, Magalhães AL. Intramolecular Hydrogen Bonds in Tip-Functionalized Single-Walled Carbon Nanotubes as pH-Sensitive Gates. J Phys Chem A 2020; 124:9542-9551. [PMID: 33169998 DOI: 10.1021/acs.jpca.0c03710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since their discovery, carbon nanotubes and other related nanomaterials are in the spotlight due to their unique molecular structures and properties, having a wide range of applications. The cage-like structure of carbon nanotubes is especially appealing as a route to confine molecules, isolating them from the solvent medium. This study aims to explore and characterize, through density functional theory (DFT) calculations, covalent tip-functionalization of single-walled carbon nanotubes (SWCNTS) with carboxymethyl moieties that establish pH sensitive molecular gates. The response of the molecular gate to pH fluctuations arises from variations in the noncovalent interactions between functionalized groups, which depend on the extent of protonation, leading to conformational changes. Overall, the hydrogen bonds present in the molecular models under study, as evaluated through topological analysis and pKa calculations, suggest that functionalized SWCNTs may be suitable for the design of drug delivery systems to enhance the efficiency of some pharmacological treatments, or even in the area of catalysis and separation processes, through their incorporation in nanocomposites.
Collapse
Affiliation(s)
- A V Pinto
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - A L Magalhães
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
42
|
Jóźwiak K, Jezierska A, Panek JJ, Goremychkin EA, Tolstoy PM, Shenderovich IG, Filarowski A. Inter- vs. Intramolecular Hydrogen Bond Patterns and Proton Dynamics in Nitrophthalic Acid Associates. Molecules 2020; 25:E4720. [PMID: 33066679 PMCID: PMC7587347 DOI: 10.3390/molecules25204720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 01/18/2023] Open
Abstract
Noncovalent interactions are among the main tools of molecular engineering. Rational molecular design requires knowledge about a result of interplay between given structural moieties within a given phase state. We herein report a study of intra- and intermolecular interactions of 3-nitrophthalic and 4-nitrophthalic acids in the gas, liquid, and solid phases. A combination of the Infrared, Raman, Nuclear Magnetic Resonance, and Incoherent Inelastic Neutron Scattering spectroscopies and the Car-Parrinello Molecular Dynamics and Density Functional Theory calculations was used. This integrated approach made it possible to assess the balance of repulsive and attractive intramolecular interactions between adjacent carboxyl groups as well as to study the dependence of this balance on steric confinement and the effect of this balance on intermolecular interactions of the carboxyl groups.
Collapse
Affiliation(s)
- Kinga Jóźwiak
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| | - Eugene A. Goremychkin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research 6 F. Joliot-Curie str., 141980 Dubna, Russia;
| | - Peter M. Tolstoy
- Institute of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russia;
| | - Ilya G. Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| | - Aleksander Filarowski
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| |
Collapse
|
43
|
Fakhari S, Nouri A, Jamzad M, Arab‐Salmanabadi S, Falaki F. Investigation of inclusion complex of metformin into selective cyclic peptides as novel drug delivery system: Structure, electronic properties,
AIM,
and
NBO
study via
DFT. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shabnam Fakhari
- Department of Chemistry, Shahr‐e‐Qods Branch Islamic Azad University Tehran Iran
| | - Azita Nouri
- Department of Chemistry, Shahr‐e‐Qods Branch Islamic Azad University Tehran Iran
| | - Mina Jamzad
- Department of Chemistry, Shahr‐e‐Qods Branch Islamic Azad University Tehran Iran
| | | | - Foujan Falaki
- Department of Chemistry, Shahr‐e‐Qods Branch Islamic Azad University Tehran Iran
| |
Collapse
|
44
|
Safaei S, Kassaee MZ, Khorshidvand N, Ahmadi A. Effects of H-bonding and structural constituents on the acidity and potential "anticancer activity" of D-mandelonitrile-β-D-glucuronic acid by density functional theory. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04204-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
de Oliveira BG, Zabardasti A, do Rego DG, Pour MM. The formation of H···X hydrogen bond, C···X carbon-halide or Si···X tetrel bonds on the silylene-halogen dimers (X = F or Cl): intermolecular strength, molecular orbital interactions and prediction of covalency. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02644-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Development of Taste Sensor to Detect Non-Charged Bitter Substances. SENSORS 2020; 20:s20123455. [PMID: 32570946 PMCID: PMC7348729 DOI: 10.3390/s20123455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 11/17/2022]
Abstract
A taste sensor with lipid/polymer membranes is one of the devices that can evaluate taste objectively. However, the conventional taste sensor cannot measure non-charged bitter substances, such as caffeine contained in coffee, because the taste sensor uses the potentiometric measurement based mainly on change in surface electric charge density of the membrane. In this study, we aimed at the detection of typical non-charged bitter substances such as caffeine, theophylline and theobromine included in beverages and pharmaceutical products. The developed sensor is designed to detect the change in the membrane potential by using a kind of allosteric mechanism of breaking an intramolecular hydrogen bond between the carboxy group and hydroxy group of aromatic carboxylic acid (i.e., hydroxy-, dihydroxy-, and trihydroxybenzoic acids) when non-charged bitter substances are bound to the hydroxy group. As a result of surface modification by immersing the sensor electrode in a modification solution in which 2,6-dihydroxybenzoic acid was dissolved, it was confirmed that the sensor response increased with the concentration of caffeine as well as allied substances. The threshold and increase tendency were consistent with those of human senses. The detection mechanism is discussed by taking into account intramolecular and intermolecular hydrogen bonds, which cause allostery. These findings suggest that it is possible to evaluate bitterness caused by non-charged bitter substances objectively by using the taste sensor with allosteric mechanism.
Collapse
|
47
|
Leibl N, Duma L, Gonzato C, Haupt K. Polydopamine-based molecularly imprinted thin films for electro-chemical sensing of nitro-explosives in aqueous solutions. Bioelectrochemistry 2020; 135:107541. [PMID: 32388439 DOI: 10.1016/j.bioelechem.2020.107541] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
A sensitive electrochemical sensor was developed for the detection of nitro-explosives in aqueous solutions based on thin molecularly imprinted polydopamine films. Dopamine was identified in silico, based on DFT (density functional theory) calculations with the ωB97X-D/6-31G* basis set, as the best functional monomer and electropolymerized via cyclic voltammetry (CV) in the presence of carboxylic acid-based structural analogues ('dummy' templates) for two model nitro-explosives: TNT (2,4,6-trinitrotoluene) and RDX (Research Department eXplosive, 1,3,5-trinitroperhydro-1,3,5-triazine). This approach afforded a homogenous coverage of gold electrodes with imprinted films of tunable thickness. The electropolymerized molecularly imprinted polydopamine films allowed for a 105-fold sensitivity improvement over a bare gold electrode based on tracking the redox peaks of the targets by CV. This improved sensitivity is ascribed to the ability of the MIP to concentrate its target in proximity to the transduction element. The MIP films showed reproducible binding in phosphate buffer (10 mM, pH 7.4), with a dynamic range from 0.1 nM to 10 nM for both TNT and RDX and an increased selectivity over closely related structural analogues.
Collapse
Affiliation(s)
- Nadja Leibl
- Sorbonne Université, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France
| | - Luminita Duma
- Sorbonne Université, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France
| | - Carlo Gonzato
- Sorbonne Université, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France.
| | - Karsten Haupt
- Sorbonne Université, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
48
|
Solution-phase synthesis of the fluorogenic TGase 2 acyl donor Z-Glu(HMC)-Gly-OH and its use for inhibitor and amine substrate characterisation. Anal Biochem 2020; 595:113612. [DOI: 10.1016/j.ab.2020.113612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 11/20/2022]
|
49
|
A New Perspective on Using Glycols in Glutamate Biosensor Design: From Stabilizing Agents to a New Containment Net. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8020023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glutamate is a major excitatory neurotransmitter in the brain. It is involved in many normal physiological brain activities, but also neurological disorders and excitotoxicity. Hence, glutamate measurement is important both in clinical and pre-clinical studies. Pre-clinical studies often use amperometric biosensors due to their low invasiveness and the relatively small size of the devices. These devices also provide fast, real-time measurements because of their high sensitivity. In the present study, diethylene glycol (DEG), neopentyl glycol (NPG), triethylene glycol (TEG), and glycerol (GLY) were used to increase the long-term stability of glutamate biosensors. The evaluation was made by measuring variations of the main enzymatic (VMAX and KM) and analytical (Linear Region Slope (LRS)) parameters. Of the glycols tested, TEG was the most promising stabilizer, showing about twice as high VMAX maintained over a greater duration than with other stabilizers tested. It is also yielded the most stable linear region slope (LRS) values over the study duration. Moreover, we highlighted the ability of glycols to interact with enzyme molecules to form a containment network, able to maintain all the layered components of the biosensor adhering to the transducer.
Collapse
|
50
|
Investigation of the hydrogen, halogen and pnicogen dimers by means of molecular face calculated by ab initio method. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-2568-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|