1
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
2
|
Wu Y, Ni MT, Wang YH, Wang C, Hou H, Zhang X, Zhou J. Structural basis of translation inhibition by a valine tRNA-derived fragment. Life Sci Alliance 2024; 7:e202302488. [PMID: 38599770 PMCID: PMC11009984 DOI: 10.26508/lsa.202302488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Translational regulation by non-coding RNAs is a mechanism commonly used by cells to fine-tune gene expression. A fragment derived from an archaeal valine tRNA (Val-tRF) has been previously identified to bind the small subunit of the ribosome and inhibit translation in Haloferax volcanii Here, we present three cryo-electron microscopy structures of Val-tRF bound to the small subunit of Sulfolobus acidocaldarius ribosomes at resolutions between 4.02 and 4.53 Å. Within these complexes, Val-tRF was observed to bind to conserved RNA-interacting sites, including the ribosomal decoding center. The binding of Val-tRF destabilizes helices h24, h44, and h45 and the anti-Shine-Dalgarno sequence of 16S rRNA. The binding position of this molecule partially overlaps with the translation initiation factor aIF1A and occludes the mRNA P-site codon. Moreover, we found that the binding of Val-tRF is associated with steric hindrance of the H69 base of 23S rRNA in the large ribosome subunit, thereby preventing 70S assembly. Our data exemplify how tRNA-derived fragments bind to ribosomes and provide new insights into the mechanisms underlying translation inhibition by Val-tRFs.
Collapse
Affiliation(s)
- Yun Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Meng-Ting Ni
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ying-Hui Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chen Wang
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai Hou
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an Shaanxi, China
| | - Xing Zhang
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Weigert N, Schweiger AL, Gross J, Matthes M, Corbacioglu S, Sommer G, Heise T. Detection of a 7SL RNA-derived small non-coding RNA using Molecular Beacons in vitro and in cells. Biol Chem 2023; 404:1123-1136. [PMID: 37632732 DOI: 10.1515/hsz-2023-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
Small non-coding RNAs (sncRNA) are involved in many steps of the gene expression cascade and regulate processing and expression of mRNAs by the formation of ribonucleoprotein complexes (RNP) such as the RNA-induced silencing complex (RISC). By analyzing small RNA Seq data sets, we identified a sncRNA annotated as piR-hsa-1254, which is likely derived from the 3'-end of 7SL RNA2 (RN7SL2), herein referred to as snc7SL RNA. The 7SL RNA is an abundant long non-coding RNA polymerase III transcript and serves as structural component of the cytoplasmic signal recognition particle (SRP). To evaluate a potential functional role of snc7SL RNA, we aimed to define its cellular localization by live cell imaging. Therefore, a Molecular Beacon (MB)-based method was established to compare the subcellular localization of snc7SL RNA with its precursor 7SL RNA. We designed and characterized several MBs in vitro and tested those by live cell fluorescence microscopy. Using a multiplex approach, we show that 7SL RNA localizes mainly to the endoplasmic reticulum (ER), as expected for the SRP, whereas snc7SL RNA predominately localizes to the nucleus. This finding suggests a fundamentally different function of 7SL RNA and its derivate snc7SL RNA.
Collapse
Affiliation(s)
- Nina Weigert
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Anna-Lena Schweiger
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Jonas Gross
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Marie Matthes
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Selim Corbacioglu
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
Wang W, Yang Y, Guo H, Li MH, Chen XQ, Wei XY, Chen Y, Elsheikha HM, Zhang XX. Unravelling Strain-Specific Modifications of Toxoplasma gondii tRNA and sncRNA Using LC-MS/MS. Microbiol Spectr 2023; 11:e0356422. [PMID: 37036375 PMCID: PMC10269570 DOI: 10.1128/spectrum.03564-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/21/2023] [Indexed: 04/11/2023] Open
Abstract
Many RNA modifications have been detected in rRNA, tRNA and small noncoding RNA (sncRNA) as well as in low-abundance RNA species such mRNA. Although RNA modifications play roles in many cellular and biological processes in various domains of life, knowledge about the diversity and role of RNA modifications in Toxoplasma gondii is limited. In this study, RNA modifications in three T. gondii strains (RH type I, PRU type II, and VEG type III) with distinct virulence abilities were determined by liquid chromatography-tandem mass spectrometry. We compared the levels of modifications of four nucleotides in tRNA and sncRNA, characterized RNA modification patterns of different T. gondii strains, and determined the diversity of RNA modifications. We detected and quantified 22 modified nucleosides in both tRNA and sncRNA. Significant differences in the diversity of the modified nucleosides were found between the three T. gondii strains. RNA modifications were correlated with the expression of many T. gondii virulence proteins. Some of the identified modifications (e.g., 2'-O-methylinosine, pseudouridine) play a role in mediating the host-parasite interaction. These results provide novel insight into the global modifications in tRNA and sncRNA, and the diversity of RNA modifications between T. gondii strains with different virulence backgrounds. IMPORTANCE Although RNA modifications play roles in many cellular and developmental processes in various domains of life, knowledge about the patterns and functions of RNA modifications in T. gondii is limited. Here, a quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was used to study global RNA modifications in T. gondii strains of distinct virulence backgrounds. We quantified 22 modified nucleosides in both tRNA and sncRNA. Significant T. gondii strain-specific differences in RNA modifications were detected. More tRNA modifications correlated with T. gondii virulence proteins than sncRNA modifications. RNA modifications were significantly correlated with virulence proteins. Our data provide the first comprehensive profiling of the modifications tRNA and sncRNA in T. gondii, expanding the diversity of RNA modifications in this parasite and suggesting new regulators for modulating its virulence.
Collapse
Affiliation(s)
- Wei Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, People’s Republic of China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Huanping Guo
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Ming-Han Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xiao-Qing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Xin-Yu Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, People’s Republic of China
| | - Yu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, People’s Republic of China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| |
Collapse
|
5
|
Abstract
Oxidative stress is an important and pervasive physical stress encountered by all kingdoms of life, including bacteria. In this review, we briefly describe the nature of oxidative stress, highlight well-characterized protein-based sensors (transcription factors) of reactive oxygen species that serve as standards for molecular sensors in oxidative stress, and describe molecular studies that have explored the potential of direct RNA sensitivity to oxidative stress. Finally, we describe the gaps in knowledge of RNA sensors-particularly regarding the chemical modification of RNA nucleobases. RNA sensors are poised to emerge as an essential layer of understanding and regulating dynamic biological pathways in oxidative stress responses in bacteria and, thus, also represent an important frontier of synthetic biology.
Collapse
Affiliation(s)
- Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Phillip Sweet
- Integrative Life Sciences Program, University of Texas at Austin, Austin, Texas, USA
| | - Aparna Anantharaman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Lydia Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
- Integrative Life Sciences Program, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
6
|
Guo H, Xia L, Wang W, Xu W, Shen X, Wu X, He T, Jiang X, Xu Y, Zhao P, Tan D, Zhang X, Zhang Y. Hypoxia induces alterations in tRNA modifications involved in translational control. BMC Biol 2023; 21:39. [PMID: 36803965 PMCID: PMC9942361 DOI: 10.1186/s12915-023-01537-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Adaptation to high-altitude hypobaric hypoxia has been shown to require a set of physiological traits enabled by an associated set of genetic modifications, as well as transcriptome regulation. These lead to both lifetime adaptation of individuals to hypoxia at high altitudes and generational evolution of populations as seen for instance in those of Tibet. Additionally, RNA modifications, which are sensitive to environmental exposure, have been shown to play pivotal biological roles in maintaining the physiological functions of organs. However, the dynamic RNA modification landscape and related molecular mechanisms in mouse tissues under hypobaric hypoxia exposure remain to be fully understood. Here, we explore the tissue-specific distribution pattern of multiple RNA modifications across mouse tissues. RESULTS By applying an LC-MS/MS-dependent RNA modification detection platform, we identified the distribution of multiple RNA modifications in total RNA, tRNA-enriched fragments, and 17-50-nt sncRNAs across mouse tissues; these patterns were associated with the expression levels of RNA modification modifiers in different tissues. Moreover, the tissue-specific abundance of RNA modifications was sensitively altered across different RNA groups in a simulated high-altitude (over 5500 m) hypobaric hypoxia mouse model with the activation of the hypoxia response in mouse peripheral blood and multiple tissues. RNase digestion experiments revealed that the alteration of RNA modification abundance under hypoxia exposure impacted the molecular stability of tissue total tRNA-enriched fragments and isolated individual tRNAs, such as tRNAAla, tRNAval, tRNAGlu, and tRNALeu. In vitro transfection experiments showed that the transfection of testis total tRNA-enriched fragments from the hypoxia group into GC-2spd cells attenuated the cell proliferation rate and led to a reduction in overall nascent protein synthesis in cells. CONCLUSIONS Our results reveal that the abundance of RNA modifications for different classes of RNAs under physiological conditions is tissue-specific and responds to hypobaric hypoxia exposure in a tissue-specific manner. Mechanistically, the dysregulation of tRNA modifications under hypobaric hypoxia attenuated the cell proliferation rate, facilitated the sensitivity of tRNA to RNases, and led to a reduction in overall nascent protein synthesis, suggesting an active role of tRNA epitranscriptome alteration in the adaptive response to environmental hypoxia exposure.
Collapse
Affiliation(s)
- Huanping Guo
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Lin Xia
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Wei Wang
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Wei Xu
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Xipeng Shen
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China ,grid.203458.80000 0000 8653 0555Chongqing Medical University, Chongqing, 400016 China
| | - Xiao Wu
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Tong He
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China ,grid.203458.80000 0000 8653 0555Chongqing Medical University, Chongqing, 400016 China
| | - Xuelin Jiang
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Yinying Xu
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Pan Zhao
- grid.410570.70000 0004 1760 6682Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037 China
| | - Dongmei Tan
- grid.203458.80000 0000 8653 0555Chongqing Medical University, Chongqing, 400016 China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China. .,Jinfeng Laboratory, Chongqing, 401329, China.
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
7
|
Kang D, Baek Y, Lee JS. Mechanisms of RNA and Protein Quality Control and Their Roles in Cellular Senescence and Age-Related Diseases. Cells 2022; 11:cells11244062. [PMID: 36552825 PMCID: PMC9777292 DOI: 10.3390/cells11244062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence, a hallmark of aging, is defined as irreversible cell cycle arrest in response to various stimuli. It plays both beneficial and detrimental roles in cellular homeostasis and diseases. Quality control (QC) is important for the proper maintenance of cellular homeostasis. The QC machineries regulate the integrity of RNA and protein by repairing or degrading them, and are dysregulated during cellular senescence. QC dysfunction also contributes to multiple age-related diseases, including cancers and neurodegenerative, muscle, and cardiovascular diseases. In this review, we describe the characters of cellular senescence, discuss the major mechanisms of RNA and protein QC in cellular senescence and aging, and comprehensively describe the involvement of these QC machineries in age-related diseases. There are many open questions regarding RNA and protein QC in cellular senescence and aging. We believe that a better understanding of these topics could propel the development of new strategies for addressing age-related diseases.
Collapse
Affiliation(s)
- Donghee Kang
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Yurim Baek
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
- Correspondence: ; Tel.: +82-32-860-9832; Fax: +82-32-885-8302
| |
Collapse
|
8
|
Wang L, Lin S. Emerging functions of tRNA modifications in mRNA translation and diseases. J Genet Genomics 2022; 50:223-232. [PMID: 36309201 DOI: 10.1016/j.jgg.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
tRNAs are essential modulators that recognize mRNA codons and bridge amino acids for mRNA translation. The tRNAs are heavily modified, which is essential for forming a complex secondary structure that facilitates codon recognition and mRNA translation. In recent years, studies have identified the regulatory roles of tRNA modifications in mRNA translation networks. Misregulation of tRNA modifications is closely related to the progression of developmental diseases and cancers. In this review, we summarize the tRNA biogenesis process and then discuss the effects and mechanisms of tRNA modifications on tRNA processing and mRNA translation. Finally, we provide a comprehensive overview of tRNA modifications' physiological and pathological functions, focusing on diseases including cancers.
Collapse
Affiliation(s)
- Lu Wang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
9
|
George S, Rafi M, Aldarmaki M, ElSiddig M, Al Nuaimi M, Amiri KMA. tRNA derived small RNAs—Small players with big roles. Front Genet 2022; 13:997780. [PMID: 36199575 PMCID: PMC9527309 DOI: 10.3389/fgene.2022.997780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In the past 2 decades, small non-coding RNAs derived from tRNA (tsRNAs or tRNA derived fragments; tRFs) have emerged as new powerful players in the field of small RNA mediated regulation of gene expression, translation, and epigenetic control. tRFs have been identified from evolutionarily divergent organisms from Archaea, the higher plants, to humans. Recent studies have confirmed their roles in cancers and other metabolic disorders in humans and experimental models. They have been implicated in biotic and abiotic stress responses in plants as well. In this review, we summarize the current knowledge on tRFs including types of tRFs, their biogenesis, and mechanisms of action. The review also highlights recent studies involving differential expression profiling of tRFs and elucidation of specific functions of individual tRFs from various species. We also discuss potential considerations while designing experiments involving tRFs identification and characterization and list the available bioinformatics tools for this purpose.
Collapse
Affiliation(s)
- Suja George
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maitha Aldarmaki
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed ElSiddig
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mariam Al Nuaimi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Khaled M. A. Amiri,
| |
Collapse
|
10
|
Elucidation of physico-chemical principles of high-density lipoprotein-small RNA binding interactions. J Biol Chem 2022; 298:101952. [PMID: 35447119 PMCID: PMC9133651 DOI: 10.1016/j.jbc.2022.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/03/2022] Open
Abstract
Extracellular small RNAs (sRNAs) are abundant in many biofluids, but little is known about their mechanisms of transport and stability in RNase-rich environments. We previously reported that high-density lipoproteins (HDLs) in mice were enriched with multiple classes of sRNAs derived from the endogenous transcriptome, but also from exogenous organisms. Here, we show that human HDL transports tRNA-derived sRNAs (tDRs) from host and nonhost species, the profiles of which were found to be altered in human atherosclerosis. We hypothesized that HDL binds to tDRs through apolipoprotein A-I (apoA-I) and that these interactions are conferred by RNA-specific features. We tested this using microscale thermophoresis and electrophoretic mobility shift assays and found that HDL binds to tDRs and other single-stranded sRNAs with strong affinity but did not bind to double-stranded RNA or DNA. Furthermore, we show that natural and synthetic RNA modifications influenced tDR binding to HDL. We demonstrate that reconstituted HDL bound to tDRs only in the presence of apoA-I, and purified apoA-I alone were able to bind sRNA. Conversely, phosphatidylcholine vesicles did not bind tDRs. In summary, we conclude that HDL binds to single-stranded sRNAs likely through nonionic interactions with apoA-I. These results highlight binding properties that likely enable extracellular RNA communication and provide a foundation for future studies to manipulate HDL-sRNA interactions for therapeutic approaches to prevent or treat disease.
Collapse
|
11
|
Chao H, Hu Y, Zhao L, Xin S, Ni Q, Zhang P, Chen M. Biogenesis, Functions, Interactions, and Resources of Non-Coding RNAs in Plants. Int J Mol Sci 2022; 23:ijms23073695. [PMID: 35409060 PMCID: PMC8998614 DOI: 10.3390/ijms23073695] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Plant transcriptomes encompass a large number of functional non-coding RNAs (ncRNAs), only some of which have protein-coding capacity. Since their initial discovery, ncRNAs have been classified into two broad categories based on their biogenesis and mechanisms of action, housekeeping ncRNAs and regulatory ncRNAs. With advances in RNA sequencing technology and computational methods, bioinformatics resources continue to emerge and update rapidly, including workflow for in silico ncRNA analysis, up-to-date platforms, databases, and tools dedicated to ncRNA identification and functional annotation. In this review, we aim to describe the biogenesis, biological functions, and interactions with DNA, RNA, protein, and microorganism of five major regulatory ncRNAs (miRNA, siRNA, tsRNA, circRNA, lncRNA) in plants. Then, we systematically summarize tools for analysis and prediction of plant ncRNAs, as well as databases. Furthermore, we discuss the silico analysis process of these ncRNAs and present a protocol for step-by-step computational analysis of ncRNAs. In general, this review will help researchers better understand the world of ncRNAs at multiple levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Peijing Zhang
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| | - Ming Chen
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| |
Collapse
|
12
|
Mechanisms Underlying the Expansion and Functional Maturation of β-Cells in Newborns: Impact of the Nutritional Environment. Int J Mol Sci 2022; 23:ijms23042096. [PMID: 35216239 PMCID: PMC8877060 DOI: 10.3390/ijms23042096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
The functional maturation of insulin-secreting β-cells is initiated before birth and is completed in early postnatal life. This process has a critical impact on the acquisition of an adequate functional β-cell mass and on the capacity to meet and adapt to insulin needs later in life. Many cellular pathways playing a role in postnatal β-cell development have already been identified. However, single-cell transcriptomic and proteomic analyses continue to reveal new players contributing to the acquisition of β-cell identity. In this review, we provide an updated picture of the mechanisms governing postnatal β-cell mass expansion and the transition of insulin-secreting cells from an immature to a mature state. We then highlight the contribution of the environment to β-cell maturation and discuss the adverse impact of an in utero and neonatal environment characterized by calorie and fat overload or by protein deficiency and undernutrition. Inappropriate nutrition early in life constitutes a risk factor for developing diabetes in adulthood and can affect the β-cells of the offspring over two generations. A better understanding of these events occurring in the neonatal period will help developing better strategies to produce functional β-cells and to design novel therapeutic approaches for the prevention and treatment of diabetes.
Collapse
|
13
|
Dannfald A, Favory JJ, Deragon JM. Variations in transfer and ribosomal RNA epitranscriptomic status can adapt eukaryote translation to changing physiological and environmental conditions. RNA Biol 2021; 18:4-18. [PMID: 34159889 PMCID: PMC8677040 DOI: 10.1080/15476286.2021.1931756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 01/27/2023] Open
Abstract
The timely reprogramming of gene expression in response to internal and external cues is essential to eukaryote development and acclimation to changing environments. Chemically modifying molecular receptors and transducers of these signals is one way to efficiently induce proper physiological responses. Post-translation modifications, regulating protein biological activities, are central to many well-known signal-responding pathways. Recently, messenger RNA (mRNA) chemical (i.e. epitranscriptomic) modifications were also shown to play a key role in these processes. In contrast, transfer RNA (tRNA) and ribosomal RNA (rRNA) chemical modifications, although critical for optimal function of the translation apparatus, and much more diverse and quantitatively important compared to mRNA modifications, were until recently considered as mainly static chemical decorations. We present here recent observations that are challenging this view and supporting the hypothesis that tRNA and rRNA modifications dynamically respond to various cell and environmental conditions and contribute to adapt translation to these conditions.
Collapse
Affiliation(s)
- Arnaud Dannfald
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Jacques Favory
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Marc Deragon
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
14
|
Global view of dynamic expression and precise mapping of mitochondrial tRNAs-derived fragments during stressed conditions in S. pombe. Mitochondrion 2021; 60:219-227. [PMID: 34428580 DOI: 10.1016/j.mito.2021.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 01/30/2023]
Abstract
In this study, we provide a global view of population and processing of mitochondrial tRNAs-derived fragments (mt-tRFs) in fission yeast Schizosaccharomyces pombe. Here, mt-tRFs of 15-30 nucleotides were retrieved from S. pombe small RNA libraries obtained from unstressed, stress, and during stationary phase conditions. We demonstrate that production of these fragments increase during heat stress and stationary phase conditions in S. pombe, especially (most notably) in stationary phase. Analysis of data also reveals depending on the tRNA, either 5'-mt-tRF or 3'-mt-tRF was found and major mt-tRNA processing sites have been precisely identified. Furthermore, RNA-seq reveals that inactivation of trz2 encoding S. pombe mitochondrial tRNase ZL globally impairs mt-tRF processing. Finally, our result showed mt-tRFs were predicted to target mitochondrial genome mapping mtDNA-encoded protein gene. These observations suggest that mitochondrial tRFs may play an important regulatory role in response to stress and development.
Collapse
|
15
|
Legüe M, Aguila B, Calixto A. Interspecies RNA Interactome of Pathogen and Host in a Heritable Defensive Strategy. Front Microbiol 2021; 12:649858. [PMID: 34367078 PMCID: PMC8334366 DOI: 10.3389/fmicb.2021.649858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Communication with bacteria deeply impacts the life history traits of their hosts. Through specific molecules and metabolites, bacteria can promote short- and long-term phenotypic and behavioral changes in the nematode Caenorhabditis elegans. The chronic exposure of C. elegans to pathogens promotes the adaptive behavior in the host’s progeny called pathogen-induced diapause formation (PIDF). PIDF is a pathogen avoidance strategy induced in the second generation of animals infected and can be recalled transgenerationally. This behavior requires the RNA interference machinery and specific nematode and bacteria small RNAs (sRNAs). In this work, we assume that RNAs from both species co-exist and can interact with each other. Under this principle, we explore the potential interspecies RNA interactions during PIDF-triggering conditions, using transcriptomic data from the holobiont. We study two transcriptomics datasets: first, the dual sRNA expression of Pseudomonas aeruginosa PAO1 and C. elegans in a transgenerational paradigm for six generations and second, the simultaneous expression of sRNAs and mRNA in intergenerational PIDF. We focus on those bacterial sRNAs that are systematically overexpressed in the intestines of animals compared with sRNAs expressed in host-naïve bacteria. We selected diverse in silico methods that represent putative mechanisms of RNA-mediated interspecies interaction. These interactions are as follows: heterologous perfect and incomplete pairing between bacterial RNA and host mRNA; sRNAs of similar sequence expressed in both species that could mimic each other; and known or predicted eukaryotic motifs present in bacterial transcripts. We conclude that a broad spectrum of tools can be applied for the identification of potential sRNA and mRNA targets of the interspecies RNA interaction that can be subsequently tested experimentally.
Collapse
Affiliation(s)
- Marcela Legüe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Blanca Aguila
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile.,Programa de Doctorado en Microbiología, Universidad de Chile, Santiago, Chile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
16
|
RNA Metabolism Guided by RNA Modifications: The Role of SMUG1 in rRNA Quality Control. Biomolecules 2021; 11:biom11010076. [PMID: 33430019 PMCID: PMC7826747 DOI: 10.3390/biom11010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are essential for proper RNA processing, quality control, and maturation steps. In the last decade, some eukaryotic DNA repair enzymes have been shown to have an ability to recognize and process modified RNA substrates and thereby contribute to RNA surveillance. Single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1) is a base excision repair enzyme that not only recognizes and removes uracil and oxidized pyrimidines from DNA but is also able to process modified RNA substrates. SMUG1 interacts with the pseudouridine synthase dyskerin (DKC1), an enzyme essential for the correct assembly of small nucleolar ribonucleoproteins (snRNPs) and ribosomal RNA (rRNA) processing. Here, we review rRNA modifications and RNA quality control mechanisms in general and discuss the specific function of SMUG1 in rRNA metabolism. Cells lacking SMUG1 have elevated levels of immature rRNA molecules and accumulation of 5-hydroxymethyluridine (5hmU) in mature rRNA. SMUG1 may be required for post-transcriptional regulation and quality control of rRNAs, partly by regulating rRNA and stability.
Collapse
|
17
|
Vivek AT, Kumar S. Computational methods for annotation of plant regulatory non-coding RNAs using RNA-seq. Brief Bioinform 2020; 22:6041165. [PMID: 33333550 DOI: 10.1093/bib/bbaa322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Plant transcriptome encompasses numerous endogenous, regulatory non-coding RNAs (ncRNAs) that play a major biological role in regulating key physiological mechanisms. While studies have shown that ncRNAs are extremely diverse and ubiquitous, the functions of the vast majority of ncRNAs are still unknown. With ever-increasing ncRNAs under study, it is essential to identify, categorize and annotate these ncRNAs on a genome-wide scale. The use of high-throughput RNA sequencing (RNA-seq) technologies provides a broader picture of the non-coding component of transcriptome, enabling the comprehensive identification and annotation of all major ncRNAs across samples. However, the detection of known and emerging class of ncRNAs from RNA-seq data demands complex computational methods owing to their unique as well as similar characteristics. Here, we discuss major plant endogenous, regulatory ncRNAs in an RNA sample followed by computational strategies applied to discover each class of ncRNAs using RNA-seq. We also provide a collection of relevant software packages and databases to present a comprehensive bioinformatics toolbox for plant ncRNA researchers. We assume that the discussions in this review will provide a rationale for the discovery of all major categories of plant ncRNAs.
Collapse
Affiliation(s)
- A T Vivek
- National Institute of Plant Genome Research in New Delhi, India
| | - Shailesh Kumar
- National Institute of Plant Genome Research in New Delhi
| |
Collapse
|
18
|
Fernandes De Abreu DA, Salinas-Giegé T, Drouard L, Remy JJ. Alanine tRNAs Translate Environment Into Behavior in Caenorhabditis elegans. Front Cell Dev Biol 2020; 8:571359. [PMID: 33195203 PMCID: PMC7662486 DOI: 10.3389/fcell.2020.571359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Caenorhabditis elegans nematodes produce and maintain imprints of attractive chemosensory cues to which they are exposed early in life. Early odor-exposure increases adult chemo-attraction to the same cues. Imprinting is transiently or stably inherited, depending on the number of exposed generations. We show here that the Alanine tRNA (UGC) plays a central role in regulating C. elegans chemo-attraction. Naive worms fed on tRNAAla (UGC) purified from odor-experienced worms, acquire odor-specific imprints. Chemo-attractive responses require the tRNA-modifying Elongator complex sub-units 1 (elpc-1) and 3 (elpc-3) genes. elpc-3 deletions impair chemo-attraction, which is fully restored by wild-type tRNAAla (UGC) feeding. A stably inherited decrease of odor-specific responses ensues from early odor-exposition of elpc-1 deletion mutants. tRNAAla (UGC) may adopt various chemical forms to mediate the cross-talk between innately-programmed and environment-directed chemo-attractive behavior.
Collapse
Affiliation(s)
- Diana Andrea Fernandes De Abreu
- Genes, Environment, Plasticity, Institut Sophia Agrobiotech ISA UMR CNRS 7254, INRAE 1355, Université Nice Côte d’Azur, Sophia-Antipolis, France
| | - Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| | - Laurence Drouard
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Jacques Remy
- Genes, Environment, Plasticity, Institut Sophia Agrobiotech ISA UMR CNRS 7254, INRAE 1355, Université Nice Côte d’Azur, Sophia-Antipolis, France
| |
Collapse
|
19
|
MacIntosh GC, Castandet B. Organellar and Secretory Ribonucleases: Major Players in Plant RNA Homeostasis. PLANT PHYSIOLOGY 2020; 183:1438-1452. [PMID: 32513833 PMCID: PMC7401137 DOI: 10.1104/pp.20.00076] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/31/2020] [Indexed: 05/05/2023]
Abstract
Organellar and secretory RNases, associated with different cellular compartments, are essential to maintain cellular homeostasis during development and in stress responses.
Collapse
Affiliation(s)
- Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Benoît Castandet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université de Paris, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| |
Collapse
|
20
|
Abstract
Polyethylene glycol transfection of plant protoplasts represents an efficient method to incorporate foreign DNA and study transient gene expression. Here, we describe an optimized protocol to deliver small noncoding RNAs into Arabidopsis thaliana protoplasts. An example of application is provided by demonstrating the incorporation of a 20 nt long small noncoding RNA deriving from the 5' extremity of an A. thaliana cytosolic alanine tRNA into freshly isolated protoplasts.
Collapse
|
21
|
Gonskikh Y, Gerstl M, Kos M, Borth N, Schosserer M, Grillari J, Polacek N. Modulation of mammalian translation by a ribosome-associated tRNA half. RNA Biol 2020; 17:1125-1136. [PMID: 32223506 PMCID: PMC7549673 DOI: 10.1080/15476286.2020.1744296] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Originally considered futile degradation products, tRNA-derived RNA fragments (tdRs) have been shown over the recent past to be crucial players in orchestrating various cellular functions. Unlike other small non-coding RNA (ncRNA) classes, tdRs possess a multifaceted functional repertoire ranging from regulating transcription, apoptosis, RNA interference, ribosome biogenesis to controlling translation efficiency. A subset of the latter tdRs has been shown to directly target the ribosome, the central molecular machine of protein biosynthesis. Here we describe the function of the mammalian tRNAPro 5ʹ half, a 35 residue long ncRNA associated with ribosomes and polysomes in several mammalian cell lines. Addition of tRNAPro halves to mammalian in vitro translation systems results in global translation inhibition and concomitantly causes the upregulation of a specific low molecular weight translational product. This tRNAPro 5ʹ half-dependent translation product consists of both RNA and amino acids. Transfection of the tRNAPro half into HeLa cells leads to the formation of the same product in vivo. The migration of this product in acidic gels, the insensitivity to copper sulphate treatment, the resistance to 3ʹ polyadenylation, and the association with 80S monosomes indicate that the accumulated product is peptidyl-tRNA. Our data thus suggest that binding of the tRNAPro 5ʹ half to the ribosome leads to ribosome stalling and to the formation of peptidyl-tRNA. Our findings revealed a so far unknown functional role of a tdR thus further enlarging the functional heterogeneity of this emerging class of ribo-regulators.
Collapse
Affiliation(s)
- Yulia Gonskikh
- Department of Chemistry and Biochemistry, University of Bern , Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern , Bern, Switzerland
| | - Matthias Gerstl
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences , Vienna, Austria
| | - Martin Kos
- Biochemistry Center, University of Heidelberg , Heidelberg, Germany
| | - Nicole Borth
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences , Vienna, Austria
| | - Markus Schosserer
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences , Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences , Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging , Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Norbert Polacek
- Department of Chemistry and Biochemistry, University of Bern , Bern, Switzerland
| |
Collapse
|
22
|
Lalande S, Merret R, Salinas-Giegé T, Drouard L. Arabidopsis tRNA-derived fragments as potential modulators of translation. RNA Biol 2020; 17:1137-1148. [PMID: 31994438 DOI: 10.1080/15476286.2020.1722514] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transfer RNA-derived fragments (tRFs) exist in all branches of life. They are involved in RNA degradation, regulation of gene expression, ribosome biogenesis. In archaebacteria, kinetoplastid, yeast, and human cells, they were also shown to regulate translation. In Arabidopsis, the tRFs population fluctuates under developmental or environmental conditions but their functions are yet poorly understood. Here, we show that populations of long (30-35 nt) or short (19-25 nt) tRFs produced from Arabidopsis tRNAs can inhibit in vitro translation of a reporter gene. Analysing a series of oligoribonucleotides mimicking natural tRFs, we demonstrate that only a limited set of tRFs possess the ability to affect protein synthesis. Out of a dozen of tRFs, only two deriving from tRNAAla(AGC) and tRNAAsn(GUU) strongly attenuate translation in vitro. Contrary to human tRF(Ala), the 4 Gs present at the 5' extremity of Arabidopsis tRF(Ala) are not implicated in this inhibition while the G18 and G19 residues are essential. Protein synthesis inhibition by tRFs does not require complementarity with the translated mRNA but, having the capability to be associated with polyribosomes, tRFs likely act as general modulation factors of the translation process in plants.
Collapse
Affiliation(s)
- Stéphanie Lalande
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg , Strasbourg, France
| | - Rémy Merret
- Université de Perpignan Via Domitia , Perpignan, France
| | - Thalia Salinas-Giegé
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg , Strasbourg, France
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg , Strasbourg, France
| |
Collapse
|
23
|
Silva-Navas J, Conesa CM, Saez A, Navarro-Neila S, Garcia-Mina JM, Zamarreño AM, Baigorri R, Swarup R, Del Pozo JC. Role of cis-zeatin in root responses to phosphate starvation. THE NEW PHYTOLOGIST 2019; 224:242-257. [PMID: 31230346 DOI: 10.1111/nph.16020] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/15/2019] [Indexed: 05/02/2023]
Abstract
Phosphate (Pi) is an essential nutrient for all organisms. Roots are underground organs, but the majority of the root biology studies have been done on root systems growing in the presence of light. Root illumination alters the Pi starvation response (PSR) at different intensities. Thus, we have analyzed morphological, transcriptional and physiological responses to Pi starvation in dark-grown roots. We have identified new genes and pathways regulated by Pi starvation that were not described previously. We also show that Pi-starved plants increase the cis-zeatin (cZ) : trans-zeatin (tZ) ratio. Transcriptomic analyses show that tZ preferentially represses cell cycle and PSR genes, whereas cZ induces genes involved in cell and root hair elongation and differentiation. In fact, cZ-treated seedlings show longer root system as well as longer root hairs compared with tZ-treated seedlings, increasing the total absorbing surface. Mutants with low cZ concentrations do not allocate free Pi in roots during Pi starvation. We propose that Pi-starved plants increase the cZ : tZ ratio to maintain basal cytokinin responses and allocate Pi in the root system to sustain its growth. Therefore, cZ acts as a PSR hormone that stimulates root and root hair elongation to enlarge the root absorbing surface and to increase Pi concentrations in roots.
Collapse
Affiliation(s)
- Javier Silva-Navas
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, ZIP 28223, Madrid, Spain
| | - Carlos M Conesa
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, ZIP 28223, Madrid, Spain
| | - Angela Saez
- Centro de Investigación en Producción Animal y Vegetal (CIPAV), Timac Agro Int-Roullier Group, Polígono Arazuri-Orcoyen, C/C n Degrees 32, ZIP 31160, Orcoyen, Spain
| | - Sara Navarro-Neila
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, ZIP 28223, Madrid, Spain
| | - Jose M Garcia-Mina
- Environmental Biology Department, University of Navarra, Pamplona, ZIP 31009, Navarra, Spain
| | - Angel M Zamarreño
- Environmental Biology Department, University of Navarra, Pamplona, ZIP 31009, Navarra, Spain
| | - Roberto Baigorri
- Centro de Investigación en Producción Animal y Vegetal (CIPAV), Timac Agro Int-Roullier Group, Polígono Arazuri-Orcoyen, C/C n Degrees 32, ZIP 31160, Orcoyen, Spain
| | - Ranjan Swarup
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
- Centre for Plant Integrative Biology (CPIB), University of Nottingham, Nottingham, LE12 5RD, UK
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, ZIP 28223, Madrid, Spain
| |
Collapse
|
24
|
Megel C, Hummel G, Lalande S, Ubrig E, Cognat V, Morelle G, Salinas-Giegé T, Duchêne AM, Maréchal-Drouard L. Plant RNases T2, but not Dicer-like proteins, are major players of tRNA-derived fragments biogenesis. Nucleic Acids Res 2019; 47:941-952. [PMID: 30462257 PMCID: PMC6344867 DOI: 10.1093/nar/gky1156] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
RNA fragments deriving from tRNAs (tRFs) exist in all branches of life and the repertoire of their biological functions regularly increases. Paradoxically, their biogenesis remains unclear. The human RNase A, Angiogenin, and the yeast RNase T2, Rny1p, generate long tRFs after cleavage in the anticodon region. The production of short tRFs after cleavage in the D or T regions is still enigmatic. Here, we show that the Arabidopsis Dicer-like proteins, DCL1-4, do not play a major role in the production of tRFs. Rather, we demonstrate that the Arabidopsis RNases T2, called RNS, are key players of both long and short tRFs biogenesis. Arabidopsis RNS show specific expression profiles. In particular, RNS1 and RNS3 are mainly found in the outer tissues of senescing seeds where they are the main endoribonucleases responsible of tRNA cleavage activity for tRFs production. In plants grown under phosphate starvation conditions, the induction of RNS1 is correlated with the accumulation of specific tRFs. Beyond plants, we also provide evidence that short tRFs can be produced by the yeast Rny1p and that, in vitro, human RNase T2 is also able to generate long and short tRFs. Our data suggest an evolutionary conserved feature of these enzymes in eukaryotes.
Collapse
Affiliation(s)
- Cyrille Megel
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Guillaume Hummel
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Stéphanie Lalande
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Elodie Ubrig
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Valérie Cognat
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Geoffrey Morelle
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Thalia Salinas-Giegé
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Anne-Marie Duchêne
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Laurence Maréchal-Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| |
Collapse
|
25
|
Barraud P, Tisné C. To be or not to be modified: Miscellaneous aspects influencing nucleotide modifications in tRNAs. IUBMB Life 2019; 71:1126-1140. [PMID: 30932315 PMCID: PMC6850298 DOI: 10.1002/iub.2041] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022]
Abstract
Transfer RNAs (tRNAs) are essential components of the cellular protein synthesis machineries, but are also implicated in many roles outside translation. To become functional, tRNAs, initially transcribed as longer precursor tRNAs, undergo a tightly controlled biogenesis process comprising the maturation of their extremities, removal of intronic sequences if present, addition of the 3'-CCA amino-acid accepting sequence, and aminoacylation. In addition, the most impressive feature of tRNA biogenesis consists in the incorporation of a large number of posttranscriptional chemical modifications along its sequence. The chemical nature of these modifications is highly diverse, with more than hundred different modifications identified in tRNAs to date. All functions of tRNAs in cells are controlled and modulated by modifications, making the understanding of the mechanisms that determine and influence nucleotide modifications in tRNAs an essential point in tRNA biology. This review describes the different aspects that determine whether a certain position in a tRNA molecule is modified or not. We describe how sequence and structural determinants, as well as the presence of prior modifications control modification processes. We also describe how environmental factors and cellular stresses influence the level and/or the nature of certain modifications introduced in tRNAs, and report situations where these dynamic modulations of tRNA modification levels are regulated by active demodification processes. © 2019 IUBMB Life, 71(8):1126-1140, 2019.
Collapse
Affiliation(s)
- Pierre Barraud
- Expression génétique microbienneInstitut de biologie physico‐chimique (IBPC), UMR 8261, CNRS, Université Paris DiderotParisFrance
| | - Carine Tisné
- Expression génétique microbienneInstitut de biologie physico‐chimique (IBPC), UMR 8261, CNRS, Université Paris DiderotParisFrance
| |
Collapse
|
26
|
Hummel G, Warren J, Drouard L. The multi-faceted regulation of nuclear tRNA gene transcription. IUBMB Life 2019; 71:1099-1108. [PMID: 31241827 DOI: 10.1002/iub.2097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
Transfer RNAs are among the most ancient molecules of life on earth. Beyond their crucial role in protein synthesis as carriers of amino acids, they are also important players in a plethora of other biological processes. Many debates in term of biogenesis, regulation and function persist around these fascinating non-coding RNAs. Our review focuses on the first step of their biogenesis in eukaryotes, i.e. their transcription from nuclear genes. Numerous and complementary ways have emerged during evolution to regulate transfer RNA gene transcription. Here, we will summarize the different actors implicated in this process: cis-elements, trans-factors, genomic contexts, epigenetic environments and finally three-dimensional organization of nuclear genomes. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1099-1108, 2019.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Jessica Warren
- Department of biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| |
Collapse
|
27
|
Cosentino C, Cnop M, Igoillo-Esteve M. The tRNA Epitranscriptome and Diabetes: Emergence of tRNA Hypomodifications as a Cause of Pancreatic β-Cell Failure. Endocrinology 2019; 160:1262-1274. [PMID: 30907926 DOI: 10.1210/en.2019-00098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/15/2019] [Indexed: 01/26/2023]
Abstract
tRNAs are crucial noncoding RNA molecules that serve as amino acid carriers during protein synthesis. The transcription of tRNA genes is a highly regulated process. The tRNA pool is tissue and cell specific, it varies during development, and it is modulated by the environment. tRNAs are highly posttranscriptionally modified by specific tRNA-modifying enzymes. The tRNA modification signature of a cell determines the tRNA epitranscriptome. Perturbations in the tRNA epitranscriptome, as a consequence of mutations in tRNAs and tRNA-modifying enzymes or environmental exposure, have been associated with human disease, including diabetes. tRNA fragmentation induced by impaired tRNA modifications or dietary factors has been linked to pancreatic β-cell demise and paternal inheritance of metabolic traits. Herein, we review recent findings that associate tRNA epitranscriptome perturbations with diabetes.
Collapse
Affiliation(s)
- Cristina Cosentino
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
28
|
Grafanaki K, Anastasakis D, Kyriakopoulos G, Skeparnias I, Georgiou S, Stathopoulos C. Translation regulation in skin cancer from a tRNA point of view. Epigenomics 2018; 11:215-245. [PMID: 30565492 DOI: 10.2217/epi-2018-0176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein synthesis is a central and dynamic process, frequently deregulated in cancer through aberrant activation or expression of translation initiation factors and tRNAs. The discovery of tRNA-derived fragments, a new class of abundant and, in some cases stress-induced, small Noncoding RNAs has perplexed the epigenomics landscape and highlights the emerging regulatory role of tRNAs in translation and beyond. Skin is the biggest organ in human body, which maintains homeostasis of its multilayers through regulatory networks that induce translational reprogramming, and modulate tRNA transcription, modification and fragmentation, in response to various stress signals, like UV irradiation. In this review, we summarize recent knowledge on the role of translation regulation and tRNA biology in the alarming prevalence of skin cancer.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece.,Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dimitrios Anastasakis
- National Institute of Musculoskeletal & Arthritis & Skin, NIH, 50 South Drive, Room 1152, Bethesda, MD 20892, USA
| | - George Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ilias Skeparnias
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | |
Collapse
|
29
|
Tomita K, Liu Y. Human BCDIN3D Is a Cytoplasmic tRNA His-Specific 5'-Monophosphate Methyltransferase. Front Genet 2018; 9:305. [PMID: 30127802 PMCID: PMC6088191 DOI: 10.3389/fgene.2018.00305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/18/2018] [Indexed: 01/17/2023] Open
Abstract
Bicoid interacting 3 domain containing RNA methyltransferase (BCDIN3D) is a member of the Bin3 methyltransferase family and is evolutionary conserved from worm to human. BCDIN3D is overexpressed in breast cancer, which is associated with poor prognosis of breast cancers. However, the biological functions and properties of BCDIN3D have been enigmatic. Recent studies have revealed that human BCDIN3D monomethylates 5'-monophsosphate of cytoplasmic tRNAHisin vivo and in vitro. BCDIN3D recognizes the unique and exceptional structural features of cytoplasmic tRNAHis and discriminates tRNAHis from other cytoplasmic tRNA species. Thus, BCDIN3D is a tRNAHis-specific 5'-monophosphate methyltransferase. Methylation of the 5'-phosphate group of tRNAHis does not significantly affect tRNAHis aminoacylation by histidyl-tRNA synthetase in vitro nor the steady state level or stability of tRNAHisin vivo. Hence, methylation of the 5'-phosphate group of tRNAHis by BCDIN3D or tRNAHis itself may be involved in certain unknown biological processes, beyond protein synthesis. This review discusses recent reports on BCDIN3D and the possible association between 5'-phosphate monomethylation of tRNAHis and the tumorigenic phenotype of breast cancer.
Collapse
Affiliation(s)
- Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yining Liu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
30
|
Schorn AJ, Martienssen R. Tie-Break: Host and Retrotransposons Play tRNA. Trends Cell Biol 2018; 28:793-806. [PMID: 29934075 DOI: 10.1016/j.tcb.2018.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/08/2018] [Accepted: 05/23/2018] [Indexed: 11/28/2022]
Abstract
tRNA fragments (tRFs) are a class of small, regulatory RNAs with diverse functions. 3'-Derived tRFs perfectly match long terminal repeat (LTR)-retroelements which use the 3'-end of tRNAs to prime reverse transcription. Recent work has shown that tRFs target LTR-retroviruses and -transposons for the RNA interference (RNAi) pathway and also inhibit mobility by blocking reverse transcription. The highly conserved tRNA primer binding site (PBS) in LTR-retroelements is a unique target for 3'-tRFs to recognize and block abundant but diverse LTR-retrotransposons that become transcriptionally active during epigenetic reprogramming in development and disease. 3'-tRFs are processed from full-length tRNAs under so far unknown conditions and potentially protect many cell types. tRFs appear to be an ancient link between RNAi, transposons, and genome stability.
Collapse
Affiliation(s)
- Andrea J Schorn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Rob Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
31
|
Mleczko AM, Celichowski P, Bąkowska-Żywicka K. Transfer RNA-derived fragments target and regulate ribosome-associated aminoacyl-transfer RNA synthetases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(17)30380-2. [PMID: 29883755 DOI: 10.1016/j.bbagrm.2018.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/02/2018] [Accepted: 06/02/2018] [Indexed: 01/08/2023]
Abstract
Ribosome-associated noncoding (ranc) RNAs are a novel class of short regulatory RNAs with functions and origins that have not been well studied. In this present study, we functionally characterized the molecular activity of Saccharomyces cerevisiae transfer RNA (tRNA)-derived fragments (tRFs) during protein biosynthesis. Our results indicate ribosome-associated tRFs derived from both 5' (ranc-5'-tRFs) and 3'-part of tRNAs (ranc-3'-tRFs) have regulatory roles during translation. We demonstrated five 3'-tRFs and one 5'-tRF associate with a small ribosomal subunit and aminoacyl-tRNA synthetases (aa-RSs) in yeast. Furthermore, we discovered that four yeast aa-RSs interact directly with yeast ribosomes. tRFs interactions with ribosome-associated aa-RSs correlate with impaired efficiency of tRNA aminoacylation.
Collapse
Affiliation(s)
- Anna M Mleczko
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego St. 12/14, 61-704 Poznan, Poland
| | - Piotr Celichowski
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego St. 12/14, 61-704 Poznan, Poland
| | - Kamilla Bąkowska-Żywicka
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego St. 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
32
|
Li F, Kaczor-Urbanowicz KE, Sun J, Majem B, Lo HC, Kim Y, Koyano K, Rao SL, Kang SY, Kim SM, Kim KM, Kim S, Chia D, Elashoff D, Grogan TR, Xiao X, Wong DTW. Characterization of Human Salivary Extracellular RNA by Next-generation Sequencing. Clin Chem 2018; 64:1085-1095. [PMID: 29685897 DOI: 10.1373/clinchem.2017.285072] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/28/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND It was recently discovered that abundant and stable extracellular RNA (exRNA) species exist in bodily fluids. Saliva is an emerging biofluid for biomarker development for noninvasive detection and screening of local and systemic diseases. Use of RNA-Sequencing (RNA-Seq) to profile exRNA is rapidly growing; however, no single preparation and analysis protocol can be used for all biofluids. Specifically, RNA-Seq of saliva is particularly challenging owing to high abundance of bacterial contents and low abundance of salivary exRNA. Given the laborious procedures needed for RNA-Seq library construction, sequencing, data storage, and data analysis, saliva-specific and optimized protocols are essential. METHODS We compared different RNA isolation methods and library construction kits for long and small RNA sequencing. The role of ribosomal RNA (rRNA) depletion also was evaluated. RESULTS The miRNeasy Micro Kit (Qiagen) showed the highest total RNA yield (70.8 ng/mL cell-free saliva) and best small RNA recovery, and the NEBNext library preparation kits resulted in the highest number of detected human genes [5649-6813 at 1 reads per kilobase RNA per million mapped (RPKM)] and small RNAs [482-696 microRNAs (miRNAs) and 190-214 other small RNAs]. The proportion of human RNA-Seq reads was much higher in rRNA-depleted saliva samples (41%) than in samples without rRNA depletion (14%). In addition, the transfer RNA (tRNA)-derived RNA fragments (tRFs), a novel class of small RNAs, were highly abundant in human saliva, specifically tRF-4 (4%) and tRF-5 (15.25%). CONCLUSIONS Our results may help in selection of the best adapted methods of RNA isolation and small and long RNA library constructions for salivary exRNA studies.
Collapse
Affiliation(s)
- Feng Li
- Institute of Diagnostic in Chinese Medicine, Hunan University of Chinese Medicine, Hunan, China.,Center for Oral/Head & Neck Oncology Research, School of Dentistry, University of California at Los Angeles, Los Angeles, CA
| | - Karolina Elżbieta Kaczor-Urbanowicz
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, University of California at Los Angeles, Los Angeles, CA.,Department of Orthodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA
| | - Jie Sun
- Medical School of Shenzhen University, Shenzhen, Guangdong, China
| | - Blanca Majem
- Biomedical Research Unit in Gynecology, Vall d'Hebron Research Institute (VHIR) and University Hospital, University Autonoma of Barcelona (UAB), Barcelona, Spain
| | - Hsien-Chun Lo
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - Yong Kim
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, University of California at Los Angeles, Los Angeles, CA
| | - Kikuye Koyano
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - Shannon Liu Rao
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, University of California at Los Angeles, Los Angeles, CA
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Mi Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - David Chia
- Department of Pathology & Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA
| | - David Elashoff
- Department of Biostatistics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Tristan R Grogan
- Department of Biostatistics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - David T W Wong
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, University of California at Los Angeles, Los Angeles, CA; .,Department of Biomedical Engineering, School of Engineering, University of California at Los Angeles, Los Angeles, CA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA.,Department of Head and Neck Surgery/Otolaryngology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
33
|
Fine-Tuning of Gene Expression by tRNA-Derived Fragments during Abiotic Stress Signal Transduction. Int J Mol Sci 2018; 19:ijms19020518. [PMID: 29419808 PMCID: PMC5855740 DOI: 10.3390/ijms19020518] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 11/17/2022] Open
Abstract
When plants are subjected to unfavorable environmental conditions, overall gene expression in stressed cells is altered from a programmed pattern for normal development to an adaptive pattern for survival. Rapid changes in plant gene expression include production of stress responsive proteins for protection as well as reduction of irrelevant proteins to minimize energy consumption during growth. In addition to the many established mechanisms known to modulate gene expression in eukaryotes, a novel strategy involving tRNA-derived fragments (tRFs) was recently reported to control gene expression. In animals, tRFs are shown to play a certain role in infected or cancer cells. However, tRFs are expected to function in the regulation of gene expression against abiotic stress conditions in plants. Moreover, the underlying mechanism linking up-regulation of tRFs under stress conditions with the stress tolerant response remains unknown. In this review, the biogenesis and putative function of diverse tRFs in abiotic stress signaling are discussed with a focus on tRFs as a transcriptional/post-transcriptional/translational regulator.
Collapse
|
34
|
Willis IM, Moir RD. Signaling to and from the RNA Polymerase III Transcription and Processing Machinery. Annu Rev Biochem 2018; 87:75-100. [PMID: 29328783 DOI: 10.1146/annurev-biochem-062917-012624] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA polymerase (Pol) III has a specialized role in transcribing the most abundant RNAs in eukaryotic cells, transfer RNAs (tRNAs), along with other ubiquitous small noncoding RNAs, many of which have functions related to the ribosome and protein synthesis. The high energetic cost of producing these RNAs and their central role in protein synthesis underlie the robust regulation of Pol III transcription in response to nutrients and stress by growth regulatory pathways. Downstream of Pol III, signaling impacts posttranscriptional processes affecting tRNA function in translation and tRNA cleavage into smaller fragments that are increasingly attributed with novel cellular activities. In this review, we consider how nutrients and stress control Pol III transcription via its factors and its negative regulator, Maf1. We highlight recent work showing that the composition of the tRNA population and the function of individual tRNAs is dynamically controlled and that unrestrained Pol III transcription can reprogram central metabolic pathways.
Collapse
Affiliation(s)
- Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , .,Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; ,
| |
Collapse
|
35
|
Soprano AS, Smetana JHC, Benedetti CE. Regulation of tRNA biogenesis in plants and its link to plant growth and response to pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:344-353. [PMID: 29222070 DOI: 10.1016/j.bbagrm.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/23/2022]
Abstract
The field of tRNA biology, encompassing the functional and structural complexity of tRNAs, has fascinated scientists over the years and is continuously growing. Besides their fundamental role in protein translation, new evidence indicates that tRNA-derived molecules also regulate gene expression and protein synthesis in all domains of life. This review highlights some of the recent findings linking tRNA transcription and modification with plant cell growth and response to pathogens. In fact, mutations in proteins directly involved in tRNA synthesis and modification most often lead to pleiotropic effects on plant growth and immunity. As plants need to optimize and balance their energy and nutrient resources towards growth and defense, regulatory pathways that play a central role in integrating tRNA transcription and protein translation with cell growth control and organ development, such as the auxin-TOR signaling pathway, also influence the plant immune response against pathogens. As a consequence, distinct pathogens employ an array of effector molecules including tRNA fragments to target such regulatory pathways to exploit the plant's translational capacity, gain access to nutrients and evade defenses. An example includes the RNA polymerase III repressor MAF1, a conserved component of the TOR signaling pathway that controls ribosome biogenesis and tRNA synthesis required for plant growth and which is targeted by a pathogen effector molecule to promote disease. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Adriana Santos Soprano
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Juliana Helena Costa Smetana
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil.
| |
Collapse
|
36
|
Kournoutou GG, Giannopoulou PC, Sazakli E, Leotsinidis M, Kalpaxis DL. Oxidative damage of 18S and 5S ribosomal RNA in digestive gland of mussels exposed to trace metals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:136-147. [PMID: 28957715 DOI: 10.1016/j.aquatox.2017.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Numerous studies have shown the ability of trace metals to accumulate in marine organisms and cause oxidative stress that leads to perturbations in many important intracellular processes, including protein synthesis. This study is mainly focused on the exploration of structural changes, like base modifications, scissions, and conformational changes, caused in 18S and 5S ribosomal RNA (rRNA) isolated from the mussel Mytilus galloprovincialis exposed to 40μg/L Cu, 30μg/L Hg, or 100μg/L Cd, for 5 or 15days. 18S rRNA and 5S rRNA are components of the small and large ribosomal subunit, respectively, found in complex with ribosomal proteins, translation factors and other auxiliary components (metal ions, toxins etc). 18S rRNA plays crucial roles in all stages of protein synthesis, while 5S rRNA serves as a master signal transducer between several functional regions of 28S rRNA. Therefore, structural changes in these ribosomal constituents could affect the basic functions of ribosomes and hence the normal metabolism of cells. Especially, 18S rRNA along with ribosomal proteins forms the decoding centre that ensures the correct codon-anticodon pairing. As exemplified by ELISA, primer extension analysis and DMS footprinting analysis, each metal caused oxidative damage to rRNA, depending on the nature of metal ion and the duration of exposure. Interestingly, exposure of mussels to Cu or Hg caused structural alterations in 5S rRNA, localized in paired regions and within loops A, B, C, and E, leading to a continuous progressive loss of the 5S RNA structural integrity. In contrast, structural impairments of 5S rRNA in mussels exposed to Cd were accumulating for the initial 5days, and then progressively decreased to almost the normal level by day 15, probably due to the parallel elevation of metallothionein content that depletes the pools of free Cd. Regions of interest in 18S rRNA, such as the decoding centre, sites implicated in the binding of tRNAs (A- and P-sites) or translation factors, and areas related to translation fidelity, were found to undergo significant metal-induced conformational alterations, leading either to loosening of their structure or to more compact folding. These modifications were associated with parallel alterations in the translation process at multiple levels, a fact suggesting that structural perturbations in ribosomes, caused by metals, pose significant hurdles in translational efficiency and fidelity.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Animal Structures/drug effects
- Animal Structures/metabolism
- Animals
- Base Sequence
- Biomarkers/metabolism
- DNA/metabolism
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/metabolism
- Mytilus/drug effects
- Mytilus/metabolism
- Nucleic Acid Conformation
- Oxidative Stress/drug effects
- Protein Biosynthesis/drug effects
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- Ribosomes/drug effects
- Ribosomes/metabolism
- Trace Elements/toxicity
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Georgia G Kournoutou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Eleni Sazakli
- Laboratory of Public Health, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Michel Leotsinidis
- Laboratory of Public Health, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dimitrios L Kalpaxis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
37
|
Cavaiuolo M, Kuras R, Wollman F, Choquet Y, Vallon O. Small RNA profiling in Chlamydomonas: insights into chloroplast RNA metabolism. Nucleic Acids Res 2017; 45:10783-10799. [PMID: 28985404 PMCID: PMC5737564 DOI: 10.1093/nar/gkx668] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/18/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022] Open
Abstract
In Chlamydomonas reinhardtii, regulation of chloroplast gene expression is mainly post-transcriptional. It requires nucleus-encoded trans-acting protein factors for maturation/stabilization (M factors) or translation (T factors) of specific target mRNAs. We used long- and small-RNA sequencing to generate a detailed map of the transcriptome. Clusters of sRNAs marked the 5' end of all mature mRNAs. Their absence in M-factor mutants reflects the protection of transcript 5' end by the cognate factor. Enzymatic removal of 5'-triphosphates allowed identifying those cosRNA that mark a transcription start site. We detected another class of sRNAs derived from low abundance transcripts, antisense to mRNAs. The formation of antisense sRNAs required the presence of the complementary mRNA and was stimulated when translation was inhibited by chloramphenicol or lincomycin. We propose that they derive from degradation of double-stranded RNAs generated by pairing of antisense and sense transcripts, a process normally hindered by the traveling of the ribosomes. In addition, chloramphenicol treatment, by freezing ribosomes on the mRNA, caused the accumulation of 32-34 nt ribosome-protected fragments. Using this 'in vivo ribosome footprinting', we identified the function and molecular target of two candidate trans-acting factors.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Richard Kuras
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Francis‐André Wollman
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Olivier Vallon
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
38
|
Pilling LC, Atkins JL, Duff MO, Beaumont RN, Jones SE, Tyrrell J, Kuo CL, Ruth KS, Tuke MA, Yaghootkar H, Wood AR, Murray A, Weedon MN, Harries LW, Kuchel GA, Ferrucci L, Frayling TM, Melzer D. Red blood cell distribution width: Genetic evidence for aging pathways in 116,666 volunteers. PLoS One 2017; 12:e0185083. [PMID: 28957414 PMCID: PMC5619771 DOI: 10.1371/journal.pone.0185083] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/06/2017] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Variability in red blood cell volumes (distribution width, RDW) increases with age and is strongly predictive of mortality, incident coronary heart disease and cancer. We investigated inherited genetic variation associated with RDW in 116,666 UK Biobank human volunteers. RESULTS A large proportion RDW is explained by genetic variants (29%), especially in the older group (60+ year olds, 33.8%, <50 year olds, 28.4%). RDW was associated with 194 independent genetic signals; 71 are known for conditions including autoimmune disease, certain cancers, BMI, Alzheimer's disease, longevity, age at menopause, bone density, myositis, Parkinson's disease, and age-related macular degeneration. Exclusion of anemic participants did not affect the overall findings. Pathways analysis showed enrichment for telomere maintenance, ribosomal RNA, and apoptosis. The majority of RDW-associated signals were intronic (119 of 194), including SNP rs6602909 located in an intron of oncogene GAS6, an eQTL in whole blood. CONCLUSIONS Although increased RDW is predictive of cardiovascular outcomes, this was not explained by known CVD or related lipid genetic risks, and a RDW genetic score was not predictive of incident disease. The predictive value of RDW for a range of negative health outcomes may in part be due to variants influencing fundamental pathways of aging.
Collapse
Affiliation(s)
- Luke C. Pilling
- Epidemiology and Public Health Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, United Kingdom
- * E-mail:
| | - Janice L. Atkins
- Epidemiology and Public Health Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, United Kingdom
| | - Michael O. Duff
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Robin N. Beaumont
- Genetics of Complex Traits Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, United Kingdom
| | - Samuel E. Jones
- Genetics of Complex Traits Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, United Kingdom
| | - Jessica Tyrrell
- Genetics of Complex Traits Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, United Kingdom
| | - Chia-Ling Kuo
- Department of Community Medicine and Health Care, Connecticut Institute for Clinical and Translational Science, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Katherine S. Ruth
- Genetics of Complex Traits Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, United Kingdom
| | - Marcus A. Tuke
- Genetics of Complex Traits Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, United Kingdom
| | - Hanieh Yaghootkar
- Genetics of Complex Traits Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, United Kingdom
| | - Andrew R. Wood
- Genetics of Complex Traits Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, United Kingdom
| | - Anna Murray
- Genetics of Complex Traits Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, United Kingdom
| | - Michael N. Weedon
- Genetics of Complex Traits Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, United Kingdom
| | - Lorna W. Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - George A. Kuchel
- Center on Aging, University of Connecticut, Farmington, CT, United States of America
| | - Luigi Ferrucci
- National Institute on Aging, Baltimore, MD, United States
| | - Timothy M. Frayling
- Genetics of Complex Traits Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, United Kingdom
| | - David Melzer
- Epidemiology and Public Health Group, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Exeter, EX2 5DW, United Kingdom
- Center on Aging, University of Connecticut, Farmington, CT, United States of America
| |
Collapse
|
39
|
Zhou K, Diebel KW, Holy J, Skildum A, Odean E, Hicks DA, Schotl B, Abrahante JE, Spillman MA, Bemis LT. A tRNA fragment, tRF5-Glu, regulates BCAR3 expression and proliferation in ovarian cancer cells. Oncotarget 2017; 8:95377-95391. [PMID: 29221134 PMCID: PMC5707028 DOI: 10.18632/oncotarget.20709] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer is a complex disease marked by tumor heterogeneity, which contributes to difficulties in diagnosis and treatment. New molecular targets and better molecular profiles defining subsets of patients are needed. tRNA fragments (tRFs) offer a recently identified group of noncoding RNAs that are often as abundant as microRNAs in cancer cells. Initially their presence in deep sequencing data sets was attributed to the breakdown of mature tRNAs, however, it is now clear that they are actively generated and function in multiple regulatory events. One such tRF, a 5’ fragment of tRNA-Glu-CTC (tRF5-Glu), is processed from the mature tRNA-Glu and is shown in this study to be expressed in ovarian cancer cells. We confirmed that tRF5-Glu binds directly to a site in the 3’UTR of the Breast Cancer Anti-Estrogen Resistance 3 (BCAR3) mRNA thereby down regulating its expression. BCAR3 has not previously been studied in ovarian cancer cells and our studies demonstrate that inhibiting BCAR3 expression suppresses ovarian cancer cell proliferation. Furthermore, mimics of tRF5-Glu were found to inhibit proliferation of ovarian cancer cells. In summary, BCAR3 and tRF5-Glu contribute to the complex tumor heterogeneity of ovarian cancer cells and may provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Kevin W Diebel
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Jon Holy
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Andrew Skildum
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Evan Odean
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Douglas A Hicks
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brent Schotl
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Monique A Spillman
- Texas A&M University Medical School, Baylor University Medical Center, Dallas, TX, 75206 USA
| | - Lynne T Bemis
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| |
Collapse
|
40
|
Cognat V, Morelle G, Megel C, Lalande S, Molinier J, Vincent T, Small I, Duchêne AM, Maréchal-Drouard L. The nuclear and organellar tRNA-derived RNA fragment population in Arabidopsis thaliana is highly dynamic. Nucleic Acids Res 2017; 45:3460-3472. [PMID: 27899576 PMCID: PMC5389709 DOI: 10.1093/nar/gkw1122] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/27/2016] [Indexed: 11/16/2022] Open
Abstract
In the expanding repertoire of small noncoding RNAs (ncRNAs), tRNA-derived RNA fragments (tRFs) have been identified in all domains of life. Their existence in plants has been already proven but no detailed analysis has been performed. Here, short tRFs of 19–26 nucleotides were retrieved from Arabidopsis thaliana small RNA libraries obtained from various tissues, plants submitted to abiotic stress or fractions immunoprecipitated with ARGONAUTE 1 (AGO1). Large differences in the tRF populations of each extract were observed. Depending on the tRNA, either tRF-5D (due to a cleavage in the D region) or tRF-3T (via a cleavage in the T region) were found and hot spots of tRNA cleavages have been identified. Interestingly, up to 25% of the tRFs originate from plastid tRNAs and we provide evidence that mitochondrial tRNAs can also be a source of tRFs. Very specific tRF-5D deriving not only from nucleus-encoded but also from plastid-encoded tRNAs are strongly enriched in AGO1 immunoprecipitates. We demonstrate that the organellar tRFs are not found within chloroplasts or mitochondria but rather accumulate outside the organelles. These observations suggest that some organellar tRFs could play regulatory functions within the plant cell and may be part of a signaling pathway.
Collapse
Affiliation(s)
- Valérie Cognat
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Geoffrey Morelle
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France.,Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley WA6009, Australia
| | - Cyrille Megel
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Stéphanie Lalande
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Jean Molinier
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Timothée Vincent
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley WA6009, Australia
| | - Anne-Marie Duchêne
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Laurence Maréchal-Drouard
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| |
Collapse
|
41
|
Jackowiak P, Hojka-Osinska A, Philips A, Zmienko A, Budzko L, Maillard P, Budkowska A, Figlerowicz M. Small RNA fragments derived from multiple RNA classes - the missing element of multi-omics characteristics of the hepatitis C virus cell culture model. BMC Genomics 2017; 18:502. [PMID: 28666407 PMCID: PMC5493846 DOI: 10.1186/s12864-017-3891-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/21/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A pool of small RNA fragments (RFs) derived from diverse cellular RNAs has recently emerged as a rich source of functionally relevant molecules. Although their formation and accumulation has been connected to various stress conditions, the knowledge on RFs produced upon viral infections is very limited. Here, we applied the next generation sequencing (NGS) to characterize RFs generated in the hepatitis C virus (HCV) cell culture model (HCV-permissive Huh-7.5 cell line). RESULTS We found that both infected and non-infected cells contained a wide spectrum of RFs derived from virtually all RNA classes. A significant fraction of identified RFs accumulated to similar levels as miRNAs. Our analysis, focused on RFs originating from constitutively expressed non-coding RNAs, revealed three major patterns of parental RNA cleavage. We found that HCV infection induced significant changes in the accumulation of low copy number RFs, while subtly altered the levels of high copy number ones. Finally, the candidate RFs potentially relevant for host-virus interactions were identified. CONCLUSIONS Our results indicate that RFs should be considered an important component of the Huh-7.5 transcriptome and suggest that the main factors influencing the RF biogenesis are the RNA structure and RNA protection by interacting proteins. The data presented here significantly complement the existing transcriptomic, miRnomic, proteomic and metabolomic characteristics of the HCV cell culture model.
Collapse
Affiliation(s)
- Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Anna Hojka-Osinska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Anna Philips
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Computing Science, Poznan University of Technology, Piotrowo 3A, 60-965, Poznan, Poland
| | - Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Patrick Maillard
- Institut Pasteur, Hepacivirus and Innate Immunity, CNRS, UMR3569, 75724, Paris, France
| | - Agata Budkowska
- Institut Pasteur, Hepacivirus and Innate Immunity, CNRS, UMR3569, 75724, Paris, France.,Scientific Advisor for the Department of International Affairs, Institut Pasteur, 75724, Paris, France
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland. .,Institute of Computing Science, Poznan University of Technology, Piotrowo 3A, 60-965, Poznan, Poland.
| |
Collapse
|
42
|
Gebetsberger J, Wyss L, Mleczko AM, Reuther J, Polacek N. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol 2016; 14:1364-1373. [PMID: 27892771 PMCID: PMC5711459 DOI: 10.1080/15476286.2016.1257470] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Posttranscriptional processing of RNA molecules is a common strategy to enlarge the structural and functional repertoire of RNomes observed in all 3 domains of life. Fragmentation of RNA molecules of basically all functional classes has been reported to yield smaller non-protein coding RNAs (ncRNAs) that typically possess different roles compared with their parental transcripts. Here we show that a valine tRNA-derived fragment (Val-tRF) that is produced under certain stress conditions in the halophilic archaeon Haloferax volcanii is capable of binding to the small ribosomal subunit. As a consequence of Val-tRF binding mRNA is displaced from the initiation complex which results in global translation attenuation in vivo and in vitro. The fact that the archaeal Val-tRF also inhibits eukaryal as well as bacterial protein biosynthesis implies a functionally conserved mode of action. While tRFs and tRNA halves have been amply identified in recent RNA-seq project, Val-tRF described herein represents one of the first functionally characterized tRNA processing products to date.
Collapse
Affiliation(s)
- Jennifer Gebetsberger
- a Department of Chemistry and Biochemistry , University of Bern , Freiestrasse, Bern , Switzerland
| | - Leander Wyss
- a Department of Chemistry and Biochemistry , University of Bern , Freiestrasse, Bern , Switzerland.,b Graduate School for Cellular and Biomedical Sciences, University of Bern , Bern , Switzerland
| | - Anna M Mleczko
- a Department of Chemistry and Biochemistry , University of Bern , Freiestrasse, Bern , Switzerland
| | - Julia Reuther
- a Department of Chemistry and Biochemistry , University of Bern , Freiestrasse, Bern , Switzerland
| | - Norbert Polacek
- a Department of Chemistry and Biochemistry , University of Bern , Freiestrasse, Bern , Switzerland
| |
Collapse
|
43
|
Barciszewska MZ, Perrigue PM, Barciszewski J. tRNA--the golden standard in molecular biology. MOLECULAR BIOSYSTEMS 2016; 12:12-7. [PMID: 26549858 DOI: 10.1039/c5mb00557d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transfer RNAs (tRNAs) represent a major class of RNA molecules. Their primary function is to help decode a messenger RNA (mRNA) sequence in order to synthesize protein and thus ensures the precise translation of genetic information that is imprinted in DNA. The discovery of tRNA in the late 1950's provided critical insight into a genetic machinery when little was known about the central dogma of molecular biology. In 1965, Robert Holley determined the first nucleotide sequence of alanine transfer RNA (tRNA(Ala)) which earned him the 1968 Nobel Prize in Physiology or Medicine. Today, tRNA is one of the best described and characterized biological molecules. Here we review some of the key historical events in tRNA research which led to breakthrough discoveries and new developments in molecular biology.
Collapse
Affiliation(s)
- Mirosława Z Barciszewska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznań, Poland.
| | - Patrick M Perrigue
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznań, Poland.
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznań, Poland.
| |
Collapse
|
44
|
Schuster A, Tang C, Xie Y, Ortogero N, Yuan S, Yan W. SpermBase: A Database for Sperm-Borne RNA Contents. Biol Reprod 2016; 95:99. [PMID: 27628216 PMCID: PMC5178153 DOI: 10.1095/biolreprod.116.142190] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/07/2016] [Indexed: 12/31/2022] Open
Abstract
Since their discovery approximately three decades ago, sperm-borne RNAs, both large/small and coding/noncoding, have been reported in multiple organisms, and some have been implicated in spermatogenesis, early development, and epigenetic inheritance. Despite these advances, isolation, quantification, and annotation of sperm-borne RNAs remain nontrivial. The yields and subspecies of sperm-borne RNAs isolated from sperm can vary drastically depending on the methods used, and no cross-species analyses of sperm RNA contents have ever been conducted using a standardized sperm RNA isolation protocol. To address these issues, we developed a simple RNA isolation method that is applicable to sperm of various species, thus allowing for reliable interspecies comparisons. Based on RNA-Seq analyses, we established SpermBase (
www.spermbase.org), a database dedicated to sperm-borne RNA profiling of multiple species. Currently, SpermBase contains large and small RNA expression data for mouse, rat, rabbit, and human total sperm and sperm heads. By analyzing large and small RNAs for conserved features, we found that many sperm-borne RNA species were conserved across all four species analyzed, and among the conserved small RNAs, sperm-borne tRNA-derived small noncoding RNAs and miRNAs can target a large number of genes known to be critical for early development.
Collapse
Affiliation(s)
- Andrew Schuster
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Nicole Ortogero
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
- Department of Biology, University of Nevada, Reno, Reno, Nevada
- Correspondence: Wei Yan, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV 89557. E-mail:
| |
Collapse
|
45
|
Human Ribosomal RNA-Derived Resident MicroRNAs as the Transmitter of Information upon the Cytoplasmic Cancer Stress. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7562085. [PMID: 27517048 PMCID: PMC4969525 DOI: 10.1155/2016/7562085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/19/2016] [Indexed: 12/13/2022]
Abstract
Dysfunction of ribosome biogenesis induces divergent ribosome-related diseases including ribosomopathy and occasionally results in carcinogenesis. Although many defects in ribosome-related genes have been investigated, little is known about contribution of ribosomal RNA (rRNA) in ribosome-related disorders. Meanwhile, microRNA (miRNA), an important regulator of gene expression, is derived from both coding and noncoding region of the genome and is implicated in various diseases. Therefore, we performed in silico analyses using M-fold, TargetScan, GeneCoDia3, and so forth to investigate RNA relationships between rRNA and miRNA against cellular stresses. We have previously shown that miRNA synergism is significantly correlated with disease and the miRNA package is implicated in memory for diseases; therefore, quantum Dynamic Nexus Score (DNS) was also calculated using MESer program. As a result, seventeen RNA sequences identical with known miRNAs were detected in the human rRNA and termed as rRNA-hosted miRNA analogs (rmiRNAs). Eleven of them were predicted to form stem-loop structures as pre-miRNAs, and especially one stem-loop was completely identical with hsa-pre-miR-3678 located in the non-rDNA region. Thus, these rmiRNAs showed significantly high DNS values, participation in regulation of cancer-related pathways, and interaction with nucleolar RNAs, suggesting that rmiRNAs may be stress-responsible resident miRNAs which transmit stress-tuning information in multiple levels.
Collapse
|
46
|
Apicomplexa-specific tRip facilitates import of exogenous tRNAs into malaria parasites. Proc Natl Acad Sci U S A 2016; 113:4717-22. [PMID: 27071116 DOI: 10.1073/pnas.1600476113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The malaria-causing Plasmodium parasites are transmitted to vertebrates by mosquitoes. To support their growth and replication, these intracellular parasites, which belong to the phylum Apicomplexa, have developed mechanisms to exploit their hosts. These mechanisms include expropriation of small metabolites from infected host cells, such as purine nucleotides and amino acids. Heretofore, no evidence suggested that transfer RNAs (tRNAs) could also be exploited. We identified an unusual gene in Apicomplexa with a coding sequence for membrane-docking and structure-specific tRNA binding. This Apicomplexa protein-designated tRip (tRNA import protein)-is anchored to the parasite plasma membrane and directs import of exogenous tRNAs. In the absence of tRip, the fitness of the parasite stage that multiplies in the blood is significantly reduced, indicating that the parasite may need host tRNAs to sustain its own translation and/or as regulatory RNAs. Plasmodium is thus the first example, to our knowledge, of a cell importing exogenous tRNAs, suggesting a remarkable adaptation of this parasite to extend its reach into host cell biology.
Collapse
|
47
|
Wang Y, Li H, Sun Q, Yao Y. Characterization of Small RNAs Derived from tRNAs, rRNAs and snoRNAs and Their Response to Heat Stress in Wheat Seedlings. PLoS One 2016; 11:e0150933. [PMID: 26963812 PMCID: PMC4786338 DOI: 10.1371/journal.pone.0150933] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
Small RNAs (sRNAs) derived from non-coding RNAs (ncRNAs), such as tRNAs, rRNAs and snoRNAs, have been identified in various organisms. Several observations have indicated that cleavage of tRNAs and rRNAs is induced by various stresses. To clarify whether sRNAs in wheat derived from tRNAs (stRNAs), rRNAs (srRNAs) and snoRNAs (sdRNAs) are produced specifically in association with heat stress responses, we carried out a bioinformatic analysis of sRNA libraries from wheat seedlings and performed comparisons between control and high-temperature-treated samples to measure the differential abundance of stRNAs, srRNAs and sdRNAs. We found that the production of sRNAs from tRNAs, 5.8S rRNAs, and 28S rRNAs was more specific than that from 5S rRNAs and 18S rRNAs, and more than 95% of the stRNAs were processed asymmetrically from the 3’ or 5’ ends of mature tRNAs. We identified 333 stRNAs and 8,822 srRNAs that were responsive to heat stress. Moreover, the expression of stRNAs derived from tRNA-Val-CAC, tRNA-Thr-UGU, tRNA-Tyr-GUA and tRNA-Ser-UGA was not only up-regulated under heat stress but also induced by osmotic stress, suggesting that the increased cleavage of tRNAs might be a mechanism that developed in wheat seedlings to help them cope with adverse environmental conditions.
Collapse
Affiliation(s)
- Yu Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongxia Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qixin Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Transfer RNA: From pioneering crystallographic studies to contemporary tRNA biology. Arch Biochem Biophys 2016; 602:95-105. [PMID: 26968773 DOI: 10.1016/j.abb.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 12/17/2022]
Abstract
Transfer RNAs (tRNAs) play a key role in protein synthesis as adaptor molecules between messenger RNA and protein sequences on the ribosome. Their discovery in the early sixties provoked a worldwide infatuation with the study of their architecture and their function in the decoding of genetic information. tRNAs are also emblematic molecules in crystallography: the determination of the first tRNA crystal structures represented a milestone in structural biology and tRNAs were for a long period the sole source of information on RNA folding, architecture, and post-transcriptional modifications. Crystallographic data on tRNAs in complex with aminoacyl-tRNA synthetases (aaRSs) also provided the first insight into protein:RNA interactions. Beyond the translation process and the history of structural investigations on tRNA, this review also illustrates the renewal of tRNA biology with the discovery of a growing number of tRNA partners in the cell, the involvement of tRNAs in a variety of regulatory and metabolic pathways, and emerging applications in biotechnology and synthetic biology.
Collapse
|
49
|
Diebel KW, Zhou K, Clarke AB, Bemis LT. Beyond the Ribosome: Extra-translational Functions of tRNA Fragments. Biomark Insights 2016; 11:1-8. [PMID: 26843810 PMCID: PMC4734663 DOI: 10.4137/bmi.s35904] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 01/05/2023] Open
Abstract
High-throughput sequencing studies of small RNAs reveal a complex milieu of noncoding RNAs in biological samples. Early data analysis was often limited to microRNAs due to their regulatory nature and potential as biomarkers; however, many more classes of noncoding RNAs are now being recognized. A class of fragments initially excluded from analysis were those derived from transfer RNAs (tRNAs) because they were thought to be degradation products. More recently, critical cellular function has been attributed to tRNA fragments (tRFs), and their conservation across all domains of life has propelled them into an emerging area of scientific study. The biogenesis of tRFs is currently being elucidated, and initial studies show that a diverse array of tRFs are generated from all parts of a tRNA molecule. The goal of this review was to present what is currently known about tRFs and their potential as biomarkers for the earlier detection of disease.
Collapse
Affiliation(s)
- Kevin W Diebel
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth campus, Duluth, MN, USA
| | - Kun Zhou
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth campus, Duluth, MN, USA
| | - Aaron B Clarke
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth campus, Duluth, MN, USA
| | - Lynne T Bemis
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth campus, Duluth, MN, USA
| |
Collapse
|
50
|
Wu Z, Stone JD, Štorchová H, Sloan DB. High transcript abundance, RNA editing, and small RNAs in intergenic regions within the massive mitochondrial genome of the angiosperm Silene noctiflora. BMC Genomics 2015; 16:938. [PMID: 26573088 PMCID: PMC4647634 DOI: 10.1186/s12864-015-2155-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Species within the angiosperm genus Silene contain the largest mitochondrial genomes ever identified. The enormity of these genomes (up to 11 Mb in size) appears to be the result of increased non-coding DNA, which represents >99 % of the genome content. These genomes are also fragmented into dozens of circular-mapping chromosomes, some of which contain no identifiable genes, raising questions about if and how these 'empty' chromosomes are maintained by selection. To assess the possibility that they contain novel and unannotated functional elements, we have performed RNA-seq to analyze the mitochondrial transcriptome of Silene noctiflora. RESULTS We identified regions of high transcript abundance in almost every chromosome in the mitochondrial genome including those that lack any annotated genes. In some cases, these transcribed regions exhibited higher expression levels than some core mitochondrial protein-coding genes. We also identified RNA editing sites throughout the genome, including 97 sites that were outside of protein-coding gene sequences and found in pseudogenes, introns, UTRs, and transcribed intergenic regions. Unlike in protein-coding sequences, however, most of these RNA editing sites were only edited at intermediate frequencies. Finally, analysis of mitochondrial small RNAs indicated that most were likely degradation products from longer transcripts, but we did identify candidates for functional small RNAs that mapped to intergenic regions and were not associated with longer RNA transcripts. CONCLUSIONS Our findings demonstrate transcriptional activity in many localized regions within the extensive intergenic sequence content in the S. noctiflora mitochondrial genome, supporting the possibility that the genome contains previously unidentified functional elements. However, transcription by itself is not proof of functional importance, and we discuss evidence that some of the observed transcription and post-transcriptional modifications are non-adaptive. Therefore, further investigations are required to determine whether any of the identified transcribed regions have played a functional role in the proliferation and maintenance of the enormous non-coding regions in Silene mitochondrial genomes.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - James D Stone
- Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Prague, Lysolaje, 16502, Czech Republic
| | - Helena Štorchová
- Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Prague, Lysolaje, 16502, Czech Republic
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|