1
|
Guay KP, Ibba R, Kiappes J, Vasiljević S, Bonì F, De Benedictis M, Zeni I, Le Cornu JD, Hensen M, Chandran AV, Kantsadi AL, Caputo AT, Blanco Capurro JI, Bayo Y, Hill JC, Hudson K, Lia A, Brun J, Withers SG, Martí M, Biasini E, Santino A, De Rosa M, Milani M, Modenutti CP, Hebert DN, Zitzmann N, Roversi P. A quinolin-8-ol sub-millimolar inhibitor of UGGT, the ER glycoprotein folding quality control checkpoint. iScience 2023; 26:107919. [PMID: 37822503 PMCID: PMC10562782 DOI: 10.1016/j.isci.2023.107919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Misfolded glycoprotein recognition and endoplasmic reticulum (ER) retention are mediated by the ER glycoprotein folding quality control (ERQC) checkpoint enzyme, UDP-glucose glycoprotein glucosyltransferase (UGGT). UGGT modulation is a promising strategy for broad-spectrum antivirals, rescue-of-secretion therapy in rare disease caused by responsive mutations in glycoprotein genes, and many cancers, but to date no selective UGGT inhibitors are known. The small molecule 5-[(morpholin-4-yl)methyl]quinolin-8-ol (5M-8OH-Q) binds a CtUGGTGT24 "WY" conserved surface motif conserved across UGGTs but not present in other GT24 family glycosyltransferases. 5M-8OH-Q has a 47 μM binding affinity for CtUGGTGT24in vitro as measured by ligand-enhanced fluorescence. In cellula, 5M-8OH-Q inhibits both human UGGT isoforms at concentrations higher than 750 μM. 5M-8OH-Q binding to CtUGGTGT24 appears to be mutually exclusive to M5-9 glycan binding in an in vitro competition experiment. A medicinal program based on 5M-8OH-Q will yield the next generation of UGGT inhibitors.
Collapse
Affiliation(s)
- Kevin P. Guay
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Roberta Ibba
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23A, 07100 Sassari, Italy
| | - J.L. Kiappes
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Snežana Vasiljević
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Francesco Bonì
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Maria De Benedictis
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Ilaria Zeni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, 38123 Trento, Italy
| | - James D. Le Cornu
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mario Hensen
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Anu V. Chandran
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Anastassia L. Kantsadi
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Alessandro T. Caputo
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Juan I. Blanco Capurro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Yusupha Bayo
- Department of Biosciences, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Johan C. Hill
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Kieran Hudson
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Andrea Lia
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Juliane Brun
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Marcelo Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, 38123 Trento, Italy
- Dulbecco Telethon Institute, University of Trento, Povo, 38123 Trento, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Matteo De Rosa
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Mario Milani
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Carlos P. Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Pietro Roversi
- Institute of Agricultural Biology and Biotechnology, IBBA-CNR Unit of Milano, via Bassini 15, 20133 Milano, Italy
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, LE1 7HR Leicester, UK
| |
Collapse
|
2
|
Anglana C, Rojas M, Girelli CR, Barozzi F, Quiroz-Troncoso J, Alegría-Aravena N, Montefusco A, Durante M, Fanizzi FP, Ramírez-Castillejo C, Di Sansebastiano GP. Methanolic Extracts of D. viscosa Specifically Affect the Cytoskeleton and Exert an Antiproliferative Effect on Human Colorectal Cancer Cell Lines, According to Their Proliferation Rate. Int J Mol Sci 2023; 24:14920. [PMID: 37834370 PMCID: PMC10573359 DOI: 10.3390/ijms241914920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Numerous studies have reported the pharmacological effects exhibited by Dittrichia viscosa, (D. viscosa) including antioxidant, cytotoxic, antiproliferative, and anticancer properties. In our research, our primary objective was to validate a prescreening methodology aimed at identifying the fraction that demonstrates the most potent antiproliferative and anticancer effects. Specifically, we investigated the impact of various extract fractions on the cytoskeleton using a screening method involving transgenic plants. Tumors are inherently heterogeneous, and the components of the cytoskeleton, particularly tubulin, are considered a strategic target for antitumor agents. To take heterogeneity into account, we used different lines of colorectal cancer, specifically one of the most common cancers regardless of gender. In patients with metastasis, the effectiveness of chemotherapy has been limited by severe side effects and by the development of resistance. Additional therapies and antiproliferative molecules are therefore needed. In our study, we used colon-like cell lines characterized by the expression of gastrointestinal differentiation markers (such as the HT-29 cell line) and undifferentiated cell lines showing the positive regulation of epithelial-mesenchymal transition and TGFβ signatures (such as the DLD-1, SW480, and SW620 cell lines). We showed that all three of the D. viscosa extract fractions have an antiproliferative effect but the pre-screening on transgenic plants anticipated that the methanolic fraction may be the most promising, targeting the cytoskeleton specifically and possibly resulting in fewer side effects. Here, we show that the preliminary use of screening in transgenic plants expressing subcellular markers can significantly reduce costs and focus the advanced characterization only on the most promising therapeutic molecules.
Collapse
Affiliation(s)
- Chiara Anglana
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Makarena Rojas
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Fabrizio Barozzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Josefa Quiroz-Troncoso
- Oncology Group IDISSC and Biomedical Technology Centre (CTB), Biotecnology-B.V. Departament ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Nicolás Alegría-Aravena
- Oncology Group IDISSC and Biomedical Technology Centre (CTB), Biotecnology-B.V. Departament ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Deer Production and Biology Group, Regional Development Institute, University of Castilla-La Mancha, 02006 Albacete, Spain
| | - Anna Montefusco
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Miriana Durante
- Institute of Sciences of Food Production (ISPA-CNR), 73100 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Carmen Ramírez-Castillejo
- Oncology Group IDISSC and Biomedical Technology Centre (CTB), Biotecnology-B.V. Departament ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Gian-Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
3
|
Investigation of Drug Efficacy by Screening Bioactive Chemical Effects on Plant Cell Subcellular Architecture. Methods Mol Biol 2020. [PMID: 33270192 DOI: 10.1007/978-1-0716-0954-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
New biologically active compounds are regularly discovered through screening procedures using microorganisms. This very cheap procedure is followed by drug discovery that is usually seen as a highly focused approach, testing new compounds on animals or cell lines. In vivo assays of candidate drugs in mammals are expensive and sometimes not affordable at the preliminary stages of drug development. Early screening approaches in transgenic plants would allow chemotherapeutic drug candidates further selection before their characterization in expensive biological models. The proposed screening approach is based on cell subcellular architecture observations in transgenic plants within a short time of treatment, which is better than observing the effects of compounds on growth.
Collapse
|
4
|
Zluhan-Martínez E, Pérez-Koldenkova V, Ponce-Castañeda MV, Sánchez MDLP, García-Ponce B, Miguel-Hernández S, Álvarez-Buylla ER, Garay-Arroyo A. Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. Int J Mol Sci 2020; 21:E4925. [PMID: 32664691 PMCID: PMC7404004 DOI: 10.3390/ijms21144925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety of organisms. Experimental analysis of pRb's functions in animals and plants has revealed that this protein participates in cell proliferation and differentiation processes. In addition, pRb in animals and its orthologs in plants (RBR), are part of highly conserved protein complexes which suggest the possibility that analogies exist not only between functions carried out by pRb orthologs themselves, but also in the structure and roles of the protein networks where these proteins are involved. Here, we present examples of pRb/RBR participation in cell cycle control, cell differentiation, and in the regulation of epigenetic changes and chromatin remodeling machinery, highlighting the similarities that exist between the composition of such networks in plants and animals.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330. Col. Doctores, Alc. Cuauhtémoc 06720, Mexico;
| | - Martha Verónica Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Sergio Miguel-Hernández
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda, Manuel Stampa 07738, Mexico;
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| |
Collapse
|
5
|
Affiliation(s)
- Ruth Goldstein
- Department of Global and International Studies, University of California, Irvine, USA
| |
Collapse
|
6
|
Mahapatra K, Ghosh AK, De S, Ghosh N, Sadhukhan P, Chatterjee S, Ghosh R, Sil PC, Roy S. Assessment of cytotoxic and genotoxic potentials of a mononuclear Fe(II) Schiff base complex with photocatalytic activity in Trigonella. Biochim Biophys Acta Gen Subj 2019; 1864:129503. [PMID: 31816347 DOI: 10.1016/j.bbagen.2019.129503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND In recent times, coordination complexes of iron in various oxidation states along with variety of ligand systems have been designed and developed for effective treatment of cancer cells without adversely affecting the normal cell and tissues of various organs. METHODS In this study, we have evaluated the mechanism of action of a Fe(II) Schiff base complex in the crop plant Trigonella foenum-graecum L. (Fenugreek) as the screening system by using morphological, cytological, biochemical and molecular approaches. Further functional characterization was performed using MCF-7 cell line and solid tumour model for the assessment of anti-tumour activity of the complex. RESULTS Our results indicate efficiency of the Fe(II) Schiff base complex in the induction of double strand breaks in DNA. Complex treatment clearly induced cytotoxic and genotoxic damage in Trigonella seedlings. The Fe-complex treatment caused cell cycle arrest via the activation of ATM-ATR kinase mediated DNA damage response pathway with the compromised expression of CDK1, CDK2 and CyclinB1 protein in Trigonella seedlings. In cultured MCF-7 cells, the complex induces cytotoxicity and DNA fragmentation through intracellular ROS generation. Fe-complex treatment inhibited tumour growth in solid tumour model with no additional side effects. CONCLUSION The growth inhibitory and cytotoxic effects of the complex result from activation of DNA damage response along with oxidative stress and cell cycle arrest. GENERAL SIGNIFICANCE Overall, our results have provided comprehensive information on the mechanism of action and efficacy of a Fe(II) Schiff base complex in higher eukaryotic genomes and indicated its future implications as potential therapeutic agent.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan 713104, West Bengal, India
| | - Ayon Kanti Ghosh
- Department of Chemistry, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan 713104, West Bengal, India
| | - Sayanti De
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan 713104, West Bengal, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, Centenary Campus, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Pritam Sadhukhan
- Division of Molecular Medicine, Bose Institute, Centenary Campus, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, Centenary Campus, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Rajarshi Ghosh
- Department of Chemistry, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan 713104, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Centenary Campus, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Sujit Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan 713104, West Bengal, India.
| |
Collapse
|
7
|
In Planta Preliminary Screening of ER Glycoprotein Folding Quality Control (ERQC) Modulators. Int J Mol Sci 2018; 19:ijms19072135. [PMID: 30041423 PMCID: PMC6073501 DOI: 10.3390/ijms19072135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
Small molecule modulators of the Endoplasmic Reticulum glycoprotein folding quality control (ERQC) machinery have broad-spectrum antiviral activity against a number of enveloped viruses and have the potential to rescue secretion of misfolded but active glycoproteins in rare diseases. In vivo assays of candidate inhibitors in mammals are expensive and cannot be afforded at the preliminary stages of drug development programs. The strong conservation of the ERQC machinery across eukaryotes makes transgenic plants an attractive system for low-cost, easy and fast proof-of-concept screening of candidate ERQC inhibitors. The Arabidopsis thaliana immune response is mediated by glycoproteins, the folding of which is controlled by ERQC. We have used the plant response to bacterial peptides as a means of assaying an ERQC inhibitor in vivo. We show that the treatment of the plant with the iminosugar NB-DNJ, which is a known ER α-glucosidase inhibitor in mammals, influences the immune response of the plant to the bacterial peptide elf18 but not to the flagellin-derived flg22 peptide. In the NB-DNJ-treated plant, the responses to elf18 and flg22 treatments closely follow the ones observed for the ER α-glucosidase II impaired plant, At psl5-1. We propose Arabidopsis thaliana as a promising platform for the development of low-cost proof-of-concept in vivo ERQC modulation.
Collapse
|
8
|
Barozzi F, Di Sansebastiano GP, Sabella E, Aprile A, Piro G, De Bellis L, Nutricati E. Glutathione S-transferase related detoxification processes are correlated with receptor-mediated vacuolar sorting mechanisms. PLANT CELL REPORTS 2017; 36:1361-1373. [PMID: 28577236 DOI: 10.1007/s00299-017-2159-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/25/2017] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE Triticum durum Glutathione S-transferase Z1 is specifically responsive to glyphosate. Its expression influences the receptor-mediated vacuolar sorting mechanisms involved in tolerance mechanisms. A zeta subfamily glutathione S-transferase gene from Triticum durum (cv Cappelli) (TdGSTZ1) was characterized as part of a complex detoxification mechanism. The effect of different abiotic stresses on TdGSTZ1 revealed that the gene is unexpectedly responsive to glyphosate (GLY) herbicide despite it should not be part of tolerance mechanisms. Its role in the non-target-site mechanism of GLY resistance was then investigated. To analyze the GLY and the TdGSTZ1 overexpression effects on vacuolar sorting mechanisms, we performed transient transformation experiments in Nicotiana tabacum protoplasts using two vacuolar markers, AleuGFPgl133 and GFPgl133Chi, labeling the Sar1 dependent or independent sorting, respectively. We observed that the adaptive reaction of tobacco protoplasts vacuolar system to the treatment with GLY could be partially mimicked by the overexpression of TdGSTZ1 gene. To confirm the influence of GLY on the two vacuolar markers accumulation and the potential involvement of the secretion pathway activity in detoxification events, Arabidopsis thaliana transgenic plants overexpressing the non-glycosylated versions of the two markers were analyzed. The results suggested that GLY treatment specifically altered different vacuolar sorting characteristics, suggesting an involvement of the receptor-mediated AleuGFP sorting mechanism in GLY resistance. Finally, the expression analysis of selected genes confirmed that the non-target-site GLY resistance mechanisms are related to vacuolar sorting.
Collapse
Affiliation(s)
- Fabrizio Barozzi
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. le Lecce-Monteroni, 73100, Lecce, Italy
| | - Gian-Pietro Di Sansebastiano
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. le Lecce-Monteroni, 73100, Lecce, Italy
| | - Erika Sabella
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. le Lecce-Monteroni, 73100, Lecce, Italy
| | - Alessio Aprile
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. le Lecce-Monteroni, 73100, Lecce, Italy
| | - Gabriella Piro
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. le Lecce-Monteroni, 73100, Lecce, Italy
| | - Luigi De Bellis
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. le Lecce-Monteroni, 73100, Lecce, Italy
| | - Eliana Nutricati
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. le Lecce-Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
9
|
Papadia P, Barozzi F, Hoeschele JD, Piro G, Margiotta N, Di Sansebastiano GP. Cisplatin, Oxaliplatin, and Kiteplatin Subcellular Effects Compared in a Plant Model. Int J Mol Sci 2017; 18:ijms18020306. [PMID: 28146116 PMCID: PMC5343842 DOI: 10.3390/ijms18020306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/25/2017] [Indexed: 01/09/2023] Open
Abstract
The immediate visual comparison of platinum chemotherapeutics’ effects in eukaryotic cells using accessible plant models of transgenic Arabidopsis thaliana is reported. The leading anticancer drug cisplatin, a third generation drug used for colon cancer, oxaliplatin and kiteplatin, promising Pt-based anticancer drugs effective against resistant lines, were administered to transgenic A. thaliana plants monitoring their effects on cells from different tissues. The transgenic plants’ cell cytoskeletons were labelled by the green fluorescent protein (GFP)-tagged microtubule-protein TUA6 (TUA6-GFP), while the vacuolar organization was evidenced by two soluble chimerical GFPs (GFPChi and AleuGFP) and one transmembrane GFP-tagged tonoplast intrinsic protein 1-1 (TIP1.1-GFP). The three drugs showed easily recognizable effects on plant subcellular organization, thereby providing evidence for a differentiated drug targeting. Genetically modified A. thaliana are confirmed as a possible rapid and low-cost screening tool for better understanding the mechanism of action of human anticancer drugs.
Collapse
Affiliation(s)
- Paride Papadia
- Department of Biotechnology and Environmental Sciences, University of Salento, via Monteroni-Centro Ecotekne, 73100 Lecce, Italy.
| | - Fabrizio Barozzi
- Department of Biotechnology and Environmental Sciences, University of Salento, via Monteroni-Centro Ecotekne, 73100 Lecce, Italy.
| | - James D Hoeschele
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI 48197, USA.
| | - Gabriella Piro
- Department of Biotechnology and Environmental Sciences, University of Salento, via Monteroni-Centro Ecotekne, 73100 Lecce, Italy.
| | - Nicola Margiotta
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.
| | - Gian-Pietro Di Sansebastiano
- Department of Biotechnology and Environmental Sciences, University of Salento, via Monteroni-Centro Ecotekne, 73100 Lecce, Italy.
| |
Collapse
|