1
|
Fadaly WAA, Nemr MTM, Zidan TH, Mohamed FEA, Abdelhakeem MM, Abu Jayab NN, Omar HA, Abdellatif KRA. New 1,2,3-triazole/1,2,4-triazole hybrids linked to oxime moiety as nitric oxide donor selective COX-2, aromatase, B-RAF V600E and EGFR inhibitors celecoxib analogs: design, synthesis, anti-inflammatory/anti-proliferative activities, apoptosis and molecular modeling study. J Enzyme Inhib Med Chem 2023; 38:2290461. [PMID: 38061801 PMCID: PMC11003496 DOI: 10.1080/14756366.2023.2290461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A new series of bis-triazole 19a-l was synthesised for the purpose of being hybrid molecules with both anti-inflammatory and anti-cancer activities and assessed for cell cycle arrest, NO release. Compounds 19c, 19f, 19h, 19 l exhibited COX-2 selectivity indexes in the range of 18.48 to 49.38 compared to celecoxib S.I. = 21.10), inhibit MCF-7 with IC50 = 9-16 μM compared to tamoxifen (IC50 = 27.9 μM). and showed good inhibitory activity against HEP-3B with IC50 = 4.5-14 μM compared to sorafenib (IC50 = 3.5 μM) (HEP-3B). Moreover, derivatives 19e, 19j, 19k, 19 l inhibit HCT-116 with IC50 = 5.3-13.7 μM compared to 5-FU with IC50 = 4.8 μM (HCT-116). Compounds 19c, 19f, 19h, 19 l showed excellent inhibitory activity against A549 with IC50 = 3-4.5 μM compared to 5-FU with IC50 = 6 μM (A549). Compounds 19c, 19f, 19h, 19 l inhibit aromatase (IC50 of 22.40, 23.20, 22.70, 30.30 μM), EGFR (IC50 of 0.112, 0.205, 0.169 and 0.066 μM) and B-RAFV600E (IC50 of 0.09, 0.06, 0.07 and 0.05 μM).
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Taha H Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E A Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Abdelhakeem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nour N Abu Jayab
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Pharmacology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Khaled R A Abdellatif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Pharmaceutical Sciences Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Zhu X, Wang L, Zhao T, Jiang Q. Traditional uses, phytochemistry, pharmacology, and toxicity of Eriobotrya japonica leaves: A summary. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115566. [PMID: 35870687 DOI: 10.1016/j.jep.2022.115566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eriobotrya japonica Lindl. has been included in "The Plant List" (http://www.theplantlist.org) and is the most widely researched species in its genus. E. japonica is a subtropical evergreen fruit tree belonging to the Rosaceae family. Its dried leaves are widely used in traditional Chinese herbal medicine to treat coughing caused by pulmonary inflammation, dyspnea due to asthma and cough, nausea caused by stomach disorders, restlessness, and thirst. Furthermore, it is used to treat stomach ache, ulcers, chronic bronchitis, cancer, and diabetes mellitus in Japanese folk medicine. However, no systematic reports on E. japonica leaves have been published before. AIM OF THE STUDY This review summarizes the available information on the traditional uses, phytochemistry, pharmacology, toxicity, and quality control of various extracts and phytoconstituents of E. japonica leaves. MATERIALS AND METHODS Relevant publications between 1931 and 2022 were considered. Chinese and English studies on E. japonica leaves were collected from databases, including PubMed, Web of Science, Elsevier, ACS Publications, Springer, and CNKI (Chinese). The traditional uses, phytochemistry, pharmacology, toxicity, and quality control of E. japonica leaves were reviewed. RESULTS Briefly, 164 compounds, including triterpenes, flavonoids, sesquiterpene glycosides, megastigmane derivatives, phenylpropanoids, and organic acids, have been identified from E. japonica leaves, in addition to 169 volatile oils. More than half of these compounds have not yet been reported to have pharmacological activities. Triterpenes and flavonoids are the most important bioactive compounds responsible for pharmacological activities, such as antidiabetic, anti-inflammatory, and antitumor activities. Other beneficial physiological effects such as antioxidant, hepatoprotective, bronchodilatory, antitussive, and expectorant effects and tracheal smooth muscle relaxation, protection against myocardial ischemia injury, and improved cognitive activities have also been reported. High doses of E. japonica leaf extracts have been used in laboratory animals, and no side effects or toxicity-symptoms have been observed. CONCLUSIONS The pharmacological activities of E. japonica leaves support their use in traditional Chinese herbal medicine. However, several aspects, such as the bioavailability, pharmacodynamics, pharmacokinetics, mechanism of action, and structure-activity relationships of the pure compounds isolated from E. japonica leaves, have not been studied yet and warrant further studies.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Lin Wang
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Tie Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
3
|
Xiong T, Zheng X, Zhang K, Wu H, Dong Y, Zhou F, Cheng B, Li L, Xu W, Su J, Huang J, Jiang Z, Li B, Zhang B, Lv G, Chen S. Ganluyin ameliorates DSS-induced ulcerative colitis by inhibiting the enteric-origin LPS/TLR4/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115001. [PMID: 35085745 DOI: 10.1016/j.jep.2022.115001] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD), that is associated with a significantly increased risk of colon cancer. As a classic traditional Chinese medicine, Ganluyin (GLY) has a long history as an anti-inflammatory medication, but its impacts on UC has not been established. AIM OF THE STUDY This study aims to evaluate the protective effect and mechanism of GLY on a pathway involving enteric-origin lipopolysaccharide (LPS), toll-like receptor (TLR)4, and NF-κB in mice with dextran sulfate sodium (DSS)-induced UC. MATERIALS AND METHODS After three weeks of intragastric administration of GLY, a UC model was induced in mice by administration of 4% DSS in drinking water for one week. The disease activity index (DAI) was measured, and histological staining was used to detect histopathological changes of colon. LPS content of the serum was measured by ELISA, and the expression of tight junction proteins and proteins related to TLR4/NF-κB pathway in colon were analyzed by immunohistochemistry or Western Blotting. The intestinal flora was analyzed by 16S rRNA sequencing. RESULTS GLY improved the histological pathological changes of DSS-induced UC, as assessed by DAI, colonic mucosal damage, inflammatory cell infiltration, and goblet cell and mucus reduction. GLY also protected the intestinal mucosal barrier by increasing the expression of the tight junction proteins, occludin, claudin-1, and ZO-1 and by reducing the serum LPS content and decreasing the expression of TLR4, MyD88, NF-κB, IL-6, IL-1β, and TNF-α proteins in colon. Analyses of the intestinal flora showed that GLY restored the homeostasis of the intestinal flora through increases in the abundance of Firmicutes and decreases in the abundance of Proteobacteria and Bacteroidetes, which is associated with the production of LPS. CONCLUSION GLY might exert an anti-UC effect by improving the colonic mucosal barrier and inhibiting the enteric-origin LPS/TLR4/NF-κB inflammatory pathway, and restoring the homeostasis of the intestinal flora in UC mice. These discoveries lay a strong foundation for GLY as a UC treatment.
Collapse
Affiliation(s)
- Taoxiu Xiong
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xiang Zheng
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Ke Zhang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Hansong Wu
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Yingjie Dong
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Fuchen Zhou
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Bingbing Cheng
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Linzi Li
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Wanfeng Xu
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Jie Su
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Jiahui Huang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Zetian Jiang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Bo Li
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Beibei Zhang
- Center for Food Evaluation, State Administration for Market Regulation, Beijing, 100070, PR China.
| | - Guiyuan Lv
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Suhong Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China.
| |
Collapse
|
4
|
Noor F, Tahir ul Qamar M, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network Pharmacology Approach for Medicinal Plants: Review and Assessment. Pharmaceuticals (Basel) 2022; 15:572. [PMID: 35631398 PMCID: PMC9143318 DOI: 10.3390/ph15050572] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Natural products have played a critical role in medicine due to their ability to bind and modulate cellular targets involved in disease. Medicinal plants hold a variety of bioactive scaffolds for the treatment of multiple disorders. The less adverse effects, affordability, and easy accessibility highlight their potential in traditional remedies. Identifying pharmacological targets from active ingredients of medicinal plants has become a hot topic for biomedical research to generate innovative therapies. By developing an unprecedented opportunity for the systematic investigation of traditional medicines, network pharmacology is evolving as a systematic paradigm and becoming a frontier research field of drug discovery and development. The advancement of network pharmacology has opened up new avenues for understanding the complex bioactive components found in various medicinal plants. This study is attributed to a comprehensive summary of network pharmacology based on current research, highlighting various active ingredients, related techniques/tools/databases, and drug discovery and development applications. Moreover, this study would serve as a protocol for discovering novel compounds to explore the full range of biological potential of traditionally used plants. We have attempted to cover this vast topic in the review form. We hope it will serve as a significant pioneer for researchers working with medicinal plants by employing network pharmacology approaches.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| |
Collapse
|
5
|
Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022; 27:molecules27092901. [PMID: 35566252 PMCID: PMC9100260 DOI: 10.3390/molecules27092901] [Citation(s) in RCA: 199] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
Hydroxylated polyphenols, also called flavonoids, are richly present in vegetables, fruits, cereals, nuts, herbs, seeds, stems, and flowers of numerous plants. They possess numerous medicinal properties such as antioxidant, anti-cancer, anti-microbial, neuroprotective, and anti-inflammation. Studies show that flavonoids activate antioxidant pathways that render an anti-inflammatory effect. They inhibit the secretions of enzymes such as lysozymes and β-glucuronidase and inhibit the secretion of arachidonic acid, which reduces inflammatory reactions. Flavonoids such as quercetin, genistein, apigenin, kaempferol, and epigallocatechin 3-gallate modulate the expression and activation of a cytokine such as interleukin-1beta (IL-1β), Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8); regulate the gene expression of many pro-inflammatory molecules such s nuclear factor kappa-light chain enhancer of activated B cells (NF-κB), activator protein-1 (AP-1), intercellular adhesion molecule-1 (ICAM), vascular cell adhesion molecule-1 (VCAM), and E-selectins; and also inhibits inducible nitric oxide (NO) synthase, cyclooxygenase-2, and lipoxygenase, which are pro-inflammatory enzymes. Understanding the anti-inflammatory action of flavonoids provides better treatment options, including coronavirus disease 2019 (COVID-19)-induced inflammation, inflammatory bowel disease, obstructive pulmonary disorder, arthritis, Alzheimer’s disease, cardiovascular disease, atherosclerosis, and cancer. This review highlights the sources, biochemical activities, and role of flavonoids in enhancing human health.
Collapse
|
6
|
Anticancer drug discovery from Iranian Chrysanthemum cultivars through system pharmacology exploration and experimental validation. Sci Rep 2021; 11:11767. [PMID: 34083561 PMCID: PMC8175602 DOI: 10.1038/s41598-021-91010-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/20/2021] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is the most common carcinoma in women, and natural products would be effective preventing some side effects of cancer treatment. In the present study, cytotoxic activities of different Iranian Chrysanthemum morifolium cultivars were evaluated in human breast cancer cell lines (MCF-7) and human lymphocytes. A systems pharmacology approach was employed between major compounds of these cultivars (chlorogenic acid, luteolin, quercetin, rutin, ferulic acid, and apigenin) and known breast cancer drugs (tucatinib, methotrexate, tamoxifen, and mitomycin) with 22 breast cancer-related targets to analyze the mechanism through which Chrysanthemum cultivars act on breast cancer. Target validation was performed by the molecular docking method. The results indicated that Chrysanthemum extracts inhibited the proliferation of MCF7 cells in a dose- and cultivar-dependent manner. In all studied cultivars, the most effective extract concentration with the lowest viability of MCF-7 cells, was as much as 312 µg ml-1. Also, higher concentrations of the extracts (> 1000 µg ml-1) reduced the lymphocyte cell viability, demonstrating that these doses were toxic. The gene ontology analysis revealed the therapeutic effects of Chrysanthemum's active compounds on breast cancer by regulating the biological processes of their protein targets. Moreover, it has been documented that rutin, owing to its anticancer effects and several other health benefits, is a promising multi-targeted herbal ingredient. Finally, the present study compared different Iranian Chrysanthemum cultivars to provide new insights into useful pharmaceutical applications.
Collapse
|
7
|
Zhang J, Chen Z, Zhang L, Zhao X, Liu Z, Zhou W. A systems-based analysis to explore the multiple mechanisms of Shan Zha for treating human diseases. Food Funct 2021; 12:1176-1191. [PMID: 33432314 DOI: 10.1039/d0fo02433c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Shan Zha has garnered increasing attention in the field of functional foods and medicines due to its widely reported healing effects. However, the potential mechanisms of Shan Zha for human health benefits have not been fully interpreted. Therefore, in the current study, a systems-based method that integrates ADME evaluation, target fishing, gene ontology enrichment analysis, network pharmacology, and pathway analysis is proposed to clarify the underlying pharmacological mechanisms of Shan Zha. As a result, 45 active components of Shan Zha that interacted with 161 protein targets were screened and identified. Moreover, gene ontology enrichment, network and pathway analysis indicated that Shan Zha is beneficial for the treatment of cardiovascular system diseases, digestive system diseases, immune system diseases, inflammatory diseases, cancer, and other diseases through multiple mechanisms. Our study not only proposed an integrated method to comprehensively elucidate the complicated mechanisms of Shan Zha for the treatment of various disorders at the system level, but also provided a reference approach for the mechanistic research of other functional foods.
Collapse
Affiliation(s)
- Jingxiao Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin 999077, Hong Kong Special Administrative Region
| | - Lilei Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Xiaoxiao Zhao
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, China
| | - Wei Zhou
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China. and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Wang Y, Zhou Z, Han M, Zhai J, Han N, Liu Z, Yin J. The anti-inflammatory components from the effective fraction of Syringae Folium (ESF) and its mechanism investigation based on network pharmacology. Bioorg Chem 2020; 99:103764. [PMID: 32222616 DOI: 10.1016/j.bioorg.2020.103764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/14/2020] [Accepted: 03/14/2020] [Indexed: 12/26/2022]
Abstract
The Syringae Folium (SF), noted in Chinese Pharmacopeia, has been used in herbal medicines to treat inflammatory diseases and its water extract of SF, Yanlixiao (YLX) which is commercial preparation traditional Chinese medicine has been widely used clinically against intestinal inflammations. To explore its therapeutic material basis of SF, an effective fraction from SF (ESF) was found out by bio-guided isolation and enrichment of active components. In this research, ESF was identified as the anti-inflammatory fraction by comparing the survival rate of LPS-induced inflammation mouse model. The in vivo anti-inflammation efficacy of ESF was further tested by mouse ear edema model. Fifteen main components of ESF were separated from ESF after identification by UPLC-TOF-MS, and their inhibition on lipopolysaccharide (LPS)-induced nitric oxide (NO) production was tested along with ESF in RAW 264.7 macrophages cell line. Aiming to search its anti-inflammation mechanisms, the network pharmacology study was performed based on the main active components. As results, ESF was found with better efficacy in inhibiting ear swelling (82.2 mg/kg, 43.7%) compared with YLX (293.3 mg/kg, 37.9%). Meanwhile, the main ESF components, luteolin and quercetin were found with significant efficacy in reducing NO production compared with aminoguanidine (positive control) (81.3%, 78.7% and 76.3%, respectively, 50 μg/ml). Analysis of network pharmacology also suggested that luteolin and quercetin could be the key components for the anti-inflammation activity of ESF, and NFKB1, RELA, AKT1, TNF and PIK3CG were identified as key targets and MAPK, NF-κB, TCR and TLRs signaling pathways could be involved in the anti-inflammation action of ESF. The results attained in this study indicated that ESF had the potential to be developed as an anti-inflammation agent applied in clinic.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Databases, Pharmaceutical
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Edema/drug therapy
- Edema/metabolism
- Inflammation/drug therapy
- Inflammation/metabolism
- Lipopolysaccharides/antagonists & inhibitors
- Lipopolysaccharides/pharmacology
- Medicine, Chinese Traditional
- Mice
- Molecular Structure
- Nitric Oxide/antagonists & inhibitors
- Nitric Oxide/biosynthesis
- RAW 264.7 Cells
- Structure-Activity Relationship
- Syringa/chemistry
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhengyuan Zhou
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingshu Han
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianxiu Zhai
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Han
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhihui Liu
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun Yin
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
9
|
Kuraoka-Oliveira ÂM, Radai JAS, Leitão MM, Lima Cardoso CA, Silva-Filho SE, Leite Kassuya CA. Anti-inflammatory and anti-arthritic activity in extract from the leaves of Eriobotrya japonica. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112418. [PMID: 31770567 DOI: 10.1016/j.jep.2019.112418] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Eriobotrya japonica (EJ) is a Chinese medicinal plant that is currently grown in Brazil. E. japonica leaves infusion is traditionally used in the treatment of inflammation; however, there are few scientific studies showing the effects of these properties on joint articular and persistent experimental inflammation. AIM OF THE STUDY The present research had objective investigation of the effect of infusion obtained from leaves of E. japonica (EJLE) on acute and persistent experimental articular inflammation. MATERIALS AND METHODS The Swiss mice were treated orally with EJLE and analyzed for acute pleural inflammation (30, 100, and 300 mg/kg), paw edema induced by carrageenan (100 mg/kg), acute knee inflammation induced by zymosan (100 mg/kg), and persistent inflammation induced by Complete Freund's Adjuvant (CFA) (30 and 100 mg/kg). Mechanical hyperalgesia, cold and edema were analyzed. RESULTS The chromatographic analysis of EJLE revealed the presence of corosolic acid, oleanolic acid, and ursolic acid. EJLE presented anti-inflammatory activity in the pleurisy model, inhibiting leukocyte migration, protein extravasation and nitric oxide production. In the articular inflammation model, EJLE reduced the number of leukocytes in the joint cavity, paw edema and hyperalgesia (4 h after induction). In the persistent inflammation model induced by CFA, the extract reduced paw edema after 11 days of mechanical and cold hyperalgesia on day 6. CONCLUSIONS The EJLE has anti-inflammatory and antihyperalgesic potential in models of acute and persistent experimental articular inflammation, making this infusion a new possibility for complementary treating acute or chronic articular inflammatory diseases.
Collapse
Affiliation(s)
- Ângela Midori Kuraoka-Oliveira
- School of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil; School of Health Sciences, University Center of Grande Dourados (UNIGRAN), Dourados, MS, Brazil.
| | | | - Maicon Matos Leitão
- School of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil; School of Health Sciences, University Center of Grande Dourados (UNIGRAN), Dourados, MS, Brazil.
| | - Claudia Andrea Lima Cardoso
- Center of Studies on Natural Resource, Mato Grosso do Sul State University (UEMS) - Dourados, Dourados, MS, Brazil.
| | - Saulo Euclides Silva-Filho
- School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil.
| | - Cândida Aparecida Leite Kassuya
- School of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil; University Hospital (HU-UFGD), Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil.
| |
Collapse
|
10
|
Huang J, Guo W, Cheung F, Tan HY, Wang N, Feng Y. Integrating Network Pharmacology and Experimental Models to Investigate the Efficacy of Coptidis and Scutellaria Containing Huanglian Jiedu Decoction on Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:161-182. [PMID: 31964157 DOI: 10.1142/s0192415x20500093] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Unlike Western medicines with single-target, the traditional Chinese medicines (TCM) always exhibit diverse curative effects against multiple diseases through its "multi-components" and "multi-targets" manifestations. However, discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM remain to be challenged. In the current study, we, for the first time, applied an integrated strategy by combining network pharmacology with experimental evaluation, for exploration and demonstration of the therapeutic potentials and the underlying possible mechanisms of a classic TCM formula, Huanglian Jiedu decoction (HLJDD). First, the herb-compound, compound-protein, protein-pathway, and gene-disease networks were constructed to predict the major therapeutic diseases of HLJDD and explore the underlying molecular mechanisms. Network pharmacology analysis showed the top one predicted disease of HLJDD treatment was cancer, especially hepatocellular carcinoma (HCC) and inflammation-related genes played an important role in the treatment of HLJDD on cancer. Next, based on the prediction by network pharmacology analysis, both in vitro HCC cell and in vivo orthotopic HCC implantation mouse models were established to validate the curative role of HLJDD. HLJDD exerted its antitumor activity on HCC in vitro, as demonstrated by impaired cell proliferation and colony formation abilities, induced apoptosis and cell cycle arrest, as well as inhibited migratory and invasive properties of HCC cells. The orthotopic HCC implantation mouse model further demonstrated the remarkable antitumour effects of HLJDD on HCC in vivo. In conclusion, our study demonstrated the effectiveness of integrating network pharmacology with experimental study for discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM.
Collapse
Affiliation(s)
- Jihan Huang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Guo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fan Cheung
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Baldelli G, De Santi M, Fraternale D, Brandi G, Fanelli M, Schiavano GF. Chemopreventive Potential of Apple Pulp Callus Against Colorectal Cancer Cell Proliferation and Tumorigenesis. J Med Food 2019; 22:614-622. [PMID: 31058564 DOI: 10.1089/jmf.2018.0188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study focused on the evaluation of the chemopreventive potential of tissue in vitro culture of the "Mela Rosa Marchigiana" apple (MRM callus) that allows the amplification of secondary metabolites. The MRM pulp and MRM callus chemopreventive potential was evaluated in terms of antiproliferative activity, inhibition of tumorigenesis in soft agar cultures, cell cycle and western blotting analyses in CaCo2 and LoVo colon cancer cell lines and in JB6 promotion-sensitive (JB6 P+) cells. MRM callus induced a strong concentration-dependent inhibition of colon cancer cell proliferation and suppressed 12-o-tetra-decanoyl-phorbol-13-acetate-induced tumorigenesis of JB6 P+ cells in soft agar cultures. MRM callus inhibited the phosphorylation of JNK, p38, and eIF2alpha. Our data indicate that the MRM callus exerts a good antiproliferative and antitumorigenic potential through the MAP kinase inhibition and could provide natural compounds with chemopreventive properties.
Collapse
Affiliation(s)
- Giulia Baldelli
- 1 Department of Biomolecular Sciences, Hygiene Unit, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauro De Santi
- 1 Department of Biomolecular Sciences, Hygiene Unit, University of Urbino Carlo Bo, Urbino, Italy
| | - Daniele Fraternale
- 2 Department of Biomolecular Sciences, Plant Biology Unit, University of Urbino Carlo Bo, Urbino, Italy
| | - Giorgio Brandi
- 1 Department of Biomolecular Sciences, Hygiene Unit, University of Urbino Carlo Bo, Urbino, Italy
| | - Mirco Fanelli
- 3 Department of Biomolecular Sciences, Biotechnology Unit, University of Urbino Carlo Bo, Fano, Italy
| | | |
Collapse
|
12
|
Kim JY, Shim SH. Medicinal Herbs Effective Against Atherosclerosis: Classification According to Mechanism of Action. Biomol Ther (Seoul) 2019; 27:254-264. [PMID: 30917628 PMCID: PMC6513182 DOI: 10.4062/biomolther.2018.231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is a widespread and chronic progressive arterial disease that has been regarded as one of the major causes of death worldwide. It is caused by the deposition of cholesterol, fats, and other substances in the tunica intima which leads to narrowing of the blood vessels, loss of elasticity, and arterial wall thickening, thus causing difficulty in blood flow. Natural products have been used as one of the most important strategies for the treatment and prevention of cardiovascular diseases for a long time. In recent decades, as interests in natural products including medicinal herbs have increased, many studies regarding natural compounds that are effective against atherosclerosis have been conducted. The purpose of this review is to provide a brief over-view of the natural compounds that have been used for the treatment and prevention of atherosclerosis, and their mechanisms of action based on recent research.
Collapse
Affiliation(s)
- Jae-Yong Kim
- Colleage of Pharmacy, Duksung Woman's University, Seoul 01369, Republic of Korea
| | - Sang Hee Shim
- Colleage of Pharmacy, Duksung Woman's University, Seoul 01369, Republic of Korea
| |
Collapse
|
13
|
Zhao M, Chen Y, Wang C, Xiao W, Chen S, Zhang S, Yang L, Li Y. Systems Pharmacology Dissection of Multi-Scale Mechanisms of Action of Huo-Xiang-Zheng-Qi Formula for the Treatment of Gastrointestinal Diseases. Front Pharmacol 2019; 9:1448. [PMID: 30687082 PMCID: PMC6336928 DOI: 10.3389/fphar.2018.01448] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Multi-components Traditional Chinese Medicine (TCM) treats various complex diseases (multi-etiologies and multi-symptoms) via herbs interactions to exert curative efficacy with less adverse effects. However, the ancient Chinese compatibility theory of herbs formula still remains ambiguous. Presently, this combination principle is dissected through a systems pharmacology study on the mechanism of action of a representative TCM formula, Huo-xiang-zheng-qi (HXZQ) prescription, on the treatment of functional dyspepsia (FD), a chronic or recurrent clinical disorder of digestive system, as typical gastrointestinal (GI) diseases which burden human physical and mental health heavily and widely. In approach, a systems pharmacology platform which incorporates the pharmacokinetic and pharmaco-dynamics evaluation, target fishing and network pharmacological analyses is employed. As a result, 132 chemicals and 48 proteins are identified as active compounds and FD-related targets, and the mechanism of HXZQ formula for the treatment of GI diseases is based on its three function modules of anti-inflammation, immune protection and gastrointestinal motility regulation mainly through four, i.e., PIK-AKT, JAK-STAT, Toll-like as well as Calcium signaling pathways. In addition, HXZQ formula conforms to the ancient compatibility rule of "Jun-Chen-Zuo-Shi" due to the different, while cooperative roles that herbs possess, specifically, the direct FD curative effects of GHX (serving as Jun drug), the anti-bacterial efficacy and major accompanying symptoms-reliving bioactivities of ZS and BZ (as Chen), the detoxication and ADME regulation capacities of GC (as Shi), as well as the minor symptoms-treating efficacy of the rest 7 herbs (as Zuo). This work not only provides an insight of the therapeutic mechanism of TCMs on treating GI diseases from a multi-scale perspective, but also may offer an efficient way for drug discovery and development from herbal medicine as complementary drugs.
Collapse
Affiliation(s)
- Miaoqing Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, China.,Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Shihezi, China
| | - Yangyang Chen
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Shusheng Chen
- Systems Biology Laboratory, Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL, United States
| | - Shuwei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, China.,Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Shihezi, China
| |
Collapse
|
14
|
Effect of compound sophorae decoction on dextran sodium sulfate (DSS)-induced colitis in mice by regulating Th17/Treg cell balance. Biomed Pharmacother 2019; 109:2396-2408. [DOI: 10.1016/j.biopha.2018.11.087] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/30/2018] [Accepted: 11/25/2018] [Indexed: 12/20/2022] Open
|
15
|
Zou J, Lin J, Li C, Zhao R, Fan L, Yu J, Shao J. Ursolic Acid in Cancer Treatment and Metastatic Chemoprevention: From Synthesized Derivatives to Nanoformulations in Preclinical Studies. Curr Cancer Drug Targets 2019; 19:245-256. [PMID: 30332961 DOI: 10.2174/1568009618666181016145940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/15/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cancer metastasis has emerged as a major public health threat that causes majority of cancer fatalities. Traditional chemotherapeutics have been effective in the past but suffer from low therapeutic efficiency and harmful side-effects. Recently, it has been reported ursolic acid (UA), one of the naturally abundant pentacyclic triterpenes, possesses a wide range of biological activities including anti-inflammatory, anti-atherosclerotic, and anti-cancer properties. More importantly, UA has the features of low toxicity, liver protection and the potential of anti-cancer metastasis. OBJECTIVE This article aimed at reviewing the great potential of UA used as a candidate drug in the field of cancer therapy relating to suppression of tumor initiation, progression and metastasis. METHODS Selective searches were conducted in Pubmed, Google Scholar and Web of Science using the keywords and subheadings from database inception to December 2017. Systemic reviews are summarized here. RESULTS UA has exhibited chemopreventive and therapeutic effects of cancer mainly through inducing apoptosis, inhibiting cell proliferation, preventing tumor angiogenesis and metastatic. UA nanoformulations could enhance the solubility and bioavailability of UA as well as exhibit better inhibitory effect on tumor growth and metastasis. CONCLUSION The information presented in this article can provide useful references for further studies on making UA a promising anti-cancer drug, especially as a prophylactic metastatic agent for clinical applications.
Collapse
Affiliation(s)
- Junjie Zou
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Juanfang Lin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Chao Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ruirui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Lulu Fan
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jesse Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
16
|
Yao H, Huang X, Xie Y, Huang X, Ruan Y, Lin X, Huang L, Shi P. Identification of Pharmacokinetic Markers for Guanxin Danshen Drop Pills in Rats by Combination of Pharmacokinetics, Systems Pharmacology, and Pharmacodynamic Assays. Front Pharmacol 2018; 9:1493. [PMID: 30622470 PMCID: PMC6308302 DOI: 10.3389/fphar.2018.01493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
This paper reported a feasibility study strategy of identifying pharmacokinetic (PK) markers for a cardiovascular herbal medicine, Guanxin Danshen drop pill (GDDP). First, quantification analysis revealed the constituent composition in the preparation by high-performance liquid chromatography (HPLC). Subsequently, physiochemical property calculation predicted the solubility and intestinal permeability of the constituents in the preparation. Furthermore, HPLC-MS analysis ascertained the absorbable ingredients and their PK properties in rat plasma. The main effective substances from the ingredients absorbed into blood and their cardiovascular effects were also predicted by systems pharmacology study, and were further confirmed by in vivo protective effects on isoprenaline-induced myocardial injury in mice. Finally, the ingredients with high content, representative structure feature, favorable PK properties, high relevant degree to myocardial ischemia (MI) issues, and validated therapeutic effects were considered as the PK markers for the preparation. Ginsenosides Rg1, Rb1, and tanshinone (TS) IIA were identified originally as PK markers for representing PK properties of GDDP. In addition, integrated PK studies were carried out according to previous reports, viz. drug concentration sum method and the AUC weighting method, to understand the in vivo process of GDDP comprehensively. The present study maybe provide a reference approach to identify PK markers for cardiovascular herbal medicines.
Collapse
Affiliation(s)
- Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiaomei Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yunjiao Xie
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xuliang Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yijun Ruan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, Bee Science College, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Song Z, Yin F, Xiang B, Lan B, Cheng S. Systems Pharmacological Approach to Investigate the Mechanism of Acori Tatarinowii Rhizoma for Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:5194016. [PMID: 30050590 PMCID: PMC6040288 DOI: 10.1155/2018/5194016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
In traditional Chinese medicine (TCM), Acori Tatarinowii Rhizoma (ATR) is widely used to treat memory and cognition dysfunction. This study aimed to confirm evidence regarding the potential therapeutic effect of ATR on Alzheimer's disease (AD) using a system network level based in silico approach. Study results showed that the compounds in ATR are highly connected to AD-related signaling pathways, biological processes, and organs. These findings were confirmed by compound-target network, target-organ location network, gene ontology analysis, and KEGG pathway enrichment analysis. Most compounds in ATR have been reported to have antifibrillar amyloid plaques, anti-tau phosphorylation, and anti-inflammatory effects. Our results indicated that compounds in ATR interact with multiple targets in a synergetic way. Furthermore, the mRNA expressions of genes targeted by ATR are elevated significantly in heart, brain, and liver. Our results suggest that the anti-inflammatory and immune system enhancing effects of ATR might contribute to its major therapeutic effects on Alzheimer's disease.
Collapse
Affiliation(s)
- Zhenyan Song
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Fang Yin
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Biao Xiang
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Bin Lan
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Shaowu Cheng
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
18
|
Exploring the Pharmacological Mechanism of Danzhi Xiaoyao Powder on ER-Positive Breast Cancer by a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5059743. [PMID: 29692855 PMCID: PMC5859839 DOI: 10.1155/2018/5059743] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Background Breast cancer is the most common malignancy among women worldwide, but the long-term endocrine therapy is frequently associated with adverse side effects. Danzhi Xiaoyao powder (DXP) is a herbal formula that has an effect on breast cancer, especially ER-positive breast cancer. However, the active compounds, potential targets, and pharmacological and molecular mechanism of its action against cancer remain unclear. Methods A network pharmacology approach comprising drug-likeness evaluation, oral bioavailability prediction, Caco-2 permeability prediction, multiple compound target prediction, multiple known target collection, breast cancer genes collection, and network analysis has been used in this study. Results Four networks are set up—namely, ER-positive breast cancer network, compound-compound target network of DXP, DXP-ER-positive breast cancer network, and compound-known target-ER-positive breast cancer network. Some ER-positive breast cancer and DXP related targets, clusters, biological processes, and pathways, and several potential anticancer compounds are found. Conclusion This network analysis successfully predicted, illuminated, and confirmed the molecular synergy of DXP for ER-positive breast cancer, got potential anticancer active compounds, and found the potential ER-positive breast cancer associated targets, cluster, biological processes, and pathways. This work also provides clues to the researcher who explores ethnopharmacological or/and herbal medicine's or even multidrugs' various synergies.
Collapse
|
19
|
Shi P, Lin X, Yao H. A comprehensive review of recent studies on pharmacokinetics of traditional Chinese medicines (2014–2017) and perspectives. Drug Metab Rev 2017; 50:161-192. [DOI: 10.1080/03602532.2017.1417424] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, Bee Science College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Zeng L, Yang K, Ge J. Uncovering the Pharmacological Mechanism of Astragalus Salvia Compound on Pregnancy-Induced Hypertension Syndrome by a Network Pharmacology Approach. Sci Rep 2017; 7:16849. [PMID: 29203792 PMCID: PMC5715142 DOI: 10.1038/s41598-017-17139-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/19/2017] [Indexed: 01/08/2023] Open
Abstract
To uncover the pharmacological mechanism of Astragalus Salvia compound (ASC) on pregnancy-induced hypertension syndrome (PIH), to provide useful information for clinical, as well as to connect the basic and clinical by a network pharmacological approach, we used network pharmacological approach. We collected ASC's compounds by traditional Chinese Medicine databases, and input them into PharmMapper to got their targets. Then we acquired PIH targets from Genecards and OMIM, collected the interactions of all the targets and other human proteins via String and INACT. We also constructed the network by Cytoscape and analyze it by MCODE so as to get clusters. Finally, we put all the targets of clusters into DAVID to do GO enrichment analysis. After these, four networks are constructed by Cytoscape; they are PIH network, compound-compound target network of ASC, ASC-PIH network, and compound target-PIH target-other human proteins' PPI network. According to the results, we think that ASC may directly regulate several biological processes and their genes in "endothelial cell activation and injury" and "placental or trophoblast cell ischemia" models to treat PIH. And it may indirectly act on the rest of the biological process to treat PIH or may not.
Collapse
Affiliation(s)
- Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Jinwen Ge
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China.
| |
Collapse
|
21
|
Systems Pharmacological Approach to the Effect of Bulsu-san Promoting Parturition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7236436. [PMID: 29234425 PMCID: PMC5682096 DOI: 10.1155/2017/7236436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022]
Abstract
Bulsu-san (BSS) has been commonly used in oriental medicine for pregnant women in East Asia. The purpose of this research was to elucidate the effect of BSS on ease of parturition using a systems-level in silico analytic approach. Research results show that BSS is highly connected to the parturition related pathways, biological processes, and organs. There were numerous interactions between most compounds of BSS and multiple target genes, and this was confirmed using herb-compound-target network, target-pathway network, and gene ontology analysis. Furthermore, the mRNA expression of relevant target genes of BSS was elevated significantly in related organ tissues, such as those of the uterus, placenta, fetus, hypothalamus, and pituitary gland. This study used a network analytical approach to demonstrate that Bulsu-san (BSS) is closely related to the parturition related pathways, biological processes, and organs. It is meaningful that this systems-level network analysis result strengthens the basis of clinical applications of BSS on ease of parturition.
Collapse
|
22
|
Suh SY, An WG. Systems Pharmacological Approach of Pulsatillae Radix on Treating Crohn's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:4198035. [PMID: 28659988 PMCID: PMC5474285 DOI: 10.1155/2017/4198035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022]
Abstract
In East Asian traditional medicine, Pulsatillae Radix (PR) is widely used to treat amoebic dysentery and renowned for its anti-inflammatory effects. This study aimed to confirm evidence regarding the potential therapeutic effect of PR on Crohn's disease using a system network level based in silico approach. Study results showed that the compounds in PR are highly connected to Crohn's disease related pathways, biological processes, and organs, and these findings were confirmed by compound-target network, target-pathway network, and gene ontology analysis. Most compounds in PR have been reported to possess anti-inflammatory, anticancer, and antioxidant effects, and we found that these compounds interact with multiple targets in a synergetic way. Furthermore, the mRNA expressions of genes targeted by PR are elevated significantly in immunity-related organ tissues, small intestine, and colon. Our results suggest that the anti-inflammatory and repair and immune system enhancing effects of PR might have therapeutic impact on Crohn's disease.
Collapse
Affiliation(s)
- Su Yeon Suh
- Department of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Won G. An
- Department of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| |
Collapse
|
23
|
Wang J, Li Y, Yang Y, Chen X, Du J, Zheng Q, Liang Z, Wang Y. A New Strategy for Deleting Animal drugs from Traditional Chinese Medicines based on Modified Yimusake Formula. Sci Rep 2017; 7:1504. [PMID: 28473709 PMCID: PMC5431437 DOI: 10.1038/s41598-017-01613-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/03/2017] [Indexed: 02/08/2023] Open
Abstract
Traditional Chinese medicine (TCM), such as Uyghur Medicine (UM) has been used in clinical treatment for many years. TCM is featured as multiple targets and complex mechanisms of action, which is normally a combination of medicinal herbs and sometimes even contains certain rare animal medicinal ingredients. A question arises as to whether these animal materials can be removed replaced from TCM applications due to their valuable rare resources or animal ethics. Here, we select a classical UM Yimusake formula, which contains 3 animal drugs and other 8 herbs, and has got wealthy experience and remarkable achievements in treating erectile dysfunction (ED) in China. The active components, drug targets and therapeutic mechanisms have been comprehensively analyzed by systems-pharmacology methods. Additionally, to validate the inhibitory effects of all candidate compounds on their related targets, in vitro experiments, computational analysis and molecular dynamics simulations were performed. The results show that the modified, original and three animal materials display very similar mechanisms for an effective treatment of ED, indicating that it is quite possible to remove these three animal drugs from the original formula while still keep its efficiency. This work provides a new attempt for deleting animal materials from TCM, which should be important for optimization of traditional medicines.
Collapse
Affiliation(s)
- Jinghui Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Ministry of Education, Shihezi, 832002, China
- Key laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yan Li
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Ministry of Education, Shihezi, 832002, China.
- Key laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Yinfeng Yang
- Key laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xuetong Chen
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jian Du
- Key laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qiusheng Zheng
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Ministry of Education, Shihezi, 832002, China
| | - Zongsuo Liang
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yonghua Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Ministry of Education, Shihezi, 832002, China.
| |
Collapse
|
24
|
Wang J, Liu R, Liu B, Yang Y, Xie J, Zhu N. Systems Pharmacology-based strategy to screen new adjuvant for hepatitis B vaccine from Traditional Chinese Medicine Ophiocordyceps sinensis. Sci Rep 2017; 7:44788. [PMID: 28317886 PMCID: PMC5357901 DOI: 10.1038/srep44788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Adjuvants are common component for many vaccines but there are still few licensed for human use due to low efficiency or side effects. The present work adopted Systems Pharmacology analysis as a new strategy to screen adjuvants from traditional Chinese medicine. Ophiocordyceps sinensis has been used for many years in China and other Asian countries with many biological properties, but the pharmacological mechanism has not been fully elucidated. First in this study, 190 putative targets for 17 active compounds in Ophiocordyceps sinensis were retrieved and a systems pharmacology-based approach was applied to provide new insights into the pharmacological actions of the drug. Pathway enrichment analysis found that the targets participated in several immunological processes. Based on this, we selected cordycepin as a target compound to serve as an adjuvant of the hepatitis B vaccine because the existing vaccine often fails to induce an effective immune response in many subjects. Animal and cellular experiments finally validated that the new vaccine simultaneously improves the humoral and cellular immunity of BALB/c mice without side effects. All this results demonstrate that cordycepin could work as adjuvant to hepatitis b vaccine and systems-pharmacology analysis could be used as a new method to select adjuvants.
Collapse
Affiliation(s)
- Jingbo Wang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Rui Liu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Baoxiu Liu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yan Yang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jun Xie
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Naishuo Zhu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
25
|
Elucidation of the Anti-Inflammatory Mechanisms of Bupleuri and Scutellariae Radix Using System Pharmacological Analyses. Mediators Inflamm 2017; 2017:3709874. [PMID: 28190938 PMCID: PMC5278517 DOI: 10.1155/2017/3709874] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Objective. This study was aimed at elucidating the molecular mechanisms underlying the anti-inflammatory effect of the combined application of Bupleuri Radix and Scutellariae Radix and explored the potential therapeutic efficacy of these two drugs on inflammation-related diseases. Methods. After searching the databases, we collected the active ingredients of Bupleuri Radix and Scutellariae Radix and calculated their oral bioavailability (OB) and drug-likeness (DL) based on the absorption-distribution-metabolism-elimination (ADME) model. In addition, we predicted the drug targets of the selected active components based on weighted ensemble similarity (WES) and used them to construct a drug-target network. Gene ontology (GO) analysis and KEGG mapper tools were performed on these predicted target genes. Results. We obtained 30 compounds from Bupleuri Radix and Scutellariae Radix of good quality as indicated by ADME assays, which possess potential pharmacological activity. These 30 ingredients have a total of 121 potential target genes, which are involved in 24 biological processes related to inflammation. Conclusions. Combined application of Bupleuri Radix and Scutellariae Radix was found not only to directly inhibit the synthesis and release of inflammatory cytokines, but also to have potential therapeutic effects against inflammation-induced pain. In addition, a combination therapy of these two drugs exhibited systemic treatment efficacy and provided a theoretical basis for the development of drugs against inflammatory diseases.
Collapse
|
26
|
|
27
|
Luo Y, Wang Q, Zhang Y. A systems pharmacology approach to decipher the mechanism of danggui-shaoyao-san decoction for the treatment of neurodegenerative diseases. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:66-81. [PMID: 26680587 DOI: 10.1016/j.jep.2015.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/27/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neurodegenerative diseases (NDs) is a time-dependent course for a sequence of conditions that primarily impact the neurons in the human brain, ultimately, resulting in persistence and progressive degeneration and / or death of nerve cells and reduction of cognition and memory function. Currently, there are no therapeutic approaches to cure neurodegeneration, except certain medicines that temporarily alleviate symptoms, facilitating the improvement of a patients' quality of life. Danggui-shaoyao-san (DSS), as a famous Chinese herbal formula, has been widely used in the treatment of various illnesses, including neurodegenerative diseases. Although well-practiced in clinical medicine, the mechanisms involved in DSS for the treatment of neurodegenerative diseases remain elusive. MATERIALS AND METHODS In the present study, a novel systems pharmacology approach was developed to decipher the potential mechanism between DSS and neurodegenerative disorders, implicated in oral bioavailability screening, drug-likeness assessment, target identification and network analysis. RESULTS Based on a comprehensive systems approach, active compounds of DSS, relevant potential targets and targets associated with diseases were predicted. Active compounds, targets and diseases were used to construct biological networks, such as, compound-target interactions and target-disease networks, to decipher the mechanisms of DSS to address NDs. CONCLUSIONS Overall, a well-understood picture of DSS, hallmarked by multiple herbs-compounds-targets-pathway-cooperation networks for the treatment of NDs, was revealed. Notably, this systems pharmacology approach provided a novel in silico approach for the development paradigm of traditional Chinese medicine (TCM) and the generation of new strategies for the management of NDs.
Collapse
Affiliation(s)
- Yunxia Luo
- Laboratory of Experimental Animal, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yongbin Zhang
- Laboratory of Experimental Animal, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
28
|
Investigation of the Anti-Inflammatory and Analgesic Activities of Ethanol Extract of Stem Bark of Sonapatha Oroxylum indicum In Vivo. Int J Inflam 2016; 2016:8247014. [PMID: 26925290 PMCID: PMC4746378 DOI: 10.1155/2016/8247014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/17/2015] [Accepted: 12/29/2015] [Indexed: 01/05/2023] Open
Abstract
Inflammation is all a pervasive phenomenon, which is elicited by the body in response to obnoxious stimuli as a protective measure. However, sustained inflammation leads to several diseases including cancer. Therefore it is necessary to neutralize inflammation. Sonapatha (Oroxylum indicum), a medicinal plant, is traditionally used as a medicine in Ayurveda and other folk systems of medicine. It is commonly used to treat inflammatory diseases including rheumatoid arthritis and asthma. Despite this fact its anti-inflammatory and analgesic effects are not evaluated scientifically. Therefore, the anti-inflammatory and analgesic activities of Sonapatha (Oroxylum indicum) were studied in Swiss albino mice by different methods. The hot plate, acetic acid, and tail immersion tests were used to evaluate the analgesic activity whereas xylene-induced ear edema and formalin induced paw edema tests were used to study the anti-inflammatory activity of Sonapatha. The administration of mice with 250 and 300 mg/kg b.wt. of O. indicum reduced pain and inflammation indicating that Sonapatha possesses analgesic and anti-inflammatory activities. The maximum analgesic and anti-inflammatory activities were observed in mice receiving 300 mg/kg b.wt. of O. indicum ethanol extract. Our study indicates that O. indicum possesses both anti-inflammatory and analgesic activities and it may be useful as an anti-inflammatory agent in the inflammation related disorders.
Collapse
|
29
|
Li Y, Zhang J, Zhang L, Chen X, Pan Y, Chen SS, Zhang S, Wang Z, Xiao W, Yang L, Wang Y. Systems pharmacology to decipher the combinational anti-migraine effects of Tianshu formula. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:45-56. [PMID: 26231449 DOI: 10.1016/j.jep.2015.07.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
Migraine is the most common neurovascular disorder that imparts a considerable burden to health care system around the world. However, currently there are still no effective and widely applicable pharmacotherapies for migraine patients. Herbal formulae, characterized as multiple herbs, constituents and targets, have been acknowledged with clinical effects in treating migraine, which attract more and more researchers' attention although their exact molecular mechanisms are still unclear. In this work, a novel systems pharmacology-based method which integrates pharmacokinetic filtering, target fishing and network analysis was developed and exemplified by a probe, i.e. Tianshu formula, a widely clinically used anti-migraine herbal formula in China which comprises of Rhizoma chuanxiong and Gastrodia elata. The results exhibit that 20 active ingredients of Tianshu formula possess favorable pharmacokinetic profiles, which have interactions with 48 migraine-related targets to provide potential synergistic therapeutic effects. Additionally, from systematic analysis, we speculate that R. chuanxiong as the monarch herb mediates the major targets like PTGS2, ESR1, NOS2, HTR1B and NOS3 to regulate the vascular and nervous systems, as well as the inflammation and pain-related pathways to benefit migraine patients. Meanwhile, as an adjuvant herb, G. elata may not only assist the monarch herb to improve the outcome of migraine patients, but also regulate multiple targets like ABAT, HTR1D, ALOX15 and KCND3 to modify migraine accompanying symptoms like vomiting, vertigo and gastrointestinal disorders.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, PR China.
| | - Jingxiao Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, PR China; School of Chemistry and Environmental Engineering, Hubei University for Nationalities, Enshi, Hubei 445000, China
| | - Lilei Zhang
- School of Chemistry and Environmental Engineering, Hubei University for Nationalities, Enshi, Hubei 445000, China
| | - Xuetong Chen
- Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yanqiu Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, PR China
| | - Su-Shing Chen
- Computer Information Science and Engineering, University of Florida, Gainesville, FL 32608, USA
| | - Shuwei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, PR China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, PR China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222001, PR China
| | - Ling Yang
- Lab of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Yonghua Wang
- Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
30
|
Lee S. Systems Biology - A Pivotal Research Methodology for Understanding the Mechanisms of Traditional Medicine. J Pharmacopuncture 2015; 18:11-8. [PMID: 26388998 PMCID: PMC4573803 DOI: 10.3831/kpi.2015.18.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/31/2015] [Indexed: 12/14/2022] Open
Abstract
Objectives: Systems biology is a novel subject in the field of life science that aims at a systems’ level understanding of biological systems. Because of the significant progress in high-throughput technologies and molecular biology, systems biology occupies an important place in research during the post-genome era. Methods: The characteristics of systems biology and its applicability to traditional medicine research have been discussed from three points of view: data and databases, network analysis and inference, and modeling and systems prediction. Results: The existing databases are mostly associated with medicinal herbs and their activities, but new databases reflecting clinical situations and platforms to extract, visualize and analyze data easily need to be constructed. Network pharmacology is a key element of systems biology, so addressing the multi-component, multi-target aspect of pharmacology is important. Studies of network pharmacology highlight the drug target network and network target. Mathematical modeling and simulation are just in their infancy, but mathematical modeling of dynamic biological processes is a central aspect of systems biology. Computational simulations allow structured systems and their functional properties to be understood and the effects of herbal medicines in clinical situations to be predicted. Conclusion: Systems biology based on a holistic approach is a pivotal research methodology for understanding the mechanisms of traditional medicine. If systems biology is to be incorporated into traditional medicine, computational technologies and holistic insights need to be integrated.
Collapse
Affiliation(s)
- Soojin Lee
- Department of Physiology, College of Korean Medicine, Sangji University, Wonju, Korea
| |
Collapse
|