1
|
La Manna S, Di Natale C, Panzetta V, Leone M, Mercurio FA, Cipollone I, Monti M, Netti PA, Ferraro G, Terán A, Sánchez-Peláez AE, Herrero S, Merlino A, Marasco D. A Diruthenium Metallodrug as a Potent Inhibitor of Amyloid-β Aggregation: Synergism of Mechanisms of Action. Inorg Chem 2024; 63:564-575. [PMID: 38117944 PMCID: PMC10777406 DOI: 10.1021/acs.inorgchem.3c03441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
The physical and chemical properties of paddlewheel diruthenium compounds are highly dependent on the nature of the ligands surrounding the bimetallic core. Herein, we compare the ability of two diruthenium compounds, [Ru2Cl(D-p-FPhF)(O2CCH3)3]·H2O (1) (D-p-FPhF- = N,N'-bis(4-fluorophenyl)formamidinate) and K3[Ru2(O2CO)4]·3H2O (2), to act as inhibitors of amyloid aggregation of the Aβ1-42 peptide and its peculiar fragments, Aβ1-16 and Aβ21-40. A wide range of biophysical techniques has been used to determine the inhibition capacity against aggregation and the possible mechanism of action of these compounds (Thioflavin T fluorescence and autofluorescence assays, UV-vis absorption spectroscopy, circular dichroism, nuclear magnetic resonance, mass spectrometry, and electron scanning microscopy). Data show that the most effective inhibitory effect is shown for compound 1. This compound inhibits fiber formation and completely abolishes the cytotoxicity of Aβ1-42. The antiaggregatory capacity of this complex can be explained by a binding mechanism of the dimetallic units to the peptide chain along with π-π interactions between the formamidinate ligand and the aromatic side chains. The results suggest the potential use of paddlewheel diruthenium complexes as neurodrugs and confirm the importance of the steric and charge effects on the properties of diruthenium compounds.
Collapse
Affiliation(s)
- Sara La Manna
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Concetta Di Natale
- Department
of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Valeria Panzetta
- Department
of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
- Interdisciplinary
Research Centre on Biomaterials (CRIB), University of Naples Federico II, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Marilisa Leone
- Institute
of Biostructures and Bioimaging - CNR, 80145 Naples, Italy
| | | | - Irene Cipollone
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
- CEINGE
Biotecnologie
Avanzate “Franco Salvatore” S.c.a r.l., 80131 Naples, Italy
| | - Maria Monti
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
- CEINGE
Biotecnologie
Avanzate “Franco Salvatore” S.c.a r.l., 80131 Naples, Italy
| | - Paolo A. Netti
- Department
of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
- Interdisciplinary
Research Centre on Biomaterials (CRIB), University of Naples Federico II, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Giarita Ferraro
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
| | - Aarón Terán
- MatMoPol
Research Group, Department of Inorganic Chemistry, Faculty of Chemical
Science, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Ana E. Sánchez-Peláez
- MatMoPol
Research Group, Department of Inorganic Chemistry, Faculty of Chemical
Science, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Santiago Herrero
- MatMoPol
Research Group, Department of Inorganic Chemistry, Faculty of Chemical
Science, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
| | - Daniela Marasco
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
- Institute
of Biostructures and Bioimaging - CNR, 80145 Naples, Italy
| |
Collapse
|
2
|
Pickett JR, Wu Y, Zacchi LF, Ta HT. Targeting endothelial vascular cell adhesion molecule-1 in atherosclerosis: drug discovery and development of vascular cell adhesion molecule-1-directed novel therapeutics. Cardiovasc Res 2023; 119:2278-2293. [PMID: 37595265 PMCID: PMC10597632 DOI: 10.1093/cvr/cvad130] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) has been well established as a critical contributor to atherosclerosis and consequently as an attractive therapeutic target for anti-atherosclerotic drug candidates. Many publications have demonstrated that disrupting the VCAM-1 function blocks monocyte infiltration into the sub-endothelial space, which effectively prevents macrophage maturation and foam cell transformation necessary for atherosclerotic lesion formation. Currently, most VCAM-1-inhibiting drug candidates in pre-clinical and clinical testing do not directly target VCAM-1 itself but rather down-regulate its expression by inhibiting upstream cytokines and transcriptional regulators. However, the pleiotropic nature of these regulators within innate immunity means that optimizing dosage to a level that suppresses pathological activity while preserving normal physiological function is extremely challenging and oftentimes infeasible. In recent years, highly specific pharmacological strategies that selectively inhibit VCAM-1 function have emerged, particularly peptide- and antibody-based novel therapeutics. Studies in such VCAM-1-directed therapies so far remain scarce and are limited by the constraints of current experimental atherosclerosis models in accurately representing the complex pathophysiology of the disease. This has prompted the need for a comprehensive review that recounts the evolution of VCAM-1-directed pharmaceuticals and addresses the current challenges in novel anti-atherosclerotic drug development.
Collapse
Affiliation(s)
- Jessica R Pickett
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Kessels Road, Nathan, QLD 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
| | - Lucia F Zacchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Hang T Ta
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
3
|
Functional benefit of structural disorder for the replication of measles, Nipah and Hendra viruses. Essays Biochem 2022; 66:915-934. [PMID: 36148633 DOI: 10.1042/ebc20220045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022]
Abstract
Measles, Nipah and Hendra viruses are severe human pathogens within the Paramyxoviridae family. Their non-segmented, single-stranded, negative-sense RNA genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that is the substrate used by the viral RNA-dependent-RNA-polymerase (RpRd) for transcription and replication. The RpRd is a complex made of the large protein (L) and of the phosphoprotein (P), the latter serving as an obligate polymerase cofactor and as a chaperon for N. Both the N and P proteins are enriched in intrinsically disordered regions (IDRs), i.e. regions devoid of stable secondary and tertiary structure. N possesses a C-terminal IDR (NTAIL), while P consists of a large, intrinsically disordered N-terminal domain (NTD) and a C-terminal domain (CTD) encompassing alternating disordered and ordered regions. The V and W proteins, two non-structural proteins that are encoded by the P gene via a mechanism of co-transcriptional edition of the P mRNA, are prevalently disordered too, sharing with P the disordered NTD. They are key players in the evasion of the host antiviral response and were shown to phase separate and to form amyloid-like fibrils in vitro. In this review, we summarize the available information on IDRs within the N, P, V and W proteins from these three model paramyxoviruses and describe their molecular partnership. We discuss the functional benefit of disorder to virus replication in light of the critical role of IDRs in affording promiscuity, multifunctionality, fine regulation of interaction strength, scaffolding functions and in promoting liquid-liquid phase separation and fibrillation.
Collapse
|
4
|
Selvaraj C, Pravin MA, Alhoqail WA, Nayarisseri A, Singh SK. Intrinsically disordered proteins in viral pathogenesis and infections. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:221-242. [PMID: 36088077 DOI: 10.1016/bs.apcsb.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Disordered proteins serve a crucial part in many biological processes that go beyond the capabilities of ordered proteins. A large number of virus-encoded proteins have extremely condensed proteomes and genomes, which results in highly disordered proteins. The presence of these IDPs allows them to rapidly adapt to changes in their biological environment and play a significant role in viral replication and down-regulation of host defense mechanisms. Since viruses undergo rapid evolution and have a high rate of mutation and accumulation in their proteome, IDPs' insights into viruses are critical for understanding how viruses hijack cells and cause disease. There are many conformational changes that IDPs can adopt in order to interact with different protein partners and thus stabilize the particular fold and withstand high mutation rates. This chapter explains the molecular mechanism behind viral IDPs, as well as the significance of recent research in the field of IDPs, with the goal of gaining a deeper comprehension of the essential roles and functions played by viral proteins.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Muthuraja Arun Pravin
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Wardah A Alhoqail
- Department of Biology, College of Education, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Anuraj Nayarisseri
- In Silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
5
|
La Manna S, Leone M, Iacobucci I, Annuziata A, Di Natale C, Lagreca E, Malfitano AM, Ruffo F, Merlino A, Monti M, Marasco D. Glucosyl Platinum(II) Complexes Inhibit Aggregation of the C-Terminal Region of the Aβ Peptide. Inorg Chem 2022; 61:3540-3552. [PMID: 35171608 PMCID: PMC9951207 DOI: 10.1021/acs.inorgchem.1c03540] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurodegenerative diseases are often caused by uncontrolled amyloid aggregation. Hence, many drug discovery processes are oriented to evaluate new compounds that are able to modulate self-recognition mechanisms. Herein, two related glycoconjugate pentacoordinate Pt(II) complexes were analyzed in their capacity to affect the self-aggregation processes of two amyloidogenic fragments, Aβ21-40 and Aβ25-35, of the C-terminal region of the β-amyloid (Aβ) peptide, the major component of Alzheimer's disease (AD) neuronal plaques. The most water-soluble complex, 1Ptdep, is able to bind both fragments and to deeply influence the morphology of peptide aggregates. Thioflavin T (ThT) binding assays, electrospray ionization mass spectrometry (ESI-MS), and ultraviolet-visible (UV-vis) absorption spectroscopy indicated that 1Ptdep shows different kinetics and mechanisms of inhibition toward the two sequences and demonstrated that the peptide aggregation inhibition is associated with a direct coordinative bond of the compound metal center to the peptides. These data support the in vitro ability of pentacoordinate Pt(II) complexes to inhibit the formation of amyloid aggregates and pave the way for the application of this class of compounds as potential neurotherapeutics.
Collapse
Affiliation(s)
- Sara La Manna
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Marilisa Leone
- Institute
of Biostructures and Bioimaging - CNR, 80134 Naples, Italy
| | - Ilaria Iacobucci
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
- CEINGE
Biotecnologie Avanzate S.c.a r.l., “University
of Naples Federico II”, 80131 Naples, Italy
| | - Alfonso Annuziata
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary
Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica
del Materiali e della Produzione Industriale (DICMAPI), University “Federico II”, 80125 Naples, Italy
| | - Elena Lagreca
- Interdisciplinary
Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica
del Materiali e della Produzione Industriale (DICMAPI), University “Federico II”, 80125 Naples, Italy
| | - Anna Maria Malfitano
- Department
of Translational Medical Science, University
of Naples “Federico II”, 80131 Naples, Italy
| | - Francesco Ruffo
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
| | - Maria Monti
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
- CEINGE
Biotecnologie Avanzate S.c.a r.l., “University
of Naples Federico II”, 80131 Naples, Italy
| | - Daniela Marasco
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
- Institute
of Biostructures and Bioimaging - CNR, 80134 Naples, Italy
| |
Collapse
|
6
|
LeBlanc RM, Mesleh MF. A drug discovery toolbox for Nuclear Magnetic Resonance (NMR) characterization of ligands and their targets. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 37:51-60. [PMID: 34895655 DOI: 10.1016/j.ddtec.2020.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Information about the structure, dynamics, and ligand-binding properties of biomolecules can be derived from Nuclear Magnetic Resonance (NMR) spectroscopy and provides valuable information for drug discovery. A multitude of experimental approaches provides a wealth of information that can be tailored to the system of interest. Methods to study the behavior of ligands upon target binding enable the identification of weak binders in a robust manner that is critical for the identification of truly novel binding interactions. This is particularly important for challenging targets. Observing the solution behavior of biomolecules yields information about their structure, dynamics, and interactions. This review describes the breadth of approaches that are available, many of which are under-utilized in a drug-discovery environment, and focuses on recent advances that continue to emerge.
Collapse
Affiliation(s)
- Regan M LeBlanc
- Structural Biology and Biophysics, Vertex Pharmaceuticals Inc., Boston, MA, 02210, United States
| | - Michael F Mesleh
- Structural Biology and Biophysics, Vertex Pharmaceuticals Inc., Boston, MA, 02210, United States.
| |
Collapse
|
7
|
Abstract
INTRODUCTION Undruggable targets refer to clinically meaningful therapeutic targets that are 'difficult to drug' or 'yet to be drugged' via traditional approaches. Featuring characteristics of lacking defined ligand-binding pockets, non-catalytic protein-protein interaction functional modes and less-investigated 3D structures, these undruggable targets have been targeted with novel therapeutic entities developed with the progress of unconventional drug discovery approaches, such as targeted degradation molecules and display technologies. AREA COVERED This review first presents the concept of 'undruggable' exemplified by RAS and other targets. Next, detailed strategies are illustrated in two aspects: innovation of therapeutic entities and development of unconventional drug discovery technologies. Finally, case studies covering typical undruggable targets (Bcl-2, p53, and RAS) are depicted to further demonstrate the feasibility of the strategies and entities above. EXPERT OPINION Targeting the undruggable expands the scope of therapeutically reachable targets. Consequently, it represents the drug discovery frontier. Biomedical studies are capable of dissecting disease mechanisms, thus broadening the list of undruggable targets. Encouraged by the recent approval of the KRAS inhibitor Sotorasib, we believe that merging multiple discovery approaches and exploiting various novel therapeutic entities would pave the way for dealing with more 'undruggable' targets in the future.
Collapse
Affiliation(s)
- Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
La Manna S, Florio D, Di Natale C, Scognamiglio PL, Sibillano T, Netti PA, Giannini C, Marasco D. Type F mutation of nucleophosmin 1 Acute Myeloid Leukemia: A tale of disorder and aggregation. Int J Biol Macromol 2021; 188:207-214. [PMID: 34364939 DOI: 10.1016/j.ijbiomac.2021.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023]
Abstract
Protein aggregation is suggested as a reversible, wide-spread physiological process used by cells to regulate their growth and adapt to different stress conditions. Nucleophosmin 1(NPM1) protein is an abundant multifunctional nucleolar chaperone and its gene is the most frequently mutated in Acute Myeloid Leukemia (AML) patients. So far, the role of NPM1 mutations in leukemogenesis has remained largely elusive considering that they have the double effect of unfolding the C-terminal domain (CTD) and delocalizing the protein in the cytosol (NPM1c+). This mislocalization heavily impacts on cell cycle regulation. Our recent investigations unequivocally demonstrated an amyloid aggregation propensity introduced by AML mutations. Herein, employing complementary biophysical assays, we have characterized a N-terminal extended version of type F AML mutation of CTD and proved that it is able to form assemblies with amyloid character and fibrillar morphology. The present study represents an additional phase of knowledge to deepen the roles exerted by different types of cytoplasmatic NPM1c+ forms to develop in the future potential therapeutics for their selective targeting.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Pasqualina Liana Scognamiglio
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy.
| |
Collapse
|
9
|
Florio D, Di Natale C, Scognamiglio PL, Leone M, La Manna S, Di Somma S, Netti PA, Malfitano AM, Marasco D. Self-assembly of bio-inspired heterochiral peptides. Bioorg Chem 2021; 114:105047. [PMID: 34098256 DOI: 10.1016/j.bioorg.2021.105047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Peptide hydrogels, deriving from natural protein fragments, present unique advantages as compatibility and low cost of production that allow their wide application in different fields as wound healing, cell delivery and tissue regeneration. To engineer new biomaterials, the change of the chirality of single amino acids demonstrated a powerful approach to modulate the self-assembly mechanism. Recently we unveiled that a small stretch spanning residues 268-273 in the C-terminal domain (CTD) of Nucleophosmin 1 (NPM1) is an amyloid sequence. Herein, we performed a systematic D-scan of this sequence and analyzed the structural properties of obtained peptides. The conformational and kinetic features of self-aggregates and the morphologies of derived microstructures were investigated by means of different biophysical techniques, as well as the compatibility of hydrogels was evaluated in HeLa cells. All the investigated hexapeptides formed hydrogels even if they exhibited different conformational intermediates during aggregation, and they structural featured are finely tuned by introduced chiralities.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Pasqualina Liana Scognamiglio
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging - CNR, 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Sarah Di Somma
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Italy.
| |
Collapse
|
10
|
Rahman MU, Rehman AU, Arshad T, Chen HF. Disaggregation mechanism of prion amyloid for tweezer inhibitor. Int J Biol Macromol 2021; 176:510-519. [PMID: 33607137 DOI: 10.1016/j.ijbiomac.2021.02.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
The aggregation of amyloid has been an important event in the pathology of amyloidogenicity. A number of small molecules have been designed for Amyloidosis treatment. Molecular tweezer CLR01, a potential drug for misfolded β-amyloids inhibition, was reportedly bind directly to Lysine residues and interrupt oligomerization. However, the disaggregation mechanism of amyloid for this inhibitor is unclear. Here we used long timescale of molecular dynamic simulation to reveal the mechanism of disaggregation for pentamer prion amyloid. Molecular docking and molecular dynamics simulation demonstrate that CLR01 is attached with Lysine222 nitrogen by π-cation interaction of its nine aromatic rings and formation of salt bridge/hydrogen bond of one of the two rotatable peripheral anionic phosphate groups. Upon CLR01 binding, we found a major shifting occurs in initial conformation of the oligomer and stretch out the N-terminal chain A from the rest of the amyloid which seems to be the first stage of disaggregated the fibrils slowly yet efficiently. Moreover, the CLR01 remodelled the pentamer Prion220-272 into a compact structure which might be the resistant conformation for further oligomerization. Our work will contribute to better understand the interaction and deterioration mechanism of molecular tweezer for prions and similar amyloids, and offer significant insights into therapeutic development for Amyloidosis treatment.
Collapse
Affiliation(s)
- Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ashfaq Ur Rehman
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Taaha Arshad
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Center for Bioinformation Technology, Shanghai 200235, China.
| |
Collapse
|
11
|
Di Natale C, La Manna S, De Benedictis I, Brandi P, Marasco D. Perspectives in Peptide-Based Vaccination Strategies for Syndrome Coronavirus 2 Pandemic. Front Pharmacol 2020; 11:578382. [PMID: 33343349 PMCID: PMC7744882 DOI: 10.3389/fphar.2020.578382] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
At the end of December 2019, an epidemic form of respiratory tract infection now named COVID-19 emerged in Wuhan, China. It is caused by a newly identified viral pathogen, the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which can cause severe pneumonia and acute respiratory distress syndrome. On January 30, 2020, due to the rapid spread of infection, COVID-19 was declared as a global health emergency by the World Health Organization. Coronaviruses are enveloped RNA viruses belonging to the family of Coronaviridae, which are able to infect birds, humans and other mammals. The majority of human coronavirus infections are mild although already in 2003 and in 2012, the epidemics of SARS-CoV and Middle East Respiratory Syndrome coronavirus (MERS-CoV), respectively, were characterized by a high mortality rate. In this regard, many efforts have been made to develop therapeutic strategies against human CoV infections but, unfortunately, drug candidates have shown efficacy only into in vitro studies, limiting their use against COVID-19 infection. Actually, no treatment has been approved in humans against SARS-CoV-2, and therefore there is an urgent need of a suitable vaccine to tackle this health issue. However, the puzzled scenario of biological features of the virus and its interaction with human immune response, represent a challenge for vaccine development. As expected, in hundreds of research laboratories there is a running out of breath to explore different strategies to obtain a safe and quickly spreadable vaccine; and among others, the peptide-based approach represents a turning point as peptides have demonstrated unique features of selectivity and specificity toward specific targets. Peptide-based vaccines imply the identification of different epitopes both on human cells and virus capsid and the design of peptide/peptidomimetics able to counteract the primary host-pathogen interaction, in order to induce a specific host immune response. SARS-CoV-2 immunogenic regions are mainly distributed, as well as for other coronaviruses, across structural areas such as spike, envelope, membrane or nucleocapsid proteins. Herein, we aim to highlight the molecular basis of the infection and recent peptide-based vaccines strategies to fight the COVID-19 pandemic including their delivery systems.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano Di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, University of Naples Federico II, Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Paola Brandi
- Centro Nacional De Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Reddy ST, Uversky VN, Costa-Filho AJ. Biophysical characterization of intrinsically disordered human Golgi matrix protein GRASP65. Int J Biol Macromol 2020; 162:1982-1993. [DOI: 10.1016/j.ijbiomac.2020.08.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 01/21/2023]
|
13
|
Di Natale C, Natale CF, Florio D, Netti PA, Morelli G, Ventre M, Marasco D. Effects of surface nanopatterning on internalization and amyloid aggregation of the fragment 264-277 of Nucleophosmin 1. Colloids Surf B Biointerfaces 2020; 197:111439. [PMID: 33137636 DOI: 10.1016/j.colsurfb.2020.111439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
The mechanical interpretation of the plethora of factors that governs cellular localization of amyloid aggregates is crucial for planning novel therapeutical interventions in neurodegenerative diseases since these aggregates exert a primary role in the proteostasis machinery. The uptake of Cell Penetrating Peptides (CPPs) conjugated with different amyloid polypeptides occurs via different endocytic processes regulated by cytoskeleton organization and cell morphology. Herein, we deepened the internalization of an amyloid system in cells cultured on nanopatterned surfaces that represent a powerful tool to shape cell and regulate its contractility. We analyzed the behavior of an amyloid model system, employing NPM1264-277 sequence, covalently conjugated to Tat fragment 48-60 as CPP. To investigate its internalization mechanism, we followed the formation of aggregates on two kinds of substrates: a flat and a nanopatterned surface. Herein, investigations during time were carried out by employing both confocal and second harmonic generation (SHG) microscopies. We showed that modifications of cellular environment affect peptide localization, its cytoplasmic translocation and the size of amyloid aggregates.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples "Federico II", Italy; Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Carlo F Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | | | - Maurizio Ventre
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Italy
| |
Collapse
|
14
|
Thakur S, Sarkar B, Dhiman M, Mantha AK. Organophosphate-pesticides induced survival mechanisms and APE1-mediated Nrf2 regulation in non-small-cell lung cancer cells. J Biochem Mol Toxicol 2020; 35:e22640. [PMID: 33078895 DOI: 10.1002/jbt.22640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Epidemiological and molecular studies have indicated that environmental exposure to organophosphate pesticides (OPPs) is associated with increased cancer risk; however, the underlying molecular mechanisms still need to be explained. Increasing cancer incidence is linked to OPPs-induced oxidative stress (OS). Our study evaluates monocrotophos (MCP) and chlorpyrifos (CP)-induced OS responses and apurinic/apyrimidinic endonuclease 1 (APE1) role in human non-small-cell lung cancer (NSCLC) cells. Our prior study has implicated OPPs-induced base excision repair (BER)-pathway dysregulation and APE1-mediated regulation of transcription factor (TF) c-jun in A549 cells. We further investigated the effects of MCP and CP on apoptosis, proliferation, and APE1's redox-regulation of nuclear factor-like 2 (Nrf2). Data demonstrates that MCP and CP at subtoxic concentrations induced reactive oxygen species generation and oxidative DNA base damage 8-oxo-dG lesions in NCI-H1299 cells. CP moderately upregulated the apoptosis-inducing factor (AIF) in A549 cells, however, it did not trigger other pro-apoptotic factors viz. caspase-9 and caspase-3, suggesting early caspase-independent apoptosis. However, dose-dependent AIF-downregulation was observed for MCP treatment. Furthermore, CP and MCP treatments upregulated proliferating cell nuclear antigen levels. Immunofluorescent confocal imaging showed the colocalization of APE1 with Nrf2 in 10 µM CP- and MCP-treated NCI-H1299 cells. Immunoprecipitation confirmed that APE1 and Nrf2 physically interacted, indicating the role of APE1-mediated Nrf2 activation following OPPs treatment. This study suggests that low concentration MCP and CP exposure generates OS along with DNA damage, and modulates apoptosis, and APE1-mediated Nrf2 activation, which might be considered as the possible mechanism promoting lung cancer cell survival, suggesting that APE1 may have the potential to become a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Shweta Thakur
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Bibekananda Sarkar
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
- Department of Zoology, B.S.S. College (affiliated to the B. N. Mandal University, Madhepura, Bihar), Supaul, Bihar, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
15
|
Mayer G, Shpilt Z, Bressler S, Marcu O, Schueler-Furman O, Tshuva EY, Friedler A. Targeting an Interaction Between Two Disordered Domains by Using a Designed Peptide. Chemistry 2020; 26:10240-10249. [PMID: 32181542 DOI: 10.1002/chem.202000465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/14/2020] [Indexed: 11/09/2022]
Abstract
Intrinsically disordered regions in proteins (IDRs) mediate many disease-related protein-protein interactions. However, the unfolded character and continuous conformational changes of IDRs make them difficult to target for therapeutic purposes. Here, we show that a designed peptide based on the disordered p53 linker domain can be used to target a partner IDR from the anti-apoptotic iASPP protein, promoting apoptosis of cancer cells. The p53 linker forms a hairpin-like structure with its two termini in close proximity. We designed a peptide derived from the disordered termini without the hairpin, designated as p53 LinkTer. The LinkTer peptide binds the disordered RT loop of iASPP with the same affinity as the parent p53 linker peptide, and inhibits the p53-iASPP interaction in vitro. The LinkTer peptide shows increased stability to proteolysis, penetrates cancer cells, causes nuclei shrinkage, and compromises the viability of cells. We conclude that a designed peptide comprising only the IDR from a peptide sequence can serve as an improved inhibitor since it binds its target protein without the need for pre-folding, paving the way for therapeutic targeting of IDRs.
Collapse
Affiliation(s)
- Guy Mayer
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Zohar Shpilt
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Shachar Bressler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Orly Marcu
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Edit Y Tshuva
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| |
Collapse
|
16
|
Cleavage of the APE1 N-Terminal Domain in Acute Myeloid Leukemia Cells Is Associated with Proteasomal Activity. Biomolecules 2020; 10:biom10040531. [PMID: 32244430 PMCID: PMC7226146 DOI: 10.3390/biom10040531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/02/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1), the main mammalian AP-endonuclease for the resolution of DNA damages through the base excision repair (BER) pathway, acts as a multifunctional protein in different key cellular processes. The signals to ensure temporo-spatial regulation of APE1 towards a specific function are still a matter of debate. Several studies have suggested that post-translational modifications (PTMs) act as dynamic molecular mechanisms for controlling APE1 functionality. Interestingly, the N-terminal region of APE1 is a disordered portion functioning as an interface for protein binding, as an acceptor site for PTMs and as a target of proteolytic cleavage. We previously demonstrated a cytoplasmic accumulation of truncated APE1 in acute myeloid leukemia (AML) cells in association with a mutated form of nucleophosmin having aberrant cytoplasmic localization (NPM1c+). Here, we mapped the proteolytic sites of APE1 in AML cells at Lys31 and Lys32 and showed that substitution of Lys27, 31, 32 and 35 with alanine impairs proteolysis. We found that the loss of the APE1 N-terminal domain in AML cells is dependent on the proteasome, but not on granzyme A/K as described previously. The present work identified the proteasome as a contributing machinery involved in APE1 cleavage in AML cells, suggesting that acetylation can modulate this process.
Collapse
|
17
|
Lobanov MY, Likhachev IV, Galzitskaya OV. Disordered Residues and Patterns in the Protein Data Bank. Molecules 2020; 25:molecules25071522. [PMID: 32230759 PMCID: PMC7180803 DOI: 10.3390/molecules25071522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/05/2023] Open
Abstract
We created a new library of disordered patterns and disordered residues in the Protein Data Bank (PDB). To obtain such datasets, we clustered the PDB and obtained the groups of chains with different identities and marked disordered residues. We elaborated a new procedure for finding disordered patterns and created a new version of the library. This library includes three sets of patterns: unique patterns, patterns consisting of two kinds of amino acids, and homo-repeats. Using this database, the user can: (1) find homologues in the entire Protein Data Bank; (2) perform a statistical analysis of disordered residues in protein structures; (3) search for disordered patterns and homo-repeats; (4) search for disordered regions in different chains of the same protein; (5) download clusters of protein chains with different identity from our database and library of disordered patterns; and (6) observe 3D structure interactively using MView. A new library of disordered patterns will help improve the accuracy of predictions for residues that will be structured or unstructured in a given region.
Collapse
Affiliation(s)
- Mikhail Yu. Lobanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (M.Y.L.); (I.V.L.)
| | - Ilya V. Likhachev
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (M.Y.L.); (I.V.L.)
- Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Vitkevicha str.1, Pushchino, 142290 Moscow, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (M.Y.L.); (I.V.L.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia
- Correspondence: ; Tel.: +7-903-675-0156
| |
Collapse
|
18
|
Di Natale C, La Manna S, Avitabile C, Florio D, Morelli G, Netti PA, Marasco D. Engineered β-hairpin scaffolds from human prion protein regions: Structural and functional investigations of aggregates. Bioorg Chem 2020; 96:103594. [PMID: 31991323 DOI: 10.1016/j.bioorg.2020.103594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/16/2022]
Abstract
The investigation of conformational features of regions of amyloidogenic proteins are of great interest to deepen the structural changes and consequent self-aggregation mechanisms at the basis of many neurodegenerative diseases. Here we explore the effect of β-hairpin inducing motifs on regions of prion protein covering strands S1 and S2. In detail, we unveiled the structural and functional features of two model chimeric peptides in which natural sequences are covalently linked together by two dipeptides (l-Pro-Gly and d-Pro-Gly) that are known to differently enhance β-hairpin conformations but both containing N- and the C-terminal aromatic cap motifs to further improve interactions between natural strands. Spectroscopic investigations at solution state indicate that primary assemblies of the monomers of both constructs follow different aggregativemechanisms during the self-assembly: these distinctions, evidenced by CD and ThT emission spectroscopies, reflect into great morphological differences of nanostructures and suggest that rigid β-hairpin conformations greatly limit amyloid-like fibrillogenesis. Overall data confirm the important role exerted by the β-structure of regions S1 and S2 during the aggregation process and lead to speculate to its persistence even in unfolding conditions.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Concetta Avitabile
- Institute of Biostructures and Bioimaging (IBB), National Research Council, Via Mezzocannone 16, 80134 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; Task force di Ateneo"METODOLOGIE ANALITICHE PER LA SALVAGUARDIA DEI BENI CULTURALI" MASBC, University of Naples "Federico II", Italy.
| |
Collapse
|
19
|
Martinelli AHS, Lopes FC, John EBO, Carlini CR, Ligabue-Braun R. Modulation of Disordered Proteins with a Focus on Neurodegenerative Diseases and Other Pathologies. Int J Mol Sci 2019; 20:ijms20061322. [PMID: 30875980 PMCID: PMC6471803 DOI: 10.3390/ijms20061322] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/03/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) do not have rigid 3D structures, showing changes in their folding depending on the environment or ligands. Intrinsically disordered proteins are widely spread in eukaryotic genomes, and these proteins participate in many cell regulatory metabolism processes. Some IDPs, when aberrantly folded, can be the cause of some diseases such as Alzheimer′s, Parkinson′s, and prionic, among others. In these diseases, there are modifications in parts of the protein or in its entirety. A common conformational variation of these IDPs is misfolding and aggregation, forming, for instance, neurotoxic amyloid plaques. In this review, we discuss some IDPs that are involved in neurodegenerative diseases (such as beta amyloid, alpha synuclein, tau, and the “IDP-like” PrP), cancer (p53, c-Myc), and diabetes (amylin), focusing on the structural changes of these IDPs that are linked to such pathologies. We also present the IDP modulation mechanisms that can be explored in new strategies for drug design. Lastly, we show some candidate drugs that can be used in the future for the treatment of diseases caused by misfolded IDPs, considering that cancer therapy has more advanced research in comparison to other diseases, while also discussing recent and future developments in this area of research. Therefore, we aim to provide support to the study of IDPs and their modulation mechanisms as promising approaches to combat such severe diseases.
Collapse
Affiliation(s)
- Anne H S Martinelli
- Department of Molecular Biology and Biotechnology & Department of Biophysics, Biosciences Institute-IB, (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
| | - Fernanda C Lopes
- Center for Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
- Graduate Program in Cell and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
| | - Elisa B O John
- Center for Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
- Graduate Program in Cell and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
| | - Célia R Carlini
- Graduate Program in Cell and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 91410-000, RS, Brazil.
- Brain Institute-InsCer, Laboratory of Neurotoxins, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Department of Pharmaceutical Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre CEP 90050-170, RS, Brazil.
| |
Collapse
|
20
|
La Manna S, Roviello V, Scognamiglio PL, Diaferia C, Giannini C, Sibillano T, Morelli G, Novellino E, Marasco D. Amyloid fibers deriving from the aromatic core of C-terminal domain of nucleophosmin 1. Int J Biol Macromol 2019; 122:517-525. [DOI: 10.1016/j.ijbiomac.2018.10.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
|
21
|
Di Natale C, La Manna S, Malfitano AM, Di Somma S, Florio D, Scognamiglio PL, Novellino E, Netti PA, Marasco D. Structural insights into amyloid structures of the C-terminal region of nucleophosmin 1 in type A mutation of acute myeloid leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:637-644. [PMID: 30710643 DOI: 10.1016/j.bbapap.2019.01.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/11/2019] [Accepted: 01/26/2019] [Indexed: 12/22/2022]
Abstract
Acute myeloid leukemia (AML) is a clinically and a molecularly heterogeneous disease characterized by the accumulation of undifferentiated and uncontrolled proliferation of hematopoietic progenitor cells. The sub-group named "AML with gene mutations" includes mutations in nucleophosmin (NPM1) assumed as a distinct leukemic entity. NPM1 is an abundant multifunctional protein belonging to the nucleoplasmin family of nuclear chaperones. AML mutated protein is translocated into the cytoplasm (NPM1c+) retaining all functional domains except the loss of a unique NoLs (nucleolar localization signal) at the C-term domain (CTD) and the subsequent disruption of a three helix bundle as tertiary structure. The oligomeric state of NPM1 is of outmost importance for its biological roles and our previous studies linked an aggregation propensity of distinct regions of CTD to leukomogenic potentials of AML mutations. Here we investigated a polypeptide spanning the third and second helices of the bundle of type A mutated CTD. By a combination of several techniques, we ascertained the amyloid character of the aggregates and of fibrils resulting from a self-recognition mechanism. Further amyloid assemblies resulted cytoxic in MTT assay strengthening a new idea of a therapeutic strategy in AML consisting in the self-degradation of mutated NPM1.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples "Federico II", Italy; Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Italy
| | | | - Sarah Di Somma
- Department of Translational Medicine, University of Naples "Federico II", Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Italy
| | | | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Italy.
| |
Collapse
|
22
|
|
23
|
The Two Isoforms of Lyn Display Different Intramolecular Fuzzy Complexes with the SH3 Domain. Molecules 2018; 23:molecules23112731. [PMID: 30360468 PMCID: PMC6278449 DOI: 10.3390/molecules23112731] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 11/17/2022] Open
Abstract
The function of the intrinsically disordered Unique domain of the Src family of tyrosine kinases (SFK), where the largest differences between family members are concentrated, remains poorly understood. Recent studies in c-Src have demonstrated that the Unique region forms transient interactions, described as an intramolecular fuzzy complex, with the SH3 domain and suggested that similar complexes could be formed by other SFKs. Src and Lyn are members of a distinct subfamily of SFKs. Lyn is a key player in the immunologic response and exists in two isoforms originating from alternative splicing in the Unique domain. We have used NMR to compare the intramolecular interactions in the two isoforms and found that the alternatively spliced segment interacts specifically with the so-called RT-loop in the SH3 domain and that this interaction is abolished when a polyproline ligand binds to the SH3 domain. These results support the generality of the fuzzy complex formation in distinct subfamilies of SFKs and its physiological role, as the naturally occurring alternative splicing modulates the interactions in this complex.
Collapse
|
24
|
Arvidsson G, Wright APH. A Protein Intrinsic Disorder Approach for Characterising Differentially Expressed Genes in Transcriptome Data: Analysis of Cell-Adhesion Regulated Gene Expression in Lymphoma Cells. Int J Mol Sci 2018; 19:ijms19103101. [PMID: 30308971 PMCID: PMC6213395 DOI: 10.3390/ijms19103101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022] Open
Abstract
Conformational protein properties are coupled to protein functionality and could provide a useful parameter for functional annotation of differentially expressed genes in transcriptome studies. The aim was to determine whether predicted intrinsic protein disorder was differentially associated with proteins encoded by genes that are differentially regulated in lymphoma cells upon interaction with stromal cells, an interaction that occurs in microenvironments, such as lymph nodes that are protective for lymphoma cells during chemotherapy. Intrinsic disorder protein properties were extracted from the Database of Disordered Protein Prediction (D²P²), which contains data from nine intrinsic disorder predictors. Proteins encoded by differentially regulated cell-adhesion regulated genes were enriched in intrinsically disordered regions (IDRs) compared to other genes both with regard to IDR number and length. The enrichment was further ascribed to down-regulated genes. Consistently, a higher proportion of proteins encoded by down-regulated genes contained at least one IDR or were completely disordered. We conclude that down-regulated genes in stromal cell-adherent lymphoma cells encode proteins that are characterized by elevated levels of intrinsically disordered conformation, indicating the importance of down-regulating functional mechanisms associated with intrinsically disordered proteins in these cells. Further, the approach provides a generally applicable and complementary alternative to classification of differentially regulated genes using gene ontology or pathway enrichment analysis.
Collapse
Affiliation(s)
- Gustav Arvidsson
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE 141 57, Sweden.
| | - Anthony P H Wright
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE 141 57, Sweden.
| |
Collapse
|
25
|
Peptides as Therapeutic Agents for Inflammatory-Related Diseases. Int J Mol Sci 2018; 19:ijms19092714. [PMID: 30208640 PMCID: PMC6163503 DOI: 10.3390/ijms19092714] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 01/08/2023] Open
Abstract
Inflammation is a physiological mechanism used by organisms to defend themselves against infection, restoring homeostasis in damaged tissues. It represents the starting point of several chronic diseases such as asthma, skin disorders, cancer, cardiovascular syndrome, arthritis, and neurological diseases. An increasing number of studies highlight the over-expression of inflammatory molecules such as oxidants, cytokines, chemokines, matrix metalloproteinases, and transcription factors into damaged tissues. The treatment of inflammatory disorders is usually linked to the use of unspecific small molecule drugs that can cause undesired side effects. Recently, many efforts are directed to develop alternative and more selective anti-inflammatory therapies, several of them imply the use of peptides. Indeed, peptides demonstrated as elected lead compounds toward several targets for their high specificity as well as recent and innovative synthetic strategies. Several endogenous peptides identified during inflammatory responses showed anti-inflammatory activities by inhibiting, reducing, and/or modulating the expression and activity of mediators. This review aims to discuss the potentialities and therapeutic use of peptides as anti-inflammatory agents in the treatment of different inflammation-related diseases and to explore the importance of peptide-based therapies.
Collapse
|
26
|
Classification of Complete Proteomes of Different Organisms and Protein Sets Based on Their Protein Distributions in Terms of Some Key Attributes of Proteins. Int J Genomics 2018; 2018:9784161. [PMID: 29686995 PMCID: PMC5857298 DOI: 10.1155/2018/9784161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/12/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023] Open
Abstract
The existence of complete genome sequences makes it important to develop different approaches for classification of large-scale data sets and to make extraction of biological insights easier. Here, we propose an approach for classification of complete proteomes/protein sets based on protein distributions on some basic attributes. We demonstrate the usefulness of this approach by determining protein distributions in terms of two attributes: protein lengths and protein intrinsic disorder contents (ID). The protein distributions based on L and ID are surveyed for representative proteome organisms and protein sets from the three domains of life. The two-dimensional maps (designated as fingerprints here) from the protein distribution densities in the LD space defined by ln(L) and ID are then constructed. The fingerprints for different organisms and protein sets are found to be distinct with each other, and they can therefore be used for comparative studies. As a test case, phylogenetic trees have been constructed based on the protein distribution densities in the fingerprints of proteomes of organisms without performing any protein sequence comparison and alignments. The phylogenetic trees generated are biologically meaningful, demonstrating that the protein distributions in the LD space may serve as unique phylogenetic signals of the organisms at the proteome level.
Collapse
|
27
|
Tamarozzi ER, Giuliatti S. Understanding the Role of Intrinsic Disorder of Viral Proteins in the Oncogenicity of Different Types of HPV. Int J Mol Sci 2018; 19:ijms19010198. [PMID: 29315236 PMCID: PMC5796147 DOI: 10.3390/ijms19010198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/06/2018] [Accepted: 01/07/2018] [Indexed: 12/21/2022] Open
Abstract
Intrinsic disorder is very important in the biological function of several proteins, and is directly linked to their foldability during interaction with their targets. There is a close relationship between the intrinsically disordered proteins and the process of carcinogenesis involving viral pathogens. Among these pathogens, we have highlighted the human papillomavirus (HPV) in this study. HPV is currently among the most common sexually transmitted infections, besides being the cause of several types of cancer. HPVs are divided into two groups, called high- and low-risk, based on their oncogenic potential. The high-risk HPV E6 protein has been the target of much research, in seeking treatments against HPV, due to its direct involvement in the process of cell cycle control. To understand the role of intrinsic disorder of the viral proteins in the oncogenic potential of different HPV types, the structural characteristics of intrinsically disordered regions of high and low-risk HPV E6 proteins were analyzed. In silico analyses of primary sequences, prediction of tertiary structures, and analyses of molecular dynamics allowed the observation of the behavior of such disordered regions in these proteins, thereby proving a direct relationship of structural variation with the degree of oncogenicity of HPVs. The results obtained may contribute to the development of new therapies, targeting the E6 oncoprotein, for the treatment of HPV-associated diseases.
Collapse
Affiliation(s)
- Elvira Regina Tamarozzi
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo, Sao Paulo 14049-900, Brazil.
| | - Silvana Giuliatti
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo, Sao Paulo 14049-900, Brazil.
| |
Collapse
|
28
|
Molecules that target nucleophosmin for cancer treatment: an update. Oncotarget 2018; 7:44821-44840. [PMID: 27058426 PMCID: PMC5190137 DOI: 10.18632/oncotarget.8599] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
Nucleophosmin is a highly and ubiquitously expressed protein, mainly localized in nucleoli but able to shuttle between nucleus and cytoplasm. Nucleophosmin plays crucial roles in ribosome maturation and export, centrosome duplication, cell cycle progression, histone assembly and response to a variety of stress stimuli. Much interest in this protein has arisen in the past ten years, since the discovery of heterozygous mutations in the terminal exon of the NPM1 gene, which are the most frequent genetic alteration in acute myeloid leukemia. Nucleophosmin is also frequently overexpressed in solid tumours and, in many cases, its overexpression correlates with mitotic index and metastatization. Therefore it is considered as a promising target for the treatment of both haematologic and solid malignancies. NPM1 targeting molecules may suppress different functions of the protein, interfere with its subcellular localization, with its oligomerization properties or drive its degradation. In the recent years, several such molecules have been described and here we review what is currently known about them, their interaction with nucleophosmin and the mechanistic basis of their toxicity. Collectively, these molecules exemplify a number of different strategies that can be adopted to target nucleophosmin and we summarize them at the end of the review.
Collapse
|
29
|
Wójcik S, Birol M, Rhoades E, Miranker AD, Levine ZA. Targeting the Intrinsically Disordered Proteome Using Small-Molecule Ligands. Methods Enzymol 2018; 611:703-734. [DOI: 10.1016/bs.mie.2018.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Shin WH, Christoffer CW, Kihara D. In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Methods 2017; 131:22-32. [PMID: 28802714 PMCID: PMC5683929 DOI: 10.1016/j.ymeth.2017.08.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
A core concept behind modern drug discovery is finding a small molecule that modulates a function of a target protein. This concept has been successfully applied since the mid-1970s. However, the efficiency of drug discovery is decreasing because the druggable target space in the human proteome is limited. Recently, protein-protein interaction (PPI) has been identified asan emerging target space for drug discovery. PPI plays a pivotal role in biological pathways including diseases. Current human interactome research suggests that the number of PPIs is between 130,000 and 650,000, and only a small number of them have been targeted as drug targets. For traditional drug targets, in silico structure-based methods have been successful in many cases. However, their performance suffers on PPI interfaces because PPI interfaces are different in five major aspects: From a geometric standpoint, they have relatively large interface regions, flat geometry, and the interface surface shape tends to fluctuate upon binding. Also, their interactions are dominated by hydrophobic atoms, which is different from traditional binding-pocket-targeted drugs. Finally, PPI targets usually lack natural molecules that bind to the target PPI interface. Here, we first summarize characteristics of PPI interfaces and their known binders. Then, we will review existing in silico structure-based approaches for discovering small molecules that bind to PPI interfaces.
Collapse
Affiliation(s)
- Woong-Hee Shin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
31
|
Longhi S, Bloyet LM, Gianni S, Gerlier D. How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication. Cell Mol Life Sci 2017; 74:3091-3118. [PMID: 28600653 PMCID: PMC11107670 DOI: 10.1007/s00018-017-2556-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 01/01/2023]
Abstract
In this review, we summarize computational and experimental data gathered so far showing that structural disorder is abundant within paramyxoviral nucleoproteins (N) and phosphoproteins (P). In particular, we focus on measles, Nipah, and Hendra viruses and highlight both commonalities and differences with respect to the closely related Sendai virus. The molecular mechanisms that control the disorder-to-order transition undergone by the intrinsically disordered C-terminal domain (NTAIL) of their N proteins upon binding to the C-terminal X domain (XD) of the homologous P proteins are described in detail. By having a significant residual disorder, NTAIL-XD complexes are illustrative examples of "fuzziness", whose possible functional significance is discussed. Finally, the relevance of N-P interactions as promising targets for innovative antiviral approaches is underscored, and the functional advantages of structural disorder for paramyxoviruses are pinpointed.
Collapse
Affiliation(s)
- Sonia Longhi
- Aix-Marseille Univ, AFMB UMR 7257, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France.
- CNRS, AFMB UMR 7257, 13288, Marseille, France.
| | - Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Stefano Gianni
- Istituto Pasteur, Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| |
Collapse
|
32
|
Russo A, Manna SL, Novellino E, Malfitano AM, Marasco D. Molecular signaling involving intrinsically disordered proteins in prostate cancer. Asian J Androl 2017; 18:673-81. [PMID: 27212129 PMCID: PMC5000787 DOI: 10.4103/1008-682x.181817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role.
Collapse
Affiliation(s)
- Anna Russo
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| |
Collapse
|
33
|
Russo A, Diaferia C, La Manna S, Giannini C, Sibillano T, Accardo A, Morelli G, Novellino E, Marasco D. Insights into amyloid-like aggregation of H2 region of the C-terminal domain of nucleophosmin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:176-185. [DOI: 10.1016/j.bbapap.2016.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/29/2016] [Accepted: 11/14/2016] [Indexed: 01/21/2023]
|
34
|
Ameziane-Le Hir S, Bourgeois D, Basset C, Hagège A, Vidaud C. Reactivity of U-associated osteopontin with lactoferrin: a one-to-many complex. Metallomics 2017; 9:865-875. [DOI: 10.1039/c7mt00087a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A highly-simplified scenario of LF/U-fOPN interaction. The U content of the U-fOPN complexes refers to the CE-ICP/MS experiments.
Collapse
Affiliation(s)
| | | | - Christian Basset
- CEA
- DRF
- Biosciences and Biotechnologies Institute (BIAM)
- Bagnols-sur-Cèze
- France
| | - Agnès Hagège
- Univ Lyon
- CNRS
- Université Claude Bernard Lyon 1
- Ens de Lyon
- Institut des Sciences Analytiques
| | - Claude Vidaud
- CEA
- DRF
- Biosciences and Biotechnologies Institute (BIAM)
- Bagnols-sur-Cèze
- France
| |
Collapse
|
35
|
Scognamiglio PL, Di Natale C, Leone M, Cascella R, Cecchi C, Lirussi L, Antoniali G, Riccardi D, Morelli G, Tell G, Chiti F, Marasco D. Destabilisation, aggregation, toxicity and cytosolic mislocalisation of nucleophosmin regions associated with acute myeloid leukemia. Oncotarget 2016; 7:59129-59143. [PMID: 27494862 PMCID: PMC5312300 DOI: 10.18632/oncotarget.10991] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/17/2016] [Indexed: 01/05/2023] Open
Abstract
Nucleophosmin (NPM1) is a multifunctional protein that is implicated in the pathogenesis of several human malignancies. To gain insight into the role of isolated fragments of NPM1 in its biological activities, we dissected the C-terminal domain (CTD) into its helical fragments. Here we focus the attention on the third helix of the NPM1-CTD in its wild-type (H3 wt) and AML-mutated (H3 mutA and H3 mutE) sequences. Conformational studies, by means of CD and NMR spectroscopies, showed that the H3 wt peptide was partially endowed with an α-helical structure, but the AML-sequences exhibited a lower content of this conformation, particularly the H3 mutA peptide. Thioflavin T assays showed that the H3 mutE and the H3 mutA peptides displayed a significant aggregation propensity that was confirmed by CD and DLS assays. In addition, we found that the H3 mutE and H3 mutA peptides, unlike the H3 wt, were moderately and highly toxic, respectively, when exposed to human neuroblastoma cells. Cellular localization experiments confirmed that the mutated sequences hamper their nucleolar accumulation, and more importantly, that the helical conformation of the H3 region is crucial for such a localization.
Collapse
Affiliation(s)
- Pasqualina Liana Scognamiglio
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi-University of Naples “Federico II”, DFM-Scarl, 80134, Naples, Italy
- Permanent address: Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, 80125, Napoli, Italy
| | - Concetta Di Natale
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi-University of Naples “Federico II”, DFM-Scarl, 80134, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging - CNR, 80134, Naples, Italy
| | - Roberta Cascella
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134, Florence, Italy
| | - Cristina Cecchi
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134, Florence, Italy
| | - Lisa Lirussi
- Laboratory of Molecular Biology and DNA repair, Department of Medical and Biological Sciences, University of Udine, 33100, Udine, Italy
- Permanent address: Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Nordbyhagen, 1474, Norway
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medical and Biological Sciences, University of Udine, 33100, Udine, Italy
| | - Domenico Riccardi
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi-University of Naples “Federico II”, DFM-Scarl, 80134, Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi-University of Naples “Federico II”, DFM-Scarl, 80134, Naples, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medical and Biological Sciences, University of Udine, 33100, Udine, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134, Florence, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi-University of Naples “Federico II”, DFM-Scarl, 80134, Naples, Italy
| |
Collapse
|
36
|
Meng F, Na I, Kurgan L, Uversky VN. Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder and Protein-Protein Interactions in Intra-Nuclear Compartments. Int J Mol Sci 2015; 17:ijms17010024. [PMID: 26712748 PMCID: PMC4730271 DOI: 10.3390/ijms17010024] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/23/2015] [Accepted: 12/18/2015] [Indexed: 01/12/2023] Open
Abstract
The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA (or, in some cases, DNA) and proteins. We analyzed 3005 mouse proteins localized in specific intra-nuclear organelles, such as nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinuclear compartment and compared them with ~29,863 non-nuclear proteins from mouse proteome. Our analysis revealed that intrinsic disorder is enriched in the majority of intra-nuclear compartments, except for the nuclear pore and lamina. These compartments are depleted in proteins that lack disordered domains and enriched in proteins that have multiple disordered domains. Moonlighting proteins found in multiple intra-nuclear compartments are more likely to have multiple disordered domains. Protein-protein interaction networks in the intra-nuclear compartments are denser and include more hubs compared to the non-nuclear proteins. Hubs in the intra-nuclear compartments (except for the nuclear pore) are enriched in disorder compared with non-nuclear hubs and non-nuclear proteins. Therefore, our work provides support to the idea of the functional importance of intrinsic disorder in the cell nucleus and shows that many proteins associated with sub-nuclear organelles in nuclei of mouse cells are enriched in disorder. This high level of disorder in the mouse nuclear proteins defines their ability to serve as very promiscuous binders, possessing both large quantities of potential disorder-based interaction sites and the ability of a single such site to be involved in a large number of interactions.
Collapse
Affiliation(s)
- Fanchi Meng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada.
| | - Insung Na
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada.
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23219, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- University of South Florida Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region 142292, Russian.
- Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russian.
| |
Collapse
|
37
|
An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions. Int J Mol Sci 2015. [PMID: 26198229 PMCID: PMC4519904 DOI: 10.3390/ijms160715384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale.
Collapse
|
38
|
Di Natale C, Scognamiglio PL, Cascella R, Cecchi C, Russo A, Leone M, Penco A, Relini A, Federici L, Di Matteo A, Chiti F, Vitagliano L, Marasco D. Nucleophosmin contains amyloidogenic regions that are able to form toxic aggregates under physiological conditions. FASEB J 2015; 29:3689-701. [PMID: 25977257 DOI: 10.1096/fj.14-269522] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/04/2015] [Indexed: 01/08/2023]
Abstract
Nucleophosmin (NPM)-1 is a multifunctional protein involved in a variety of biologic processes and has been implicated in the pathogenesis of several human malignancies. To gain insight into the role of isolated fragments in NPM1 activities, we dissected the C-terminal domain (CTD) into its helical fragments. In this study, we observed the unexpected structural behavior of the peptide fragment corresponding to helix (H)2 (residues 264-277). This peptide has a strong tendency to form amyloidlike assemblies endowed with fibrillar morphology and β-sheet structure, under physiologic conditions, as shown by circular dichroism, thioflavin T, and Congo red binding assays; dynamic light scattering; and atomic force microscopy. The aggregates are also toxic to neuroblastoma cells, as determined using 3-(4;5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction and Ca(2+) influx assays. We also found that the extension of the H2 sequence beyond its N terminus, comprising the connecting loop with H1, delayed aggregation and its associated cytotoxicity, suggesting that contiguous regions of H2 have a protective role in preventing aggregation. Our findings and those in the literature suggest that the helical structures present in the CTD are important in preventing harmful aggregation. These findings could elucidate the pathogenesis of acute myeloid leukemia (AML) caused by NPM1 mutants. Because the CTD is not properly folded in these mutants, we hypothesize that the aggregation propensity of this NPM1 region is involved in the pathogenesis of AML. Preliminary assays on NPM1-Cter-MutA, the most frequent AML-CTD mutation, revealed its significant propensity for aggregation. Thus, the aggregation phenomena should be seriously considered in studies aimed at unveiling the molecular mechanisms of this pathology.
Collapse
Affiliation(s)
- Concetta Di Natale
- *Department of Pharmacy, Diagnostica e Farmaceutica Molecolari-Società Cooperativa a Responsabilità Limitata, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II," Naples, Italy; Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy; Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy; Department of Physics, University of Genoa, Genoa, Italy; Department of Medical, Oral, and Biotechnological Sciences, University of Chieti "G. d'Annunzio," Chieti, Italy; and Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Pasqualina Liana Scognamiglio
- *Department of Pharmacy, Diagnostica e Farmaceutica Molecolari-Società Cooperativa a Responsabilità Limitata, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II," Naples, Italy; Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy; Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy; Department of Physics, University of Genoa, Genoa, Italy; Department of Medical, Oral, and Biotechnological Sciences, University of Chieti "G. d'Annunzio," Chieti, Italy; and Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Cascella
- *Department of Pharmacy, Diagnostica e Farmaceutica Molecolari-Società Cooperativa a Responsabilità Limitata, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II," Naples, Italy; Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy; Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy; Department of Physics, University of Genoa, Genoa, Italy; Department of Medical, Oral, and Biotechnological Sciences, University of Chieti "G. d'Annunzio," Chieti, Italy; and Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Cristina Cecchi
- *Department of Pharmacy, Diagnostica e Farmaceutica Molecolari-Società Cooperativa a Responsabilità Limitata, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II," Naples, Italy; Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy; Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy; Department of Physics, University of Genoa, Genoa, Italy; Department of Medical, Oral, and Biotechnological Sciences, University of Chieti "G. d'Annunzio," Chieti, Italy; and Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Anna Russo
- *Department of Pharmacy, Diagnostica e Farmaceutica Molecolari-Società Cooperativa a Responsabilità Limitata, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II," Naples, Italy; Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy; Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy; Department of Physics, University of Genoa, Genoa, Italy; Department of Medical, Oral, and Biotechnological Sciences, University of Chieti "G. d'Annunzio," Chieti, Italy; and Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Marilisa Leone
- *Department of Pharmacy, Diagnostica e Farmaceutica Molecolari-Società Cooperativa a Responsabilità Limitata, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II," Naples, Italy; Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy; Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy; Department of Physics, University of Genoa, Genoa, Italy; Department of Medical, Oral, and Biotechnological Sciences, University of Chieti "G. d'Annunzio," Chieti, Italy; and Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Amanda Penco
- *Department of Pharmacy, Diagnostica e Farmaceutica Molecolari-Società Cooperativa a Responsabilità Limitata, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II," Naples, Italy; Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy; Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy; Department of Physics, University of Genoa, Genoa, Italy; Department of Medical, Oral, and Biotechnological Sciences, University of Chieti "G. d'Annunzio," Chieti, Italy; and Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Annalisa Relini
- *Department of Pharmacy, Diagnostica e Farmaceutica Molecolari-Società Cooperativa a Responsabilità Limitata, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II," Naples, Italy; Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy; Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy; Department of Physics, University of Genoa, Genoa, Italy; Department of Medical, Oral, and Biotechnological Sciences, University of Chieti "G. d'Annunzio," Chieti, Italy; and Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Luca Federici
- *Department of Pharmacy, Diagnostica e Farmaceutica Molecolari-Società Cooperativa a Responsabilità Limitata, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II," Naples, Italy; Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy; Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy; Department of Physics, University of Genoa, Genoa, Italy; Department of Medical, Oral, and Biotechnological Sciences, University of Chieti "G. d'Annunzio," Chieti, Italy; and Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Adele Di Matteo
- *Department of Pharmacy, Diagnostica e Farmaceutica Molecolari-Società Cooperativa a Responsabilità Limitata, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II," Naples, Italy; Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy; Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy; Department of Physics, University of Genoa, Genoa, Italy; Department of Medical, Oral, and Biotechnological Sciences, University of Chieti "G. d'Annunzio," Chieti, Italy; and Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Fabrizio Chiti
- *Department of Pharmacy, Diagnostica e Farmaceutica Molecolari-Società Cooperativa a Responsabilità Limitata, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II," Naples, Italy; Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy; Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy; Department of Physics, University of Genoa, Genoa, Italy; Department of Medical, Oral, and Biotechnological Sciences, University of Chieti "G. d'Annunzio," Chieti, Italy; and Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Luigi Vitagliano
- *Department of Pharmacy, Diagnostica e Farmaceutica Molecolari-Società Cooperativa a Responsabilità Limitata, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II," Naples, Italy; Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy; Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy; Department of Physics, University of Genoa, Genoa, Italy; Department of Medical, Oral, and Biotechnological Sciences, University of Chieti "G. d'Annunzio," Chieti, Italy; and Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Daniela Marasco
- *Department of Pharmacy, Diagnostica e Farmaceutica Molecolari-Società Cooperativa a Responsabilità Limitata, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II," Naples, Italy; Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy; Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy; Department of Physics, University of Genoa, Genoa, Italy; Department of Medical, Oral, and Biotechnological Sciences, University of Chieti "G. d'Annunzio," Chieti, Italy; and Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|