1
|
Vadhan A, Gupta T, Hsu WL. Mesenchymal Stem Cell-Derived Exosomes as a Treatment Option for Osteoarthritis. Int J Mol Sci 2024; 25:9149. [PMID: 39273098 PMCID: PMC11395657 DOI: 10.3390/ijms25179149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability worldwide in elderly people. There is a critical need to develop novel therapeutic strategies that can effectively manage pain and disability to improve the quality of life for older people. Mesenchymal stem cells (MSCs) have emerged as a promising cell-based therapy for age-related disorders due to their multilineage differentiation and strong paracrine effects. Notably, MSC-derived exosomes (MSC-Exos) have gained significant attention because they can recapitulate MSCs into therapeutic benefits without causing any associated risks compared with direct cell transplantation. These exosomes help in the transport of bioactive molecules such as proteins, lipids, and nucleic acids, which can influence various cellular processes related to tissue repair, regeneration, and immune regulation. In this review, we have provided an overview of MSC-Exos as a considerable treatment option for osteoarthritis. This review will go over the underlying mechanisms by which MSC-Exos may alleviate the pathological hallmarks of OA, such as cartilage degradation, synovial inflammation, and subchondral bone changes. Furthermore, we have summarized the current preclinical evidence and highlighted promising results from in vitro and in vivo studies, as well as progress in clinical trials using MSC-Exos to treat OA.
Collapse
Affiliation(s)
- Anupama Vadhan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan
| | - Tanvi Gupta
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Wen-Li Hsu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
2
|
Fan M, Tong P, Yan L, Li T, Ren J, Huang J, Du W, Zhou L, Shan L. Detrimental alteration of mesenchymal stem cells by an articular inflammatory microenvironment results in deterioration of osteoarthritis. BMC Med 2023; 21:215. [PMID: 37337188 PMCID: PMC10280917 DOI: 10.1186/s12916-023-02923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Articular injection of mesenchymal stem cells (MSCs) has been applied to treat knee osteoarthritis (kOA), but its clinical outcomes are controversial. This study investigated whether an articular inflammatory microenvironment (AIM) impacts MSC-based therapy in a rat model of kOA. METHODS The biological change of MSCs and the functional change of MSCs on chondrocytes were evaluated under AIM. The key mediator and mechanism for the AIM impact on MSC therapy were explored via gain- and loss-of-function approaches. RESULTS The results showed that MSCs exerted potent anti-kOA effects in vivo and in vitro, but that this therapy become chondrodestructive if a chronic AIM was present. Mechanistically, the overexpression of MMP13 in the injected MSCs via a MAPKs-AP1 signaling axis was revealed as the underlying mechanism for the detriment outcome. CONCLUSIONS This study thus clarifies recent clinical findings while also suggesting a means to overcome any detrimental effects of MSC-based therapy while improving its efficacy.
Collapse
Affiliation(s)
- Mengqiang Fan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yan
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Ting Li
- Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jiadan Ren
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiefeng Huang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxi Du
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| |
Collapse
|
3
|
Hu B, Zou X, Yu Y, Jiang Y, Xu H. METTL3 promotes SMSCs chondrogenic differentiation by targeting the MMP3, MMP13, and GATA3. Regen Ther 2023; 22:148-159. [PMID: 36793308 PMCID: PMC9923043 DOI: 10.1016/j.reth.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/30/2023] Open
Abstract
Objective Synovium-derived mesenchymal stem cells (SMSCs) are multipotential non-hematopoietic progenitor cells that can differentiate into various mesenchymal lineages in adipose and bone tissue, especially in chondrogenesis. Post-transcriptional methylation modifications are relative to the various biological development procedures. N6-methyladenosine (m6A) methylation has been identified as one of the abundant widespread post-transcriptional modifications. However, the connection between the SMSCs differentiation and m6A methylation remains unknown and needs further exploration. Methods SMSCs were derived from synovial tissues of the knee joint of male Sprague-Dawley (SD) rats. In the chondrogenesis of SMSCs, m6A regulators were detected by quantitative real-time PCR (RT-PCR) and Western blot (WB). We observed the situation that the knockdown of m6A "writer" protein methyltransferase-like (METTL)3 in the chondrogenesis of SMSCs. We also mapped the transcript-wide m6A landscape in chondrogenic differentiation of SMSCs and combined RNA-seq and MeRIP-seq in SMSCs by the interference of METTL3. Results The expression of m6A regulators were regulated in the chondrogenesis of SMSCs, only METTL3 is the most significant factor. In addition, after the knockdown of METTL3, MeRIP-seq and RNA-seq technology were applied to analyze the transcriptome level in SMSCs. 832 DEGs displayed significant changes, consisting of 438 upregulated genes and 394 downregulated genes. DEGs were enriched in signaling pathways regulating the glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate and ECM-receptor interaction via Kyoto Encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. The findings of this study indicate a difference in transcripts of MMP3, MMP13, and GATA3 containing consensus m6A motifs required for methylation by METTL3. Further, the reduction of METTL3 decreased the expression of MMP3, MMP13, and GATA3. Conclusion These findings confirm the molecular mechanisms of METTL3-mediated m6A post-transcriptional change in the modulation of SMSCs differentiating into chondrocytes, thus highlighting the potential therapeutic effect of SMSCs for cartilage regeneration.
Collapse
Affiliation(s)
- Bin Hu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangjie Zou
- Department of Orthopedics, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaohui Yu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yiqiu Jiang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,Corresponding authors. Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyao Xu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,Corresponding authors. Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Li Q, Xu P, Zhang C, Gao Y. MiR-362-5p inhibits cartilage repair in osteoarthritis via targeting plexin B1. J Orthop Surg (Hong Kong) 2022; 30:10225536221139887. [PMID: 36523183 DOI: 10.1177/10225536221139887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Chondrogenesis of bone marrow mesenchymal stem cells (BMSCs) exerts great function during the pathogenesis of osteoarthritis (OA). Studies have reported the association of plexin B1 (PLXNB1) with OA pathogenesis. In this study, the upstream mechanism and function of PLXNB1 in this disease were explored. METHODS Flow cytometry was applied to test BMSC characterization. Chondrogenic differentiation of BMSCs was evaluated by Alcian blue staining. The expression of PLXNB1, miR-362-5p, miR-501-5p, miR-1827, miR-500-5p was measured using RT-qPCR analysis. The protein levels of PLXNB1, Aggrecan, and Silent information regulator factor 2-related enzyme 1 (SIRT1) were determined by western blotting. Binding relationship between miR-362-5p and PLXNB1 was confirmed using bioinformatics analysis and luciferase reporter assay. The in vivo model of OA was established in Sprague-Dawley rats which received medial meniscus instability surgery. For histopathological examination, cartilage tissues in the knee joint of rats were stained with hematoxylin and eosin. Micro-CT analysis was employed to observe the changes of morphometric indices including average trabecular separation, average trabecular thickness, and bone volume fraction. RESULTS BMSCs were identified to possess the characteristics of mesenchymal stem cells. PLXNB1 was observed to be highly expressed during chondrogenic differentiation of BMSCs and PLXNB1 overexpression promoted BMSC chondrogenic differentiation. Mechanically, PLXNB1 was targeted by miR-362-5p. In rescue assays, miR-362-5p reversed the effects of PLXNB1 on chondrogenic differentiation of BMSCs. In the in vivo experiments, upregulated PLXNB1 expression alleviated joint injury of OA rats. Additionally, overexpressed miR-362-5p and downregulated PLXNB1 expression levels were detected in OA rats. CONCLUSION MiR-362-5p promotes OA progression by suppressing PLXNB1.
Collapse
Affiliation(s)
- Qian Li
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Ping Xu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Chi Zhang
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Yang Gao
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
5
|
Fan M, Zhang J, Zhou L, Chen Z, Bao R, Zheng L, Tong P, Ma Y, Shan L. Intra-articular injection of placental mesenchymal stromal cells ameliorates pain and cartilage anabolism/catabolism in knee osteoarthritis. Front Pharmacol 2022; 13:983850. [PMID: 36523496 PMCID: PMC9745038 DOI: 10.3389/fphar.2022.983850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/14/2022] [Indexed: 08/29/2023] Open
Abstract
Background: Knee Osteoarthritis (kOA), the most common joint degenerative disorder, lacks effective therapeutics. Placenta-derived mesenchymal stromal cells (PMSCs) are effective in tissue repairing and generation, which have potential in treating kOA. This study aimed to determine the anti-kOA efficacy of PMSCs and to explore its action mode. Methods: Flow cytometry and three-line differentiation were performed for identification of PMSCs. In vivo, a rat kOA model established by anterior cruciate ligament transection (ACLT) surgery was used to evaluate the efficacy of PMSCs. Histopathological HE and SO staining with Osteoarthritis Research Society International scoring were conducted, and cartilage expressions of MMP13 and Col2 were measured by immunohistochemistry. Pain behavior parameters by mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL), were measured. In vitro, wound healing and cell immunofluorescence assays were conducted to detect the proliferation and migration ability of chondrocytes treated with PMSCs conditioned medium (PMSCs-CM). Quantitative real-time PCR (qRT-PCR) and Western blot (WB) assays were applied to explore the molecular action of PMSCs on chondrocytes. Results: The results of flow cytometry indicated that the surface markers of PMSCs (CD73 > 95%, CD90 > 95%, and CD34 < 2%) were consistent with the typical mesenchymal stromal cells. The in vivo data showed that PMSCs significantly reversed the kOA progression by protection of cartilage, regulation of anabolic (Col2) and catabolic (MMP13) expressions, and relief of pain symptoms. The in vitro data showed that PMSCs promoted chondrocyte proliferation and migration and significantly restored the IL-1β-induced abnormal gene expressions of Col2, Mmp13, Adamts4, Adamts5 and Sox9 and also restored the abnormal protein expressions of Col2, Mmp13 and Sox9 of chondrocytes. The molecular actions of PMSCs on chondrocytes in nested co-culture way or in conditioned medium way were similar, confirming a paracrine-based mode of action. Conclusion: This study demonstrated PMSCs' anti-kOA efficacy and its paracrine-based action mode, providing novel knowledge of PMSCs and suggesting it as a promising cell therapy for treatment of kOA.
Collapse
Affiliation(s)
- Mengqiang Fan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingwen Zhang
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co Ltd), Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zuxiang Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ronghua Bao
- Fuyang Orthopaedics and Traumatology Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Longpo Zheng
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuhai Ma
- The Department of Orthopedics, Hangzhou Hospital of Zhejiang Provincial Armed Police Corps, Hangzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co Ltd), Hangzhou, China
| |
Collapse
|
6
|
Shegos CJ, Chaudhry AF. A narrative review of mesenchymal stem cells effect on osteoarthritis. ANNALS OF JOINT 2022; 7:26. [PMID: 38529128 PMCID: PMC10929318 DOI: 10.21037/aoj-21-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 03/27/2024]
Abstract
Objective To describe and discuss the purposed mechanism of mesenchymal stem cells (MSCs) and their effect as a potential therapeutic in osteoarthritis (OA). Background OA is a chronic, degenerative joint disease affecting millions worldwide. Traditional management, including physical therapy, anti-inflammatories, intra-articular injections, and surgical procedures are directed towards symptom control rather than disease modification. In light of a better understanding that low-grade inflammation disrupts articular cartilage homeostasis in OA, application of MSCs as a form of regenerative medicine has emerged with the goal to provide symptomatic relief as well as reverse the articular cartilage damage seen in OA. Methods PubMed was searched using terms 'osteoarthritis', 'mesenchymal stem cell', 'regenerative medicine', 'chondrocyte', and 'articular cartilage' available from 2006 through May 2021. Conclusions The use of MSC therapy for articular cartilage regeneration through direct tissue growth, differentiation, and inflammation modulations for the treatment of OA is promising. MSCs migrate to injured sites, inhibit pro-inflammatory pathways, and promote tissue repair by releasing paracrine signals and differentiating into specialized chondrocytes. Multiple clinical trials have displayed a significant improvement in both pain and joint function, inflammatory cell reduction within a joint, and articular cartilage growth as well as patient safety. However, high quality evidence supporting the beneficial role of MSCs is lacking due to the limited number of studies, small populations tested, and the use of various derivatives. Although limited, current evidence suggests MSCs are a potential therapeutic in OA and provides a great foundation for further research.
Collapse
|
7
|
Muthu S, Mir AA, Kumar R, Yadav V, Jeyaraman M, Khanna M. What is the clinically significant ideal mesenchymal stromal cell count in the management of osteoarthritis of the knee? - Meta-analysis of randomized controlled trials. J Clin Orthop Trauma 2022; 25:101744. [PMID: 35004170 PMCID: PMC8719017 DOI: 10.1016/j.jcot.2021.101744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
Abstract
STUDY DESIGN Meta-analysis. OBJECTIVES We aim to identify the clinically significant ideal Mesenchymal Stem Cell (MSC) count in the management of osteoarthritis of knee from Randomized Controlled Trials (RCTs) available in the literature. MATERIALS AND METHODS We conducted independent and duplicate electronic database searches including PubMed, Embase, Web of Science, and Cochrane Library till August 2021 for RCTs conducted in the management of knee osteoarthritis using MSC therapy specifying the quantity of MSCs delivered. We categorized the studies based on the MSC count utilized in them into four groups namely <1 × 107 MSCs (Group I), 1-5x107 MSCs (Group II), 5-10 × 107 MSCs (Group III), and >10 × 107 MSCs (Group IV). Visual Analog Score (VAS) for Pain, Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), Lysholm score, Knee Osteoarthritis Outcome Score (KOOS), and adverse events were the outcomes analyzed. Analysis was performed in R-platform using OpenMeta [Analyst] software. RESULTS 14 studies involving 564 patients were included for analysis. We noted incremental decrease in the VAS with increasing dosage of MSCs at 12 months [Group I,WMD = 2.641(p = 0.854); Group II, WMD = -4.853(p = 0.379); Group III, WMD = -12.154 (p = 0.316); Group IV, WMD = -15.935(p = 0.116)], and 24 months [Group I,WMD = -6(p = 0.001); Group II, WMD = -15(p = 0.001); Group IV, WMD = -20(p = 0.001)]. We also noted incremental improvement in the WOMAC, KOOS with increasing dosage of MSCs at 12 months [Group I, WMD = 7(p = 0.001); Group II, WMD = 28(p = 0.001); Group IV, WMD = 30(p = 0.001)] and [Group II, WMD = -2.562(p = 0.676); Group III, WMD = 7.670(p = 0.099); Group IV, WMD = 13.475(p = 0.261)] respectively. However, we noted significant reduction in the Lysholm score in Group IV, compared to the others at 12 months (WMD = -12.5, 95%CI[-25.883,0.883]) and 24 months (WMD = -6.6, 95%CI[-23.596,10.396]). We did not find any significant increase in the adverse events with incremental dosage of MSCs in any of the groups compared. CONCLUSION Compared to the four dosage groups of MSCs analyzed, Group III showed consistent significant improvement in pain and functional outcomes analyzed compared to the other groups. Hence, we recommend a cell volume of 5-10 × 107 cells to be delivered to the target site to obtain superior benefits out of the procedure. However, we urge future trials of sufficient quality to validate our findings to arrive at a consensus on the ideal count of MSCs to be delivered in the cellular therapy for knee osteoarthritis.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
| | - Ayaz Ali Mir
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow, Uttar Pradesh, India
| | - Rakesh Kumar
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vijendra Yadav
- Department of Orthopaedics, Sanjay Gandhi Institute of Trauma & Orthopaedics, Bengaluru, Karnataka, India
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Corresponding author. Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India.
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Immunomodulatory Actions of Mesenchymal Stromal Cells (MSCs) in Osteoarthritis of the Knee. OSTEOLOGY 2021. [DOI: 10.3390/osteology1040020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cellular therapy offers regeneration which curbs osteoarthritis of the knee. Among cellular therapies, mesenchymal stromal cells (MSCs) are readily isolated from various sources as culture expanded and unexpanded cellular population which are used as therapeutic products. Though MSCs possess a unique immunological and regulatory profile through cross-talk between MSCs and immunoregulatory cells (T cells, NK cells, dendritic cells, B cells, neutrophils, monocytes, and macrophages), they provide an immunotolerant environment when transplanted to the site of action. Immunophenotypic profile allows MSCs to escape immune surveillance and promotes their hypoimmunogenic or immune-privileged status. MSCs do not elicit a proliferative response when co-cultured with allogeneic T cells in vitro. MSCs secrete a wide range of anti-inflammatory mediators such as PGE-2, IDO, IL-1Ra, and IL-10. They also stimulate the resilient chondrogenic progenitors and enhance the chondrocyte differentiation by secretion of BMPs and TGFβ1. We highlight the various mechanisms of MSCs during tissue healing signals, their interaction with the immune system, and the impact of their lifespan in the management of osteoarthritis of the knee. A better understanding of the immunobiology of MSC renders them as an efficient therapeutic product for the management of osteoarthritis of the knee.
Collapse
|
9
|
Calcat-i-Cervera S, Sanz-Nogués C, O'Brien T. When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease. Front Med (Lausanne) 2021; 8:728496. [PMID: 34616756 PMCID: PMC8488400 DOI: 10.3389/fmed.2021.728496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced therapy medicinal products (ATMPs) offer new prospects to improve the treatment of conditions with unmet medical needs. Kidney diseases are a current major health concern with an increasing global prevalence. Chronic renal failure appears after many years of impairment, which opens a temporary window to apply novel therapeutic approaches to delay or halt disease progression. The immunomodulatory, anti-inflammatory, and pro-regenerative properties of mesenchymal stromal cells (MSCs) have sparked interest for their use in cell-based regenerative therapies. Currently, several early-phase clinical trials have been completed and many are ongoing to explore MSC safety and efficacy in a wide range of nephropathies. However, one of the current roadblocks to the clinical translation of MSC therapies relates to the lack of standardization and harmonization of MSC manufacturing protocols, which currently hinders inter-study comparability. Studies have shown that cell culture processing variables can have significant effects on MSC phenotype and functionality, and these are highly variable across laboratories. In addition, heterogeneity within MSC populations is another obstacle. Furthermore, MSCs may be isolated from several sources which adds another variable to the comparative assessment of outcomes. There is now a growing body of literature highlighting unique and distinctive properties of MSCs according to the tissue origin, and that characteristics such as donor, age, sex and underlying medical conditions may alter the therapeutic effect of MSCs. These variables must be taken into consideration when developing a cell therapy product. Having an optimal scale-up strategy for MSC manufacturing is critical for ensuring product quality while minimizing costs and time of production, as well as avoiding potential risks. Ideally, optimal scale-up strategies must be carefully considered and identified during the early stages of development, as making changes later in the bioprocess workflow will require re-optimization and validation, which may have a significant long-term impact on the cost of the therapy. This article provides a summary of important cell culture processing variables to consider in the scale-up of MSC manufacturing as well as giving a comprehensive review of tissue of origin-specific biological characteristics of MSCs and their use in current clinical trials in a range of renal pathologies.
Collapse
Affiliation(s)
| | | | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), CÚRAM, Biomedical Science Building, National University of Ireland, Galway, Ireland
| |
Collapse
|
10
|
Chondroprotection and Molecular Mechanism of Action of Phytonutraceuticals on Osteoarthritis. Molecules 2021; 26:molecules26082391. [PMID: 33924083 PMCID: PMC8074261 DOI: 10.3390/molecules26082391] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease and an important cause of incapacitation. There is a lack of drugs and effective treatments that stop or slow the OA progression. Modern pharmacological treatments, such as analgesics, have analgesic effects but do not affect the course of OA. Long-term use of these drugs can lead to serious side effects. Given the OA nature, it is likely that lifelong treatment will be required to stop or slow its progression. Therefore, there is an urgent need for disease-modifying OA treatments that are also safe for clinical use over long periods. Phytonutraceuticals are herbal products that provide a therapeutic effect, including disease prevention, which not only have favorable safety characteristics but may have an alleviating effect on the OA and its symptoms. An estimated 47% of OA patients use alternative drugs, including phytonutraceuticals. The review studies the efficacy and action mechanism of widely used phytonutraceuticals, analyzes the available experimental and clinical data on the effect of some phytonutraceuticals (phytoflavonoids, polyphenols, and bioflavonoids) on OA, and examines the known molecular effect and the possibility of their use for chondroprotection.
Collapse
|
11
|
Yang M, Yan X, Yuan FZ, Ye J, Du MZ, Mao ZM, Xu BB, Chen YR, Song YF, Fan BS, Yu JK. MicroRNA-210-3p Promotes Chondrogenic Differentiation and Inhibits Adipogenic Differentiation Correlated with HIF-3 α Signalling in Bone Marrow Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6699910. [PMID: 33937412 PMCID: PMC8055413 DOI: 10.1155/2021/6699910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023]
Abstract
Cartilage injury of the knee joint is very common. Due to the limited self-healing ability of articular cartilage, osteoarthritis is very likely to occur if left untreated. Bone marrow mesenchymal stem cells (BMMSCs) are widely used in the study of cartilage injury due to their low immunity and good amplification ability, but they still have disadvantages, such as heterogeneous undifferentiated cells. MicroRNAs can regulate the chondrogenic differentiation ability of MSCs by inhibiting or promoting mRNA translation and degradation. In this research, we primarily investigated the effect of microRNA-210-3p (miR-210-3p) on chondrogenic and adipogenic differentiation of BMMSCs in vitro. Our results demonstrate that miR-210-3p promoted chondrogenic differentiation and inhibited adipogenic differentiation of rat BMMSCs, which was related to the HIF-3α signalling pathway. Additionally, miR-210-3p promotes mRNA and protein levels of the chondrogenic expression genes COLII and SOX9 and inhibits mRNA and protein levels of the adipogenic expression genes PPARγ and LPL. Thus, miR-210-3p combined with BMMSCs is a candidate for future clinical applications in cartilage regeneration and could represent a promising new therapeutic target for OA.
Collapse
Affiliation(s)
- Meng Yang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xin Yan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Fu-Zhen Yuan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Jing Ye
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Ming-Ze Du
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Zi-Mu Mao
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Bing-Bing Xu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - You-Rong Chen
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yi-Fan Song
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Bao-Shi Fan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jia-Kuo Yu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
12
|
Chen J, Chen L, Hua J, Song W. Long-term dynamic compression enhancement TGF-β3-induced chondrogenesis in bovine stem cells: a gene expression analysis. BMC Genom Data 2021; 22:13. [PMID: 33743603 PMCID: PMC7981793 DOI: 10.1186/s12863-021-00967-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/11/2021] [Indexed: 02/02/2023] Open
Abstract
Background Bioengineering has demonstrated the potential of utilising mesenchymal stem cells (MSCs), growth factors, and mechanical stimuli to treat cartilage defects. However, the underlying genes and pathways are largely unclear. This is the first study on screening and identifying the hub genes involved in mechanically enhanced chondrogenesis and their potential molecular mechanisms. Methods The datasets were downloaded from the Gene Expression Omnibus (GEO) database and contain six transforming growth factor-beta-3 (TGF-β3) induced bovine bone marrow-derived MSCs specimens and six TGF-β3/dynamic-compression-induced specimens at day 42. Screening differentially expressed genes (DEGs) was performed and then analysed via bioinformatics methods. The Database for Annotation, Visualisation, and Integrated Discovery (DAVID) online analysis was utilised to obtain the Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment. The protein-protein interaction (PPI) network of the DEGs was constructed based on data from the STRING database and visualised through the Cytoscape software. The functional modules were extracted from the PPI network for further analysis. Results The top 10 hub genes ranked by their connection degrees were IL6, UBE2C, TOP2A, MCM4, PLK2, SMC2, BMP2, LMO7, TRIM36, and MAPK8. Multiple signalling pathways (including the PI3K-Akt signalling pathway, the toll-like receptor signalling pathway, the TNF signalling pathway, and the MAPK pathway) may impact the sensation, transduction, and reaction of external mechanical stimuli. Conclusions This study provides a theoretical finding showing that gene UBE2C, IL6, and MAPK8, and multiple signalling pathways may play pivotal roles in dynamic compression-enhanced chondrogenesis.
Collapse
Affiliation(s)
- Jishizhan Chen
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| | - Lidan Chen
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK.,Centre of Maxillofacial Surgery and Digital Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, People's Republic of China
| | - Jia Hua
- UCL Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Stanmore, London, HA7 4AP, UK.,The Griffin Institute (Northwick Park Institute for Medical Research), Harrow, London, HA1 3UJ, UK.,Faculty of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK.
| |
Collapse
|
13
|
Delgado-Enciso I, Paz-Garcia J, Valtierra-Alvarez J, Preciado-Ramirez J, Olmedo-Buenrostro BA, Delgado-Enciso J, Guzman-Esquivel J, Barajas-Saucedo CE, Ceja-Espiritu G, Rodriguez-Sanchez IP, Martinez-Fierro ML, Zaizar-Fregoso SA, Tiburcio-Jimenez D, Plata-Florenzano JE, Paz-Michel B. A novel cell-free formulation for the treatment of knee osteoarthritis generates better patient-reported health outcomes in more severe cases. J Orthop Surg (Hong Kong) 2021; 28:2309499020938121. [PMID: 32691672 DOI: 10.1177/2309499020938121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The bioactive cell-free formulation (BIOF2) for cartilage regeneration has shown a major therapeutic response in severe knee osteoarthritis. However, its effect on patients with mild or moderate stages of the disease has not been studied. OBJECTIVE To evaluate the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, minimal clinically important improvement (MCII) and sleep disturbances in mild, moderate, and severe stages of knee osteoarthritis (OA) with the novel cell-free formulation treatment (BIOF2). METHODS An open-label, nonrandomized, baseline-controlled, parallel group study on patients with mild, moderate, and severe knee OA was conducted to evaluate the effect of intra-articular administration of BIOF2. Clinical improvement was determined through the WOMAC score and MCII, whereas sleep disturbances were measured through a Likert scale questionnaire. RESULTS At 6 months post-treatment, the mean decrease in the total WOMAC score was 16.4 +/- 4.7%, 49.9 +/- 6.4%, and 62.7 +/- 4.5% in the patients with mild, moderate, and severe disease, respectively (p < 0.001, analysis of variance test). MCII at 6 months was 18%, 78%, and 100% for mild, moderate, and severe disease, respectively (p < 0.001, likelihood-ratio χ2 test). Concerning sleep disturbances, 60% of the patients with severe OA had important sleep problems before beginning treatment, and those difficulties were overcome 6 months after treatment. Only 18% of the patients with mild disease and 16% with moderate disease had serious sleep disturbances at the beginning of the study, and there was slight improvement after treatment. No adverse events were recorded during follow-up. CONCLUSION BIOF2 generates better patient-reported health outcomes (on pain, stiffness, function, and sleep) in the more severe cases of knee OA.
Collapse
Affiliation(s)
- Ivan Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima, Mexico.,Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Mexico
| | - Juan Paz-Garcia
- Department of Traumatology, Union Hospital Center, Villa de Alvarez, Colima, Mexico
| | - Jose Valtierra-Alvarez
- Department of Traumatology, University Regional Hospital, Colima State Health Services, Colima, Mexico
| | - Jorge Preciado-Ramirez
- Department of Research, Foundation for Cancer Ethics, Education and Research of the Cancerology State Institute, Colima, Mexico
| | - Bertha A Olmedo-Buenrostro
- Department of Research, Foundation for Cancer Ethics, Education and Research of the Cancerology State Institute, Colima, Mexico
| | - Josuel Delgado-Enciso
- Department of Research, Foundation for Cancer Ethics, Education and Research of the Cancerology State Institute, Colima, Mexico
| | | | - Carlos E Barajas-Saucedo
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima, Mexico.,Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Mexico
| | - Gabriel Ceja-Espiritu
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima, Mexico.,Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Mexico
| | - Iram P Rodriguez-Sanchez
- Department of Cellular Biology, School of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
| | - Sergio A Zaizar-Fregoso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima, Mexico.,Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Mexico
| | - Daniel Tiburcio-Jimenez
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima, Mexico.,Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Mexico
| | - Jorge E Plata-Florenzano
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima, Mexico.,Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Mexico
| | | |
Collapse
|
14
|
Shi C, Zheng W, Wang J. lncRNA-CRNDE regulates BMSC chondrogenic differentiation and promotes cartilage repair in osteoarthritis through SIRT1/SOX9. Mol Cell Biochem 2021; 476:1881-1890. [PMID: 33479807 DOI: 10.1007/s11010-020-04047-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Osteoarthritis (OA) is the most common chronic and degenerative joint disease. Although traditional OA medications can partially relieve pain, these medications cannot completely cure OA. Therefore, it is particularly important to find an effective treatment for OA. This study explored the function of long non-coding RNA (lncRNA)-colorectal neoplasia differentially expressed gene (CRNDE) in the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and the underlying molecular mechanism, aiming to develop a new treatment method for osteoarthritis. BMSCs were isolated from rat bone marrow using the gradient centrifugation method. And BMSC chondrogenic differentiation was induced with chondrogenic medium. The expression of lncRNA-CRNDE was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Silent information regulator factor 2-related enzyme 1 (SIRT1) and cartilage marker genes Aggrecan and collagen 2 (α1) protein expression were researched using western blot. Alcian blue staining was employed to examine the content of cartilage matrix proteoglycan glycosaminoglycan (GAG). The interaction between lncRNA-CRNDE and SIRT1 was detected by RNA pull-down and RNA immunoprecipitation (RIP) assay. Ubiquitination experiments were performed to measure the ubiquitination level of SIRT1. The combination between SMAD ubiquitination regulatory factor 2 (SMURF2) and SIRT1, as well as SRY-related high-mobility-group box 9 (SOX9) and collagen 2 (α1) promoter, was detected by Co-immunoprecipitation or ChIP. With the prolongation of induction time, the expression of lncRNA-CRNDE, SIRT1, cartilage marker genes Aggrecan and collagen 2 (α1) in BMSC osteogenic differentiation was gradually increased. Also, the content of cartilage matrix proteoglycan GAG was gradually elevated with the extension of the induction time. Further increase in the expression of SIRT1, cartilage marker genes Aggrecan and collagen 2 (α1) by overexpression of lncRNA-CRNDE also indicated elevated GAG content. RNA pull-down and RIP assay confirmed the binding between lncRNA-CRNDE and SIRT1. qRT-PCR and western blot showed that interference with lncRNA-CRNDE significantly inhibited the protein expression of SIRT1. BMSCs transfected with si-CRNDE increased ubiquitination levels of SIRT1 mediated by the E3 ligase SMURF2, leading to the reduced protein stability of SIRT1. However, overexpression of lncRNA-CRNDE increased the binding ability of SOX9 and collagen 2 (α1) promoter, which was reversed by the simultaneous transfection of CRNDE overexpression (pcDNA-CRNDE) and SIRT1 small interfering RNA (si-SIRT1). lncRNA-CRNDE regulates BMSC chondrogenic differentiation to promote cartilage repair in osteoarthritis through SIRT1/SOX9.
Collapse
Affiliation(s)
- Chengdi Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China. .,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.
| | - Wenhao Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Jinwu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| |
Collapse
|
15
|
Wei H, Wang X, Niu X, Jiao R, Li X, Wang S. miR‑34c‑5p targets Notch1 and suppresses the metastasis and invasion of cervical cancer. Mol Med Rep 2020; 23:120. [PMID: 33300051 PMCID: PMC7751466 DOI: 10.3892/mmr.2020.11759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Micro (mi)RNAs are crucial participants in the progression of cervical cancer (CC). Growing evidence indicates that miRNA (miR)-34c-5p is a pivotal tumor suppressor in numerous types of cancer and its functions in CC require further investigating. The present study demonstrated that there was a decreased level of miR-34c-5p in CC-associated cell lines compared with healthy control samples. It also demonstrated that miR-34c-5p targeted Notch1 and suppressed CC progression. Dual-Luciferase reporter assays verified the targeted relationship of miR-34c-5p and Notch1. The expression of Notch1 in HeLa cells was markedly reduced following miR-34c-5p overexpression and the proliferation, migration and invasion of HeLa cells were reduced although apoptosis was accelerated. However, overexpression of miR-34c-5p was reversed following the addition of Notch1, which supported the finding of the targeted relationship between miR-34c-5p and Notch1. Flow cytometry demonstrated that miR-34c-5p inhibited the proliferation of HeLa cells while accelerating apoptosis. The present study concluded that miR-34c-5p was a tumor suppressor in CC and may be a novel measure for the future treatment of CC.
Collapse
Affiliation(s)
- Huali Wei
- Department of Gynecology and Obstetrics, Emergency General Hospital, Beijing 100028, P.R. China
| | - Xiaolan Wang
- Department of Gynecology and Obstetrics, Emergency General Hospital, Beijing 100028, P.R. China
| | - Xiumin Niu
- Department of Gynecology and Obstetrics, Emergency General Hospital, Beijing 100028, P.R. China
| | - Ruili Jiao
- Department of Gynecology and Obstetrics, Chaoyang District Maternal and Child Health Hospital, Beijing 100020, P.R. China
| | - Xiaojuan Li
- Department of Medical Records and Statistics, Emergency General Hospital, Beijing 100028, P.R. China
| | - Sumei Wang
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
16
|
Gong J, Fairley J, Cicuttini FM, Hussain SM, Vashishtha R, Chou L, Wluka AE, Wang Y. Effect of Stem Cell Injections on Osteoarthritis-related Structural Outcomes: A Systematic Review. J Rheumatol 2020; 48:585-597. [PMID: 33004537 DOI: 10.3899/jrheum.200021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To systematically review the evidence for the efficacy of mesenchymal stem cell (MSC) injections in improving osteoarthritis (OA)-related structural outcomes. METHODS Ovid Medline and EMBASE were searched from their inceptions to April 2020 using MeSH terms and key words. Independent reviewers extracted data and assessed methodological quality. Qualitative evidence synthesis was performed due to the heterogeneity of interventions and outcome measures. RESULTS Thirteen randomized controlled trials (phase I or II) were identified: 10 in OA populations and 3 in populations at risk of OA, with low (n = 9), moderate (n = 3), or high (n = 1) risk of bias. Seven studies used allogeneic MSCs (4 bone marrow, 1 umbilical cord, 1 placenta, 1 adipose tissue), 6 studies used autologous MSCs (3 adipose tissue, 2 bone marrow, 1 peripheral blood). Among the 11 studies examining cartilage outcomes, 10 found a benefit of MSCs on cartilage volume, morphology, quality, regeneration, and repair, assessed by magnetic resonance imaging, arthroscopy, or histology. The evidence for subchondral bone was consistent in all 3 studies in populations at risk of OA, showing beneficial effects. Sixteen unpublished, eligible trials were identified by searching trial registries, including 8 with actual or estimated completion dates before 2016. CONCLUSION Our systematic review of early-phase clinical trials demonstrated consistent evidence of a beneficial effect of intraarticular MSC injections on articular cartilage and subchondral bone. Due to the heterogeneity of MSCs, modest sample sizes, methodological limitations, and potential for publication bias, further work is needed before this therapy is recommended in the management of OA.
Collapse
Affiliation(s)
- Jennifer Gong
- J. Gong, BBiomedSc (Hons), J. Fairley, MBBS, F.M. Cicuttini, MBBS, FRACP, PhD, S.M. Hussain, MBBS, MPH, PhD, L. Chou, MBBS, FRACP, A.E. Wluka, MBBS, FRACP, PhD, Y. Wang, MBBS, MMed, PhD, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University
| | - Jessica Fairley
- J. Gong, BBiomedSc (Hons), J. Fairley, MBBS, F.M. Cicuttini, MBBS, FRACP, PhD, S.M. Hussain, MBBS, MPH, PhD, L. Chou, MBBS, FRACP, A.E. Wluka, MBBS, FRACP, PhD, Y. Wang, MBBS, MMed, PhD, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University
| | - Flavia M Cicuttini
- J. Gong, BBiomedSc (Hons), J. Fairley, MBBS, F.M. Cicuttini, MBBS, FRACP, PhD, S.M. Hussain, MBBS, MPH, PhD, L. Chou, MBBS, FRACP, A.E. Wluka, MBBS, FRACP, PhD, Y. Wang, MBBS, MMed, PhD, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University
| | - Sultana Monira Hussain
- J. Gong, BBiomedSc (Hons), J. Fairley, MBBS, F.M. Cicuttini, MBBS, FRACP, PhD, S.M. Hussain, MBBS, MPH, PhD, L. Chou, MBBS, FRACP, A.E. Wluka, MBBS, FRACP, PhD, Y. Wang, MBBS, MMed, PhD, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University
| | - Rakhi Vashishtha
- R. Vashishtha, BDS, MPH, Center for Alcohol Policy Research, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Louisa Chou
- J. Gong, BBiomedSc (Hons), J. Fairley, MBBS, F.M. Cicuttini, MBBS, FRACP, PhD, S.M. Hussain, MBBS, MPH, PhD, L. Chou, MBBS, FRACP, A.E. Wluka, MBBS, FRACP, PhD, Y. Wang, MBBS, MMed, PhD, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University
| | - Anita E Wluka
- J. Gong, BBiomedSc (Hons), J. Fairley, MBBS, F.M. Cicuttini, MBBS, FRACP, PhD, S.M. Hussain, MBBS, MPH, PhD, L. Chou, MBBS, FRACP, A.E. Wluka, MBBS, FRACP, PhD, Y. Wang, MBBS, MMed, PhD, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University
| | - Yuanyuan Wang
- J. Gong, BBiomedSc (Hons), J. Fairley, MBBS, F.M. Cicuttini, MBBS, FRACP, PhD, S.M. Hussain, MBBS, MPH, PhD, L. Chou, MBBS, FRACP, A.E. Wluka, MBBS, FRACP, PhD, Y. Wang, MBBS, MMed, PhD, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University;
| |
Collapse
|
17
|
Liu B, Ren B. MiR‐1193 represses the proliferation and induces the apoptosis of interleukin‐1β‐treated fibroblast‐like synoviocytes via targeting JAK3. Int J Rheum Dis 2020; 23:1066-1075. [PMID: 32597556 DOI: 10.1111/1756-185x.13901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Bo Liu
- Department of Orthopedics Shandong Provincial Western Hospital Jinan China
| | - Bingqiang Ren
- Department of Orthopedics Shandong Provincial Western Hospital Jinan China
| |
Collapse
|
18
|
Kim GB, Seo MS, Park WT, Lee GW. Bone Marrow Aspirate Concentrate: Its Uses in Osteoarthritis. Int J Mol Sci 2020; 21:E3224. [PMID: 32370163 PMCID: PMC7247342 DOI: 10.3390/ijms21093224] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/16/2022] Open
Abstract
Human bone marrow (BM) is a kind of source of mesenchymal stem cells (MSCs) as well as growth factors and cytokines that may aid anti-inflammation and regeneration for various tissues, including cartilage and bone. However, since MSCs in BM usually occupy only a small fraction (0.001%) of nucleated cells, bone marrow aspirate concentrate (BMAC) for cartilage pathologies, such as cartilage degeneration, defect, and osteoarthritis, have gained considerable recognition in the last few years due to its potential benefits including disease modifying and regenerative capacity. Although further research with well-designed, randomized, controlled clinical trials is needed to elucidate the exact mechanism of BMAC, this may have the most noteworthy effect in patients with osteoarthritis. The purpose of this article is to review the general characteristics of BMAC, including its constituent, action mechanisms, and related issues. Moreover, this article aims to summarize the clinical outcomes of BMAC reported to date.
Collapse
Affiliation(s)
- Gi Beom Kim
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (W.T.P.)
| | - Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Wook Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (W.T.P.)
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (W.T.P.)
| |
Collapse
|
19
|
Mianehsaz E, Mirzaei HR, Mahjoubin-Tehran M, Rezaee A, Sahebnasagh R, Pourhanifeh MH, Mirzaei H, Hamblin MR. Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Res Ther 2019; 10:340. [PMID: 31753036 PMCID: PMC6873475 DOI: 10.1186/s13287-019-1445-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Degenerative disorders of joints, especially osteoarthritis (OA), result in persistent pain and disability and high costs to society. Nevertheless, the molecular mechanisms of OA have not yet been fully explained. OA is characterized by destruction of cartilage and loss of extracellular matrix (ECM). It is generally agreed that there is an association between pro-inflammatory cytokines and the development of OA. There is increased expression of matrix metalloproteinase (MMP) and “a disintegrin and metalloproteinase with thrombospondin motifs” (ADAMTS). Mesenchymal stem cells (MSCs) have been explored as a new treatment for OA during the last decade. It has been suggested that paracrine secretion of trophic factors, in which exosomes have a crucial role, contributes to the mechanism of MSC-based treatment of OA. The paracrine secretion of exosomes may play a role in the repair of joint tissue as well as MSC-based treatments for other disorders. Exosomes isolated from various stem cells may contribute to tissue regeneration in the heart, limbs, skin, and other tissues. Recent studies have indicated that exosomes (or similar particles) derived from MSCs may suppress OA development. Herein, for first time, we summarize the recent findings of studies on various exosomes derived from MSCs and their effectiveness in the treatment of OA. Moreover, we highlight the likely mechanisms of actions of exosomes in OA.
Collapse
Affiliation(s)
- Elaheh Mianehsaz
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Rezaee
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
20
|
Shapiro SA, Arthurs JR, Heckman MG, Bestic JM, Kazmerchak SE, Diehl NN, Zubair AC, O’Connor MI. Quantitative T2 MRI Mapping and 12-Month Follow-up in a Randomized, Blinded, Placebo Controlled Trial of Bone Marrow Aspiration and Concentration for Osteoarthritis of the Knees. Cartilage 2019; 10:432-443. [PMID: 30160168 PMCID: PMC6755869 DOI: 10.1177/1947603518796142] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Bone marrow aspiration and concentration (BMAC) is becoming a more common regenerative therapy for musculoskeletal pathology. In our current pilot study, we studied patients with mild-to-moderate bilateral knee osteoarthritis, compared pain at 12-month follow-up between BMAC-injected and saline-injected knees, and examined cartilage appearance measured by magnetic resonance imaging (MRI) T2 quantitative mapping. DESIGN Twenty-five patients with mild-to-moderate bilateral osteoarthritic knee pain were randomized to receive BMAC into one knee and saline placebo into the other. Bone marrow was aspirated from the iliac crests, concentrated in an automated centrifuge, combined with platelet-poor plasma for knee injection, and compared with saline injection into the contralateral knee. Primary outcome measures were T2 MRI cartilage mapping at 6-month and Visual Analog Scale and Osteoarthritis Research Society International Intermittent and Constant Osteoarthritis Pain scores and radiographs at 12-month follow-up. RESULTS Constant, intermittent, and overall knee pain remained significantly decreased from baseline at 12-month follow-up (all P ⩽ 0.01), with no apparent difference between BMAC- and saline-treated knees (all P ⩾ 0.54). A similar significant increase from baseline to 12-month follow-up regarding quality of life was observed for both BMAC- and saline-treated knees (all P ⩽ 0.04). T2 quantitative MRI mapping showed no significant changes as a result of treatment. CONCLUSIONS BMAC is safe to perform and relieves pain from knee arthritis but showed no superiority to saline injection at 12-month follow-up. MRI cartilage sequences failed to show regenerative benefit with single BMAC injection. The mechanisms of action that led to pain relief remain unclear and warrant further studies.
Collapse
Affiliation(s)
- Shane A. Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL, USA,Shane A. Shapiro, Department of Orthopedic Surgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA.
| | | | - Michael G. Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Nancy N. Diehl
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Abba C. Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Mary I. O’Connor
- Department of Orthopedic Surgery, Yale-New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
21
|
Jeong K, Jeong S, Kim JA, Rhee WJ. Exosome-based antisense locked nucleic acid delivery for inhibition of type II collagen degradation in chondrocyte. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Li H, Liu P, Gong Y, Liu J, Ruan F. Expression and function of miR-155 in rat synovial fibroblast model of rheumatoid arthritis. Exp Ther Med 2019; 18:786-792. [PMID: 31258713 DOI: 10.3892/etm.2019.7581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/01/2018] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by joint synovial inflammation and is a challenge for researchers and clinicians. MicroRNAs (miRNAs/miRs) represent a group of small non-coding RNA molecules that post-transcriptionally regulate mRNA expression and are involved in various diseases, including cancer, autoimmune and metabolic diseases, as well as neurological disorders. In the present study, various experiments were performed to investigate the effects and underlying mechanism of miR-155 in RA using rat synoviocytes induced by lipopolysaccharide (LPS) to model rheumatoid arthritis. It was revealed that synovial fibroblasts exhibited significantly higher miR-155 mRNA levels than the control group. Compared with the RA group, the viability of synovial fibroblasts was significantly decreased in the miR-155 mimics + RA group, but markedly increased in the miR-155 inhibitor + RA group. Compared with that in the RA + NC mimic or RA + NC inhibitor groups, the apoptosis of synovial fibroblasts increased significantly in the miR-155 mimics + RA group, but was significantly decreased in the miR-155 inhibitor + RA group. The miR-155 mimics + RA group exhibited higher expression levels of β-catenin, matrix metalloproteinase 7 and cyclin D1 compared with the miR-155 inhibitor + RA group, and the glycogen synthase kinase protein levels was lower compared with the miR-155 inhibitor + RA group. In brief, it was inferred that the Wnt signaling pathway is involved in the miR-155-associated inhibition of RA synovial fibroblast viability and induction of cell apoptosis. Inhibition of miR-155 may be an effective treatment for RA through regulation of the Wnt signaling pathway to reduce cell apoptosis and enhance cell viability.
Collapse
Affiliation(s)
- Hewei Li
- Department of Orthopedics, Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Ping Liu
- Department of Orthopedics, Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Yanlin Gong
- Department of Endocrinology, Wuhan No. 1 Hospital, Wuhan, Hubei 430022, P.R. China
| | - Jiali Liu
- Department of Orthopedics, Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Feng Ruan
- Department of Orthopedics, Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| |
Collapse
|
23
|
Mahbub SB, Guller A, Campbell JM, Anwer AG, Gosnell ME, Vesey G, Goldys EM. Non-Invasive Monitoring of Functional State of Articular Cartilage Tissue with Label-Free Unsupervised Hyperspectral Imaging. Sci Rep 2019; 9:4398. [PMID: 30867549 PMCID: PMC6416344 DOI: 10.1038/s41598-019-40942-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/26/2019] [Indexed: 01/19/2023] Open
Abstract
Damage and degradation of articular cartilage leads to severe pain and loss of mobility. The development of new therapies for cartilage regeneration for monitoring their effect requires further study of cartilage, ideally at a molecular level and in a minimally invasive way. Hyperspectral microscopy is a novel technology which utilises endogenous fluorophores to non-invasively assess the molecular composition of cells and tissue. In this study, we applied hyperspectral microscopy to healthy bovine articular cartilage and osteoarthritic human articular cartilage to investigate its capacity to generate informative molecular data and characterise disease state and treatment effects. We successfully demonstrated label-free fluorescence identification of collagen type I and II - isolated in cartilage here for the first time and the co-enzymes free NADH and FAD which together give the optical redox ratio that is an important measure of metabolic activity. The intracellular composition of chondrocytes was also examined. Differences were observed in the molecular ratios within the superficial and transitional zones of the articular cartilage which appeared to be influenced by disease state and treatment. These findings show that hyperspectral microscopy could be useful for investigating the molecular underpinnings of articular cartilage degradation and repair. As it is non-invasive and non-destructive, samples can be repeatedly assessed over time, enabling true time-course experiments with in-depth molecular data. Additionally, there is potential for the hyperspectral approach to be adapted for patient examination to allow the investigation of cartilage state. This could be of advantage for assessment and diagnosis as well as treatment monitoring.
Collapse
Affiliation(s)
- Saabah B Mahbub
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia.
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia.
| | - Anna Guller
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Jared M Campbell
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Ayad G Anwer
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Martin E Gosnell
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia
- Quantitative Pty Ltd, 116-118 Great Western Highway, Mt. Victoria, NSW, 2786, Australia
| | - Graham Vesey
- Regeneus Pty Ltd, 25 Bridge Street, Pymble, NSW, 2073, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia.
| |
Collapse
|
24
|
MicroRNA-218 promotes early chondrogenesis of mesenchymal stem cells and inhibits later chondrocyte maturation. BMC Biotechnol 2019; 19:6. [PMID: 30646874 PMCID: PMC6334453 DOI: 10.1186/s12896-018-0496-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) reportedly participate in the mesenchymal stem cell (MSC) chondrogenic differentiation regulation. We objected to examine how miR-218 regulate chondrogenic differentiation of synovium-derived MSCs (SDSCs) and the maturation of RCJ3.1C5.1 chondrocytes. SDSCs were sourced from the knee joint synovium of New Zealand white rabbits, and their multilineage differentiation potentials were examined. The level of miR-218 was measured during SDSC chondrogenic differentiation, together with determination of SDSCs chondrogenic markers and RCJ3.1C5.1 chondrocytes maturation markers expression level after transfection of miR-218 mimics/inhibitor. Results miR-218 expression was notably upregulated in early chondrogenesis but mostly ceased during the maturation phases of chondrogenic differentiation in SDSCs. The transfection of miR-218 mimics notably enhanced SDSCs chondrocytes differentiation, as evidenced by augmented expressions of chondrogenic markers (SOX9, COL2A1, ACAN, GAG, and COMP) in terms of mRNA and protein level, and the inhibition of miR-218 yielded opposite resutls. Additionally, miR-218 overexpression substantially suppressed the expression of osteogenic markers (ALP, BSP, COL1A1, OCN and OPN) during the early stage of chondrogenesis while increasing that of chondrogenic markers (SOX9, COL2A1, ACAN, GAG and COMP). However, miR-218 mimics notably suppressed maturation markers (CMP, COL10A1, MMP-13 and VEGF) expression in RCJ3.1C5.18 chondrocytes, and the miR-218 inhibitor promoted the expression of these maturation markers. We proposed miR-218 plays a regulatory role on 15-hydroxyprostaglandin dehydrogenase (HPGD), which plays a key role in chondrogenic differentiation, and this finding indicates that miR-218 directly regulates HPGD expression in SDSCs. Conclusion Our study suggests that miR-218 contributes to early chondrogenesis while suppressing later chondrocyte maturation. The miR-218-HPGD pathway offers us a perspective into how SDSCs differentiate into chondrogenic cells.
Collapse
|
25
|
Wang R, Xu B, Xu H. TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b. Cell Cycle 2018; 17. [PMID: 30526325 DOI: 10.1080/15384101.2018.1556063] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the molecular mechanism of TGF-β1 in regulating chondrocyte proliferation through MSC-exosomes. METHODS An osteoarthritis (OA) rat model was established. Cartilage degradation was quantified by using OARSI score. TGF-β1 was used to stimulate MSCs. The expressions of miR-135b and Sp1 in MSCs, MSC-exosomes and C5.18 cells were detected. The cell viability of C5.18 cells was measured using MTT assay. RESULTS TGF-β1 stimulation enhanced miR-135b expression in MSC-exosomes, and MSC-exosomes derived miR-135b increased the cell viability of C5.18 cells. Moreover, miR-135b negatively regulated Sp1 expression. The cell viability of C5.18 cells in TGF-β1+miR-135b inhibitor+si-control group was reduced, while the cell viability in TGF-β1+miR-135b inhibitor+si-Sp1 group was enhanced. In rat experiments, OARSI score was decreased and the number of chondrocytes was increased in OA+TGF-β1+MSC-exosome group, while the score and the number had an opposite trend in OA+TGF-β1+MSC-miR135b inhibitor-exosome group. CONCLUSION TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b, then promoted cartilage repair.
Collapse
Affiliation(s)
- Rui Wang
- a Department of Sports trauma & Arthroscopy surgery , The 1st affiliated hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| | - Bin Xu
- a Department of Sports trauma & Arthroscopy surgery , The 1st affiliated hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| | - Honggang Xu
- a Department of Sports trauma & Arthroscopy surgery , The 1st affiliated hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| |
Collapse
|
26
|
New Approach for Differentiation of Bone Marrow Mesenchymal Stem Cells Toward Chondrocyte Cells With Overexpression of MicroRNA-140. ASAIO J 2018; 64:662-672. [DOI: 10.1097/mat.0000000000000688] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
27
|
Takahashi T, Sato M, Toyoda E, Maehara M, Takizawa D, Maruki H, Tominaga A, Okada E, Okazaki K, Watanabe M. Rabbit xenogeneic transplantation model for evaluating human chondrocyte sheets used in articular cartilage repair. J Tissue Eng Regen Med 2018; 12:2067-2076. [PMID: 30058138 PMCID: PMC6221121 DOI: 10.1002/term.2741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/27/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022]
Abstract
Research on cartilage regeneration has developed novel sources for human chondrocytes and new regenerative therapies, but appropriate animal models for translational research are needed. Although rabbit models are frequently used in such studies, the availability of immunocompromised rabbits is limited. Here, we investigated the usefulness of an immunosuppressed rabbit model to evaluate directly the efficacy of human chondrocyte sheets through xenogeneic transplantation. Human chondrocyte sheets were transplanted into knee osteochondral defects in Japanese white rabbits administered with immunosuppressant tacrolimus at a dosage of 0.8 or 1.6 mg/kg/day for 4 weeks. Histological evaluation at 4 weeks after transplantation in rabbits administered 1.6 mg/kg/day showed successful engraftment of human chondrocytes and cartilage regeneration involving a mixture of hyaline cartilage and fibrocartilage. No human chondrocytes were detected in rabbits administered 0.8 mg/kg/day, although regeneration of hyaline cartilage was confirmed. Histological evaluation at 12 weeks after transplantation (i.e., 8 weeks after termination of immunosuppression) showed strong immune rejection of human chondrocytes, which indicated that, even after engraftment, articular cartilage is not particularly immune privileged in xenogeneic transplantation. Our results suggest that Japanese white rabbits administered tacrolimus at 1.6 mg/kg/day and evaluated at 4 weeks may be useful as a preclinical model for the direct evaluation of human cell‐based therapies.
Collapse
Affiliation(s)
- Takumi Takahashi
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Eriko Toyoda
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Miki Maehara
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daichi Takizawa
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Hideyuki Maruki
- Department of Orthopaedic Surgery, Tokyo Women's University, Tokyo, Japan
| | - Ayako Tominaga
- Department of Orthopaedic Surgery, Tokyo Women's University, Tokyo, Japan
| | - Eri Okada
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Tokyo Women's University, Tokyo, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
28
|
Iturriaga L, Hernáez-Moya R, Erezuma I, Dolatshahi-Pirouz A, Orive G. Advances in stem cell therapy for cartilage regeneration in osteoarthritis. Expert Opin Biol Ther 2018; 18:883-896. [PMID: 30020816 DOI: 10.1080/14712598.2018.1502266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Osteoarthritis (OA) is a progressive joint disease that compromises the structural integrity of cartilage tissue. Conventional treatments based on medication or surgery are nowadays inefficient and cell-based therapy has emerged as one of the most promising methods for cartilage regeneration. The first therapy developed for cartilage defects was autologous chondrocyte implantation, but in the last few decades stem cells (SCs) from different sources have been proposed as a possible alternative for OA. AREAS COVERED SC sources and available delivery procedures (scaffolds/hydrogels) are presented, along with the main issues arisen in this regard. Thereafter, preclinical and clinical trials performed in recent years are reviewed in order to take a glance toward the potential benefits that such therapies could deliver to the patients. EXPERT OPINION SCs have proven their potential and safety for OA treatment. Nevertheless, there are still many questions to be resolved before their widespread used in clinical practice, such as the treatment mechanism, the best cell source, the most appropriate processing method, the most effective dose and delivery procedure, and their efficacy. In this sense, long-term follow-up and larger randomized controlled trials utilizing standardized and established outcome scores are mandatory to make objective conclusions.
Collapse
Affiliation(s)
- Leire Iturriaga
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - Raquel Hernáez-Moya
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - Itsasne Erezuma
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - Alireza Dolatshahi-Pirouz
- c DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , Lyngby , Denmark
| | - Gorka Orive
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain.,d University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua) , Vitoria , Spain
| |
Collapse
|
29
|
Barrachina L, Remacha AR, Romero A, Zaragoza P, Vázquez FJ, Rodellar C. Differentiation of equine bone marrow derived mesenchymal stem cells increases the expression of immunogenic genes. Vet Immunol Immunopathol 2018; 200:1-6. [DOI: 10.1016/j.vetimm.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/14/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022]
|
30
|
Early Clinical Outcomes of Intra-Articular Injections of Bone Marrow Aspirate Concentrate for the Treatment of Early Osteoarthritis of the Hip and Knee: A Cohort Study. PM R 2018; 10:1353-1359. [PMID: 29857166 DOI: 10.1016/j.pmrj.2018.05.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/21/2018] [Accepted: 05/13/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bone marrow aspirate concentrate (BMC) is one of the few cell-based therapies available as a possible biological treatment for early osteoarthritis (OA). Its efficacy, safety, and benefit compared with other treatments are still to be determined. OBJECTIVE To assess the clinical outcomes of patients undergoing intra-articular injection of BMC for the treatment of early knee and hip OA. DESIGN Prospective, cohort study. SETTING Single institution, quaternary level of care. PATIENTS Nineteen patients (16 female and 3 male), totaling 25 joints (10 knees, 15 hips), treated with intra-articular BMC for early OA between 2014 and 2016. The mean age at time of the procedure was 58 ± 12.7 years (range, 30-80 years). The mean follow-up was 13.2 ± 6.3 months (range, 6-24 months). Inclusion criteria included ≥18 years; knee OA, Kellgren-Lawrence grade I-II; hip OA, Tönnis grade I-II; first-time intra-articular BMC therapy, after unsuccessful symptomatic and conservative treatments (ie, physical therapy, analgesics and anti-inflammatory drugs) for 6 months. Exclusion criteria included pregnancy; malignancy; rheumatologic diseases; infection; Kellgren-Lawrence grade III-IV; Tönnis grade III; and previous intra-articular injections or surgery. INTERVENTIONS All patients had autologous bone marrow aspirate harvested from the iliac crest and centrifuged to achieve BMC, for intra-articular injection. MAIN OUTCOME MEASUREMENTS The hypothesis was formulated before the study. Patient-reported outcomes measures were assessed preoperatively and at last follow-up using the Western Ontario and McMaster Universities Arthritis Index. RESULTS Western Ontario and McMaster Universities Arthritis Index improved from a baseline of 40.8 ± 18.3% to 20.6 ± 17% (P < .001) at final follow-up. The satisfaction rate was 63.2%. The minimal clinically important difference threshold of 9.15 points was reached by 64% of the patients. Two patients were converted to total hip arthroplasty at 8 months after BMC injection. CONCLUSIONS Intra-articular injections of BMC for the treatment of early knee or hip OA were safe and demonstrated satisfactory results in 63.2% of patients. Future studies are necessary to determine the efficacy of this technique and its safety profile. LEVEL OF EVIDENCE II.
Collapse
|
31
|
Sawada Y, Sugimoto A, Osaki T, Okamoto Y. Ajuga decumbens stimulates mesenchymal stem cell differentiation and regenerates cartilage in a rabbit osteoarthritis model. Exp Ther Med 2018; 15:4080-4088. [PMID: 29725360 PMCID: PMC5920389 DOI: 10.3892/etm.2018.5981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
In a previous study by our group, Ajuga decumbens extract (ADE) was demonstrated to decrease the number of osteoclasts in subchondral bone and to have a synergistic effect with glucosamine in improving cartilaginous injuries in a rabbit model of osteoarthritis. In the present study, a concentrate of the useful fraction of ADE, termed extra ADE (EADE), which includes higher concentrations of the active component 20-hydroxyecdysone, was evaluated for its efficacy to accelerate the healing of experimental cartilage injury. Cartilage injuries were surgically induced in rabbits by creating three holes; one in the articular cartilage of the medial trochlea and two in the trochlear sulcus of the distal femur. The rabbits were divided into the following four groups (n=3 in each): Control, ADE (0.5 g/kg), low dosage EADE (0.05 g/kg; low EADE) and high dosage EADE (0.5 g/kg; high EADE). ADE and EADE were dissolved in tap water and each dosage was orally administered every day for 3 weeks. At the end of the experimental period, histological analysis indicated that the cartilage matrix was regenerated in the low and high EADE groups. On counting of cells in the histological specimens, it was determined that the mean number of osteoclasts per 100 osteoblasts in subchondral bone was lower in the high EADE group compared with the control group. Furthermore, the results indicated that treatment with EADE (1–100 µg/ml) stimulated chondrogenic differentiation of mesenchymal stem cells and induced proteoglycan production to a greater extent than the control in vitro. EADE treatment (10 and 100 µg/ml) was also observed to significantly attenuate interleukin-1β-induced prostaglandin E2 production in chondrocytes (P<0.05). In summary, the results of the present study suggest that EADE may have greater curative effects on bone injury compared with the currently used therapeutic ADE.
Collapse
Affiliation(s)
- Yoko Sawada
- Technology Research and Development Laboratory, Research and Development Headquarters, Asahi Group Foods, Ltd., Moriya-shi, Ibaraki 302-0106, Japan
| | - Atsushi Sugimoto
- Technology Research and Development Laboratory, Research and Development Headquarters, Asahi Group Foods, Ltd., Moriya-shi, Ibaraki 302-0106, Japan
| | - Tomohiro Osaki
- Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yoshiharu Okamoto
- Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
32
|
Helgeland E, Shanbhag S, Pedersen TO, Mustafa K, Rosén A. Scaffold-Based Temporomandibular Joint Tissue Regeneration in Experimental Animal Models: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:300-316. [PMID: 29400140 DOI: 10.1089/ten.teb.2017.0429] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reconstruction of degenerated temporomandibular joint (TMJ) structures remains a clinical challenge. Tissue engineering (TE) is a promising alternative to current treatment options, where the TMJ is either left without functional components, or replaced with autogenous, allogeneic, or synthetic grafts. The objective of this systematic review was to answer the focused question: in experimental animal models, does the implantation of biomaterial scaffolds loaded with cells and/or growth factors (GFs) enhance regeneration of the discal or osteochondral TMJ tissues, compared with scaffolds alone, without cells, or GFs? Following PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analysis) guidelines, electronic databases were searched for relevant controlled preclinical in vivo studies. Thirty studies reporting TMJ TE strategies in both small (rodents, rabbits; n = 25) and large animals (dogs, sheep, goats; n = 5) reporting histological and/or radiographic outcomes were included. Twelve studies reported ectopic (subcutaneous) implantation models in rodents, whereas 18 studies reported orthotopic, surgically induced defect models in large animals. On average, studies presented with an unclear-to-high risk of bias. In most studies, mesenchymal stem cells or chondrocytes were used in combination with either natural or synthetic polymer scaffolds, aiming for either TMJ disc or condyle regeneration. In summary, the overall preclinical evidence (ectopic [n = 6] and orthotopic TMJ models [n = 6]) indicate that addition of chondrogenic and/or osteogenic cells to biomaterial scaffolds enhances the potential for TMJ tissue regeneration. Standardization of animal models and quantitative outcome evaluations (biomechanical, biochemical, histomorphometric, and radiographic) in future studies, would allow more reliable comparisons and increase the validity of the results.
Collapse
Affiliation(s)
- Espen Helgeland
- 1 Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Siddharth Shanbhag
- 1 Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Torbjørn Ostvik Pedersen
- 1 Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen , Bergen, Norway .,2 Department of Oral and Maxillofacial Surgery, University of Bergen and Haukeland University Hospital , Bergen, Norway
| | - Kamal Mustafa
- 1 Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Annika Rosén
- 1 Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen , Bergen, Norway .,2 Department of Oral and Maxillofacial Surgery, University of Bergen and Haukeland University Hospital , Bergen, Norway
| |
Collapse
|
33
|
Mahboudi H, Kazemi B, Soleimani M, Hanaee-Ahvaz H, Ghanbarian H, Bandehpour M, Enderami SE, Kehtari M, Barati G. Enhanced chondrogenesis of human bone marrow mesenchymal Stem Cell (BMSC) on nanofiber-based polyethersulfone (PES) scaffold. Gene 2018; 643:98-106. [DOI: 10.1016/j.gene.2017.11.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
|
34
|
Lee H, Woo HM, Kang BJ. Impact of collagen-alginate composition from microbead morphological properties to microencapsulated canine adipose tissue-derived mesenchymal stem cell activities. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:1042-1052. [PMID: 29082833 DOI: 10.1080/09205063.2017.1399002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to identify the effect of collagen-alginate composition on the size and shape of microbeads and the proliferation and osteogenic properties of microencapsulated canine adipose-derived mesenchymal stem cells (ASCs) in vitro. Canine ASCs were microencapsulated in mixtures of various collagen-alginate compositions using a vibrational technologic encapsulator. The size and shape of the resultant microbeads were measured using a light field microscope and the viability of the microencapsulated canine ASCs was evaluated using a live/dead viability/cytotoxicity kit. Proliferation and osteogenic potentials of microencapsulated canine ASCs were evaluated using an alamarBlue proliferation assay and an alkaline phosphatase assay, respectively. As the collagen ratio increased, the size and size variation of microbeads increased and the shape of microbeads became more irregular. Nonetheless, homogeneous microbeads were created with no significant difference in size and shape, in the range of 0.75% alginate mixed with 0.099% collagen solution in 1.2% alginate solution. There were no significant differences in viability of the ASCs in the various collagen-alginate compositions. Both proliferation and osteogenic properties, in vitro, increased with increasing collagen ratio. Microencapsulation of canine ASCs with appropriate collagen-alginate composition increases cell proliferation and osteogenic properties, in vitro, without significant effects on the shape and size of microbeads and cell viability. Microencapsulation with adequate collagen-alginate composition may produce injectable microbeads that could enhance the therapeutic efficacy of stem cells.
Collapse
Affiliation(s)
- Hyunkyu Lee
- a Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science , Kangwon National University , Chuncheon , Republic of Korea
| | - Heung-Myong Woo
- a Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science , Kangwon National University , Chuncheon , Republic of Korea
| | - Byung-Jae Kang
- a Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science , Kangwon National University , Chuncheon , Republic of Korea
| |
Collapse
|
35
|
Safety, tolerability, clinical, and joint structural outcomes of a single intra-articular injection of allogeneic mesenchymal precursor cells in patients following anterior cruciate ligament reconstruction: a controlled double-blind randomised trial. Arthritis Res Ther 2017; 19:180. [PMID: 28768528 PMCID: PMC5541727 DOI: 10.1186/s13075-017-1391-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/17/2017] [Indexed: 12/30/2022] Open
Abstract
Background Few clinical trials have investigated the safety and efficacy of mesenchymal stem cells for the management of post-traumatic osteoarthritis. The objectives of this pilot study were to determine the safety and tolerability and to explore the efficacy of a single intra-articular injection of allogeneic human mesenchymal precursor cells (MPCs) to improve clinical symptoms and retard joint structural deterioration over 24 months in patients following anterior cruciate ligament (ACL) reconstruction. Methods In this phase Ib/IIa, double-blind, active comparator clinical study, 17 patients aged 18–40 years with unilateral ACL reconstruction were randomized (2:1) to receive either a single intra-articular injection of 75 million allogeneic MPCs suspended in hyaluronan (HA) (MPC + HA group) (n = 11) or HA alone (n = 6). Patients were monitored for adverse events. Immunogenicity was evaluated by anti-HLA panel reactive antibodies (PRA) against class I and II HLAs determined by flow cytometry. Pain, function, and quality of life were assessed using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and SF-36v2 scores. Joint space width was measured from radiographs, and tibial cartilage volume and bone area assessed from magnetic resonance imaging (MRI). Results Moderate arthralgia and swelling within 24 h following injection that subsided were observed in 4 out of 11 in the MPC + HA group and 0 out of 6 HA controls. No cell-related serious adverse effects were observed. Increases in class I PRA >10% were observed at week 4 in the MPC + HA group that decreased to baseline levels by week 104. Compared with the HA group, MPC + HA-treated patients showed greater improvements in KOOS pain, symptom, activities of daily living, and SF-36 bodily pain scores (p < 0.05). The MPC + HA group had reduced medial and lateral tibiofemoral joint space narrowing (p < 0.05), less tibial bone expansion (0.5% vs 4.0% over 26 weeks, p = 0.02), and a trend towards reduced tibial cartilage volume loss (0.7% vs –4.0% over 26 weeks, p = 0.10) than the HA controls. Conclusions Intra-articular administration of a single allogeneic MPC injection following ACL reconstruction was safe, well tolerated, and may improve symptoms and structural outcomes. These findings suggest that MPCs warrant further investigations as they may modulate some of the pathological processes responsible for the development of post-traumatic osteoarthritis following ACL reconstruction. Trial registration ClinicalTrials.gov (NCT01088191) registration date: March 11, 2010 Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1391-0) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Recent development in cell encapsulations and their therapeutic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1247-1260. [DOI: 10.1016/j.msec.2017.04.103] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
|
37
|
Li A, Tao Y, Kong D, Zhang N, Wang Y, Wang Z, Wang Y, Wang J, Xiao J, Jiang Y, Liu X, Zheng C. Infusion of umbilical cord mesenchymal stem cells alleviates symptoms of ankylosing spondylitis. Exp Ther Med 2017; 14:1538-1546. [PMID: 28781629 PMCID: PMC5526206 DOI: 10.3892/etm.2017.4687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
The current study evaluated 5 patients with ankylosing spondylitis (AS). Patients received intravenous transfusions of umbilical cord mesenchymal stem cells (uMSCs). All therapeutic and adverse responses were assessed and recorded during uMSC therapy. No severe adverse reactions were observed in any of the patients, although a slight transient fever was observed in 3 patients within 2–6 h of intravenous administration of uMSCs. Following treatment, the Bath Ankylosing Spondylitis Disease Activity and Bath Ankylosing Spondylitis Metrology Indices decreased, however the Bath Ankylosing Spondylitis Functional Index increased. The erythrocyte sedimentation rate in 3 patients was reduced and C-reactive protein levels in 1 patient were markedly reduced. The symptoms of AS were alleviated in all patients. The present study indicates that intravenous transfusion of uMSCs is safe and well tolerated by patients and that it effectively alleviates disease activity and clinical symptoms. In the future, a larger cohort of patients with AS should be recruited to enable the systemic evaluation of uMSC therapy.
Collapse
Affiliation(s)
- Ai Li
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuan Tao
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Dexiao Kong
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ni Zhang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yongjing Wang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhilun Wang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yingxue Wang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Juandong Wang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Juan Xiao
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yang Jiang
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaoli Liu
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chengyun Zheng
- Department of Hematology and Cellular Therapy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Shandong University-Karolinska Institute Collaborative Laboratory For Stem Cell Research, Jinan, Shandong 250033, P.R. China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
38
|
Fu C, Zheng C, Lin J, Ye J, Mei Y, Pan C, Wu G, Li X, Ye H, Liu X. Cibotium barometz polysaccharides stimulate chondrocyte proliferation in vitro by promoting G1/S cell cycle transition. Mol Med Rep 2017; 15:3027-3034. [PMID: 28358416 PMCID: PMC5428555 DOI: 10.3892/mmr.2017.6412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022] Open
Abstract
Cibotium barometz polysaccharides (CBPS) are one of the most important bioactive components extracted from the Cibotium barometz plant, which belongs to the Dicksoniaceae family. It has been widely used for the treatment of orthopedic diseases in traditional Chinese medicine. However, the molecular mechanisms behind the therapeutic effects of CBPS remain to be clarified. In the present study, the concentration of CBPS was detected by phenol-vitriol colorimetry. Furthermore, the effects stimulated by CBPS on the viability and G1/S cell cycle transition in primary chondrocytes from Sprague-Dawley rats were investigated. A cell viability assay demonstrated that chondrocyte proliferation may be enhanced by CBPS in a dose- and time-dependent manner. The mechanism underlying the promotion of chondrocyte cell cycle was suggested to involve the stimulation of G1 to S phase transition. To further confirm the results, reverse transcription-quantitative polymerase chain reaction and western blot analyses were used to detect the expression of mRNA and protein levels of cyclin D1, cyclin-dependent kinase 4 and retinoblastoma protein. The results suggested that CBPS may stimulate chondrocyte proliferation via promoting G1/S cell cycle transition. Since osteoarthritis is characterized by deficient proliferation in chondrocytes, the present study indicates that CBPS may potentially serve as a novel method for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Changlong Fu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Chunsong Zheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jie Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jinxia Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yangyang Mei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Caibin Pan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Guangwen Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hongzhi Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xianxiang Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
39
|
Xu Z, Chen T, Luo J, Ding S, Gao S, Zhang J. Cartilaginous Metabolomic Study Reveals Potential Mechanisms of Osteophyte Formation in Osteoarthritis. J Proteome Res 2017; 16:1425-1435. [PMID: 28166636 DOI: 10.1021/acs.jproteome.6b00676] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteophyte is one of the inevitable consequences of progressive osteoarthritis with the main characteristics of cartilage degeneration and endochondral ossification. The pathogenesis of osteophyte formation is not fully understood to date. In this work, metabolomic approaches were employed to explore potential mechanisms of osteophyte formation by detecting metabolic variations between extracts of osteophyte cartilage tissues (n = 32) and uninvolved control cartilage tissues (n = 34), based on the platform of ultraperformance liquid chromatography tandem quadrupole time-of-flight mass spectrometry, as well as the use of multivariate statistic analysis and univariate statistic analysis. The osteophyte group was significantly separated from the control group by the orthogonal partial least-squares discriminant analysis models, indicating that metabolic state of osteophyte cartilage had been changed. In total, 28 metabolic variations further validated by mass spectrum (MS) match, tandom mass spectrum (MS/MS) match, and standards match mainly included amino acids, sulfonic acids, glycerophospholipids, and fatty acyls. These metabolites were related to some specific physiological or pathological processes (collagen dissolution, boundary layers destroyed, self-restoration triggered, etc.) which might be associated with the procedure of osteophyte formation. Pathway analysis showed phenylalanine metabolism (PI = 0.168, p = 0.004) was highly correlative to this degenerative process. Our findings provided a direction for targeted metabolomic study and an insight into further reveal the molecular mechanisms of ostophyte formation.
Collapse
Affiliation(s)
- Zhongwei Xu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016, China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
| | - Jiao Luo
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University , Chengdu 610041, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
| | - Sichuan Gao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016, China
| | - Jian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016, China
| |
Collapse
|
40
|
Turajane T, Chaveewanakorn U, Fongsarun W, Aojanepong J, Papadopoulos KI. Avoidance of Total Knee Arthroplasty in Early Osteoarthritis of the Knee with Intra-Articular Implantation of Autologous Activated Peripheral Blood Stem Cells versus Hyaluronic Acid: A Randomized Controlled Trial with Differential Effects of Growth Factor Addition. Stem Cells Int 2017; 2017:8925132. [PMID: 29056974 PMCID: PMC5625803 DOI: 10.1155/2017/8925132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/25/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
In this randomized controlled trial, in early osteoarthritis (OA) that failed conservative intervention, the need for total knee arthroplasty (TKA) and WOMAC scores were evaluated, following a combination of arthroscopic microdrilling mesenchymal cell stimulation (MCS) and repeated intra-articular (IA) autologous activated peripheral blood stem cells (AAPBSCs) with growth factor addition (GFA) and hyaluronic acid (HA) versus IA-HA alone. Leukapheresis-harvested AAPBSCs were administered as three weekly IA injections combined with HA and GFA (platelet-rich plasma [PRP] and granulocyte colony-stimulating factor [hG-CSF]) and MCS in group 1 and in group 2 but without hG-CSF while group 3 received IA-HA alone. Each group of 20 patients was evaluated at baseline and at 1, 6, and, 12 months. At 12 months, all patients in the AAPBSC groups were surgical intervention free compared to three patients needing TKA in group 3 (p < 0.033). Total WOMAC scores showed statistically significant improvements at 6 and 12 months for the AAPBSC groups versus controls. There were no notable adverse events. We have shown avoidance of TKA in the AAPBSC groups at 12 months and potent, early, and sustained symptom alleviation through GFA versus HA alone. Differential effects of hG-CSF were noted with an earlier onset of symptom alleviation throughout.
Collapse
Affiliation(s)
- Thana Turajane
- 1Department of Orthopedic Surgery, Police General Hospital, Bangkok, Thailand
| | | | | | - Jongjate Aojanepong
- 3Department of Gynecology and Obstetrics, Police General Hospital, Bangkok, Thailand
| | | |
Collapse
|
41
|
Shapiro SA, Kazmerchak SE, Heckman MG, Zubair AC, O'Connor MI. A Prospective, Single-Blind, Placebo-Controlled Trial of Bone Marrow Aspirate Concentrate for Knee Osteoarthritis. Am J Sports Med 2017; 45:82-90. [PMID: 27566242 DOI: 10.1177/0363546516662455] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bone marrow aspirate concentrate (BMAC) is increasingly used as a regenerative therapy for musculoskeletal pathological conditions despite limited evidence-based support. HYPOTHESIS BMAC will prove feasible, safe, and efficacious for the treatment of pain due to mild to moderate degenerative joint disease of the knee. STUDY DESIGN Randomized controlled trial; Level of evidence, 2. METHODS In this prospective, single-blind, placebo-controlled trial, 25 patients with bilateral knee pain from bilateral osteoarthritis were randomized to receive BMAC into one knee and saline placebo into the other. Fifty-two milliliters of bone marrow was aspirated from the iliac crests and concentrated in an automated centrifuge. The resulting BMAC was combined with platelet-poor plasma for an injection into the arthritic knee and was compared with a saline injection into the contralateral knee, thereby utilizing each patient as his or her own control. Safety outcomes, pain relief, and function as measured by Osteoarthritis Research Society International (OARSI) measures and the visual analog scale (VAS) score were tracked initially at 1 week, 3 months, and 6 months after the procedure. RESULTS There were no serious adverse events from the BMAC procedure. OARSI Intermittent and Constant Osteoarthritis Pain and VAS pain scores in both knees decreased significantly from baseline at 1 week, 3 months, and 6 months ( P ≤ .019 for all). Pain relief, although dramatic, did not differ significantly between treated knees ( P > .09 for all). CONCLUSION Early results show that BMAC is safe to use and is a reliable and viable cellular product. Study patients experienced a similar relief of pain in both BMAC- and saline-treated arthritic knees. Further study is required to determine the mechanisms of action, duration of efficacy, optimal frequency of treatments, and regenerative potential. Registration: ClinicalTrials.gov record 12-004459.
Collapse
Affiliation(s)
- Shane A Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Shari E Kazmerchak
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Mary I O'Connor
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA.,Musculoskeletal Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
42
|
Papanagnou P, Stivarou T, Tsironi M. The Role of miRNAs in Common Inflammatory Arthropathies: Osteoarthritis and Gouty Arthritis. Biomolecules 2016; 6:biom6040044. [PMID: 27845712 PMCID: PMC5197954 DOI: 10.3390/biom6040044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA species that are highly evolutionarily conserved, from higher invertebrates to man. Up to 1000 miRNAs have been identified in human cells thus far, where they are key regulators of the expression of numerous targets at the post-transcriptional level. They are implicated in various processes, including cell differentiation, metabolism, and inflammation. An expanding list of miRNAs is known to be involved in the pathogenesis of common, non-autoimmune inflammatory diseases. Interestingly, osteoarthritis (OA) is now being conceptualized as a metabolic disease, as there is a correlation among hyperuricemia and metabolic syndrome (MetS). Experimental evidence suggests that metabolic deregulation is a commonality between these different pathological entities, and that miRNAs are key players in the modulation of metabolic routes. In light of these findings, this review discusses the role of miRNAs in OA and gouty arthritis, as well as the possible therapeutic targetability of miRNAs in these diseases.
Collapse
Affiliation(s)
- Panagiota Papanagnou
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Orthias Artemidos and Plateon St, GR-23100 Sparti, Greece.
| | - Theodora Stivarou
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Orthias Artemidos and Plateon St, GR-23100 Sparti, Greece.
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, P.O Box 115 21, Athens, Greece.
| | - Maria Tsironi
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Orthias Artemidos and Plateon St, GR-23100 Sparti, Greece.
| |
Collapse
|
43
|
Pagani S, Borsari V, Veronesi F, Ferrari A, Cepollaro S, Torricelli P, Filardo G, Fini M. Increased Chondrogenic Potential of Mesenchymal Cells From Adipose Tissue Versus Bone Marrow-Derived Cells in Osteoarthritic In Vitro Models. J Cell Physiol 2016; 232:1478-1488. [PMID: 27739057 DOI: 10.1002/jcp.25651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023]
Abstract
Primarily, to compare the behavior of human mesenchymal stem cells (MSCs) derived from bone marrow (hBMSCs) and adipose tissue (hADSCs) in an osteoarthritic (OA) microenvironment; secondly, to investigate the reaction of these cell types in two alternative in vitro culture systems, obtained by using TNFα and/or IL1β as inflammation mediators, or by using synovial fluid harvested by OA patients (OSF) to simulate the complex inflamed knee microenvironment. 3D micromass cultures of hBMSCs or hADSCs were grown in chondrogenic medium (CTR), in the presence of TNFα and/or IL1β, or synovial fluid from OA patients. After 1 month of culture, the chondrogenic differentiation of micromasses was evaluated by gene expression, matrix composition, and organization. Both hMSCs types formed mature micromasses in CTR, but a better response of hADSCs to the inflammatory environment was documented by micromass area and Bern score evaluations. The addition of OSF elicited a milder reaction than with TNFα and/or IL1β by both cell types, probably due to the presence of both catabolic and protective factors. In particular, SOX9 and ACAN gene expression and GAG synthesis were more abundant in hADSCs than hBMSCs when cultured in OSF. The expression of MMP1 was increased for both hMSCs in inflammatory conditions, but in particular by hBMSCs. hADSCs showed an increased chondrogenic potential in inflammatory culture systems, suggesting a better response of hADSCs in the OA environment, thus underlining the importance of appropriate in vitro models to study MSCs and potential advantages of using these cells for future clinical applications. J. Cell. Physiol. 232: 1478-1488, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefania Pagani
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Veronica Borsari
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Department RIT Rizzoli-Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Andrea Ferrari
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Simona Cepollaro
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paola Torricelli
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Giuseppe Filardo
- Biomechnaics Lab-II Clinic, Rizzoli Orthopaedic Institute, Bologna University, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
44
|
Bomer N, den Hollander W, Suchiman H, Houtman E, Slieker RC, Heijmans BT, Slagboom PE, Nelissen RGHH, Ramos YFM, Meulenbelt I. Neo-cartilage engineered from primary chondrocytes is epigenetically similar to autologous cartilage, in contrast to using mesenchymal stem cells. Osteoarthritis Cartilage 2016; 24:1423-30. [PMID: 26995110 DOI: 10.1016/j.joca.2016.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/16/2016] [Accepted: 03/10/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To compare the epigenetic landscape of 3D cell models of human primary articular chondrocytes (hPACs) and human bone-marrow derived mesenchymal stem cells (hBMSCs) and their respective autologous articular cartilage. DESIGN Using Illumina Infinium HumanMethylation450 BeadChip arrays, the DNA methylation landscape of the different cell sources and autologous cartilage was determined. Pathway enrichment was analyzed using DAVID. RESULTS Principal Component Analysis (PCA) of methylation data revealed separate clustering of hBMSC samples. Between hBMSCs and autologous cartilage 86,881 cytosine-phosphate-guanine dinucleotides (CpGs) (20.2%), comprising 3,034 differentially methylated regions (DMRs; Δβ > 0.1; with the same direction of effect), were significantly differentially methylated. In contrast, between hPACs and autologous cartilage only 5,706 CpGs (1.33%) were differentially methylated. Of interest was the finding of the transcriptionally active, hyper-methylation of a Cartilage Intermediate Layer Protein (CILP) annotated DMR (Δβ = 0.16) in PAC-cartilage, corresponding to a profound decrease in CILP expression after in vitro culturing of hPACs as compared to autologous cartilage. CONCLUSIONS In vitro engineered neo-cartilage tissue from primary chondrocytes, hPACs, exhibits a DNA methylation landscape that is almost identical (99% similarity) to autologous cartilage, in contrast to neo-cartilage engineered from bone marrow-derived mesenchymal stem cells (MSCs). Although hBMSCs are widely used for cartilage engineering purposes the effects of these vast differences on cartilage regeneration and long term consequences of implantation, are not known. The use of hBMSCs or hPACs for future cartilage tissue regeneration purposes should therefore be investigated in more depth in future endeavors to better understand the consequences of the differential methylome on neo-cartilage.
Collapse
Affiliation(s)
- N Bomer
- Dept. of Molecular Epidemiology, LUMC, Leiden, The Netherlands; IDEAL, LUMC, Leiden, The Netherlands
| | - W den Hollander
- Dept. of Molecular Epidemiology, LUMC, Leiden, The Netherlands
| | - H Suchiman
- Dept. of Molecular Epidemiology, LUMC, Leiden, The Netherlands
| | - E Houtman
- Dept. of Molecular Epidemiology, LUMC, Leiden, The Netherlands
| | - R C Slieker
- Dept. of Molecular Epidemiology, LUMC, Leiden, The Netherlands; IDEAL, LUMC, Leiden, The Netherlands
| | - B T Heijmans
- Dept. of Molecular Epidemiology, LUMC, Leiden, The Netherlands; IDEAL, LUMC, Leiden, The Netherlands
| | - P E Slagboom
- Dept. of Molecular Epidemiology, LUMC, Leiden, The Netherlands; IDEAL, LUMC, Leiden, The Netherlands
| | | | - Y F M Ramos
- Dept. of Molecular Epidemiology, LUMC, Leiden, The Netherlands
| | - I Meulenbelt
- Dept. of Molecular Epidemiology, LUMC, Leiden, The Netherlands.
| |
Collapse
|
45
|
Bloch W. Stem Cell Activation in Adult Organisms. Int J Mol Sci 2016; 17:ijms17071005. [PMID: 27347939 PMCID: PMC4964381 DOI: 10.3390/ijms17071005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/17/2023] Open
Affiliation(s)
- Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf 6, Cologne 50933, Germany.
| |
Collapse
|
46
|
Jia X, Pan J, Li X, Li N, Han Y, Feng X, Cui J. Bone marrow mesenchymal stromal cells ameliorate angiogenesis and renal damage via promoting PI3k-Akt signaling pathway activation in vivo. Cytotherapy 2016; 18:838-45. [PMID: 27210720 DOI: 10.1016/j.jcyt.2016.03.300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/11/2016] [Accepted: 03/31/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The objective of this study was to investigate the effects of the intravenous transplantation of bone marrow mesenchymal stromal cells (BM-MSCs) on the repair of glomerular endothelia and angiogenesis in rats with chronic renal failure (CRF). Furthermore, the mechanism of BM-MSCs promoting angiogenesis was explored by detection of Akt and P-Akt protein expression in rat kidney tissue. MATERIAL AND METHODS A rat model with CRF was established by adenine. Immature male Wistar rats were randomly divided into control group, model group and treatment group. Model group rats were injected with phosphate-buffered saline (PBS) via tail vein 24 h after the successful modeling, whereas the treatment group rats were injected with BM-MSCs. Eight weeks later, urine and blood were collected to assess 24-h proteinuria, serum creatinine (Scr) and blood urea nitrogen (BUN). We identified glomerular capillaries density using JG12 immunostaining. Levels of vascular endothelial growth factor (VEGF) were assayed using enzyme-linked immunosorbant assay (ELISA). We used Western blot to determine protein expression of p-Akt and Akt in renal tissues. RESULTS Adenine induced chronic renal damage, as indicated by the mass proteinuria, deterioration of renal function and the histopathologic injury in tubules and interstitium. BM-MSCs signficantly increased capillary density and improved renal function and serum VEGF. Additionally, activation of Akt (i.e., P-Akt significantly increased) in the treatment group was increased obviously. CONCLUSION BM-MSCs could alleviate the renal damages of adenine-induced CRF, reduce the excretion of proteinuria, increase the glomerular capillaries density, promote the secretion of VEGF and finally contribute to improve renal function. VEGF-induced angiogenesis is mediated through activating PI3k-Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaojing Jia
- Department of Pediatric, Shanxi Medical University, Taiyuan, China
| | - Jinbing Pan
- Department of Pathology, Shanxi Provincial Children's Hospital, Taiyuan, China
| | - Xiuhua Li
- Department of Public Health, Shanxi Medical University, Taiyuan, China
| | - Na Li
- Department of Pediatric, Shanxi Medical University, Taiyuan, China
| | - Yan Han
- Department of Pediatric, Shanxi Medical University, Taiyuan, China
| | - Xing Feng
- Department of Pediatric, Shanxi Medical University, Taiyuan, China
| | - Jianjun Cui
- Department of Nephrology, Shanxi Provincial Children's Hospital, NO. 15, Xinmin North Street, Xinghualing District, Taiyuan City, Shanxi Province, China.
| |
Collapse
|
47
|
Tian Y, Guo R, Shi B, Chen L, Yang L, Fu Q. MicroRNA-30a promotes chondrogenic differentiation of mesenchymal stem cells through inhibiting Delta-like 4 expression. Life Sci 2016; 148:220-8. [PMID: 26872979 DOI: 10.1016/j.lfs.2016.02.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/27/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
AIMS MicroRNAs (miRNAs) play important roles in chondrogenic differentiation of mesenchymal stem cells (MSCs). However, the regulation of miR-30a during such process has not yet been well understood. The aim of the study was to investigate the effects of miR-30a on chondrogenic differentiation of MSCs and explore the underlying mechanisms. MATERIALS AND METHODS MSCs were isolated from rat bone marrow, and their immunophenotypes and multilineage differentiation potentials were identified. MiR-30a mimics or inhibitor were transfected into rat MSCs and SW1353 cells, respectively, and then the effects of miR-30a on chondrogenic differentiation were detected. The predicted target gene Delta-like 4 (DLL4, a ligand of the Notch signaling family) was verified by luciferase reporter assay, quantitative real time PCR and western blot. KEY FINDINGS MiR-30a was significantly up-regulated during chondrogenic differentiation of rat MSCs. Additionally, transfection of miR-30a mimics remarkably promoted the differentiation of rat MSCs into chondrocytes as evidence by the notably increased mRNA and protein expression levels of chondrogenic markers Collagen II and aggrecan as well as the enhanced alcian blue staining intensity, whereas inhibition of miR-30a obviously suppressed such process. Furthermore, during chondrogenesis, DLL4 expression was found to significantly decrease at both mRNA and protein levels, which was negatively regulated by miR-30a through directly targeting the 3'UTR of DLL4. SIGNIFICANCE Our results indicate that miR-30a acts as a key promoter for chondrogenic differentiation of MSCs by down-regulating DLL4 expression, and provide a novel insight on miRNA-mediated MSC therapy for cartilage-related disorders including osteoarthritis.
Collapse
Affiliation(s)
- Ye Tian
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ran Guo
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Bin Shi
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Longgang Chen
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liqing Yang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qin Fu
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
48
|
Yoon DS, Lee KM, Kim SH, Kim SH, Jung Y, Kim SH, Park KH, Choi Y, Ryu HA, Choi WJ, Lee JW. Synergistic Action of IL-8 and Bone Marrow Concentrate on Cartilage Regeneration Through Upregulation of Chondrogenic Transcription Factors. Tissue Eng Part A 2016; 22:363-74. [DOI: 10.1089/ten.tea.2015.0425] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Dong Suk Yoon
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Sung-Hwan Kim
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Su Hee Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Soo Hyun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Kwang Hwan Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Yoorim Choi
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Hyun Aae Ryu
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Woo Jin Choi
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Woo Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| |
Collapse
|
49
|
Zhang L, Chen S, Bao N, Yang C, Ti Y, Zhou L, Zhao J. Sox4 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cell via activation of long noncoding RNA DANCR. J Mol Histol 2015; 46:467-73. [DOI: 10.1007/s10735-015-9638-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/18/2015] [Indexed: 01/15/2023]
|
50
|
Liang QQ, Shi Q, Wood RW, Xing LP, Wang YJ. Peri-articular lymphatic system and "Bi" theory of Chinese medicine in the pathogenesis and treatment of arthritis. Chin J Integr Med 2015; 21:648-55. [PMID: 26432788 DOI: 10.1007/s11655-015-2305-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are the two most common joint diseases, and they have characterization of synovial inflammation and cartilage destruction, associated with the accumulation of numerous catabolic mediators and inflammatory cells in the synovial space and surrounding soft tissues. How these factors are cleared and if the "clearance" process contributes to pathogenesis of arthritis are not known. Recently, we found the existence of the peri-articular lymphatic system in mouse joints. The blockade of lymphangiogenesis and lymphatic draining function accelerates while stimulation of lymphatic function attenuates the severity of joint tissue lesions in mouse models of RA and OA. More importantly, we noticed the similarity between the dysfunction of lymphatic drainage in arthritic joints and "Bi" theory of Chinese medicine (CM), and demonstrated that several Bi disease-treated herbal drugs directly affect the function of lymphatic endothelial cells. Here we review the advances about the interactions between joint inflammation and changes in the peri-articular lymphatic system and discuss our view of linking "Bi" theory of CM to lymphatic dysfunction in arthritis.
Collapse
Affiliation(s)
- Qian-Qian Liang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qi Shi
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ronald W Wood
- Department of Obstetrics and Gynecology, Urology, and Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Lian-Ping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA. .,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Yong-Jun Wang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|