1
|
Kuryata O, Akimov O, Riabushko M, Kostenko H, Kostenko V, Mishchenko A, Nazarenko S, Solovyova N, Kostenko V. Therapeutic potential of 5-aminolevulinic acid in metabolic disorders: Current insights and future directions. iScience 2024; 27:111477. [PMID: 39720526 PMCID: PMC11667047 DOI: 10.1016/j.isci.2024.111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
5-Aminolevulinic acid (5-ALA) is an essential compound in the biosynthesis of heme, playing a critical role in various physiological processes within the human body. This review provides the thorough analysis of the latest research on the molecular mechanisms and potential therapeutic benefits of 5-ALA in managing metabolic disorders. The ability of 5-ALA to influence immune response and inflammation, oxidative/nitrosative stress, antioxidant system, mitochondrial functions, as well as carbohydrate and lipid metabolism, is mediated by molecular mechanisms associated with the suppression of the transcription factor NF-κB signaling pathway, activation of the transcription factor Nrf2/heme oxygenase-1 (HO-1) system leading to the formation of heme-derived reaction products (carbon monoxide, ferrous iron, biliverdin, and bilirubin), which may contribute to HO-1-dependent cytoprotection through antioxidant and immunomodulatory effects. Additionally, it regulates the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, cytochrome c oxidase subunit IV, uncoupling proteins UCP1 and UCP2, glucose transporters GLUT1 and GLUT2, and sterol regulatory element-binding protein 1c in relevant tissues. Randomized controlled trials have confirmed the effects of 5-ALA on glucose control in both prediabetic and diabetic patients, noting its safety and tolerability, as well as the safety of its combined use with oral hypoglycemic agents. Only minor side effects have been reported. However, the impact of 5-ALA on markers of systemic inflammation, oxidative and nitrosative stress, and dyslipidemia was not evaluated in these studies. At the same time, preparations of 5-ALA may potentially be effective not only in the treatment of prediabetes and type 2 diabetes mellitus (T2DM), but also in other conditions associated with systemic inflammation, oxidative or nitrosative stress, mitochondrial dysfunction, as well as disorders of carbohydrate and lipid metabolism. It has been concluded that the promising advancement of formulations containing 5-ALA may pave the way for new strategies in preventing and treating these diseases, with subsequent preclinical and clinical trials likely to follow.
Collapse
Affiliation(s)
- Olexandr Kuryata
- Dnipro State Medical University, Department of Internal Medicine 2, Phthisiology, Occupational Diseases and Clinical Immunology, Dnipro, Ukraine
| | - Oleh Akimov
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Mykola Riabushko
- Poltava State Medical University, Department of Internal Medicine 2, Poltava, Ukraine
| | - Heorhii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Viktoriia Kostenko
- Poltava State Medical University, Department of Foreign Languages with Latin and Medical Terminology, Poltava, Ukraine
| | - Artur Mishchenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Svetlana Nazarenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Natalia Solovyova
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Vitalii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| |
Collapse
|
2
|
Zhou X, Liu Q, Wang X, Yao X, Zhang B, Wu J, Sun C. Exosomal ncRNAs facilitate interactive 'dialogue' between tumor cells and tumor-associated macrophages. Cancer Lett 2023; 552:215975. [PMID: 36306940 DOI: 10.1016/j.canlet.2022.215975] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
As a biological carrier, exosomes participate in the communication between various kinds of cells, and can mediate the interactive 'dialogue' between tumor cells and tumor-associated macrophages (TAMs). TAMs are the most abundant cell population in the tumor stroma and are an important part of the tumor immune microenvironment. Various stimulating factors in the tumor microenvironment influence the polarization of TAMs into multiple phenotypes, such as M1 and M2. It plays a dual role in tumor immunity by both promoting and inhibiting tumor growth. Exosome-encapsulated non-coding RNAs (ncRNAs) participate in the interactive 'dialogue' between exosome-mediated TAMs and tumor cells. Tumor-derived exosomal ncRNAs can promote macrophage polarization, whereas exosomal ncRNAs derived from TAMs can affect tumor proliferation, metastasis, angiogenesis, and chemotherapy resistance. The present review summarizes the dual effects of exosomal ncRNAs on tumor cells and TAMs, and discusses the application of exosomal ncRNAs as a potential diagnostic or prognostic marker and drug delivery system, to provide a new perspective and potential therapeutic drugs on targeting exosomes and macrophages in the treatment of tumors.
Collapse
Affiliation(s)
- Xintong Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaomin Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoyu Yao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baogang Zhang
- Department of Pathology, Weifang Medical University, Weifang, Shandong, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China; College of Chinese Medicine, Weifang Medical University, Weifang, China.
| |
Collapse
|
3
|
Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants (Basel) 2022; 11:antiox11020179. [PMID: 35204062 PMCID: PMC8868548 DOI: 10.3390/antiox11020179] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Exercise is commonly prescribed as a lifestyle treatment for chronic metabolic diseases as it functions as an insulin sensitizer, cardio-protectant, and essential lifestyle tool for effective weight maintenance. Exercise boosts the production of reactive oxygen species (ROS) and subsequent transient oxidative damage, which also upregulates counterbalancing endogenous antioxidants to protect from ROS-induced damage and inflammation. Exercise elevates heme oxygenase-1 (HO-1) and biliverdin reductase A (BVRA) expression as built-in protective mechanisms, which produce the most potent antioxidant, bilirubin. Together, these mitigate inflammation and adiposity. Moderately raising plasma bilirubin protects in two ways: (1) via its antioxidant capacity to reduce ROS and inflammation, and (2) its newly defined function as a hormone that activates the nuclear receptor transcription factor PPARα. It is now understood that increasing plasma bilirubin can also drive metabolic adaptions, which improve deleterious outcomes of weight gain and obesity, such as inflammation, type II diabetes, and cardiovascular diseases. The main objective of this review is to describe the function of bilirubin as an antioxidant and metabolic hormone and how the HO-1-BVRA-bilirubin-PPARα axis influences inflammation, metabolic function and interacts with exercise to improve outcomes of weight management.
Collapse
|
4
|
Shigetomi H, Imanaka S, Kobayashi H. Effects of iron-related compounds and bilirubin on redox homeostasis in endometriosis and its malignant transformations. Horm Mol Biol Clin Investig 2021; 43:187-192. [PMID: 34854656 DOI: 10.1515/hmbci-2021-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The balance between oxidative stress and antioxidant defense has been reported to differ between women with endometriosis and patients with its malignant transformation. The aim of this study is to investigate changes in redox balance in endometriosis and endometriosis-related ovarian cancer (EAOC) by simultaneously measuring iron-related compounds and bilirubin. METHODS This study included 235 patients with a histopathologically confirmed diagnosis of endometriosis (n=178) and EAOC (n=57). Cyst fluid samples were collected in Nara Medical University hospital from January 2013 to May 2019. The levels of iron-related compounds (total iron, heme iron, free iron, oxyhemoglobin [oxyHb], methemoglobin [metHb], and metHb/oxyHb ratio) and bilirubin were measured. RESULTS Total iron, heme iron, free iron, metHb/oxyHb ratio, and bilirubin were significantly elevated in endometriosis compared to EAOC. In both endometriosis and EAOC, iron-related compounds in the cyst were correlated with each other. There was no statistically significant difference in oxyHb and metHb levels between the two groups, but the metHb/oxyHb ratio was significantly higher in endometriosis than in EAOC. Bilirubin was positively correlated with total iron and free iron in EAOC, but there was no correlation between bilirubin and iron-related compounds in endometriosis. CONCLUSIONS Iron-induced oxidative stress in endometriosis may exceed bilirubin-dependent antioxidant capability, while redox homeostasis in EAOC can be maintained by at least bilirubin.
Collapse
Affiliation(s)
- Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan.,Aska Ladies Clinic, Nara, Japan
| | - Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan.,Ms.Clinic MayOne, Kashihara, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan.,Ms.Clinic MayOne, Kashihara, Japan
| |
Collapse
|
5
|
Abstract
Significance: As the central metabolic organ, the liver is exposed to a variety of potentially cytotoxic, proinflammatory, profibrotic, and carcinogenic stimuli. To protect the organism from these deleterious effects, the liver has evolved a number of defense systems, which include antioxidant substrates and enzymes, anti-inflammatory tools, enzymatic biotransformation systems, and metabolic pathways. Recent Advances: One of the pivotal systems that evolved during phylogenesis was the heme catabolic pathway. Comprising the important enzymes heme oxygenase and biliverdin reductase, this complex pathway has a number of key functions including enzymatic activities, but also cell signaling, and DNA transcription. It further generates two important bile pigments, biliverdin and bilirubin, as well as the gaseous molecule carbon monoxide. These heme degradation products have potent antioxidant, immunosuppressive, and cytoprotective effects. Recent data suggest that the pathway participates in the regulation of metabolic and hormonal processes implicated in the pathogenesis of hepatic and other diseases. Critical Issues: This review discusses the impact of the heme catabolic pathway on major liver diseases, with particular focus on the involvement of cellular targeting and signaling in the pathogenesis of these conditions. Future Directions: To utilize the biological consequences of the heme catabolic pathway, several unique therapeutic strategies have been developed. Research indicates that pharmaceutical, nutraceutical, and lifestyle modifications positively affect the pathway, delivering potentially long-term clinical benefits. However, further well-designed studies are needed to confirm the clinical benefits of these approaches. Antioxid. Redox Signal. 35, 734-752.
Collapse
Affiliation(s)
- Libor Vítek
- Fourth Department of Internal Medicine, and Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Mancuso C. Biliverdin reductase as a target in drug research and development: Facts and hypotheses. Free Radic Biol Med 2021; 172:521-529. [PMID: 34224815 DOI: 10.1016/j.freeradbiomed.2021.06.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022]
Abstract
Biliverdin reductase-A (BVR) catalyzes the reduction of heme-derived biliverdin into bilirubin, this latter being a powerful endogenous free radical scavenger. Furthermore, BVR is also endowed with both serine/threonine/tyrosine kinase and scaffold activities, through which it interacts with the insulin receptor kinase, conventional and atypical protein kinase C isoforms, mitogen-activated protein kinases as well as the phosphatidylinositol-3 kinase/Akt system. By regulating this complex array of signal transduction pathways, BVR is involved in the pathogenesis of neurodegenerative, metabolic, cardiovascular and immune-inflammatory diseases as well as in cancer. In addition, both BVR and BVR-B, this latter being an alternate isozyme predominant during fetal development but sometimes detectable through adulthood, have been studied as peripheral biomarkers for an early detection of Alzheimer's disease, atherosclerosis and some types of cancer. However, despite these interesting lines of evidence, to date BVR has not been considered as an appealing drug target. Only limited evidence supports the neuroprotective effects of atorvastatin and ferulic acid through BVR regulation in the aged canine brain and human neuroblastoma cells, whereas interesting results have been reported regarding the use of BVR-based peptides in preclinical models of cardiac diseases and cancer.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Largo F. Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
7
|
Uddin MJ, Kim EH, Hannan MA, Ha H. Pharmacotherapy against Oxidative Stress in Chronic Kidney Disease: Promising Small Molecule Natural Products Targeting Nrf2-HO-1 Signaling. Antioxidants (Basel) 2021; 10:antiox10020258. [PMID: 33562389 PMCID: PMC7915495 DOI: 10.3390/antiox10020258] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
The global burden of chronic kidney disease (CKD) intertwined with cardiovascular disease has become a major health problem. Oxidative stress (OS) plays an important role in the pathophysiology of CKD. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) antioxidant system plays a critical role in kidney protection by regulating antioxidants during OS. Heme oxygenase-1 (HO-1), one of the targets of Nrf2-ARE, plays an important role in regulating OS and is protective in a variety of human and animal models of kidney disease. Thus, activation of Nrf2-HO-1 signaling may offer a potential approach to the design of novel therapeutic agents for kidney diseases. In this review, we have discussed the association between OS and the pathogenesis of CKD. We propose Nrf2-HO-1 signaling-mediated cell survival systems be explored as pharmacological targets for the treatment of CKD and have reviewed the literature on the beneficial effects of small molecule natural products that may provide protection against CKD.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
| | - Ee Hyun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
- Correspondence: ; Tel.: +82-2-3277-4075
| |
Collapse
|
8
|
Deng L, Huang S, Chen B, Tang Y, Huang F, Li D, Tang D. Tumor-Linked Macrophages Promote HCC Development by Mediating the CCAT1/Let-7b/HMGA2 Signaling Pathway. Onco Targets Ther 2020; 13:12829-12843. [PMID: 33363387 PMCID: PMC7751845 DOI: 10.2147/ott.s283786] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background The role of high mobility group A2 (HMGA2) in the progression of hepatocellular carcinoma (HCC) is yet to be investigated, though tumor-associated macrophages (TAMs) are known to mediate the process. Methods Immunohistochemistry (IHC), Western blot, and real-time PCR assays were performed to identify HMGA2 and TAMs markers. The TAMs-like macrophages (TAMs-Mφs) were triggered with the help of 25 ng/mL hM-CSF and 50% NBCM. EdU assay wound healing assay, transwell assay, and TUNEL assay, as well as flow cytometry, were carried out to study the effect of HMGA2 or TAMs on the functioning of HCC cells. Results HCC tumor tissues were detected with upregulated HMGA2 and TAMs markers (CD68, CD163, and CD204); in addition, HMGA2 was positively correlated with TAMs markers. The proliferation, migration, and invasion of HepG2 cells were also observed to be stimulated by HMGA2. Remarkably, cell apoptosis was not affected by upregulated HMGA2, but HMAG2 inhibition was observed to intensify it. Also, the release of CSF1 was observed to be amplified by HMGA2. HMGA2-overexpressed-HepG2 cells promoted the migrating abilities of both M0-Mφs and TAMs-Mφs but were suppressed by HMGA2 down-regulated HepG2 cells. In addition, TAMs-Mφs supernatant regulated the CCAT1/let-7b/HMGA2 signaling pathway by intensifying the malignant biological behaviors. Conclusion HMGA2 stimulated TAMs-induced HCC progression, mediated by the CCAT1/let-7b/HMGA2 signaling pathway, TAMs aggravated HCC development.
Collapse
Affiliation(s)
- Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Shan Huang
- Department of Oncology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Bin Chen
- Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510800, People's Republic of China
| | - Yajun Tang
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Fei Huang
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Dong Li
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Di Tang
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| |
Collapse
|
9
|
Krawczyk K, Xue S, Buchmann P, Charpin-El-Hamri G, Saxena P, Hussherr MD, Shao J, Ye H, Xie M, Fussenegger M. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science 2020; 368:993-1001. [DOI: 10.1126/science.aau7187] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/11/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
Sophisticated devices for remote-controlled medical interventions require an electrogenetic interface that uses digital electronic input to directly program cellular behavior. We present a cofactor-free bioelectronic interface that directly links wireless-powered electrical stimulation of human cells to either synthetic promoter–driven transgene expression or rapid secretion of constitutively expressed protein therapeutics from vesicular stores. Electrogenetic control was achieved by coupling ectopic expression of the L-type voltage-gated channel CaV1.2 and the inwardly rectifying potassium channel Kir2.1 to the desired output through endogenous calcium signaling. Focusing on type 1 diabetes, we engineered electrosensitive human β cells (Electroβ cells). Wireless electrical stimulation of Electroβ cells inside a custom-built bioelectronic device provided real-time control of vesicular insulin release; insulin levels peaked within 10 minutes. When subcutaneously implanted, this electrotriggered vesicular release system restored normoglycemia in type 1 diabetic mice.
Collapse
Affiliation(s)
- Krzysztof Krawczyk
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, People’s Republic of China
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Ghislaine Charpin-El-Hamri
- Département Génie Biologique, Institut Universitaire de Technologie Lyon 1, F-69622 Villeurbanne Cedex, France
| | - Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Marie-Didiée Hussherr
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Jiawei Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, People’s Republic of China
- Key Laboratory of Growth Regulation and Transformation Research of Zheijang Province, School of Life Sciences, Westlake University, Hangzhou, People’s Republic of China
| | - Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, People’s Republic of China
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Key Laboratory of Growth Regulation and Transformation Research of Zheijang Province, School of Life Sciences, Westlake University, Hangzhou, People’s Republic of China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Faculty of Science, University of Basel, CH-4058 Basel, Switzerland
| |
Collapse
|
10
|
Biliverdin Reductase A (BVRA) Knockout in Adipocytes Induces Hypertrophy and Reduces Mitochondria in White Fat of Obese Mice. Biomolecules 2020; 10:biom10030387. [PMID: 32131495 PMCID: PMC7175174 DOI: 10.3390/biom10030387] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Biliverdin reductase (BVR) is an enzymatic and signaling protein that has multifaceted roles in physiological systems. Despite the wealth of knowledge about BVR, no data exist regarding its actions in adipocytes. Here, we generated an adipose-specific deletion of biliverdin reductase-A (BVRA) (BlvraFatKO) in mice to determine the function of BVRA in adipocytes and how it may impact adipose tissue expansion. The BlvraFatKO and littermate control (BlvraFlox) mice were placed on a high-fat diet (HFD) for 12 weeks. Body weights were measured weekly and body composition, fasting blood glucose and insulin levels were quantitated at the end of the 12 weeks. The data showed that the percent body fat and body weights did not differ between the groups; however, BlvraFatKO mice had significantly higher visceral fat as compared to the BlvraFlox. The loss of adipocyte BVRA decreased the mitochondrial number in white adipose tissue (WAT), and increased inflammation and adipocyte size, but this was not observed in brown adipose tissue (BAT). There were genes significantly reduced in WAT that induce the browning effect such as Ppara and Adrb3, indicating that BVRA improves mitochondria function and beige-type white adipocytes. The BlvraFatKO mice also had significantly higher fasting blood glucose levels and no changes in plasma insulin levels, which is indicative of decreased insulin signaling in WAT, as evidenced by reduced levels of phosphorylated AKT (pAKT) and Glut4 mRNA. These results demonstrate the essential role of BVRA in WAT in insulin signaling and adipocyte hypertrophy.
Collapse
|
11
|
Canesin G, Hejazi SM, Swanson KD, Wegiel B. Heme-Derived Metabolic Signals Dictate Immune Responses. Front Immunol 2020; 11:66. [PMID: 32082323 PMCID: PMC7005208 DOI: 10.3389/fimmu.2020.00066] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
Heme is one of the most abundant molecules in the body acting as the functional core of hemoglobin/myoglobin involved in the O2/CO2 carrying in the blood and tissues, redox enzymes and cytochromes in mitochondria. However, free heme is toxic and therefore its removal is a significant priority for the host. Heme is a well-established danger-associated molecular pattern (DAMP), which binds to toll-like receptor 4 (TLR4) to induce immune responses. Heme-derived metabolites including the bile pigments, biliverdin (BV) and bilirubin (BR), were first identified as toxic drivers of neonatal jaundice in 1800 but have only recently been appreciated as endogenous drivers of multiple signaling pathways involved in protection from oxidative stress and regulators of immune responses. The tissue concentration of heme, BV and BR is tightly controlled. Heme oxygenase-1 (HO-1, encoded by HMOX1) produces BV by heme degradation, while biliverdin reductase-A (BLVR-A) generates BR by the subsequent conversion of BV. BLVR-A is a fascinating protein that possesses a classical protein kinase domain, which is activated in response to BV binding to its enzymatic site and initiates the downstream mitogen-activated protein kinases (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. This links BLVR-A activity to cell growth and survival pathways. BLVR-A also contains a bZip DNA binding domain and a nuclear export sequence (NES) and acts as a transcription factor to regulate the expression of immune modulatory genes. Here we will discuss the role of heme-related immune response and the potential for targeting the heme system for therapies directed toward hepatitis and cancer.
Collapse
Affiliation(s)
- Giacomo Canesin
- Department of Surgery, Cancer Research Institute and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Seyed M. Hejazi
- Department of Surgery, Cancer Research Institute and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Kenneth D. Swanson
- Brain Tumor Center and Neuro-Oncology Unit, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Barbara Wegiel
- Department of Surgery, Cancer Research Institute and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Hinds TD, Stec DE. Bilirubin Safeguards Cardiorenal and Metabolic Diseases: a Protective Role in Health. Curr Hypertens Rep 2019; 21:87. [PMID: 31599366 DOI: 10.1007/s11906-019-0994-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW To discuss recent advances indicating that bilirubin safeguards against cardiorenal and metabolic diseases. RECENT FINDINGS Several investigations from human patient populations and experimental animal models have shown that bilirubin improves cardiorenal and metabolic dysfunction. The latest studies found an entirely new function of bilirubin suggesting that it acts as a hormone signaling molecule capable of activating nuclear receptors for burning fat, which may explain several of its protective actions. This review highlights the current findings (within the last 3 years) regarding cardiorenal and metabolic protective effects of bilirubin and the latest mechanism(s) that may be mediating these effects.
Collapse
Affiliation(s)
- Terry D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| |
Collapse
|
13
|
Wu B, Wu Y, Tang W. Heme Catabolic Pathway in Inflammation and Immune Disorders. Front Pharmacol 2019; 10:825. [PMID: 31396090 PMCID: PMC6667928 DOI: 10.3389/fphar.2019.00825] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, the heme catabolic pathway is considered to play an important regulatory role in cell protection, apoptosis, inflammation, and other physiological and pathological processes. An appropriate amount of heme forms the basic elements of various life activities, while when released in large quantities, it can induce toxicity by mediating oxidative stress and inflammation. Heme oxygenase (HO) -1 can catabolize free heme into carbon monoxide (CO), ferrous iron, and biliverdin (BV)/bilirubin (BR). The diverse functions of these metabolites in immune systems are fascinating. Decades work shows that administration of degradation products of heme such as CO and BV/BR exerts protective activities in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS) and other immune disorders. This review elaborates the molecular and biochemical characterization of heme catabolic pathway, discusses the signal transduction and immunomodulatory mechanism in inflammation and summarizes the promising therapeutic strategies based on this pathway in inflammatory and immune disorders.
Collapse
Affiliation(s)
- Bing Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yanwei Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Tang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Bisht K, Canesin G, Cheytan T, Li M, Nemeth Z, Csizmadia E, Woodruff TM, Stec DE, Bulmer AC, Otterbein LE, Wegiel B. Deletion of Biliverdin Reductase A in Myeloid Cells Promotes Chemokine Expression and Chemotaxis in Part via a Complement C5a--C5aR1 Pathway. THE JOURNAL OF IMMUNOLOGY 2019; 202:2982-2990. [PMID: 30952817 DOI: 10.4049/jimmunol.1701443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/11/2019] [Indexed: 12/22/2022]
Abstract
Biliverdin reductase (BVR)-A is a pleotropic enzyme converting biliverdin to bilirubin and a signaling molecule that has cytoprotective and immunomodulatory effects. We recently showed that biliverdin inhibits the expression of complement activation fragment 5a receptor one (C5aR1) in RAW 264.7 macrophages. In this study, we investigated the role of BVR-A in determining macrophage inflammatory phenotype and function via regulation of C5aR1. We assessed expression of C5aR1, M1-like macrophage markers, including chemokines (RANTES, IP-10), as well as chemotaxis in response to LPS and C5a in bone marrow-derived macrophages from BVR fl/fl and LysM-Cre:BVR fl / fl mice (conditional deletion of BVR-A in myeloid cells). In response to LPS, macrophages isolated from LysM-Cre:BVR fl/fl showed significantly elevated levels of C5aR1 as well as chemokines (RANTES, IP10) but not proinflammatory markers, such as iNOS and TNF. An increase in C5aR1 expression was also observed in peritoneal macrophages and several tissues from LysM-Cre:BVR fl/fl mice in a model of endotoxemia. In addition, knockdown of BVR-A resulted in enhanced macrophage chemotaxis toward C5a. Part of the effects of BVR-A deletion on chemotaxis and RANTES expression were blocked in the presence of a C5aR1 neutralizing Ab, confirming the role of C5a-C5aR1 signaling in mediating the effects of BVR. In summary, BVR-A plays an important role in regulating macrophage chemotaxis in response to C5a via modulation of C5aR1 expression. In addition, macrophages lacking BVR-A are characterized by the expression of M1 polarization-associated chemokines, the levels of which depend in part on C5aR1 signaling.
Collapse
Affiliation(s)
- Kavita Bisht
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215.,Cancer Care and Biology Program, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Giacomo Canesin
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Tasneem Cheytan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Mailin Li
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Zsuzsanna Nemeth
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Eva Csizmadia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia
| | - David E Stec
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS 39216; and
| | - Andrew C Bulmer
- School of Medical Science, Griffith University, Queensland 4222, Australia
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Barbara Wegiel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215;
| |
Collapse
|
15
|
Tsai MT, Tarng DC. Beyond a Measure of Liver Function-Bilirubin Acts as a Potential Cardiovascular Protector in Chronic Kidney Disease Patients. Int J Mol Sci 2018; 20:ijms20010117. [PMID: 30597982 PMCID: PMC6337523 DOI: 10.3390/ijms20010117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Bilirubin is a well-known neurotoxin in newborn infants; however, current evidence has shown that a higher serum bilirubin concentration in physiological ranges is associated with a lower risk for the development and progression of both chronic kidney disease (CKD) and cardiovascular disease (CVD) in adults. The protective mechanisms of bilirubin in CVD, CKD, and associated mortality may be ascribed to its antioxidant and anti-inflammatory properties. Bilirubin further improves insulin sensitivity, reduces low-density lipoprotein cholesterol levels and inhibits platelet activation in at-risk individuals. These effects are expected to maintain normal vascular homeostasis and thus reduce the incidence of CKD and the risks of cardiovascular complications and death. In this review, we highlight the recent advances in the biological actions of bilirubin in the pathogenesis of CVD and CKD progression, and further propose that targeting bilirubin metabolism could be a potential approach to ameliorate morbidity and mortality in CKD patients.
Collapse
Affiliation(s)
- Ming-Tsun Tsai
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
- Department and Institute of Physiology, National Yang-Ming University, Taipei 11217, Taiwan.
| |
Collapse
|
16
|
Weaver L, Hamoud AR, Stec DE, Hinds TD. Biliverdin reductase and bilirubin in hepatic disease. Am J Physiol Gastrointest Liver Physiol 2018; 314:G668-G676. [PMID: 29494209 PMCID: PMC6032063 DOI: 10.1152/ajpgi.00026.2018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The buildup of fat in the liver (hepatic steatosis) is the first step in a series of incidents that may drive hepatic disease. Obesity is the leading cause of nonalcoholic fatty liver disease (NAFLD), in which hepatic steatosis progresses to liver disease. Chronic alcohol exposure also induces fat accumulation in the liver and shares numerous similarities to obesity-induced NAFLD. Regardless of whether hepatic steatosis is due to obesity or long-term alcohol use, it still may lead to hepatic fibrosis, cirrhosis, or possibly hepatocellular carcinoma. The antioxidant bilirubin and the enzyme that generates it, biliverdin reductase A (BVRA), are components of the heme catabolic pathway that have been shown to reduce hepatic steatosis. This review discusses the roles for bilirubin and BVRA in the prevention of steatosis, their functions in the later stages of liver disease, and their potential therapeutic application.
Collapse
Affiliation(s)
- Lauren Weaver
- 1Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine, Toledo, Ohio
| | - Abdul-rizaq Hamoud
- 1Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine, Toledo, Ohio
| | - David E. Stec
- 2Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terry D. Hinds
- 1Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|
17
|
Zhang Y, Ding Y, Lu T, Zhang Y, Xu N, McBride DW, Tang J, Zhang JH. Biliverdin reductase-A attenuated GMH-induced inflammatory response in the spleen by inhibiting toll-like receptor-4 through eNOS/NO pathway. J Neuroinflammation 2018; 15:118. [PMID: 29678206 PMCID: PMC5910618 DOI: 10.1186/s12974-018-1155-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Germinal matrix hemorrhage (GMH) is a common neurologic event with high morbidity and mortality in preterm infants. Spleen has been reported to play a critical role in inflammatory responses by regulating peripheral immune cells which contributes to secondary brain injury. METHODS The current study investigated the mechanistic role of biliverdin reductase-A (BLVRA) in the splenic response and brain damage in neonates following a collagenase GMH model. Neurological outcomes and splenic weights were assessed. Neutrophil production and infiltration were quantitated in the spleen and brain, respectively. Western blot was performed in both splenic and brain tissues to measure protein levels of toll-like receptor 4 and proinflammatory cytokines. RESULTS BLVRA treatment alleviated GMH-induced developmental delay and attenuated splenic atrophy at 1 and 3 days after GMH. Quantification analysis showed that spleen-stored peripheral immune cells mobilized into circulation and infiltrated in the brain following GMH, which was abrogated by BLVRA administration, resulting in reduced splenic inflammatory response. Furthermore, we showed that regulation of eNOS/NO signaling by BLVRA stimulation blunted toll-like receptor-4 (TLR4) signal. The eNOS-generated NO, in part, translocated BLVRA into the nucleus, where BLVRA inhibited TLR4 expression. CONCLUSION We revealed a BLVRA-dependent signaling pathway in modulating the splenic inflammation in response to GMH via the eNOS/NO/TLR4 pathway.
Collapse
Affiliation(s)
- Yiting Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Tai Lu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yixin Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Ningbo Xu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Devin W McBride
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA. .,Departments of Neurosurgery and Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
18
|
Ahmed FH, Mohamed AE, Carr PD, Lee BM, Condic-Jurkic K, O'Mara ML, Jackson CJ. Rv2074 is a novel F420 H2 -dependent biliverdin reductase in Mycobacterium tuberculosis. Protein Sci 2016; 25:1692-709. [PMID: 27364382 DOI: 10.1002/pro.2975] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Bilirubin is a potent antioxidant that is produced from the reduction of the heme degradation product biliverdin. In mammalian cells and Cyanobacteria, NADH/NADPH-dependent biliverdin reductases (BVRs) of the Rossmann-fold have been shown to catalyze this reaction. Here, we describe the characterization of Rv2074 from Mycobacterium tuberculosis, which belongs to a structurally and mechanistically distinct family of F420 H2 -dependent BVRs (F-BVRs) that are exclusively found in Actinobacteria. We have solved the crystal structure of Rv2074 bound to its cofactor, F420 , and used this alongside molecular dynamics simulations, site-directed mutagenesis and NMR spectroscopy to elucidate its catalytic mechanism. The production of bilirubin by Rv2074 could exploit the anti-oxidative properties of bilirubin and contribute to the range of immuno-evasive mechanisms that have evolved in M. tuberculosis to allow persistent infection.
Collapse
Affiliation(s)
- F Hafna Ahmed
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - A Elaaf Mohamed
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Paul D Carr
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Brendon M Lee
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Karmen Condic-Jurkic
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|