1
|
Ruhi MK, Rickard BP, Overchuk M, Sinawang PD, Stanley E, Mansi M, Sierra RG, Hayes B, Tan X, Akin D, Chen B, Demirci U, Rizvi I. PpIX-enabled fluorescence-based detection and photodynamic priming of platinum-resistant ovarian cancer cells under fluid shear stress. Photochem Photobiol 2024. [PMID: 39189505 DOI: 10.1111/php.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 08/28/2024]
Abstract
Over 75% percent of ovarian cancer patients are diagnosed with advanced-stage disease characterized by unresectable intraperitoneal dissemination and the presence of ascites, or excessive fluid build-up within the abdomen. Conventional treatments include cytoreductive surgery followed by multi-line platinum and taxane chemotherapy regimens. Despite an initial response to treatment, over 75% of patients with advanced-stage ovarian cancer will relapse and succumb to platinum-resistant disease. Recent evidence suggests that fluid shear stress (FSS), which results from the movement of fluid such as ascites, induces epithelial-to-mesenchymal transition and confers resistance to carboplatin in ovarian cancer cells. This study demonstrates, for the first time, that FSS-induced platinum resistance correlates with increased cellular protoporphyrin IX (PpIX), the penultimate downstream product of heme biosynthesis, the production of which can be enhanced using the clinically approved pro-drug aminolevulinic acid (ALA). These data suggest that, with further investigation, PpIX could serve as a fluorescence-based biomarker of FSS-induced platinum resistance. Additionally, this study investigates the efficacy of PpIX-enabled photodynamic therapy (PDT) and the secretion of extracellular vesicles under static and FSS conditions in Caov-3 and NIH:OVCAR-3 cells, two representative cell lines for high-grade serous ovarian carcinoma (HGSOC), the most lethal form of the disease. FSS induces resistance to ALA-PpIX-mediated PDT, along with a significant increase in the number of EVs. Finally, the ability of PpIX-mediated photodynamic priming (PDP) to enhance carboplatin efficacy under FSS conditions is quantified. These preliminary findings in monolayer cultures necessitate additional studies to determine the feasibility of PpIX as a fluorescence-based indicator, and mediator of PDP, to target chemoresistance in the context of FSS.
Collapse
Affiliation(s)
- Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Brittany P Rickard
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Prima Dewi Sinawang
- Department of Chemical Engineering, School of Engineering, Stanford University, Stanford, California, USA
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Elizabeth Stanley
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina School of Public Health, Chapel Hill, North Carolina, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Pesaresi A, La Cava P, Bonada M, Zeppa P, Melcarne A, Cofano F, Fiaschi P, Garbossa D, Bianconi A. Combined Fluorescence-Guided Surgery with 5-Aminolevulinic Acid and Fluorescein in Glioblastoma: Technical Description and Report of 100 Cases. Cancers (Basel) 2024; 16:2771. [PMID: 39199544 PMCID: PMC11353032 DOI: 10.3390/cancers16162771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Fluorescence-guided resection (FGR) of glioblastomas has been previously explored with the use of 5-amivelulinic acid (5-ALA) and sodium fluoresceine (SF), allowing us to maximize the extent of resection (EoR). In this study, we highlight the most relevant concerns regarding this technique and present the methods and results from the experience of our center. METHODS A case series of 100 patients operated on in AOU Città della Salute e della Scienza in Turin with a histological diagnosis of glioblastoma (grade IV, according to WHO 2021) was retrospectively analyzed. Both 5-ALA and SF were administered and intraoperatively assessed with an optical microscope. RESULTS 5-ALA is the only approved drug for FGR in glioblastoma, reporting an increased EoR. Nevertheless, SF can be positively used in addition to 5-ALA to reduce the risk of false positives without increasing the rate of adverse effects. In our experience, SF was used to guide the initial phase of resection while 5-ALA was used to visualize tumor spots within the surgical cavity. In 96% of cases, gross total resection was achieved, with supra-maximal resection in 11% of cases. CONCLUSIONS Combined FGR using 5-ALA and SF seems to be a promising method of increasing the extent of resection and to improving the prognosis in glioblastoma patients.
Collapse
Affiliation(s)
- Alessandro Pesaresi
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
| | - Pietro La Cava
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
| | - Marta Bonada
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Pietro Zeppa
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
| | - Antonio Melcarne
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
| | - Fabio Cofano
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
| | - Pietro Fiaschi
- Division of Neurosurgery, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 10, 16132 Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Diego Garbossa
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
| | - Andrea Bianconi
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
- Division of Neurosurgery, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
3
|
Kumbham S, Rahman KMM, Bosmajian C, Bist G, Foster BA, Woo S, You Y. Enhancing PDT efficacy in NMIBC: Efflux inhibitor mediated improvement of PpIX levels and efficacy of the combination of PpIX-PDT and SO-cleavable prodrugs. Photochem Photobiol 2024. [PMID: 38866726 DOI: 10.1111/php.13982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
Protoporphyrin IX (PpIX)-based photodynamic therapy (PDT) has shown limited efficacy in nonmuscle-invasive bladder cancer (NMIBC). To improve PDT efficacy, we developed singlet oxygen-cleavable prodrugs. These prodrugs, when combined with PpIX-PDT, induce cancer cell death through both PDT and drug release mechanisms. Inhibition of PpIX efflux was reported to be an effective strategy to improve PpIX-PDT in certain cancer cells. Our main goal was to investigate whether adding an efflux inhibitor to the combination of PpIX and prodrugs can improve the PpIX levels in bladder cancer cells and the release of active drugs, thus improving the overall efficacy of the treatment. We treated bladder cancer cell lines with lapatinib and evaluated intracellular PpIX fluorescence, finding significantly increased accumulation. Combining lapatinib with prodrugs led to significantly reduced cell viability compared to prodrugs or PpIX-PDT alone. The effect of lapatinib depended on the expression level of the efflux pump in bladder cancer cells. Interestingly, lapatinib increased paclitaxel (PTX) prodrug uptake by threefold compared to prodrug alone. Adding an efflux inhibitor (e.g., lapatinib) into bladder instillation solutions could be a straightforward and effective strategy for NMIBC treatment, particularly in tumors expressing efflux pumps, with the potential for clinical translation.
Collapse
Affiliation(s)
- Soniya Kumbham
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Kazi Md Mahabubur Rahman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Caroline Bosmajian
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Ganesh Bist
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Barbara A Foster
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
4
|
Mickevicius T, Holtmann C, Draganov J, Prues-Hoelscher J, Geerling G, Borrelli M. Lagophthalmos-induced corneal perforation in a patient with congenital erythropoietic porphyria. Orbit 2024; 43:392-398. [PMID: 36734461 DOI: 10.1080/01676830.2023.2169718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder in which the activity of uroporphyrinogen III synthase (UROS) is decreased. This results in the accumulation of photoreactive porphyrinogens, primarily in the skin and bone marrow. We describe a case of a patient with CEP who initially presented with scarring and shortening of the anterior and posterior lid lamella, which led to the development of lagophthalmos. Vascularized hyperkeratotic plaques in both corneas were also present. Despite treatment with topical ocular surface lubricants, corneal perforation with iris and uvea prolapse developed and evisceration of the right eye under local anesthesia was performed. The presented case suggests that despite topical therapy, ocular complications may exacerbate requiring surgical intervention, especially in the presence of lagophthalmos.
Collapse
Affiliation(s)
- Tomas Mickevicius
- Department of Ophthalmology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Christoph Holtmann
- Department of Ophthalmology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Jutta Draganov
- Department of Anesthesiology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | | | - Gerd Geerling
- Department of Ophthalmology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Maria Borrelli
- Department of Ophthalmology, University Hospital of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Wang X, Xu X, Ma Y, Tang Y, Huang Z. Comparative Study of 5-Aminolevulinic Acid-Mediated Photodynamic Therapy and the Loop Electrosurgical Excision Procedure for the Treatment of Cervical High-Grade Squamous Intraepithelial Lesions. Pharmaceutics 2024; 16:686. [PMID: 38794347 PMCID: PMC11125031 DOI: 10.3390/pharmaceutics16050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The loop electrosurgical excision procedure (LEEP) is a common treatment for cervical intraepithelial neoplasia (CIN). Photodynamic therapy (PDT) mediated by 5-aminolevulinic acid (ALA) is a non-invasive modality that has been used for treating precancerous diseases and HPV infections. This comparative study evaluated the efficacy and safety of ALA PDT and the LEEP in the treatment of cervical high-grade squamous intraepithelial lesions (HSILs). Patient records were reviewed and HSIL patients with HPV infections (24-51 years old) who underwent PDT or LEEP treatment were selected. Efficacy was analyzed blindly based on HPV-DNA, cytology, and colposcopy-directed biopsy obtained at 6 months after treatment. Treatment-related discomfort and side effects were also analyzed. Cure rates of 88.1% and 70.0% were achieved for the PDT group and LEEP group (p < 0.05), respectively. HPV-negative conversion rates of 81.0% and 62.0% were achieved for the PDT group and LEEP group (p < 0.05), respectively. The overall lesion remission rate of the PDT group was 19% higher than that of the LEEP group. The incidence of side effects was much lower in the PDT group. These results show that ALA PDT is a feasible non-invasive treatment for cervical HSIL.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaoming Xu
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yaxi Ma
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yixin Tang
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zheng Huang
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
6
|
Yu Q, Wu X, Lu Y, Chen Z, Zhu Q, Wu W. Ionic Liquid Pretreatment Enhances Skin Penetration of 5-Aminolevulinic Acid: A Promising Scheme for Photodynamic Therapy for Acne Vulgaris. ACS APPLIED BIO MATERIALS 2024; 7:2899-2910. [PMID: 38607995 DOI: 10.1021/acsabm.3c01295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Acne vulgaris is one of the most prevalent skin disorders; it affects up to 85% of adolescents and often persists into adulthood. Topical 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT) provides an alternative treatment for acne; however, its efficacy is greatly undermined by the limited skin permeability of ALA. Herein, biocompatible ionic liquids (ILs) based on aliphatic acid/choline were employed to enhance the dermal delivery of ALA, thereby improving the efficacy of PDT. In addition to the one-step delivery of ALA by utilizing ILs as carriers, a two-step strategy of pretreating the skin with blank ILs, followed by the administration of free ALA, was employed to test the IL-facilitated dermal delivery of ALA in vitro. The cumulative permeation of ALA through the excised rat skin after IL pretreatment was significantly greater than that in the untreated group, the 20% dimethyl sulfoxide (DMSO) penetration enhancer group, and the one-step group. The penetration efficiency was influenced by formulation and treatment factors, including the type of IL, pretreatment duration, water content in the ILs, and concentration of ALA. In rats, IL pretreatment facilitated faster, greater, and deeper ALA-induced protoporphyrin IX (PpIX) accumulation. Moreover, the IL pretreatment regimen significantly improved the efficacy of ALA-based PDT against acne vulgaris in a rat ear model. The model IL choline citrate ([Ch]3[Cit]1) had a moderate effect on the skin barrier. Trans-epidermal water loss could be recovered 1 h after IL treatment, but no irritation to the rat skin was detected after 7 days of consecutive treatment. It was concluded that biocompatible IL pretreatment enhances the penetration of ALA and thus facilitates the transformation of PpIX and improves the efficacy of PDT against acne vulgaris.
Collapse
Affiliation(s)
- Qin Yu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
7
|
Yu L, Liu Z, Xu W, Jin K, Liu J, Zhu X, Zhang Y, Wu Y. Towards overcoming obstacles of type II photodynamic therapy: Endogenous production of light, photosensitizer, and oxygen. Acta Pharm Sin B 2024; 14:1111-1131. [PMID: 38486983 PMCID: PMC10935104 DOI: 10.1016/j.apsb.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 03/17/2024] Open
Abstract
Conventional photodynamic therapy (PDT) approaches face challenges including limited light penetration, low uptake of photosensitizers by tumors, and lack of oxygen in tumor microenvironments. One promising solution is to internally generate light, photosensitizers, and oxygen. This can be accomplished through endogenous production, such as using bioluminescence as an endogenous light source, synthesizing genetically encodable photosensitizers in situ, and modifying cells genetically to express catalase enzymes. Furthermore, these strategies have been reinforced by the recent rapid advancements in synthetic biology. In this review, we summarize and discuss the approaches to overcome PDT obstacles by means of endogenous production of excitation light, photosensitizers, and oxygen. We envision that as synthetic biology advances, genetically engineered cells could act as precise and targeted "living factories" to produce PDT components, leading to enhanced performance of PDT.
Collapse
Affiliation(s)
- Lin Yu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Zhen Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Wei Xu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| |
Collapse
|
8
|
Li Y, Chen J, Hu Y, Xu Q, Jiang R, Teng Y, Xu Y, Ma L. Effects of 5-aminolevulinic acid photodynamic therapy for cervical low-grade squamous intraepithelial lesions with HR-HPV infections. Front Med (Lausanne) 2024; 10:1301440. [PMID: 38404461 PMCID: PMC10885802 DOI: 10.3389/fmed.2023.1301440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/23/2023] [Indexed: 02/27/2024] Open
Abstract
Objective To determine the effectiveness and safety of 5-aminolevulinic acid mediated photodynamic therapy (5-ALA PDT) in HR-HPV infected patients with cervical low-grade squamous intraepithelial lesions (LSIL) and to explore possible factors affecting treatment outcomes. Methods This retrospective study included 96 patients with histologically confirmed cervical LSIL and high-risk human papillomavirus (HR-HPV) infection. They received 5-ALA PDT treatment once a week for a total of 3 courses. All patients were evaluated by cytology tests, HPV DNA assay, colposcopy, and biopsy at 2 weeks, 3 months, and 6 months checkpoint. The chi-square test were used to evaluate the differences in various clinical data, and a p value <0.05 was considered statistically significant. Results At 2 weeks, 3 months, and 6 months checkpoint, colposcopies showed that the cervical iodine-unstained area under VILI (visual inspection with Lugol's iodine) significantly reduced (p < 0.01) with no structure changes. At 3 months and 6 months checkpoint, the pathological regression rate reached 87.5% (84/96) and 94.79% (91/96), while the HR-HPV clearance rates reached 80.21% (77/96) and 93.75% (90/96) respectively. We also examined the efficacy in the HPV 16/18-related group and non-HPV 16/18-related group. The HR-HPV clearance rate in the HPV16/18 group [94.87% (37/39)] was significantly higher than that of the non-HPV 16/18 group [70.17% (40/57)]. However, at 6 months after treatment, the clearance rate of the HPV 16/18 group [94.87% (37/39)] showed no statistical difference from the non-HPV 16/18 group [92.30% (53/57)]. Conclusion Topical 5-ALA PDT can effectively eliminate HR-HPV infection and treat low-grade cervical squamous intraepithelial lesions, it offers an alternative treatment option for patients with LSIL, especially for those with fertility requirements and who wish to preserve cervical structure or function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanli Xu
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Ma
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Aebisher D, Przygórzewska A, Myśliwiec A, Dynarowicz K, Krupka-Olek M, Bożek A, Kawczyk-Krupka A, Bartusik-Aebisher D. Current Photodynamic Therapy for Glioma Treatment: An Update. Biomedicines 2024; 12:375. [PMID: 38397977 PMCID: PMC10886821 DOI: 10.3390/biomedicines12020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Research on the development of photodynamic therapy for the treatment of brain tumors has shown promise in the treatment of this highly aggressive form of brain cancer. Analysis of both in vivo studies and clinical studies shows that photodynamic therapy can provide significant benefits, such as an improved median rate of survival. The use of photodynamic therapy is characterized by relatively few side effects, which is a significant advantage compared to conventional treatment methods such as often-used brain tumor surgery, advanced radiotherapy, and classic chemotherapy. Continued research in this area could bring significant advances, influencing future standards of treatment for this difficult and deadly disease.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Magdalena Krupka-Olek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Andrzej Bożek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| |
Collapse
|
10
|
Chen Y, Dong Z, Yuan L, Xu Y, Cao D, Xiong Z, Zhang Z, Wu D. A comparative study of treatment of cervical low-grade squamous intraepithelial lesions (LSIL). Photodiagnosis Photodyn Ther 2024; 45:103920. [PMID: 38043760 DOI: 10.1016/j.pdpdt.2023.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND AND AIMS Low-grade squamous intraepithelial lesion (LSIL) is one of two categories of cervical intraepithelial lesions. Given that controversy exists regarding its management, this comparative study aimed to evaluate the effect of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in treating LSIL of the high-risk human papillomavirus (HR-HPV)-infected cervix. METHODS A total of 218 patients (25-45 years old) with cervical LSIL associated with HR-HPV who underwent ALA-PDT, loop electrosurgical excision procedure (LEEP), or observation only were included. The clearance rates of cervical LSIL and HR-HPV between the ALA-PDT, LEEP, and observation groups were compared at 6 and 12 months follow-up. Adverse reactions were also compared. The factors affecting the clearance on ALA-PDT of cervical LSIL were evaluated. RESULTS There were no statistically significant differences in lesion and HR-HPV clearance rates between the ALA-PDT and LEEP groups at 6 and 12 months. However, the lesion and HR-HPV clearance rates were significantly higher in the ALA-PDT group than that in the observation group. The adverse reaction rate was significantly lower in the ALA-PDT group than in the LEEP group. CONCLUSION For patients with cervical LSIL, the lesion and HR-HPV clearance rates after ALA-PDT were close to those after LEEP and significantly higher than in the observation group. Moreover, the adverse reaction rate for ALA-PDT was much lower than that for LEEP. Therefore, ALA-PDT provides a new option for the minimally invasive treatment of cervical LSIL.
Collapse
Affiliation(s)
- Yi Chen
- The Center for Cervical Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Zhangli Dong
- The Center for Cervical Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Lirong Yuan
- The Center for Cervical Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Ying Xu
- The Center for Cervical Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Dan Cao
- The Center for Cervical Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Zhenhong Xiong
- The Center for Cervical Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Zhengrong Zhang
- The Center for Cervical Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China.
| | - Dan Wu
- The Center for Cervical Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China.
| |
Collapse
|
11
|
Lai HW, Tani Y, Sukatta U, Rugthaworn P, Thepyos A, Yamamoto S, Fukuhara H, Inoue K, Yuasa H, Nakamura H, Ogura SI. Mangostin enhances efficacy of aminolevulinic acid-photodynamic therapy against cancer through inhibition of ABCG2 activity. Photodiagnosis Photodyn Ther 2023; 44:103798. [PMID: 37696317 DOI: 10.1016/j.pdpdt.2023.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Aminolevulinic acid-photodynamic therapy (ALA-PDT) is gaining attention as a potential method for treating select cancers due to its high specificity and low side effect feature. ALA enters cancer cells and accumulate as protoporphyrin IX (PpIX), which will then trigger phototoxicity following light irradiation. However, it is reported that some cancer cells have reduced efficacy of ALA-PDT due to high expression of ABCG2, a transporter involved in the PpIX efflux. In this study, we evaluated the effect of mangostin, a natural compound containing anti-tumor property, on the efficacy of ALA-PDT against cancer and the mechanism involved. METHODS We utilized TMK1 gastric cancer cell line, which has high ABCG2 expression, to evaluate the PpIX accumulation and phototoxicity exerted by ALA and mangostin co-addition. RESULTS We found that co-addition of ALA and mangostin significantly increase the phototoxicity and PpIX accumulation in TMK1 cells. We also investigated the effect of mangostin on porphyrin-heme pathway enzymes and ABCG2 and found that the addition of mangostin reduce the activity of ABCG2, reducing PpIX efflux. CONCLUSION These findings suggest that mangostin enhances the efficacy of ALA-PDT in cancer through inhibition of ABCG2 activity.
Collapse
Affiliation(s)
- Hung Wei Lai
- Center for Photodynamic Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Yukitaka Tani
- School of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501 Japan
| | - Udomlak Sukatta
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, 50 Ngamwongwan Rd, Lat Yao, Chatuchak, Bangkok 10900 Thailand.
| | - Prapassorn Rugthaworn
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, 50 Ngamwongwan Rd, Lat Yao, Chatuchak, Bangkok 10900 Thailand
| | - Asada Thepyos
- Quality Plus Biomedtech Co., Ltd. Headquarter: fl. 25, Jasmine International Tower, Chaeng Wattana road, Pak Kret district, Nonthaburi 11120 Thailand
| | - Shinkuro Yamamoto
- Department of Urology, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Hideo Fukuhara
- Center for Photodynamic Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan; Department of Urology, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Keiji Inoue
- Center for Photodynamic Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan; Department of Urology, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Hideya Yuasa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501 Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503 Japan
| | - Shun-Ichiro Ogura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501 Japan.
| |
Collapse
|
12
|
Liu H, Wang Q, Guo J, Feng K, Ruan Y, Zhang Z, Ji X, Wang J, Zhang T, Sun X. Prodrug-based strategy with a two-in-one liposome for Cerenkov-induced photodynamic therapy and chemotherapy. J Control Release 2023; 364:206-215. [PMID: 37884209 DOI: 10.1016/j.jconrel.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Cerenkov radiation induced photodynamic therapy (CR-PDT) can tackle the tissue penetration limitation of traditional PDT. However, co-delivery of radionuclides and photosensitizer may cause continuous phototoxicity in normal tissues during the circulation. 5-aminolevulinic acid (ALA) which can intracellularly transform into photosensitive protoporphyrin IX (PpIX) is a cancer-selective photosensitizer with negligible side effect. However, the hydrophilic nature of ALA and the further conversion of PpIX to photoinactive Heme severely hinder the therapeutic benefits of ALA-based PDT. Herein, we developed an 89Zr-labeled, pH responsive ALA and artemisinin (ART) co-loaded liposome (89Zr-ALA-Liposome-ART) for highly selective cancer therapy. 89Zr can serve as the internal excitation source to self-activate PpIX for CR-PDT, and the photoinactive Heme can activate the chemotherapeutic effect of ART. The 89Zr-ALA-Liposome-ART exhibited excellent tumor inhibition capability in subcutaneous 4T1-tumor-bearing Balb/c mice via CR-PDT and chemotherapy. Combined with anti-PD-L1, the 89Zr-ALA-Liposome-ART elicited strong antitumor immunity to against tumor recurrence.
Collapse
Affiliation(s)
- Huihui Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qing Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jingru Guo
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Kai Feng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yiling Ruan
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Zhang
- Department of Radiopharmaceuticals, Nuclear Medicine Clinical Translation Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Xin Ji
- Department of Radiopharmaceuticals, Nuclear Medicine Clinical Translation Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Tao Zhang
- Department of Radiopharmaceuticals, Nuclear Medicine Clinical Translation Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.
| | - Xiaolian Sun
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
13
|
Chandratre S, Olsen J, Howley R, Chen B. Targeting ABCG2 transporter to enhance 5-aminolevulinic acid for tumor visualization and photodynamic therapy. Biochem Pharmacol 2023; 217:115851. [PMID: 37858868 PMCID: PMC10842008 DOI: 10.1016/j.bcp.2023.115851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
5-Aminolevulinic acid (ALA) has been approved by the U. S. FDA for fluorescence-guided resection of high-grade glioma and photodynamic therapy (PDT) of superficial skin precancerous and cancerous lesions. As a prodrug, ALA administered orally or topically is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX), the active drug with red fluorescence and photosensitizing property. Preferential accumulation of PpIX in tumors after ALA administration enables the use of ALA for PpIX-mediated tumor fluorescence diagnosis and PDT, functioning as a photo-theranostic agent. Extensive research is currently underway to further enhance ALA-mediated PpIX tumor disposition for better tumor visualization and treatment. Particularly, the discovery of PpIX as a specific substrate of ATP binding cassette subfamily G member 2 (ABCG2) opens the door to therapeutic enhancement with ABCG2 inhibitors. Studies with human tumor cell lines and human tumor samples have demonstrated ABCG2 as an important biological determinant of reduced ALA-PpIX tumor accumulation, inhibition of which greatly enhances ALA-PpIX fluorescence and PDT response. These studies strongly support targeting ABCG2 as an effective therapeutic enhancement approach. In this review, we would like to summarize current research of ABCG2 as a drug efflux transporter in multidrug resistance, highlight previous works on targeting ABCG2 for therapeutic enhancement of ALA, and provide future perspectives on how to translate this ABCG2-targeted therapeutic enhancement strategy from bench to bedside.
Collapse
Affiliation(s)
- Sharayu Chandratre
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Jordyn Olsen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Bhanja D, Wilding H, Baroz A, Trifoi M, Shenoy G, Slagle-Webb B, Hayes D, Soudagar Y, Connor J, Mansouri A. Photodynamic Therapy for Glioblastoma: Illuminating the Path toward Clinical Applicability. Cancers (Basel) 2023; 15:3427. [PMID: 37444537 DOI: 10.3390/cancers15133427] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma (GBM) is the most common adult brain cancer. Despite extensive treatment protocols comprised of maximal surgical resection and adjuvant chemo-radiation, all glioblastomas recur and are eventually fatal. Emerging as a novel investigation for GBM treatment, photodynamic therapy (PDT) is a light-based modality that offers spatially and temporally specific delivery of anti-cancer therapy with limited systemic toxicity, making it an attractive option to target GBM cells remaining beyond the margins of surgical resection. Prior PDT approaches in GBM have been predominantly based on 5-aminolevulinic acid (5-ALA), a systemically administered drug that is metabolized only in cancer cells, prompting the release of reactive oxygen species (ROS), inducing tumor cell death via apoptosis. Hence, this review sets out to provide an overview of current PDT strategies, specifically addressing both the potential and shortcomings of 5-ALA as the most implemented photosensitizer. Subsequently, the challenges that impede the clinical translation of PDT are thoroughly analyzed, considering relevant gaps in the current PDT literature, such as variable uptake of 5-ALA by tumor cells, insufficient tissue penetrance of visible light, and poor oxygen recovery in 5-ALA-based PDT. Finally, novel investigations with the potential to improve the clinical applicability of PDT are highlighted, including longitudinal PDT delivery, photoimmunotherapy, nanoparticle-linked photosensitizers, and near-infrared radiation. The review concludes with commentary on clinical trials currently furthering the field of PDT for GBM. Ultimately, through addressing barriers to clinical translation of PDT and proposing solutions, this review provides a path for optimizing PDT as a paradigm-shifting treatment for GBM.
Collapse
Affiliation(s)
- Debarati Bhanja
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Hannah Wilding
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Angel Baroz
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Mara Trifoi
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Becky Slagle-Webb
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Daniel Hayes
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA 16801, USA
| | | | - James Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State Health, Hershey, PA 17033, USA
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State Health, Hershey, PA 17033, USA
| |
Collapse
|
15
|
Fukumura M, Nonoguchi N, Kawabata S, Hiramatsu R, Futamura G, Takeuchi K, Kanemitsu T, Takata T, Tanaka H, Suzuki M, Sampetrean O, Ikeda N, Kuroiwa T, Saya H, Nakano I, Wanibuchi M. 5-Aminolevulinic acid increases boronophenylalanine uptake into glioma stem cells and may sensitize malignant glioma to boron neutron capture therapy. Sci Rep 2023; 13:10173. [PMID: 37349515 PMCID: PMC10287723 DOI: 10.1038/s41598-023-37296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a high-LET particle radiotherapy clinically tested for treating malignant gliomas. Boronophenylalanine (BPA), a boron-containing phenylalanine derivative, is selectively transported into tumor cells by amino acid transporters, making it an ideal agent for BNCT. In this study, we investigated whether the amino acid 5-aminolevulinic acid (ALA) could sensitize glioma stem cells (GSCs) to BNCT by enhancing the uptake of BPA. Using human and mouse GSC lines, pre-incubation with ALA increased the intracellular accumulation of BPA dose-dependent. We also conducted in vivo experiments by intracerebrally implanting HGG13 cells in mice and administering ALA orally 24 h before BPA administration (ALA + BPA-BNCT). The ALA preloading group increased the tumor boron concentration and improved the tumor/blood boron concentration ratio, resulting in improved survival compared to the BPA-BNCT group. Furthermore, we found that the expression of amino acid transporters was upregulated following ALA treatment both in vitro and in vivo, particularly for ATB0,+. This suggests that ALA may sensitize GSCs to BNCT by upregulating the expression of amino acid transporters, thereby enhancing the uptake of BPA and improving the effectiveness of BNCT. These findings have important implications for strategies to improve the sensitivity of malignant gliomas to BPA-BNCT.
Collapse
Affiliation(s)
- Masao Fukumura
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan.
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Gen Futamura
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Koji Takeuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Takuya Kanemitsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Naokado Ikeda
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Toshihiko Kuroiwa
- Department of Neurosurgery, Tesseikai Neurosurgical Hospital, Shijonawate, Osaka, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
16
|
Hamada S, Mae Y, Takata T, Hanada H, Kubo M, Taniguchi S, Iyama T, Sugihara T, Isomoto H. Five-Aminolevulinic Acid (5-ALA) Induces Heme Oxygenase-1 and Ameliorates Palmitic Acid-Induced Endoplasmic Reticulum Stress in Renal Tubules. Int J Mol Sci 2023; 24:10151. [PMID: 37373300 DOI: 10.3390/ijms241210151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Steatosis, or ectopic lipid deposition, is the fundamental pathophysiology of non-alcoholic steatohepatitis and chronic kidney disease. Steatosis in the renal tubule causes endoplasmic reticulum (ER) stress, leading to kidney injury. Thus, ER stress could be a therapeutic target in steatonephropathy. Five-aminolevulinic acid (5-ALA) is a natural product that induces heme oxygenase (HO)-1, which acts as an antioxidant. This study aimed to investigate the therapeutic potential of 5-ALA in lipotoxicity-induced ER stress in human primary renal proximal tubule epithelial cells. Cells were stimulated with palmitic acid (PA) to induce ER stress. Cellular apoptotic signals and expression of genes involved in the ER stress cascade and heme biosynthesis pathway were analyzed. The expression of glucose-regulated protein 78 (GRP78), a master regulator of ER stress, increased significantly, followed by increased cellular apoptosis. Administration of 5-ALA induced a remarkable increase in HO-1 expression, thus ameliorating PA-induced GRP78 expression and apoptotic signals. BTB and CNC homology 1 (BACH1), a transcriptional repressor of HO-1, was significantly downregulated by 5-ALA treatment. HO-1 induction attenuates PA-induced renal tubular injury by suppressing ER stress. This study demonstrates the therapeutic potential of 5-ALA against lipotoxicity through redox pathway.
Collapse
Affiliation(s)
- Shintaro Hamada
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Yukari Mae
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Tomoaki Takata
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Hinako Hanada
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Misaki Kubo
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Sosuke Taniguchi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Takuji Iyama
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Takaaki Sugihara
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| |
Collapse
|
17
|
Pignatelli P, Umme S, D'Antonio DL, Piattelli A, Curia MC. Reactive Oxygen Species Produced by 5-Aminolevulinic Acid Photodynamic Therapy in the Treatment of Cancer. Int J Mol Sci 2023; 24:ijms24108964. [PMID: 37240309 DOI: 10.3390/ijms24108964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is the leading cause of death worldwide and several anticancer therapies take advantage of the ability of reactive oxygen species to kill cancer cells. Added to this is the ancient hypothesis that light alone can be used to kill cancer cells. 5-aminolevulinic acid-photodynamic therapy (5-ALA-PDT) is a therapeutic option for a variety of cutaneous and internal malignancies. PDT uses a photosensitizer that, activated by light in the presence of molecule oxygen, forms ROS, which are responsible for the apoptotic activity of the malignant tissues. 5-ALA is usually used as an endogenous pro-photosensitizer because it is converted to Protoporphyrin IX (PpIX), which enters into the process of heme synthesis and contextually becomes a photosensitizer, radiating a red fluorescent light. In cancer cells, the lack of the ferrochelatase enzyme leads to an accumulation of PpIX and consequently to an increased production of ROS. PDT has the benefit of being administered before or after chemotherapy, radiation, or surgery, without impairing the efficacy of these treatment techniques. Furthermore, sensitivity to PDT is unaffected by the negative effects of chemotherapy or radiation. This review focuses on the studies done so far on 5-ALA-PDT and its efficacy in the treatment of various cancer pathologies.
Collapse
Affiliation(s)
- Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, Viale Ionio, 74122 Taranto, Italy
| | - Samia Umme
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Domenica Lucia D'Antonio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
- Fondazione Villaserena per la Ricerca, Città Sant'Angelo, 65013 Pescara, Italy
- Casa di Cura Villa Serena, Città Sant'Angelo, 65013 Pescara, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
18
|
Voltarelli VA, Alves de Souza RW, Miyauchi K, Hauser CJ, Otterbein LE. Heme: The Lord of the Iron Ring. Antioxidants (Basel) 2023; 12:antiox12051074. [PMID: 37237940 DOI: 10.3390/antiox12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Heme is an iron-protoporphyrin complex with an essential physiologic function for all cells, especially for those in which heme is a key prosthetic group of proteins such as hemoglobin, myoglobin, and cytochromes of the mitochondria. However, it is also known that heme can participate in pro-oxidant and pro-inflammatory responses, leading to cytotoxicity in various tissues and organs such as the kidney, brain, heart, liver, and in immune cells. Indeed, heme, released as a result of tissue damage, can stimulate local and remote inflammatory reactions. These can initiate innate immune responses that, if left uncontrolled, can compound primary injuries and promote organ failure. In contrast, a cadre of heme receptors are arrayed on the plasma membrane that is designed either for heme import into the cell, or for the purpose of activating specific signaling pathways. Thus, free heme can serve either as a deleterious molecule, or one that can traffic and initiate highly specific cellular responses that are teleologically important for survival. Herein, we review heme metabolism and signaling pathways, including heme synthesis, degradation, and scavenging. We will focus on trauma and inflammatory diseases, including traumatic brain injury, trauma-related sepsis, cancer, and cardiovascular diseases where current work suggests that heme may be most important.
Collapse
Affiliation(s)
- Vanessa Azevedo Voltarelli
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rodrigo W Alves de Souza
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kenji Miyauchi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leo Edmond Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
19
|
Howley R, Chandratre S, Chen B. 5-Aminolevulinic Acid as a Theranostic Agent for Tumor Fluorescence Imaging and Photodynamic Therapy. Bioengineering (Basel) 2023; 10:bioengineering10040496. [PMID: 37106683 PMCID: PMC10136048 DOI: 10.3390/bioengineering10040496] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
5-Aminolevulinic acid (ALA) is a naturally occurring amino acid synthesized in all nucleated mammalian cells. As a porphyrin precursor, ALA is metabolized in the heme biosynthetic pathway to produce protoporphyrin IX (PpIX), a fluorophore and photosensitizing agent. ALA administered exogenously bypasses the rate-limit step in the pathway, resulting in PpIX accumulation in tumor tissues. Such tumor-selective PpIX disposition following ALA administration has been exploited for tumor fluorescence diagnosis and photodynamic therapy (PDT) with much success. Five ALA-based drugs have now received worldwide approval and are being used for managing very common human (pre)cancerous diseases such as actinic keratosis and basal cell carcinoma or guiding the surgery of bladder cancer and high-grade gliomas, making it the most successful drug discovery and development endeavor in PDT and photodiagnosis. The potential of ALA-induced PpIX as a fluorescent theranostic agent is, however, yet to be fully fulfilled. In this review, we would like to describe the heme biosynthesis pathway in which PpIX is produced from ALA and its derivatives, summarize current clinical applications of ALA-based drugs, and discuss strategies for enhancing ALA-induced PpIX fluorescence and PDT response. Our goal is two-fold: to highlight the successes of ALA-based drugs in clinical practice, and to stimulate the multidisciplinary collaboration that has brought the current success and will continue to usher in more landmark advances.
Collapse
Affiliation(s)
- Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
| | - Sharayu Chandratre
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Rickard BP, Overchuk M, Obaid G, Ruhi MK, Demirci U, Fenton SE, Santos JH, Kessel D, Rizvi I. Photochemical Targeting of Mitochondria to Overcome Chemoresistance in Ovarian Cancer †. Photochem Photobiol 2023; 99:448-468. [PMID: 36117466 PMCID: PMC10043796 DOI: 10.1111/php.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy with a stubborn mortality rate of ~65%. The persistent failure of multiline chemotherapy, and significant tumor heterogeneity, has made it challenging to improve outcomes. A target of increasing interest is the mitochondrion because of its essential role in critical cellular functions, and the significance of metabolic adaptation in chemoresistance. This review describes mitochondrial processes, including metabolic reprogramming, mitochondrial transfer and mitochondrial dynamics in ovarian cancer progression and chemoresistance. The effect of malignant ascites, or excess peritoneal fluid, on mitochondrial function is discussed. The role of photodynamic therapy (PDT) in overcoming mitochondria-mediated resistance is presented. PDT, a photochemistry-based modality, involves the light-based activation of a photosensitizer leading to the production of short-lived reactive molecular species and spatiotemporally confined photodamage to nearby organelles and biological targets. The consequential effects range from subcytotoxic priming of target cells for increased sensitivity to subsequent treatments, such as chemotherapy, to direct cell killing. This review discusses how PDT-based approaches can address key limitations of current treatments. Specifically, an overview of the mechanisms by which PDT alters mitochondrial function, and a summary of preclinical advancements and clinical PDT experience in ovarian cancer are provided.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; North Carolina State University, Raleigh, NC 27606, USA
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson TX 95080, USA
| | - Mustafa Kemal Ruhi
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Suzanne E. Fenton
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Janine H. Santos
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Imran Rizvi
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; North Carolina State University, Raleigh, NC 27606, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Howley R, Mansi M, Shinde J, Restrepo J, Chen B. Analysis of Renal Cell Carcinoma Cell Response to the Enhancement of 5-aminolevulinic Acid-mediated Protoporphyrin IX Fluorescence by Iron Chelator Deferoxamine †. Photochem Photobiol 2023; 99:787-792. [PMID: 35857390 PMCID: PMC10258817 DOI: 10.1111/php.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 01/25/2023]
Abstract
As a tumor photodiagnostic agent, 5-aminolevulinic acid (ALA) is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) with fluorescence. ALA-PpIX fluorescence was evaluated in human renal cell carcinoma (RCC) cell lines and non-tumor HK-2 cell lines. We found that extracellular PpIX level was correlated with ABCG2 activity, illustrating its importance as a PpIX efflux transporter. Extracellular PpIX was also related to the Km of ferrochelatase (FECH) that chelates PpIX with ferrous iron to form heme. The Vmax of FECH was higher in all RCC cell lines tested than in the HK-2 cell line. TCGA dataset analysis indicates a positive correlation between FECH expression and RCC patient survival. These findings suggest FECH as an important biomarker in RCC. Effects of iron chelator deferoxamine (DFO) on the enhancement of PpIX fluorescence were assessed. DFO increased intracellular PpIX in both tumor and non-tumor cells, resulting in no gain in tumor/non-tumor fluorescence ratios. DFO appeared to increase ALA-PpIX more at 1-h than at 4-h treatment. There was an inverse correlation between ALA-PpIX fluorescence and the enhancement effect of DFO. These results suggest that enhancement of ALA-PpIX by DFO may be limited by the availability of ferrous iron in mitochondria following ALA administration.
Collapse
Affiliation(s)
- Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
| | - Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
| | - Janhavi Shinde
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
| | - Juliana Restrepo
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Wen Y, Zeng L, Chen Q, Li Y, Fu M, Wang Z, Liu H, Li X, Huang P, Wu W, Zou Q, Yi W. RNA-Seq-based transcriptomics analysis during the photodynamic therapy of primary cells in secondary hyperparathyroidism. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:905-917. [PMID: 36750541 DOI: 10.1007/s43630-023-00361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/02/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND The aim of this study was to identify changes in gene expression before and after 5-aminolevulinic acid-mediated photodynamic therapy (5-ALA-PDT) and to investigate the potential mechanism of 5-ALA-PDT based on ribonucleic acid sequencing (RNA-Seq) analysis. METHODS Secondary hyperparathyroidism (SHPT) primary cells were isolated from surgically excised specimens and exposed to laser light. The transcription profiles of SHPT primary cells were identified through RNA-Seq. Differentially expressed genes (DEGs) were identified. Enrichment of functions and signaling pathway analysis were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analysis were used to validate genes based on RNA-Seq results. RESULTS In total, 1320 DEGs were identified, of which 1019 genes were upregulated and 301 genes were downregulated. GO and KEGG pathway analyses identified significantly enriched pathways in DEGs, including TGF beta in extracellular matrix (ECM), negative regulation of triglyceride biosynthetic process, protein heterodimerization activity, systemic lupus erythematosus, ECM-receptor interaction, focal adhesion and protein digestion and absorption. Protein-protein interaction (PPI) network analyses identified potential heat shock protein (HSP) interactions among the DEGs. Eight HSP genes were also identified that were most likely involved in 5-ALA-PDT, which were further validated by RT-qPCR and western blotting. CONCLUSIONS The findings of this descriptive study reveal changes in the transcriptome profile during 5-ALA-PDT, suggesting that gene expression and mutation, signaling pathways, and the molecular network are altered in SHPT primary cells. The above findings provide new insight for further studies on the mechanisms underlying 5-ALA-PDT in SHPT.
Collapse
Affiliation(s)
- Ying Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China
| | - Liyun Zeng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China
| | - Qitong Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China
| | - Yitong Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China
| | - Mengdie Fu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China
| | - Zixin Wang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiejia Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wei Wu
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qiongyan Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China.
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China.
| |
Collapse
|
23
|
Efficacy of 5% Aminolaevulinic Acid and Red Light on Enterococcus faecalis in Infected Root Canals. Gels 2023; 9:gels9020125. [PMID: 36826295 PMCID: PMC9957220 DOI: 10.3390/gels9020125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In this ex vivo study, the aim was to evaluate the effects of ALAD and red light on Enterococcus faecalis in infected root canals using a special intracanal fiber. METHODS A total of 70 extracted, single-rooted teeth were used. The teeth were decoronated at the length of the roots to approximately 15 mm and then instrumented. The apical foramen was sealed by composite resin, and the root canals were infected with a pure culture of E. faecalis ATCC 29212 for eight days at 37 °C. Following the contamination period, the roots were divided into seven groups, including the positive and negative control groups, and treated as follows: ALAD 45 min; red light activation 7 min; ALAD 45 min and red-light activation 7 min; sodium hypochlorite 2.5% 15 min; sodium hypochlorite 1% 15 min. The samples were taken by three sterile paper points, transferred to tubes containing 1 mL of PBS, and immediately processed for the number of colony-forming units and the cell viability by using live/dead. RESULTS The best treatment is obtained with 2.5% NaOCl. Except for ALAD + red light vs. 1% NaOCl, a statistically significant difference is recorded for all treatments. The combination of 2.5% NaOCl and ALAD + 7 min irradiation produces an evident killing effect on the E. faecalis cells. On the other hand, 1% NaOCl is ineffective for the viability action, with 25% of dead cells stained in red. CONCLUSIONS This ex vivo study shows that ALAD gel with light irradiation is an efficacious protocol that exerts a potent antibacterial activity against E. faecalis in infected root canals.
Collapse
|
24
|
Chen Y, Deng H, Yang L, Guo L, Feng M. Desferrioxamine Enhances 5-Aminolaevulinic Acid- Induced Protoporphyrin IX Accumulation and Therapeutic Efficacy for Hypertrophic Scar. J Pharm Sci 2023; 112:1635-1643. [PMID: 36682488 DOI: 10.1016/j.xphs.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Hypertrophic scar is a common problem after skin burns or trauma which brings physical, psychological, and cosmetic problems to patients. Photodynamic therapy with 5-aminolevulinic acid (5-ALA) is a promising therapy for hypertrophic scar. However, clinical applications of 5-ALA are limited because of the low permeability of 5-ALA in the skin stratum corneum and the rapid binding of protoporphyrin IX (PpIX) with iron ions, which lead to insufficient PpIX production in target tissues. Herein, a mixture of 5-ALA and DFO (deferoxamine, a special iron chelator) was applied for the treatment of hypertrophic scar. 5-ALA/DFO could efficiently block the biotransformation of PpIX to heme, thus realizing a significant accumulation of photosensitizer. In addition, injection locally into the lesion was applied, which combined with enhanced photodynamic therapy to destroy hypertrophic scar fibroblasts. In vitro experiments showed that 5-ALA/DFO could increase more ROS generation by increasing the accumulation of PpIX, resulting in the apoptosis of hypertrophic scar fibroblasts. Furthermore, 5-ALA/DFO inhibited the proliferation and migration of hypertrophic scar fibroblasts. In vivo study showed that 5-ALA/DFO could effectively inhibit the formation of proliferative scar. Therefore, 5-ALA/DFO has the potential to enhance the photodynamic therapy of 5-ALA and provides a new treatment strategy for hypertrophic scar.
Collapse
Affiliation(s)
- Yiman Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, PR China
| | - Huihui Deng
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, PR China
| | - Liya Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, PR China
| | - Ling Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, PR China; School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, PR China.
| | - Min Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, PR China.
| |
Collapse
|
25
|
Kennedy R. Phototherapy as a Treatment for Dermatological Diseases, Cancer, Aesthetic Dermatologic Conditions and Allergenic Rhinitis in Adult and Paediatric Medicine. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010196. [PMID: 36676145 PMCID: PMC9864074 DOI: 10.3390/life13010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
The development of light-emitting diodes (LEDs) has led to an increase in the use of lighting regimes within medicine particularly as a treatment for dermatological conditions. New devices have demonstrated significant results for the treatment of medical conditions, including mild-to-moderate acne vulgaris, wound healing, psoriasis, squamous cell carcinoma in situ (Bowen's disease), basal cell carcinoma, actinic keratosis, and cosmetic applications. The three wavelengths of light that have demonstrated several therapeutic applications are blue (415 nm), red (633 nm), and near-infrared (830 nm). This review shows their potential for treating dermatological conditions. Phototherapy has also been shown to be an effective treatment for allergenic rhinitis in children and adults. In a double-anonymized randomized study it was found that there was 70% improvement of clinical symptoms of allergic rhinitis after intranasal illumination by low-energy narrow-band phototherapy at a wavelength of 660 nm three times a day for 14 consecutive days. Improvement of oedema in many patients with an age range of 7-17 were also observed. These light treatments can now be self-administered by sufferers using devices such as the Allergy Reliever phototherapy device. The device emits visible light (mUV/VIS) and infra-red light (660 nm and 940 nm) wavelengths directly on to the skin in the nasal cavity for a 3 min period. Several phototherapy devices emitting a range of wavelengths have recently become available for use and which give good outcomes for some dermatological conditions.
Collapse
Affiliation(s)
- Roy Kennedy
- Warwickshire College University Centre, Warwick New Road, Royal Leamington Spa, Warwickshire CV32 5JE, UK
| |
Collapse
|
26
|
Bazak J, Korytowski W, Girotti AW. Hyper-Aggressiveness of Bystander Cells in an Anti-Tumor Photodynamic Therapy Model: Role of Nitric Oxide Produced by Targeted Cells. Crit Rev Oncog 2023; 28:15-25. [PMID: 37824384 DOI: 10.1615/critrevoncog.2022040016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
When selected tumor cells in a large in vitro population are exposed to ionizing radiation, they can send pro-survival signals to non-exposed counterparts (bystander cells). If there is no physical contact between irradiated and bystander cells, the latter respond to mediators from targeted cells that diffuse through the medium. One such mediator is known to be nitric oxide (NO). It was recently discovered that non-ionizing anti-tumor photodynamic therapy (PDT) can also elicit pro-survival/expansion bystander effects in a variety of human cancer cells. A novel silicone ring-based approach was used for distinguishing photodynamically-targeted cells from non-targeted bystanders. A key finding was that NO from upregulated iNOS in surviving targeted cells diffused to the bystanders and caused iNOS/NO upregulation there, which in turn stimulated cell proliferation and migration. The intensity of these responses depended on the extent of iNOS/NO induction in targeted cells of different cancer lines. Moreover, the responses could be replicated using NO from the chemical donor DETA/NO. This review will focus on these and related findings, their negative implications for clinical PDT, and how these might be averted by using pharmacologic inhibitors of iNOS activity or transcription.
Collapse
Affiliation(s)
- Jerzy Bazak
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | | | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226-3548, USA
| |
Collapse
|
27
|
Cancer therapy by antibody-targeted Cerenkov light and metabolism-selective photosensitization. J Control Release 2022; 352:25-34. [PMID: 36243234 DOI: 10.1016/j.jconrel.2022.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/29/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Photodynamic therapy (PDT) is an effective cancer treatment option, but it suffers from penetration limit of light, making it available only for superficial and endoscopically accessible cancers. Recently, there have been reports that Cerenkov luminescence originated from radioisotopes can be utilized as an excitation source for PDT without external light illumination. Here, cancer-selective agents, i.e., (1) clinically available 5-aminolevulinic acid (5-ALA), which promotes cancer metabolism-specific accumulation of protoporphyrin IX (PpIX), and (2) 64Cu-DOTA-trastuzumab, which has HER2-expressing cancer selective uptake, are separately applied as a photosensitizer and an in situ radiator, respectively, to potentiate tumor-specific Cerenkov luminescence energy transfer (CLET) from 64Cu to PpIX for high-precision PDT of cancer. It is shown that the combinational administration and tumor colocalization of 5-ALA and 64Cu-DOTA-trastuzumab exert significant in vitro cytotoxicity (cell viability <9%) as well as in vivo antitumor effects (tumor volume ratio of 0.50 on 14 days post-injection) on HER2-expressing breast and gastric cancer models. This study proves that high-precision treatment regimen using dual-targeted CLET-based PDT is feasible for HER2-expressing cancers. Furthermore, the results offer great potential for clinical translation to the dual-targeted CLET-based PDT because the treatment regimen uses components, 5-ALA and 64Cu-DOTA-trastuzumab, which are already in clinical uses.
Collapse
|
28
|
Zhang C, Zhao X, Li D, Ji F, Dong A, Chen X, Zhang J, Wang X, Zhao Y, Chen X. Advances in 5-aminoketovaleric acid(5-ALA) nanoparticle delivery system based on cancer photodynamic therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
D’Ercole S, Carlesi T, Dotta TC, Pierfelice TV, D’Amico E, Tripodi D, Iezzi G, Piattelli A, Petrini M. 5-Aminolevulinic Acid and Red Led in Endodontics: A Narrative Review and Case Report. Gels 2022; 8:697. [PMID: 36354605 PMCID: PMC9689491 DOI: 10.3390/gels8110697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 08/26/2023] Open
Abstract
The present study aims to discuss the main factors involving the use of 5-aminolevulinic acid together with red LED light and its application in endodontic treatment through a narrative review and a case report. Persistence of microorganisms remaining on chemical-mechanical preparation or intracanal dressing is reported as the leading cause of failure in endodontics. Photodynamic therapy has become a promising antimicrobial strategy as an aid to endodontic treatment. Being easy and quick to apply, it can be used both in a single session and in several sessions, as well as not allowing forms of microbial resistance. 5-aminolevulinic acid in combination with red LED light has recently been studied in many branches of medicine, with good results against numerous types of bacteria including Enterococuss faecalis. The case report showed how bacterial count of CFU decreased by half (210 CFU/mL), after 45 min of irrigation with a gel containing 5% of 5-aminolevulinic acid compared to the sample before irrigation (420 CFU/mL). The subsequent irradiation of red LED light for 7 min, the bacterial count was equal to 0. Thus, it is concluded that the use of 5-aminolevulinic acid together with red LED light is effective in endodontic treatment.
Collapse
Affiliation(s)
- Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Teocrito Carlesi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Tatiane Cristina Dotta
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico Tripodi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences (Unicamillus), 00131 Rome, Italy
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena, 65013 Città Sant’Angelo, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
30
|
Liu X, Lv H, Shen H. Vitamin D enhances the sensitivity of breast cancer cells to the combination therapy of photodynamic therapy and paclitaxel. Tissue Cell 2022; 77:101815. [DOI: 10.1016/j.tice.2022.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
|
31
|
Sishtla K, Lambert-Cheatham N, Lee B, Han DH, Park J, Sardar Pasha SPB, Lee S, Kwon S, Muniyandi A, Park B, Odell N, Waller S, Park IY, Lee SJ, Seo SY, Corson TW. Small-molecule inhibitors of ferrochelatase are antiangiogenic agents. Cell Chem Biol 2022; 29:1010-1023.e14. [PMID: 35090600 PMCID: PMC9233146 DOI: 10.1016/j.chembiol.2022.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/10/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Activity of the heme synthesis enzyme ferrochelatase (FECH) is implicated in multiple diseases. In particular, it is a mediator of neovascularization in the eye and thus an appealing therapeutic target for preventing blindness. However, no drug-like direct FECH inhibitors are known. Here, we set out to identify small-molecule inhibitors of FECH as potential therapeutic leads using a high-throughput screening approach to identify potent inhibitors of FECH activity. A structure-activity relationship study of a class of triazolopyrimidinone hits yielded drug-like FECH inhibitors. These compounds inhibit FECH in cells, bind the active site in cocrystal structures, and are antiangiogenic in multiple in vitro assays. One of these promising compounds was antiangiogenic in vivo in a mouse model of choroidal neovascularization. This foundational work may be the basis for new therapeutic agents to combat not only ocular neovascularization but also other diseases characterized by FECH activity.
Collapse
Affiliation(s)
- Kamakshi Sishtla
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nathan Lambert-Cheatham
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bit Lee
- College of Pharmacy, Gachon University, Incheon 21936, South Korea
| | - Duk Hee Han
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea
| | - Jaehui Park
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea
| | - Sheik Pran Babu Sardar Pasha
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sanha Lee
- College of Pharmacy, Gachon University, Incheon 21936, South Korea
| | - Sangil Kwon
- College of Pharmacy, Gachon University, Incheon 21936, South Korea
| | - Anbukkarasi Muniyandi
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bomina Park
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Noa Odell
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Spelman College, Atlanta, GA 30314, USA
| | - Sydney Waller
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Il Yeong Park
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea
| | - Soo Jae Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea.
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon 21936, South Korea.
| | - Timothy W Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
32
|
Mansi M, Howley R, Chandratre S, Chen B. Inhibition of ABCG2 transporter by lapatinib enhances 5-aminolevulinic acid-mediated protoporphyrin IX fluorescence and photodynamic therapy response in human glioma cell lines. Biochem Pharmacol 2022; 200:115031. [PMID: 35390338 DOI: 10.1016/j.bcp.2022.115031] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023]
Abstract
5-Aminolevulinic acid (ALA) is an intraoperative molecular probe approved for fluorescence-guided resection (FGR) of high-grade gliomas to achieve maximal safe tumor resection. Although ALA has no fluorescence on its own, it is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) with red fluorescence for tumor detection and photosensitizing activity for photodynamic therapy (PDT). The preferential tumor accumulation of PpIX following ALA administration enables the use of ALA as a prodrug for PpIX FGR and PDT of gliomas. Since intracellular PpIX in tumor cells after ALA treatment is influenced by biological processes including PpIX bioconversion catalyzed by ferrochelatase (FECH) and PpIX efflux by ATP-binding cassette subfamily G member 2 (ABCG2), we determined the activity of FECH and ABCG2 in a panel of human glioma cell lines and correlated with intracellular and extracellular PpIX levels and PDT response. We found that glioma cell lines with ABCG2 activity exhibited the trend of low intracellular PpIX, high extracellular PpIX and low PDT response, whereas no particular correlation was seen with FECH activity. Inhibition of PpIX efflux with ABCG2 inhibitors was more effective in enhancing ALA-PpIX fluorescence and PDT response than blocking PpIX bioconversion with iron chelator deferoxamine. We also showed that a clinically used kinase inhibitor lapatinib could be repurposed for therapeutic enhancement of ALA due to its potent ABCG2 inhibitory activity. Our study reveals ABCG2 as an important biological determinant of PpIX fluorescence in glioma cells and suggests ABCG2 inhibition with lapatinib as a promising therapeutic enhancement approach.
Collapse
Affiliation(s)
- Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Sharayu Chandratre
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Gamage SM, Nanayakkara S, Macfarlane L, Hewage D, Cheng T, Aktar S, Lu CT, Dissabandara L, Islam F, Lam AKY, Gopalan V. Heme oxygenase-1 & 2 and their potential contribution in heme induced colorectal carcinogenesis. Pathol Res Pract 2022; 233:153885. [DOI: 10.1016/j.prp.2022.153885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
|
34
|
Zhang P, Han T, Xia H, Dong L, Chen L, Lei L. Advances in Photodynamic Therapy Based on Nanotechnology and Its Application in Skin Cancer. Front Oncol 2022; 12:836397. [PMID: 35372087 PMCID: PMC8966402 DOI: 10.3389/fonc.2022.836397] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Comprehensive cancer treatments have been widely studied. Traditional treatment methods (e.g., radiotherapy, chemotherapy), despite ablating tumors, inevitably damage normal cells and cause serious complications. Photodynamic therapy (PDT), with its low rate of trauma, accurate targeting, synergism, repeatability, has displayed great advantages in the treatment of tumors. In recent years, nanotech-based PDT has provided a new modality for cancer treatment. Direct modification of PSs by nanotechnology or the delivery of PSs by nanocarriers can improve their targeting, specificity, and PDT efficacy for tumors. In this review, we strive to provide the reader with a comprehensive overview, on various aspects of the types, characteristics, and research progress of photosensitizers and nanomaterials used in PDT. And the application progress and relative limitations of nanotech-PDT in non-melanoma skin cancer and melanoma are also summarized.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Han
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Hui Xia
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijie Dong
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Liuqing Chen
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lei
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Mazurek M, Szczepanek D, Orzyłowska A, Rola R. Analysis of Factors Affecting 5-ALA Fluorescence Intensity in Visualizing Glial Tumor Cells-Literature Review. Int J Mol Sci 2022; 23:ijms23020926. [PMID: 35055109 PMCID: PMC8779265 DOI: 10.3390/ijms23020926] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Glial tumors are one of the most common lesions of the central nervous system. Despite the implementation of appropriate treatment, the prognosis is not successful. As shown in the literature, maximal tumor resection is a key element in improving therapeutic outcome. One of the methods to achieve it is the use of fluorescent intraoperative navigation with 5-aminolevulinic acid. Unfortunately, often the level of fluorescence emitted is not satisfactory, resulting in difficulties in the course of surgery. This article summarizes currently available knowledge regarding differences in the level of emitted fluorescence. It may depend on both the histological type and the genetic profile of the tumor, which is reflected in the activity and expression of enzymes involved in the intracellular metabolism of fluorescent dyes, such as PBGD, FECH, UROS, and ALAS. The transport of 5-aminolevulinic acid and its metabolites across the blood–brain barrier and cell membranes mediated by transporters, such as ABCB6 and ABCG2, is also important. Accompanying therapies, such as antiepileptic drugs or steroids, also have an impact on light emission by tumor cells. Accurate determination of the factors influencing the fluorescence of 5-aminolevulinic acid-treated cells may contribute to the improvement of fluorescence navigation in patients with highly malignant gliomas.
Collapse
|
36
|
Ngwe Tun MM, Sakura T, Sakurai Y, Kurosaki Y, Inaoka DK, Shioda N, Yasuda J, Kita K, Morita K. Antiviral activity of 5-aminolevulinic acid against variants of severe acute respiratory syndrome coronavirus 2. Trop Med Health 2022; 50:6. [PMID: 34991723 PMCID: PMC8739347 DOI: 10.1186/s41182-021-00397-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began to emerge in 2020 and have been spreading globally during the coronavirus disease 2019 (COVID-19) pandemic. Despite the presence of different COVID-19 vaccines, the discovery of effective antiviral therapeutics for the treatment of patients infected with SARS-CoV-2 are still urgently needed. A natural amino acid, 5-aminolevulinic acid (5-ALA), has exhibited both antiviral and anti-inflammatory activities. In a previous study, we demonstrated an in vitro antiviral effect of 5-ALA against SARS-CoV-2 infection without significant cytotoxicity. In the present study, we sought to investigate whether 5-ALA with or without sodium ferrous citrate (SFC) can inhibit in vitro both the original SARS-CoV-2 Wuhan strain and its variants, including the Alpha, Beta, Gamma and Delta strains. METHODS The antiviral activity of ALA with or without SFC was determined in Vero-E6 cell. The virus inhibition was quantified by real time RT-PCR. RESULTS Co-administration of 5-ALA and SFC inhibited the Wuhan, Alpha and Delta variants of SARS-CoV-2 with IC50 values of 235, 173 and 397 µM, respectively, and the Beta and Gamma variants with IC50 values of 1311 and 1516 µM. CONCLUSION Our study suggests that 5-ALA with SFC warrants accelerated clinical evaluation as an antiviral drug candidate for treating patients infected with SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Takaya Sakura
- Shionogi Global Infectious Diseases Division, Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yasuteru Sakurai
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yohei Kurosaki
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Daniel Ken Inaoka
- Shionogi Global Infectious Diseases Division, Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
37
|
Mansi M, Howley R, Chen B. Methods to Measure the Inhibition of ABCG2 Transporter and Ferrochelatase Activity to Enhance Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Tumor Detection and Resection. Methods Mol Biol 2022; 2394:823-835. [PMID: 35094360 DOI: 10.1007/978-1-0716-1811-0_43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aminolevulinic acid (ALA) has been clinically used as an intraoperative fluorescence probe for protoporphyrin IX (PpIX) fluorescence-guided tumor resection and a PDT agent for cancer treatment. Although tumor tissues often show increased ALA-PpIX fluorescence compared with normal tissues, which enables the use of ALA for tumor imaging and targeting, weak tumor PpIX fluorescence as well as the heterogeneity in tumor fluorescence severely limits its clinical application. Intracellular PpIX in tumor cells is reduced by two major mechanisms, efflux by ATP-binding cassette (ABC) transporters such as ABCG2 and bioconversion to form heme by ferrochelatase (FECH) in the heme biosynthesis pathway. Targeting these two predominant PpIX-reducing mechanisms for the enhancement of ALA-PpIX have yielded a plethora of promising results and stimulated the clinical exploration of these enhancement strategies. Here we describe our methods of evaluating chemicals for the inhibition of ABCG2 transporter and FECH activity. Our goal is to further encourage research and development of novel ABCG2 and FECH inhibitors and promote a rational use of these inhibitors to optimize ALA-based tumor detection and treatment.
Collapse
Affiliation(s)
- Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA. .,Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
38
|
The Immunogenetic Aspects of Photodynamic Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:433-448. [DOI: 10.1007/978-3-030-92616-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Tucker M, Lacayo M, Joseph S, Ross W, Chongsathidkiet P, Fecci P, Codd PJ. Creation of Non-Contact Device for Use in Metastatic Melanoma Margin Identification in ex vivo Mouse Brain. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 11945:1194507. [PMID: 35619993 PMCID: PMC9131976 DOI: 10.1117/12.2608975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Because contemporary intraoperative tumor detection modalities, such as intraoperative MRI, are not ubiquitously available and can disrupt surgical workflow, there is an imperative for an accessible diagnostic device that can meet the surgeon's needs in identifying tissue types. The objective of this paper is to determine the efficacy of a novel non-contact tumor detection device for metastatic melanoma boundary identification in a tissue-mimicking phantom, evaluate the identification of metastatic melanoma boundaries in ex vivo mouse brain tissue, and find the error associated with identifying this boundary. To validate the spatial and fluorescence resolution of the device, tissue-mimicking phantoms were created with modifiable optical properties. Phantom tissue provided ground truth measurements for fluorophore concentration differences with respect to spatial dimensions. Modeling metastatic disease, ex vivo melanoma brain metastases were evaluated to detect differences in fluorescence between healthy and neoplastic tissue. This analysis includes determining required-to-observe fluorescence differences in tissue. H&E staining confirmed tumor presence in mouse tissue samples. The device detected a difference in normalized average fluorescence intensity in all three phantoms. There were differences in fluorescence with the presence and absence of melanin. The estimated tumor boundary of all tissue phantoms was within 0.30 mm of the ground truth tumor boundary for all boundaries. Likewise, when applied to the melanoma-bearing brains from ex vivo mice, a difference in normalized fluorescence intensity was successfully detected. The potential prediction window for the tumor boundary location is less than 1.5 mm for all ex vivo mouse brain tumors boundaries. We present a non-contact, laser-induced fluorescence device that can identify tumor boundaries based on changes in laser-induced fluorescence emission intensity. The device can identify phantom ground truth tumor boundaries within 0.30 mm using instantaneous rate of change of normalized fluorescence emission intensity and can detect endogenous fluorescence differences in melanoma brain metastases in ex vivo mouse tissue.
Collapse
Affiliation(s)
- Matthew Tucker
- Duke University, Department of Mechanical Engineering and Materials Science, Durham, NC, USA
| | - Matthew Lacayo
- Duke University School of Medicine, Department of Neurosurgery, Durham, NC, USA
| | | | - Weston Ross
- Duke University, Department of Mechanical Engineering and Materials Science, Durham, NC, USA
- Duke University School of Medicine, Department of Neurosurgery, Durham, NC, USA
| | | | - Peter Fecci
- Duke University School of Medicine, Department of Neurosurgery, Durham, NC, USA
| | - Patrick J Codd
- Duke University, Department of Mechanical Engineering and Materials Science, Durham, NC, USA
- Duke University School of Medicine, Department of Neurosurgery, Durham, NC, USA
| |
Collapse
|
40
|
Okuno K, Hiraki M, Chan B, Shirakawa S. Non-Enzymatic Kinetic Resolution and Desymmetrization of α-Quaternary Carboxylic Acids via Chiral Bifunctional Sulfide-Catalyzed Bromolactonization. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ken Okuno
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mana Hiraki
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Seiji Shirakawa
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
41
|
Yi YC, Shih IT, Yu TH, Lee YJ, Ng IS. Challenges and opportunities of bioprocessing 5-aminolevulinic acid using genetic and metabolic engineering: a critical review. BIORESOUR BIOPROCESS 2021; 8:100. [PMID: 38650260 PMCID: PMC10991938 DOI: 10.1186/s40643-021-00455-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA), a non-proteinogenic five-carbon amino acid, has received intensive attentions in medicine due to its approval by the US Food and Drug Administration (FDA) for cancer diagnosis and treatment as photodynamic therapy. As chemical synthesis of 5-ALA performed low yield, complicated processes, and high cost, biosynthesis of 5-ALA via C4 (also called Shemin pathway) and C5 pathway related to heme biosynthesis in microorganism equipped more advantages. In C4 pathway, 5-ALA is derived from condensation of succinyl-CoA and glycine by 5-aminolevulic acid synthase (ALAS) with pyridoxal phosphate (PLP) as co-factor in one-step biotransformation. The C5 pathway involves three enzymes comprising glutamyl-tRNA synthetase (GltX), glutamyl-tRNA reductase (HemA), and glutamate-1-semialdehyde aminotransferase (HemL) from α-ketoglutarate in TCA cycle to 5-ALA and heme. In this review, we describe the recent results of 5-ALA production from different genes and microorganisms via genetic and metabolic engineering approaches. The regulation of different chassis is fine-tuned by applying synthetic biology and boosts 5-ALA production eventually. The purification process, challenges, and opportunities of 5-ALA for industrial applications are also summarized.
Collapse
Affiliation(s)
- Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Tai Shih
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzu-Hsuan Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yen-Ju Lee
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
42
|
Palasuberniam P, Kraus D, Mansi M, Howley R, Braun A, Myers KA, Chen B. Small molecule kinase inhibitors enhance aminolevulinic acid-mediated protoporphyrin IX fluorescence and PDT response in triple negative breast cancer cell lines. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210229R. [PMID: 34545713 PMCID: PMC8451314 DOI: 10.1117/1.jbo.26.9.098002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/08/2021] [Indexed: 05/13/2023]
Abstract
SIGNIFICANCE We demonstrate that clinically used kinase inhibitors such as lapatinib can be used for enhancing aminolevulinic acid (ALA) for tumor fluorescence imaging and photodynamic therapy (PDT). AIM ALA is used as a prodrug for protoporphyrin IX (PpIX) fluorescence-guided tumor resection and PDT. Our previous studies indicate that tumors with high ABCG2 activity exhibit low PpIX fluorescence, which hampers the application of ALA. We aim to determine whether clinically used ABCG2-interacting kinase inhibitors increase ALA-PpIX fluorescence and PDT. APPROACH PpIX fluorescence was determined by spectrofluorometry, flow cytometry, and confocal microscopy after ALA alone or in combination with kinase inhibitors in triple negative breast cancer (TNBC) cell lines. Cytotoxicity was examined after ALA-PDT alone or in combination with kinase inhibitors. Effect of single and combination treatments on apoptosis was assessed by Western blot. RESULTS Four kinase inhibitors (lapatinib, PD169316, sunitinib, gefitinib) significantly increased ALA-PpIX fluorescence and PDT response in TNBC cells with ABCG2 activity, but not in MCF10A nontumor breast epithelial cell line without ABCG2 activity. Confocal microscopic imaging showed that PpIX fluorescence was weak and diffuse after ALA alone, which was greatly enhanced by kinase inhibitors, particularly in the mitochondria. Lapatinib was the only inhibitor that significantly reduced PpIX efflux in cell culture medium and showed stronger enhancement of PDT response than other kinase inhibitors. Lapatinib, in combination with ALA, induced tumor cells to undergo apoptosis, whereas no apoptosis was detected after each individual treatment. CONCLUSIONS Although all four kinase inhibitors were able to enhance ALA-PpIX fluorescence and PDT, lapatinib exhibited the strongest enhancement effect. As an FDA-approved kinase inhibitor for breast cancer treatment, lapatinib is ready to be used in combination with ALA for therapeutic enhancement in tumors with elevated ABCG2 activity. This rational combination approach warrants further investigation in tumor models.
Collapse
Affiliation(s)
- Pratheeba Palasuberniam
- University of the Sciences, Philadelphia College of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia, Pennsylvania, United States
| | - Daniel Kraus
- University of the Sciences, Philadelphia College of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia, Pennsylvania, United States
| | - Matthew Mansi
- University of the Sciences, Philadelphia College of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia, Pennsylvania, United States
| | - Richard Howley
- University of the Sciences, Philadelphia College of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia, Pennsylvania, United States
| | - Alexander Braun
- University of the Sciences, Misher College of Arts and Sciences, Philadelphia, Pennsylvania, United States
| | - Kenneth A. Myers
- University of the Sciences, Misher College of Arts and Sciences, Philadelphia, Pennsylvania, United States
| | - Bin Chen
- University of the Sciences, Philadelphia College of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Perelman School of Medicine, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
- Address all correspondence to Bin Chen,
| |
Collapse
|
43
|
Yamamoto S, Fukuhara H, Seki H, Kawada C, Nakayama T, Karashima T, Ogura SI, Inoue K. Predictors of therapeutic efficacy of 5-aminolevulinic acid-based photodynamic therapy in human prostate cancer. Photodiagnosis Photodyn Ther 2021; 35:102452. [PMID: 34303032 DOI: 10.1016/j.pdpdt.2021.102452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a minimally invasive cancer therapy. However, its therapeutic efficacy for prostate cancer is not yet fully understood. In this study, the predictors of therapeutic efficacy of 5-aminolevulinic acid-based PDT (ALA-PDT) on prostate cancer cells are investigated. MATERIALS AND METHODS The human prostate cancer cell lines, PC-3, 22Rv1, DU145, and LNCap were used to investigate the effects of ALA-PDT on protoporphyrin IX (PpIX) intracellular accumulation, which was measured by flow cytometry. The cytotoxicity of ALA-PDT was evaluated by MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay. The levels of porphyrin metabolism-related enzyme and transporter mRNA were comprehensively evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was evaluated by Western blot. A xenograft model was created using PC-3 and 22Rv1, and then, pathological analysis was performed to determine the therapeutic effect of ALA-PDT RESULTS: PC-3 and LNCap cells showed high accumulation of PpIX and high sensitivity to ALA-PDT, while 22Rv1 and DU145 showed low accumulation of PpIX and low sensitivity to ALA-PDT. ALA-PDT-induced cytotoxicity correlated negatively with PpIX accumulation. The in vitro assays identified the ATP-binding cassette transporter subfamily G2 (ABCG2) transporter dimer as a predictor of treatment response. In vivo immunohistochemical staining of ABCG2 transporter showed low expression in PC-3 cells and high expression in 22Rv1 cells, and ALA-PDT-induced tumor tissue degeneration was greater in PC-3 cells than in 22Rv1 cells. CONCLUSION The ABCG2 transporter is a useful predictor of the therapeutic effect of ALA-PDT on human prostate cancer cells.
Collapse
Affiliation(s)
- Shinkuro Yamamoto
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Hideo Fukuhara
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan; Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Hitomi Seki
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Chiaki Kawada
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Taku Nakayama
- Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Takashi Karashima
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Shun-Ichiro Ogura
- Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan; Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| |
Collapse
|
44
|
Chen J, Li X, Liu Y, Su T, Lin C, Shao L, Li L, Li W, Niu G, Yu J, Liu L, Li M, Yu X, Wang Q. Engineering a probiotic strain of Escherichia coli to induce the regression of colorectal cancer through production of 5-aminolevulinic acid. Microb Biotechnol 2021; 14:2130-2139. [PMID: 34272828 PMCID: PMC8449674 DOI: 10.1111/1751-7915.13894] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/03/2021] [Accepted: 07/03/2021] [Indexed: 01/30/2023] Open
Abstract
Bacterial vectors can be engineered to generate microscopic living therapeutics to produce and deliver anticancer agents. Escherichia coli Nissle 1917 (Nissle 1917) is a promising candidate with probiotic properties. Here, we used Nissle 1917 to develop a metabolic strategy to produce 5‐aminolevulinic acid (5‐ALA) from glucose as 5‐ALA plays an important role in the photodynamic therapy of cancers. The coexpression of hemAM and hemL using a low copy‐number plasmid led to remarkable accumulation of 5‐ALA. The downstream pathway of 5‐ALA biosynthesis was inhibited by levulinic acid (LA). Small‐scale cultures of engineered Nissle 1917 produced 300 mg l−1 of 5‐ALA. Recombinant Nissle 1917 was applied to deliver 5‐ALA to colorectal cancer cells, in which it induced the accumulation of antineoplastic protoporphyrin X (PpIX) and specific cytotoxicity towards colorectal cancer cells irradiated with a 630 nm laser. Moreover, this novel combination therapy proved effective in a mouse xenograft model and was not cytotoxic to normal tissues. These findings suggest that Nissle 1917 will serve as a potential carrier to effectively deliver 5‐ALA for cancer therapy. We combined the biosynthetic and tumor‐targeting features of the probiotic Escherichia coli Nissle 1917 with PDT to deliver 5‐ALA to colorectal cancer cells. E. coli Nissle 1917 was engineered to produce 5‐ALA, and delivered 5‐ALA to colorectal cancer cells to inhibit growth.
Collapse
Affiliation(s)
- Junhao Chen
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Xiaohong Li
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Yumei Liu
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
| | - Changsen Lin
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Lijun Shao
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Lanhua Li
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Wanwei Li
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Guoyu Niu
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jing Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Ling Liu
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Miaomiao Li
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Xiaoli Yu
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
45
|
Tung FI, Chen LC, Wang YC, Chen MH, Shueng PW, Liu TY. Using a Hybrid Radioenhancer to Discover Tumor Cell-targeted Treatment for Osteosarcoma: An In Vitro Study. Curr Med Chem 2021; 28:3877-3889. [PMID: 33213306 DOI: 10.2174/0929867327666201118155216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
Osteosarcoma is insensitive to radiation. High-dose radiation is often used as a treatment but causes side effects in patients. Hence, it is important to develop tumor cell-- targeted radiotherapy that could improve radiotherapy efficiency on tumor cells and reduce the toxic effect on normal cells during radiation treatment. In this study, we developed an innovative method for treating osteosarcoma by using a novel radiation-enhancer (i.e., carboxymethyl-hexanoyl chitosan-coated self-assembled Au@Fe3O4 nanoparticles; CSAF NPs). CSAF NPs were employed together with 5-aminolevulinic acid (5- ALA) to achieve tumor cell-targeted radiotherapy. In this study, osteosarcoma cells (MG63) and normal cells (MC3T3-E1) were used for an in vitro investigation, in which reactive oxygen species (ROS) assay, cell viability assay, clonogenic assay, and western blot were used to confirm the treatment efficiency. The ROS assay showed that the combination of CSAF NPs and 5-ALA enhanced radiation-induced ROS production in tumor cells (MG63); however, this was not observed in normal cells (MC3T3-E1). The cell viability ratio of normal cells to tumor cells after treatment with CSAF NPs and 5-ALA reached 2.79. Moreover, the clonogenic assay showed that the radiosensitivity of MG63 cells was increased by the combination use of CSAF NPs and 5-ALA. This was supported by performing a western blot that confirmed the expression of cytochrome c (a marker of cell mitochondria damage) and caspase-3 (a marker of cell apoptosis). The results provide an essential basis for developing tumor-cell targeted radiotherapy by means of low-- dose radiation.
Collapse
Affiliation(s)
- Fu-I Tung
- Department of Orthopaedic Surgery, Taipei City Hospital, Taipei, Taiwan, China
| | - Li-Chin Chen
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, China
| | - Yu-Chi Wang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, China
| | - Ming-Hong Chen
- Department of Neurosurgery, Taipei Municipal Wanfang Hospital, Taipei, Taiwan, China
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Far Eastern Memorial Hospital, New Taipei City, Taiwan, China
| | - Tse-Ying Liu
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, China
| |
Collapse
|
46
|
Lai HW, Takahashi K, Nakajima M, Tanaka T, Ogura SI. Efficiency of aminolevulinic acid (ALA)-photodynamic therapy based on ALA uptake transporters in a cell density-dependent malignancy model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 218:112191. [PMID: 33862352 DOI: 10.1016/j.jphotobiol.2021.112191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
The effectiveness of the conventional chemotherapy for cancer are compromised as the cancer cells advances in their malignancy level as they acquired drug resistance. In this study, we aimed to evaluate the efficiency of aminolevulinic acid-photodynamic therapy (ALA-PDT) against cancer of various malignancy levels, indicated by the expression level of receptor associated nuclear factor-κB ligand (RANKL), through the expression levels of ALA uptake transporters. We established a malignancy model by gradually increasing the cell density of cancer cells. Western blotting was used to study the expression levels of RANKL, ALA uptake transporters and the cell density-dependent Yes-associated protein (YAP) under different cell densities. The amount of protoporphyrin (PpIX) produced and cell viability were then studied using high performance liquid chromatography (HPLC) and ALA-PDT assay. Our study showed that the amount of PpIX production doubled in high cell density/cancer malignancy cultures and the effectiveness of ALA-PDT when subjected to light irradiation at 635 nm are significantly at higher cancer malignancy. We observed that the expression levels of ALA uptake transporters and YAP correlated with higher cell density/cancer malignancy, suggesting a possible relationship among these three factors. These findings suggest that ALA-PDT is more effective in cancer cells of higher malignancy due to the upregulation of transporters involved in ALA uptake.
Collapse
Affiliation(s)
- Hung Wei Lai
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B47, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kiwamu Takahashi
- SBI Pharmaceuticals Co., Ltd., Izumi Garden Tower 20F, 1-6-1, Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Motowo Nakajima
- SBI Pharmaceuticals Co., Ltd., Izumi Garden Tower 20F, 1-6-1, Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Tohru Tanaka
- SBI Pharmaceuticals Co., Ltd., Izumi Garden Tower 20F, 1-6-1, Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Shun-Ichiro Ogura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B47, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
47
|
Gamage SMK, Lee KTW, Dissabandara DLO, Lam AKY, Gopalan V. Dual role of heme iron in cancer; promotor of carcinogenesis and an inducer of tumour suppression. Exp Mol Pathol 2021; 120:104642. [PMID: 33905708 DOI: 10.1016/j.yexmp.2021.104642] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/14/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Heme is a crucial compound for cell survival but is also equipped with the potential to be toxic and carcinogenic to cells. However, with the recent advancement of knowledge regarding ferroptosis, the iron mediated cell death, heme can be postulated to induce tumour suppression through ferroptosis. This review summarizes the literature on the carcinogenic and anticarcinogenic properties of heme with specific emphasis on the alterations observed on heme synthesis, metabolism and transport in tumour cells. METHODS Literature search was performed in PubMed data base using the MeSH terms 'heme iron or heme', 'cancer or carcinogenesis' and 'tumour suppression' or 'anticarcinogenic properties. Out of 189 results, 166 were relevant to the current review. RESULTS Heme supports carcinogenesis via modulation of immune cell function, promoting inflammation and gut dysbiosis, impeding tumour suppressive potential of P53 gene, promoting cellular cytotoxicity and reactive oxygen species generation and modulating Nfr2 /HO-1 axis. The carcinogenic and anticarcinogenic properties of heme are both dose and oxygen concentration dependant. At low doses, heme is harmless and even helpful in maintaining the much-needed redox balance within the cell. However, when heme exceeds physiological concentrations, it could initiate and propagate carcinogenesis, due to its ability to produce reactive oxygen species (ROS). The same phenomenon of heme mediated ROS generation could be manipulated to initiate tumour suppression via ferroptosis, but the therapeutic doses are yet to be determined. CONCLUSION Heme iron possesses powerful carcinogenic and anticarcinogenic properties which are dosage and oxygen availability dependant.
Collapse
Affiliation(s)
- Sujani M K Gamage
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia; Department of Anatomy, Faculty of Medicine, University of Peradeniya, Sri Lanka
| | - Katherine T W Lee
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | - D Lakal O Dissabandara
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
48
|
Sasaki M, Tanaka M, Ichikawa H, Suzuki T, Nishie H, Ozeki K, Shimura T, Kubota E, Tanida S, Kataoka H. 5-aminolaevulinic acid (5-ALA) accumulates in GIST-T1 cells and photodynamic diagnosis using 5-ALA identifies gastrointestinal stromal tumors (GISTs) in xenograft tumor models. PLoS One 2021; 16:e0249650. [PMID: 33826667 PMCID: PMC8026038 DOI: 10.1371/journal.pone.0249650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) diagnosis using conventional gastrointestinal endoscopy is difficult because such malignancies cannot be distinguished from other types of submucosal tumors. Photodynamic diagnosis (PDD) is based on the preferential uptake of photosensitizers by tumor tissues and its detection by fluorescence emission upon laser excitation. In this study, we investigated whether PDD using 5-aminolevulinic acid (5-ALA), a standard photosensitizer used worldwide, could be used for GIST diagnosis. 5-ALA is metabolized to endogenous fluorescent protoporphyrin IX (PpIX). We examined the accumulation of PpIX in GIST-T1 cells using flow cytometry and immunofluorescent staining. Furthermore, we established GIST-T1 xenograft mouse models and examined PpIX accumulation in the resultant tumors. PpIX accumulated in GIST-T1 cells and was localized mainly to lysosomes. PpIX accumulation was also observed in murine xenograft tumors. Moreover, tumor and normal tissues could be distinctly identified by relative PpIX fluorescence. Thus, our results demonstrated that PDD with 5-ALA has substantial clinical potential for GIST diagnosis.
Collapse
Affiliation(s)
- Makiko Sasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
| | - Hiroshi Ichikawa
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
| | - Taketo Suzuki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
| | - Hirotada Nishie
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
| | - Keiji Ozeki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
| | - Satoshi Tanida
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
| |
Collapse
|
49
|
Sakurai Y, Ngwe Tun MM, Kurosaki Y, Sakura T, Inaoka DK, Fujine K, Kita K, Morita K, Yasuda J. 5-amino levulinic acid inhibits SARS-CoV-2 infection in vitro. Biochem Biophys Res Commun 2021; 545:203-207. [PMID: 33571909 PMCID: PMC7846235 DOI: 10.1016/j.bbrc.2021.01.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
The current COVID-19 pandemic requires urgent development of effective therapeutics. 5-amino levulinic acid (5-ALA) is a naturally synthesized amino acid and has been used for multiple purposes including as an anticancer therapy and as a dietary supplement due to its high bioavailability. In this study, we demonstrated that 5-ALA treatment potently inhibited infection of SARS-CoV-2, a causative agent of COVID-19, in cell culture. The antiviral effects could be detected in both human and non-human cells, without significant cytotoxicity. Therefore, 5-ALA is worth to be further investigated as an antiviral drug candidate for COVID-19.
Collapse
Affiliation(s)
- Yasuteru Sakurai
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan; National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8521, Japan.
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yohei Kurosaki
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan; National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Kiyotaka Fujine
- Pharmaceutical Research Department, Global Pharmaceutical R&D Division, Neopharma Japan Co., Ltd, Tokyo, 102-0071, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan; Department of Host - Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan; National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8521, Japan.
| |
Collapse
|
50
|
Moses AS, Demessie AA, Taratula O, Korzun T, Slayden OD, Taratula O. Nanomedicines for Endometriosis: Lessons Learned from Cancer Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004975. [PMID: 33491876 PMCID: PMC7928207 DOI: 10.1002/smll.202004975] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/03/2020] [Indexed: 05/02/2023]
Abstract
Endometriosis is an incurable gynecological disease characterized by the abnormal growth of endometrium-like tissue, characteristic of the uterine lining, outside of the uterine cavity. Millions of people with endometriosis suffer from pelvic pain and infertility. This review aims to discuss whether nanomedicines that are promising therapeutic approaches for various diseases have the potential to create a paradigm shift in endometriosis management. For the first time, the available reports and achievements in the field of endometriosis nanomedicine are critically evaluated, and a summary of how nanoparticle-based systems can improve endometriosis treatment and diagnosis is provided. Parallels between cancer and endometriosis are also drawn to understand whether some fundamental principles of the well-established cancer nanomedicine field can be adopted for the development of novel nanoparticle-based strategies for endometriosis. This review provides the state of the art of endometriosis nanomedicine and perspective for researchers aiming to realize and exploit the full potential of nanoparticles for treatment and imaging of the disorder.
Collapse
Affiliation(s)
- Abraham S Moses
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Ananiya A Demessie
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Olena Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Tetiana Korzun
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Oleh Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| |
Collapse
|