1
|
Yu ST, Sun ZY, Li N, Qu ZZ, Wang CH, Ju TT, Liu YQ, Mei ZT, Liu KW, Lu MX, Huang M, Li Y, Dou SK, Jiang JH, Zhang YZ, Huang CH, Pang XC, Jia YQ, Dong XH, Wu F, Zhang Y, Li WH, Yang BF, Du WJ. Mettl1 knockdown alleviates cardiac I/R injury in mice by inactivating the Mettl1-CYLD-P53 positive feedback loop. Acta Pharmacol Sin 2024:10.1038/s41401-024-01395-5. [PMID: 39414959 DOI: 10.1038/s41401-024-01395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024] Open
Abstract
The N7-methylguanosine (m7G) methyltransferase Mettl1 has been recently implicated in cardiac repair and fibrosis. In this study we investigated the role of Mettl1 in mouse cardiomyocytes injury and the underlying mechanisms. Cardiac ischemia/reperfusion (I/R) I/R model was established in mice by ligation of the left anterior descending coronary artery (LAD) for 45 min followed by reperfusion for 24 h. We showed the mRNA and protein levels of Mettl1 were significantly upregulated in mouse I/R hearts and H2O2-treated neonatal mouse cardiomyocytes (NMCMs). Mettl1 knockdown markedly ameliorated cardiac I/R injury, evidenced by decreased infarct size, apoptosis, and improved cardiac function. Overexpression of Mettl1 triggered cardiomyocytes apoptosis in vivo and in vitro. By performing RNA sequencing combined with m7G methylated RNA sequencing in Mettl1-overexpressing mouse hearts, we revealed that Mettl1 catalyzed m7G modification of the deubiquitinase cylindromatosis (CYLD) mRNA to increase the expression of CYLD, which enhanced the stability of P53 via abrogating its ubiquitination degradation. Vice versa, P53 served as a transcriptional factor to positively regulate Mettl1 expression during I/R injury. Knockdown of CYLD mitigated cardiomyocytes apoptosis induced by Mettl1 overexpression or oxidative stress. From the available drug-targets databases and literature, we identified 4 small molecule inhibitors of m7G modification. Sinefungin, one of the Mettl1 inhibitors exerted profound protection against cardiac I/R injury in vivo and in vitro. Collectively, this study has identified Mettl1 as a key regulator of cardiomyocyte apoptosis, and targeting the Mettl1-CYLD-P53 positive feedback circuit may represent a novel therapeutic avenue for alleviating cardiac I/R injury.
Collapse
Affiliation(s)
- Shu-Ting Yu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhi-Yong Sun
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Na Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhe-Zhe Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chang-Hao Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tian-Tian Ju
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying-Qi Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhong-Ting Mei
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Kui-Wu Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Mei-Xi Lu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Min Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shun-Kang Dou
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jian-Hao Jiang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yao-Zhi Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chuan-Hao Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Chen Pang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying-Qiong Jia
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xian-Hui Dong
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Fan Wu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yi Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wan-Hong Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bao-Feng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China.
| | - Wei-Jie Du
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Liao X, Li F, Yu F, Ye L. Epigenetically rewiring metabolic genes via SIRT6 orchestrates MSC fate determination. Stem Cells 2024; 42:821-829. [PMID: 38864549 DOI: 10.1093/stmcls/sxae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
SIRT6 owns versatile types of enzymatic activities as a multitasking protein, including ribosyltransferase and deacetylase. To investigate the epigenetic regulations of SIRT6 on MSC fate determination via histone deacetylation, we used allosteric small molecules specifically controlling its histone 3 deacetylation activities. Results showed that enhanced deacetylation of SIRT6 promoted the ossific lineage commitment of MSC and finally achieved anabolic effects on hard tissues. Mechanistically, H3K9ac and H3K56ac, governed by SIRT6, in MSC orchestrated the transcriptions of crucial metabolic genes, mediating MSC fate determination. Most importantly, our data evidenced that modulating the epigenetic regulations of SIRT6, specifically via enhancing its deacetylation of H3K9ac and H3K56ac, was a promising choice to treat bone loss diseases and promote dentin regeneration. In this study, we revealed the specific roles of SIRT6's histone modification in MSC fate determination. These findings endow us with insights on SIRT6 and the promising therapeutic choices through SIRT6's epigenetic functions for hard tissues regeneration.
Collapse
Affiliation(s)
- Xueyang Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Feifei Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Yadav C, Yadav R, Nanda S, Ranga S, Ahuja P, Tanwar M. Role of HOX genes in cancer progression and their therapeutical aspects. Gene 2024; 919:148501. [PMID: 38670395 DOI: 10.1016/j.gene.2024.148501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
HOX genes constitute a family of evolutionarily conserved transcription factors that play pivotal roles in embryonic development, tissue patterning, and cell differentiation. These genes are essential for the precise spatial and temporal control of body axis formation in vertebrates. In addition to their developmental functions, HOX genes have garnered significant attention for their involvement in various diseases, including cancer. Deregulation of HOX gene expression has been observed in numerous malignancies, where they can influence tumorigenesis, progression, and therapeutic responses. This review provides an overview of the diverse roles of HOX genes in development, disease, and potential therapeutic targets, highlighting their significance in understanding biological processes and their potential clinical implications.
Collapse
Affiliation(s)
- Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India.
| | - Smiti Nanda
- Retd. Senior Professor and Head, Department of Gynaecology and Obstetrics, Pt. B.D. Sharma University of Health Sciences, Rohtak 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
4
|
Yu S, Sun Z, Ju T, Liu Y, Mei Z, Wang C, Qu Z, Li N, Wu F, Liu K, Lu M, Huang M, Pang X, Jia Y, Li Y, Zhang Y, Dou S, Jiang J, Dong X, Huang C, Li W, zhang Y, Yuan Y, Yang B, Du W. The m7G Methyltransferase Mettl1 Drives Cardiac Hypertrophy by Regulating SRSF9-Mediated Splicing of NFATc4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308769. [PMID: 38810124 PMCID: PMC11304317 DOI: 10.1002/advs.202308769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/11/2024] [Indexed: 05/31/2024]
Abstract
Cardiac hypertrophy is a key factor driving heart failure (HF), yet its pathogenesis remains incompletely elucidated. Mettl1-catalyzed RNA N7-methylguanosine (m7G) modification has been implicated in ischemic cardiac injury and fibrosis. This study aims to elucidate the role of Mettl1 and the mechanism underlying non-ischemic cardiac hypertrophy and HF. It is found that Mettl1 is upregulated in human failing hearts and hypertrophic murine hearts following transverse aortic constriction (TAC) and Angiotensin II (Ang II) infusion. YY1 acts as a transcriptional factor for Mettl1 during cardiac hypertrophy. Mettl1 knockout alleviates cardiac hypertrophy and dysfunction upon pressure overload from TAC or Ang II stimulation. Conversely, cardiac-specific overexpression of Mettl1 results in cardiac remodeling. Mechanically, Mettl1 increases SRSF9 expression by inducing m7G modification of SRSF9 mRNA, facilitating alternative splicing and stabilization of NFATc4, thereby promoting cardiac hypertrophy. Moreover, the knockdown of SRSF9 protects against TAC- or Mettl1-induced cardiac hypertrophic phenotypes in vivo and in vitro. The study identifies Mettl1 as a crucial regulator of cardiac hypertrophy, providing a novel therapeutic target for HF.
Collapse
Affiliation(s)
- Shuting Yu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - ZhiYong Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Tiantian Ju
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Yingqi Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Zhongting Mei
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Changhao Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Zhezhe Qu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Na Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Fan Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - KuiWu Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Meixi Lu
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijing100013China
| | - Min Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Xiaochen Pang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Yingqiong Jia
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Ying Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Yaozhi Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Shunkang Dou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Jianhao Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Xianhui Dong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Chuanhao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Wanhong Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Yi zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
| | - Ye Yuan
- Department of Pharmacy (The University Key Laboratory of Drug ResearchHeilongjiang Province)The Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Baofeng Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
- Northern Translational Medicine Research and Cooperation CenterHeilongjiang Academy of Medical SciencesHarbin Medical UniversityHarbin150081China
- Research Unit of Noninfectious Chronic Diseases in Frigid ZoneChinese Academy of Medical Sciences2019RU070Harbin150081China
| | - Weijie Du
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular ResearchMinistry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
- Northern Translational Medicine Research and Cooperation CenterHeilongjiang Academy of Medical SciencesHarbin Medical UniversityHarbin150081China
- Research Unit of Noninfectious Chronic Diseases in Frigid ZoneChinese Academy of Medical Sciences2019RU070Harbin150081China
| |
Collapse
|
5
|
Otani Y, Schol J, Sakai D, Nakamura Y, Sako K, Warita T, Tamagawa S, Ambrosio L, Munesada D, Ogasawara S, Matsushita E, Kawachi A, Naiki M, Sato M, Watanabe M. Assessment of Tie2-Rejuvenated Nucleus Pulposus Cell Transplants from Young and Old Patient Sources Demonstrates That Age Still Matters. Int J Mol Sci 2024; 25:8335. [PMID: 39125917 PMCID: PMC11312270 DOI: 10.3390/ijms25158335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cell transplantation is being actively explored as a regenerative therapy for discogenic back pain. This study explored the regenerative potential of Tie2+ nucleus pulposus progenitor cells (NPPCs) from intervertebral disc (IVD) tissues derived from young (<25 years of age) and old (>60 years of age) patient donors. We employed an optimized culture method to maintain Tie2 expression in NP cells from both donor categories. Our study revealed similar Tie2 positivity rates regardless of donor types following cell culture. Nevertheless, clear differences were also found, such as the emergence of significantly higher (3.6-fold) GD2 positivity and reduced (2.7-fold) proliferation potential for older donors compared to young sources. Our results suggest that, despite obtaining a high fraction of Tie2+ NP cells, cells from older donors were already committed to a more mature phenotype. These disparities translated into functional differences, influencing colony formation, extracellular matrix production, and in vivo regenerative potential. This study underscores the importance of considering age-related factors in NPPC-based therapies for disc degeneration. Further investigation into the genetic and epigenetic alterations of Tie2+ NP cells from older donors is crucial for refining regenerative strategies. These findings shed light on Tie2+ NPPCs as a promising cell source for IVD regeneration while emphasizing the need for comprehensive understanding and scalability considerations in culture methods for broader clinical applicability.
Collapse
Affiliation(s)
- Yuto Otani
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshihiko Nakamura
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Takayuki Warita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | - Shota Tamagawa
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Luca Ambrosio
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy
| | - Daiki Munesada
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Asami Kawachi
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | | | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
6
|
Tano V, Utami KH, Yusof NABM, Bégin J, Tan WWL, Pouladi MA, Langley SR. Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease. EBioMedicine 2023; 94:104720. [PMID: 37481821 PMCID: PMC10393612 DOI: 10.1016/j.ebiom.2023.104720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND In Huntington's disease (HD), a CAG repeat expansion mutation in the Huntingtin (HTT) gene drives a gain-of-function toxicity that disrupts mRNA processing. Although dysregulation of gene splicing has been shown in human HD post-mortem brain tissue, post-mortem analyses are likely confounded by cell type composition changes in late-stage HD, limiting the ability to identify dysregulation related to early pathogenesis. METHODS To investigate gene splicing changes in early HD, we performed alternative splicing analyses coupled with a proteogenomics approach to identify early CAG length-associated splicing changes in an established isogenic HD cell model. FINDINGS We report widespread neuronal differentiation stage- and CAG length-dependent splicing changes, and find an enrichment of RNA processing, neuronal function, and epigenetic modification-related genes with mutant HTT-associated splicing. When integrated with a proteomics dataset, we identified several of these differential splicing events at the protein level. By comparing with human post-mortem and mouse model data, we identified common patterns of altered splicing from embryonic stem cells through to post-mortem striatal tissue. INTERPRETATION We show that widespread splicing dysregulation in HD occurs in an early cell model of neuronal development. Importantly, we observe HD-associated splicing changes in our HD cell model that were also identified in human HD striatum and mouse model HD striatum, suggesting that splicing-associated pathogenesis possibly occurs early in neuronal development and persists to later stages of disease. Together, our results highlight splicing dysregulation in HD which may lead to disrupted neuronal function and neuropathology. FUNDING This research is supported by the Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Nanyang Assistant Professorship Start-Up Grant, the Singapore Ministry of Education under its Singapore Ministry of Education Academic Research Fund Tier 1 (RG23/22), the BC Children's Hospital Research Institute Investigator Grant Award (IGAP), and a Scholar Award from the Michael Smith Health Research BC.
Collapse
Affiliation(s)
- Vincent Tano
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Kagistia Hana Utami
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Nur Amirah Binte Mohammad Yusof
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Jocelyn Bégin
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Willy Wei Li Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore; Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
7
|
Chen SY, Kannan M. Neural crest cells and fetal alcohol spectrum disorders: Mechanisms and potential targets for prevention. Pharmacol Res 2023; 194:106855. [PMID: 37460002 PMCID: PMC10528842 DOI: 10.1016/j.phrs.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of preventable and nongenetic birth defects caused by prenatal alcohol exposure that can result in a range of cognitive, behavioral, emotional, and functioning deficits, as well as craniofacial dysmorphology and other congenital defects. During embryonic development, neural crest cells (NCCs) play a critical role in giving rise to many cell types in the developing embryos, including those in the peripheral nervous system and craniofacial structures. Ethanol exposure during this critical period can have detrimental effects on NCC induction, migration, differentiation, and survival, leading to a broad range of structural and functional abnormalities observed in individuals with FASD. This review article provides an overview of the current knowledge on the detrimental effects of ethanol on NCC induction, migration, differentiation, and survival. The article also examines the molecular mechanisms involved in ethanol-induced NCC dysfunction, such as oxidative stress, altered gene expression, apoptosis, epigenetic modifications, and other signaling pathways. Furthermore, the review highlights potential therapeutic strategies for preventing or mitigating the detrimental effects of ethanol on NCCs and reducing the risk of FASD. Overall, this article offers a comprehensive overview of the current understanding of the impact of ethanol on NCCs and its role in FASD, shedding light on potential avenues for future research and intervention.
Collapse
Affiliation(s)
- Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| | - Maharajan Kannan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
8
|
Ktena YP, Dionysiou M, Gondek LP, Cooke KR. The impact of epigenetic modifications on allogeneic hematopoietic stem cell transplantation. Front Immunol 2023; 14:1188853. [PMID: 37325668 PMCID: PMC10264773 DOI: 10.3389/fimmu.2023.1188853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
The field of epigenetics studies the complex processes that regulate gene expression without altering the DNA sequence itself. It is well established that epigenetic modifications are crucial to cellular homeostasis and differentiation and play a vital role in hematopoiesis and immunity. Epigenetic marks can be mitotically and/or meiotically heritable upon cell division, forming the basis of cellular memory, and have the potential to be reversed between cellular fate transitions. Hence, over the past decade, there has been increasing interest in the role that epigenetic modifications may have on the outcomes of allogeneic hematopoietic transplantation and growing enthusiasm in the therapeutic potential these pathways may hold. In this brief review, we provide a basic overview of the types of epigenetic modifications and their biological functions, summarizing the current literature with a focus on hematopoiesis and immunity specifically in the context of allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Yiouli P. Ktena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | | | | |
Collapse
|
9
|
Abstract
Histone lysine methylation plays a key role in gene activation and repression. The trimethylation of histone H3 on lysine-27 (H3K27me3) is a critical epigenetic event that is controlled by Jumonji domain-containing protein-3 (JMJD3). JMJD3 is a histone demethylase that specifically removes methyl groups. Previous studies have suggested that JMJD3 has a dual role in cancer cells. JMJD3 stimulates the expression of proliferative-related genes and increases tumor cell growth, propagation, and migration in various cancers, including neural, prostate, ovary, skin, esophagus, leukemia, hepatic, head and neck, renal, lymphoma, and lung. In contrast, JMJD3 can suppress the propagation of tumor cells, and enhance their apoptosis in colorectal, breast, and pancreatic cancers. In this review, we summarized the recent advances of JMJD3 function in cancer cells.
Collapse
|
10
|
Eriani K, Desriani D, Suhartono S, Br Sibarani MJ, Ichsan I, Syafrizal D, Asmara H. The differentiation of mesenchymal bone marrow stem cells into nerve cells induced by Chromolaena odorata extracts. F1000Res 2022; 11:252. [PMID: 35811803 PMCID: PMC9214272 DOI: 10.12688/f1000research.108741.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) can differentiate into nerve cells with an induction from chemical compounds in medium culture.
Chromolaena odorata contains active compounds, such as alkaloids and flavonoids, that can initiate the transformation of MSCs into nerve cells. The aim of this study was to determine the potential of methanol extracted
C. odorata leaf to induce the differentiation of bone marrow MSCs into nerve cells. Methods: A serial concentration of
C. odorata leaf extract (0.7–1.0 mg/mL) with two replications was used. The parameters measured were the number of differentiated MSCs into nerve cells (statistically analyzed using ANOVA) and cell confirmation using reverse transcription polymerase chain reaction (RT-PCR). Results: The results showed that the
C. odorata extract had a significant effect on the number MSCs differentiating into nerve cells (
p < 0.05) on the doses of 0.8 mg/ml with 22.6%. Molecular assay with RT-PCR confirmed the presence of the nerve cell gene in all of the samples. Conclusions: In conclusion, this study showed the potential application of
C. odorata leaf extract in stem cell therapy for patients experiencing neurodegeneration by inducing the differentiation of MSCs into nerve cells.
Collapse
Affiliation(s)
- Kartini Eriani
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Desriani Desriani
- Research Center for Biotechnology, National Research and Innovation Agency, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Suhartono Suhartono
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Miftahul Jannah Br Sibarani
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Ichsan Ichsan
- Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Dedy Syafrizal
- Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Hadhymulya Asmara
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
11
|
Natu A, Singh A, Gupta S. Hepatocellular carcinoma: Understanding molecular mechanisms for defining potential clinical modalities. World J Hepatol 2021; 13:1568-1583. [PMID: 34904030 PMCID: PMC8637668 DOI: 10.4254/wjh.v13.i11.1568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the sixth most commonly occurring cancer and costs millions of lives per year. The diagnosis of hepatocellular carcinoma (HCC) has relied on scanning techniques and serum-based markers such as α-fetoprotein. These measures have limitations due to their detection limits and asymptomatic conditions during the early stages, resulting in late-stage cancer diagnosis where targeted chemotherapy or systemic treatment with sorafenib is offered. However, the aid of conventional therapy for patients in the advanced stage of HCC has limited outcomes. Thus, it is essential to seek a new treatment strategy and improve the diagnostic techniques to manage the disease. Researchers have used the omics profile of HCC patients for sub-classification of tissues into different groups, which has helped us with prognosis. Despite these efforts, a promising target for treatment has not been identified. The hurdle in this situation is genetic and epigenetic variations in the tumor, leading to disparities in response to treatment. Understanding reversible epigenetic changes along with clinical traits help to define new markers for patient categorization and design personalized therapy. Many clinical trials of inhibitors of epigenetic modifiers (also known as epi-drugs) are in progress. Epi-drugs like azacytidine or belinostat are already approved for other cancer treatments. Furthermore, epigenetic changes have also been observed in drug-resistant HCC tumors. In such cases, combinatorial treatment of epi-drugs with systemic therapy or trans-arterial chemoembolization might re-sensitize resistant cells.
Collapse
Affiliation(s)
- Abhiram Natu
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, Maharashtra, India
| | - Anjali Singh
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, Maharashtra, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, Maharashtra, India
| |
Collapse
|
12
|
Lim SK, Khoo BY. An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy. Oncol Lett 2021; 22:785. [PMID: 34594426 PMCID: PMC8456491 DOI: 10.3892/ol.2021.13046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
There has been increased interest in using stem cells for regenerative medicine and cancer therapy in the past decade. Mesenchymal stem cells (MSCs) are among the most studied stem cells due to their unique characteristics, such as self-renewal and developmental potency to differentiate into numerous cell types. MSC use has fewer ethical challenges compared with other types of stem cells. Although a number of studies have reported the beneficial effects of MSC-based therapies in treating various diseases, their contribution to cancer therapy remains controversial. The behaviour of MSCs is determined by the interaction between intrinsic transcriptional genes and extrinsic environmental factors. Numerous studies continue to emerge, as there is no denying the potential of MSCs to treat a wide variety of human afflictions. Therefore, the present review article provided an overview of MSCs and their differences compared with embryonic stem cells, and described the molecular mechanisms involved in maintaining their stemness. In addition, the article examined the therapeutic application of stem cells in the field of cancer. The present article also discussed the current divergent roles of MSCs in cancer therapy and the future potential in this field.
Collapse
Affiliation(s)
- Shern Kwok Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
13
|
Ding Y, Yao Y, Gong X, Zhuo Q, Chen J, Tian M, Farzaneh M. JMJD3: a critical epigenetic regulator in stem cell fate. Cell Commun Signal 2021; 19:72. [PMID: 34217316 PMCID: PMC8254972 DOI: 10.1186/s12964-021-00753-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
The Jumonji domain-containing protein-3 (JMJD3) is a histone demethylase that regulates the trimethylation of histone H3 on lysine 27 (H3K27me3). H3K27me3 is an important epigenetic event associated with transcriptional silencing. JMJD3 has been studied extensively in immune diseases, cancer, and tumor development. There is a comprehensive epigenetic transformation during the transition of embryonic stem cells (ESCs) into specialized cells or the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs). Recent studies have illustrated that JMJD3 plays a major role in cell fate determination of pluripotent and multipotent stem cells (MSCs). JMJD3 has been found to enhance self-renewal ability and reduce the differentiation capacity of ESCs and MSCs. In this review, we will focus on the recent advances of JMJD3 function in stem cell fate. Video Abstract
Collapse
Affiliation(s)
- Yuanjie Ding
- School of Medicine, Jishou University, Jishou, 416000, China.,Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, 427000, China
| | - Yuanchun Yao
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Xingmu Gong
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Qi Zhuo
- School of Medicine, Jishou University, Jishou, 416000, China.
| | - Jinhua Chen
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Miao Tian
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
14
|
Deng Y, Zhou Z, Ji W, Lin S, Wang M. METTL1-mediated m 7G methylation maintains pluripotency in human stem cells and limits mesoderm differentiation and vascular development. Stem Cell Res Ther 2020; 11:306. [PMID: 32698871 PMCID: PMC7374972 DOI: 10.1186/s13287-020-01814-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background 7-Methylguanosine (m7G) is one of the most conserved modifications in nucleosides within tRNAs and rRNAs. It plays essential roles in the regulation of mRNA export, splicing, and translation. Recent studies highlighted the importance of METTL1-mediated m7G tRNA methylome in the self-renewal of mouse embryonic stem cells (mESCs) through its ability to regulate mRNA translation. However, the exact mechanisms by which METTL1 regulates pluripotency and differentiation in human induced pluripotent stem cells (hiPSCs) remain unknown. In this study, we evaluated the functions and underlying molecular mechanisms of METTL1 in regulating hiPSC self-renewal and differentiation in vivo and in vitro. Methods By establishing METTL1 knockdown (KD) hiPSCs, gene expression profiling was performed by RNA sequencing followed by pathway analyses. Anti-m7G northwestern assay was used to identify m7G modifications in tRNAs and mRNAs. Polysome profiling was used to assess the translation efficiency of the major pluripotent transcription factors. Moreover, the in vitro and in vivo differentiation capacities of METTL1-KD hiPSCs were assessed in embryoid body (EB) formation and teratoma formation assays. Results METTL1 silencing resulted in alterations in the global m7G profile in hiPSCs and reduced the translational efficiency of stem cell marker genes. METTL1-KD hiPSCs exhibited reduced pluripotency with slower cell cycling. Moreover, METTL1 silencing accelerates hiPSC differentiation into EBs and promotes the expression of mesoderm-related genes. Similarly, METTL1 knockdown enhances teratoma formation and mesoderm differentiation in vivo by promoting cell proliferation and angiogenesis in nude mice. Conclusion Our findings provided novel insight into the critical role of METTL1-mediated m7G modification in the regulation of hiPSC pluripotency and differentiation, as well as its potential roles in vascular development and the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yujie Deng
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Zhongyang Zhou
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Min Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Gao X, Mi Y, Guo N, Luan J, Xu H, Hu Z, Wang N, Zhang D, Gou X, Xu L. The mechanism of propofol in cancer development: An updated review. Asia Pac J Clin Oncol 2020; 16:e3-e11. [DOI: 10.1111/ajco.13301] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Xingchun Gao
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| | - Yajing Mi
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| | - Na Guo
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Jing Luan
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| | - Hao Xu
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| | - Zhifang Hu
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Ning Wang
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Dian Zhang
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Xingchun Gou
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Lixian Xu
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| |
Collapse
|
16
|
The Cellular and Molecular Patterns Involved in the Neural Differentiation of Adipose-Derived Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1298:23-41. [PMID: 32514816 DOI: 10.1007/5584_2020_547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Injuries to the nervous system cause serious problems among affected patients by preventing them from the possibility of living a normal life. As this tissue possesses a reduced capacity of self-regeneration currently, lots of different strategies are being developed in order to make the regeneration in the nervous system possible. Among them, tissue engineering and stem cell-based therapies are to date very exploded fields and tremendous progress has been made in this direction. As the two main components of the nervous system, react differently to injuries and behave different during disease, it is clear that two separate regeneration approaches have been taken into consideration during development of treatment. Special attention is constantly given to the potential of adipose-derived stem cells for this kind of application. Due to the fact that they present remarkable properties, they can easily be obtained and have demonstrated that are capable of engaging in neural and glial lineages, adipose-derived stem cells are promising tools for the field of nervous system regeneration. Moreover, new insights into epigenetic control and modifications during the differentiation of adipose-derived stem cells towards the neural liege could provide new methods to maximize the regeneration process. In this review, we summarize the current applications of adipose-derived stem cells for neural regeneration and discuss in-depth molecular patterns involved in the differentiation of adipose-derived stem cells in neuron-like cells and Schwann-like cells.
Collapse
|
17
|
Jaworska AM, Wlodarczyk NA, Mackiewicz A, Czerwinska P. The role of TRIM family proteins in the regulation of cancer stem cell self-renewal. Stem Cells 2019; 38:165-173. [PMID: 31664748 PMCID: PMC7027504 DOI: 10.1002/stem.3109] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/08/2019] [Indexed: 12/29/2022]
Abstract
The tripartite-motif (TRIM) family of proteins represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. The members of this family are characterized by an N-terminal TRIM motif containing one RING-finger domain, one or two zinc-finger domains called B boxes (B1 box and B2 box), and a coiled-coil region. The TRIM motif can be found in isolation or in combination with a variety of C-terminal domains, and based on C-terminus, TRIM proteins are classified into 11 distinct groups. Because of the complex nature of TRIM proteins, they are implicated in a variety of cellular functions and biological processes, including regulation of cell proliferation, cell division and developmental processes, cancer transformation, regulation of cell metabolism, autophagocytosis, modification of chromatin status, regulation of gene transcription, post-translational modifications, and interactions with pathogens. Here, we demonstrate the specific activities of TRIM family proteins that contribute to the cancer stem cell phenotype. A growing body of evidence demonstrates that several TRIM members guarantee the acquisition of stem cell properties and the ability to sustain stem-like phenotype by cancer cells using distinct mechanisms. For other members, further work is needed to understand their full contribution to stem cell self-renewal. Identification of TRIM proteins that possess the potential to serve as therapeutic targets may result in the development of new therapeutic strategies. Finally, these strategies may result in the disruption of the machinery of stemness acquisition, which may prevent tumor growth, progression, and overcome the resistance to anticancer therapies.
Collapse
Affiliation(s)
- Anna Maria Jaworska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Nikola Agata Wlodarczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Patrycja Czerwinska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
18
|
Histone Arginine Methylation-Mediated Epigenetic Regulation of Discoidin Domain Receptor 2 Controls the Senescence of Human Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2019; 2019:7670316. [PMID: 31379950 PMCID: PMC6657615 DOI: 10.1155/2019/7670316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/27/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022] Open
Abstract
The application of human bone marrow mesenchymal stem cells (hBM-MSCs) in cell-based clinical therapies is hindered by the limited number of cells remaining after the initial isolation process and by cellular senescence following in vitro expansion. Understanding the process of in vitro senescence in hBM-MSCs would enable the development of strategies to maintain their vitality after cell culture. Herein, we compared the gene expression profiles of human embryonic stem cells and human BM-MSCs from donors of different ages. We first found that the expression of discoidin domain receptor 2 (DDR2) in adult donor-derived hBM-MSCs was lower than it was in the young donor-derived hBM-MSCs. Moreover, in vitro cultured late-passage hBM-MSCs showed significant downregulation of DDR2 compared to their early-passage counterparts, and siRNA inhibition of DDR2 expression recapitulated features of senescence in early-passage hBM-MSCs. Further, we found through knockdown and overexpression approaches that coactivator-associated arginine methyltransferase 1 (CARM1) regulated the expression level of DDR2 and the senescence of hBM-MSCs. Finally, chromatin immunoprecipitation analysis confirmed direct binding of CARM1 to the DDR2 promoter region with a high level of H3R17 methylation in early-passage hBM-MSCs, and inhibition of CARM1-mediated histone arginine methylation decreased DDR2 expression and led to cellular senescence. Taken together, our findings suggest that DDR2 plays a major role in regulating the in vitro senescence of hBM-MSCs and that CARM1-mediated histone H3 methylation might be the upstream regulatory mechanism controlling this function of DDR2.
Collapse
|
19
|
Jamalpoor Z, Soleimani M, Taromi N, Asgari A. Comparative evaluation of morphology and osteogenic behavior of human Wharton's jelly mesenchymal stem cells on 2D culture plate and 3D biomimetic scaffold. J Cell Physiol 2019; 234:23123-23134. [DOI: 10.1002/jcp.28876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Zahra Jamalpoor
- Trauma Research Center Aja University of Medical Sciences Tehran Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Anatomy Iran University of Medical Sciences Tehran Iran
| | - Nafise Taromi
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Biotechnology Faculty of Allied Medicine, Iran University of Medical Sciences Tehran Iran
| | - Alireza Asgari
- Aerospace Medicine Research Center Aja University of Medical Sciences Tehran Iran
| |
Collapse
|
20
|
Khan MI, Dowarha D, Katte R, Chou RH, Filipek A, Yu C. Lysozyme as the anti-proliferative agent to block the interaction between S100A6 and the RAGE V domain. PLoS One 2019; 14:e0216427. [PMID: 31071146 PMCID: PMC6508705 DOI: 10.1371/journal.pone.0216427] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/20/2019] [Indexed: 12/18/2022] Open
Abstract
In this report, using NMR and molecular modeling, we have studied the structure of lysozyme-S100A6 complex and the influence of tranilast [N-(3, 4-dimethoxycinnamoyl) anthranilic acid], an antiallergic drug which binds to lysozyme, on lysozyme-S100A6 and S100A6-RAGE complex formation and, finally, on cell proliferation. We have found that tranilast may block the S100A6-lysozyme interaction and enhance binding of S100A6 to RAGE. Using WST1 assay, we have found that lysozyme, most probably by blocking the interaction between S100A6 and RAGE, inhibits cell proliferation while tranilast may reverse this effect by binding to lysozyme. In conclusion, studies presented in this work, describing the protein-protein/-drug interactions, are of great importance for designing new therapies to treat diseases associated with cell proliferation such as cancers.
Collapse
Affiliation(s)
- Md. Imran Khan
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Deepu Dowarha
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Revansiddha Katte
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Anna Filipek
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Chin Yu
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| |
Collapse
|
21
|
Baez-Jurado E, Hidalgo-Lanussa O, Barrera-Bailón B, Sahebkar A, Ashraf GM, Echeverria V, Barreto GE. Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies. Mol Neurobiol 2019; 56:6902-6927. [PMID: 30941733 DOI: 10.1007/s12035-019-1570-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Previous studies have indicated that mesenchymal stem cells (MSCs) have a fundamental role in the repair and regeneration of damaged tissues. There is strong evidence showing that much of the beneficial effects of these cells are due to the secretion of bioactive molecules-besides microRNAs, hormones, and neurotrophins-with anti-inflammatory, immunoregulatory, angiogenic, and trophic effects. These factors have been reported by many studies to possess protective effects on the nervous tissue. Although the beneficial effects of the secretory factors of MSCs have been suggested for various neurological diseases, their actions on astrocytic cells are not well understood. Hence, it is important to recognize the specific effects of MSCs derived from adipose tissue, in addition to the differences presented by the secretome, depending on the source and methods of analysis. In this paper, the different sources of MSCs and their main characteristics are described, as well as the most significant advances in regeneration and protection provided by the secretome of MSCs. Also, we discuss the possible neuroprotective mechanisms of action of the MSC-derived biomolecules, with special emphasis on the effect of MSCs derived from adipose tissue and their impact on glial cells and brain pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Biviana Barrera-Bailón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Lientur 1457, 4080871, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, 33744, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| |
Collapse
|
22
|
El-Serafi A, Elsharkawi I, Sandeep D. Investigating the role of the histone deacetylases-inhibitor suberanilohydroxamic acid in the differentiation of stem cells into insulin secreting cells. HAMDAN MEDICAL JOURNAL 2019. [DOI: 10.4103/hmj.hmj_29_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Abstract
Epigenetic mechanisms, including DNA and histone modifications, are pivotal for normal brain development and functions by modulating spatial and temporal gene expression. Dysregulation of the epigenetic machinery can serve as a causal role in numerous brain disorders. Proper mammalian brain development and functions depend on the precise expression of neuronal-specific genes, transcription factors and epigenetic modifications. Antagonistic polycomb and trithorax proteins form multimeric complexes and play important roles in these processes by epigenetically controlling gene repression or activation through various molecular mechanisms. Aberrant expression or disruption of either protein group can contribute to neurodegenerative diseases. This review focus on the current progress of Polycomb and Trithorax complexes in brain development and disease, and provides a future outlook of the field.
Collapse
|
24
|
Martin SL, Royston KJ, Tollefsbol TO. The Role of Non-Coding RNAs and Isothiocyanates in Cancer. Mol Nutr Food Res 2018; 62:e1700913. [PMID: 29532604 PMCID: PMC6248329 DOI: 10.1002/mnfr.201700913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/28/2018] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of mortalities in the United States, only exceeded by heart disease. Current cancer treatments include chemotherapy, surgery, and/or radiation. Due to the often harsh effects of current cancer therapies, investigators are focusing their efforts on cancer prevention mediated by dietary phytochemicals. Since the discovery that cancer can be initiated by and progressed through both genetic and epigenetic pathways, there has been a significant surge in studies on epigenetic effects mediated by nutritive compounds. Isothiocyanates, naturally occurring molecules found in cruciferous vegetables, have been documented to exhibit many anticarcinogenic activities. Although isothiocyanates have been extensively documented as key players in epigenetic processes such as DNA methylation and histone modifications, their effects on non-coding RNAs is understudied. Non-coding RNAs are molecules that target mRNA production and repress protein translation and are known to be dysregulated in various human malignancies. Studies have used non-coding RNAs as novel targets for exploration in cancer therapy. This review focuses on the exploration of isothiocyanates and their effect on non-coding RNAs in cancer prevention and therapy.
Collapse
Affiliation(s)
- Samantha L. Martin
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Kendra J. Royston
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
25
|
Jeremias G, Barbosa J, Marques SM, Asselman J, Gonçalves FJM, Pereira JL. Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol Ecol 2018; 27:2790-2806. [DOI: 10.1111/mec.14727] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/23/2022]
Affiliation(s)
| | - João Barbosa
- Department of Biology; University of Aveiro; Aveiro Portugal
| | - Sérgio M. Marques
- Department of Biology; University of Aveiro; Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies; University of Aveiro; Aveiro Portugal
| | - Jana Asselman
- Laboratory for Environmental Toxicology and Aquatic Ecology (GhEnToxLab); Ghent University; Ghent Belgium
| | - Fernando J. M. Gonçalves
- Department of Biology; University of Aveiro; Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies; University of Aveiro; Aveiro Portugal
| | - Joana L. Pereira
- Department of Biology; University of Aveiro; Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies; University of Aveiro; Aveiro Portugal
| |
Collapse
|
26
|
Reduction in Histone H3 Acetylation and Chromatin Remodeling in Corneas of Alloxan-Induced Diabetic Rats. Cornea 2018; 37:624-632. [PMID: 29384804 DOI: 10.1097/ico.0000000000001533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE To evaluate acetylation of histone H3, chromatin remodeling, nuclear size and shape, DNA ploidy, and distribution of nucleolus organizing regions (NORs) in corneal epithelial and stromal cells of diabetic and nondiabetic rats. METHODS Diabetes was induced by a single intraperitoneal injection of alloxan. All diabetic rats (n = 20) included in the study had 4 weeks of moderate-to-severe hyperglycemia (plasma glucose levels >400 mg/dL). Acetylated histone H3 levels were quantified in corneal tissue using a colorimetric assay. Chromatin remodeling, nuclear sizes (area/perimeter) and shapes (circularity), and DNA ploidies were evaluated from Feulgen-stained tissue sections using video image analysis. Distributions of NORs were studied in tissue sections impregnated with silver ions. Ophthalmic clinical parameters, including corneal sensitivity, were investigated. Twenty nondiabetic rats were used as controls. RESULTS Acetylation of histone H3 was reduced in the corneas of the diabetic rats. Nuclei in corneal epithelial cells of diabetic rats compacted chromatin, increased in size, modified their shapes, and elevated DNA ploidy. The only nuclear change observed in the corneal stromal cells of diabetic rats was chromatin decompaction. The size of the silver-stained NOR did not differ between the study samples. The corneal sensitivity in diabetic rats was 51.8% lower than that in nondiabetic rats. CONCLUSIONS The results of this study show that alloxan-induced diabetes altered the histone H3 acetylation pattern and compromised the chromatin supraorganization in corneal tissue/cells. Continued research is needed to understand the clinical and morphofunctional significance of changes in corneal cell nuclei of diabetic individuals.
Collapse
|
27
|
Epigenetic modifications in the embryonic and induced pluripotent stem cells. Gene Expr Patterns 2018; 29:1-9. [PMID: 29625185 DOI: 10.1016/j.gep.2018.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/03/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Epigenetic modifications are involved in global reprogramming of the cell transcriptome. Therefore, synchronized major shifts in the expression of many genes could be achieved through epigenetic changes. The regulation of gene expression could be implemented by different epigenetic events including histone modifications, DNA methylation and chromatin remodelling. Interestingly, it has been documented that reprogramming of somatic cells to induced pluripotent stem (iPS) cells is also a typical example of epigenetic modifications. Additionally, epigenetic would determine the fates of almost all cells upon differentiation of stem cells into somatic cells. Currently, generation of iPS cells through epigenetic modifications is a routine laboratory practice. Despite all our knowledge, inconsistency in the results of reprogramming and differentiation of stem cells, highlight the need for more thorough investigation into the role of epigenetic modification in generation and maintenance of stem cells. Besides, subtle differences have been observed among different iPS cells and between iPS and ES cells. Although, a handful of detailed review regarding the status of epigenetics in stem cells has been published previously, in the current review, an abstracted and rather simplified view has been presented for those who want to gain a more general overview on this subject. However, almost all key references and ground breaking studies were included, which could be further explored to gain more in depth knowledge regarding this topic. The most dominant epigenetic changes have been presented followed by the impacts of such changes on the global gene expression. Epigenetic status in iPS and ES cells were compared. In addition to including the issues related to X-chromosome reactivation in the stem cells, we have also included loss of imprinting for some genes as a major drawback in generation of iPS cells. Finally, the overall impacts of epigenetic modifications on different aspects of stem cells has been discussed, including their use in cell therapy.
Collapse
|
28
|
Zhou H, Wang B, Sun H, Xu X, Wang Y. Epigenetic Regulations in Neural Stem Cells and Neurological Diseases. Stem Cells Int 2018; 2018:6087143. [PMID: 29743892 PMCID: PMC5878882 DOI: 10.1155/2018/6087143] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Among the regulatory mechanisms of the renewal and differentiation of neural stem cells, recent evidences support that epigenetic modifications such as DNA methylation, histone modification, and noncoding RNAs play critical roles in the regulation on the proliferation and differentiation of neural stem cells. In this review, we discussed recent advances of DNA modifications on the regulative mechanisms of neural stem cells. Among these epigenetic modifications, DNA 5-hydroxymethylcytosine (5hmC) modification is emerging as an important modulator on the proliferation and differentiation of neural stem cells. At the same time, Ten-eleven translocation (Tet) methylcytosine dioxygenases, the rate-limiting enzyme for the 5-hydroxymethylation reaction from 5-methylcytosine to 5-hydroxymethylcytosine, play a critical role in the tumorigenesis and the proliferation and differentiation of stem cells. The functions of 5hmC and TET proteins on neural stem cells and their roles in neurological diseases are discussed.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hao Sun
- Department of Orthopedics, Clinical Medical School, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Xingshun Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yongxiang Wang
- Department of Orthopedics, Clinical Medical School, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| |
Collapse
|
29
|
Xie B, Xu Y, Liu Z, Liu W, Jiang L, Zhang R, Cui D, Zhang Q, Xu S. Elevation of Peripheral BDNF Promoter Methylation Predicts Conversion from Amnestic Mild Cognitive Impairment to Alzheimer's Disease: A 5-Year Longitudinal Study. J Alzheimers Dis 2018; 56:391-401. [PMID: 27935556 DOI: 10.3233/jad-160954] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epigenetic aberrations have been identified as biomarkers to predict the risk of Alzheimer's disease (AD). This study aimed to evaluate whether altered DNA methylation status of BDNF promoter could be used as potential epigenetic biomarkers for predicting the progression from amnestic mild cognitive impairment (aMCI) to AD. A total of 506 aMCI patients and 728 cognitively normal controls were recruited in the cross-sectional analyses. Patients (n = 458) from aMCI cohort were classified into two groups after 5-year follow-up: aMCI-stable group (n = 330) and AD-conversion group (n = 128). DNA methylation of BDNF promoter was detected by bisulfite-PCR amplification and pyrosequencing. The DNA methylation levels of CpG1 and CpG2 in promoter I and CpG5 and CpG6 in promoter IV of BDNF gene were significantly higher in the aMCI group than in the control group at baseline and also were increased in the conversion group compared with the non-conversion group at 5-year follow up time point. CpG5 in BDNF promoter IV had the highest AUC of 0.910 (95% CI: 0.817-0.983, p < 0.05). Kaplan-Meier analysis showed a significant AD conversion propensity for aMCI patients with high methylation levels of CpG5 (HR = 1.96, 95% CI: 1.07-2.98, p < 0.001). Multivariate Cox regression analysis revealed elevated methylation status of CpG5 was a significant independent predictor for AD conversion (HR = 3.51, p = 0.013). These results suggest that elevation of peripheral BDNF promoter methylation might be used as potential epigenetic biomarkers for predicting the conversion from aMCI to AD.
Collapse
Affiliation(s)
- Bing Xie
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Yao Xu
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Zanchao Liu
- Department of Endocrinology, The Second Hospital of Shijiazhuang City, Shijiazhuang, P.R. China
| | - Wenxuan Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, P.R. China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Dongsheng Cui
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Qingfu Zhang
- Burn Engineering Center of Hebei Province, Shijiazhuang, P.R. China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
30
|
Bakhshandeh B, Zarrintaj P, Oftadeh MO, Keramati F, Fouladiha H, Sohrabi-Jahromi S, Ziraksaz Z. Tissue engineering; strategies, tissues, and biomaterials. Biotechnol Genet Eng Rev 2018; 33:144-172. [PMID: 29385962 DOI: 10.1080/02648725.2018.1430464] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current tissue regenerative strategies rely mainly on tissue repair by transplantation of the synthetic/natural implants. However, limitations of the existing strategies have increased the demand for tissue engineering approaches. Appropriate cell source, effective cell modification, and proper supportive matrices are three bases of tissue engineering. Selection of appropriate methods for cell stimulation, scaffold synthesis, and tissue transplantation play a definitive role in successful tissue engineering. Although the variety of the players are available, but proper combination and functional synergism determine the practical efficacy. Hence, in this review, a comprehensive view of tissue engineering and its different aspects are investigated.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Payam Zarrintaj
- b School of Chemical Engineering, College of Engineering , University of Tehran , Tehran , Iran
| | - Mohammad Omid Oftadeh
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran.,c Stem Cell Technology Research Center , Tehran , Iran
| | - Farid Keramati
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Hamideh Fouladiha
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Salma Sohrabi-Jahromi
- d Gottingen Center for Molecular Biosciences , Georg August University , Göttingen , Germany
| | | |
Collapse
|
31
|
Grazioli E, Dimauro I, Mercatelli N, Wang G, Pitsiladis Y, Di Luigi L, Caporossi D. Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genomics 2017; 18:802. [PMID: 29143608 PMCID: PMC5688489 DOI: 10.1186/s12864-017-4193-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modification refers to heritable changes in gene function that cannot be explained by alterations in the DNA sequence. The current literature clearly demonstrates that the epigenetic response is highly dynamic and influenced by different biological and environmental factors such as aging, nutrient availability and physical exercise. As such, it is well accepted that physical activity and exercise can modulate gene expression through epigenetic alternations although the type and duration of exercise eliciting specific epigenetic effects that can result in health benefits and prevent chronic diseases remains to be determined. This review highlights the most significant findings from epigenetic studies involving physical activity/exercise interventions known to benefit chronic diseases such as metabolic syndrome, diabetes, cancer, cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Grazioli
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Guan Wang
- FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Yannis Pitsiladis
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy.,FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, Unit of Endocrinology, University of Rome "Foro Italico", Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
32
|
Tuning of major signaling networks (TGF-β, Wnt, Notch and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application. Biomed Pharmacother 2017; 91:849-860. [PMID: 28501774 DOI: 10.1016/j.biopha.2017.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/29/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets.
Collapse
|
33
|
Baronchelli S, La Spada A, Ntai A, Barbieri A, Conforti P, Jotti GS, Redaelli S, Bentivegna A, De Blasio P, Biunno I. Epigenetic and transcriptional modulation of WDR5, a chromatin remodeling protein, in Huntington's disease human induced pluripotent stem cell (hiPSC) model. Mol Cell Neurosci 2017; 82:46-57. [PMID: 28476540 DOI: 10.1016/j.mcn.2017.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 11/24/2022] Open
Abstract
DNA methylation (DNAm) changes are of increasing relevance to neurodegenerative disorders, including Huntington's disease (HD). We performed genome-wide screening of possible DNAm changes occurring during striatal differentiation in human induced pluripotent stem cells derived from a HD patient (HD-hiPSCs) as cellular model. We identified 240 differentially methylated regions (DMRs) at promoters in fully differentiated HD-hiPSCs. Subsequently, we focused on the methylation differences in a subcluster of genes related to Jumonji Domain Containing 3 (JMJD3), a demethylase that epigenetically regulates neuronal differentiation and activates neuronal progenitor associated genes, which are indispensable for neuronal fate acquisition. Noticeably among these genes, WD repeat-containing protein 5 (WDR5) promoter was found hypermethylated in HD-hiPSCs, resulting in a significant down-modulation in its expression and of the encoded protein. A similar WDR5 expression decrease was seen in a small series of HD-hiPSC lines characterized by different CAG length. The decrease in WDR5 expression was particularly evident in HD-hiPSCs compared to hESCs and control-hiPSCs from healthy subjects. WDR5 is a core component of the MLL/SET1 chromatin remodeling complexes essential for H3K4me3, previously reported to play an important role in stem cells self-renewal and differentiation. These results suggest the existence of epigenetic mechanisms in HD and the identification of genes, which are able to modulate HD phenotype, is important both for biomarker discovery and therapeutic interventions.
Collapse
Affiliation(s)
- Simona Baronchelli
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy
| | - Alberto La Spada
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy
| | - Aikaterini Ntai
- Integrated Systems Engineering Srl, Via Fantoli 16/15, 20138 Milano, Italy
| | - Andrea Barbieri
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy
| | - Paola Conforti
- Department of Biosciences, University of Milan and Istituto Nazionale di Genetica Molecolare Padiglione Invernizzi, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Gloria Saccani Jotti
- Department of Biological Science, Biotechnology and Translational - S.Bi.Bi.T., University of Parma, Via Gramsci 14, 43121 Parma, Italy
| | - Serena Redaelli
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Milan, Italy
| | - Angela Bentivegna
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Milan, Italy; NeuroMI, Milan Center of Neuroscience, via Pergolesi 33, 20900 Monza, Italy
| | - Pasquale De Blasio
- Integrated Systems Engineering Srl, Via Fantoli 16/15, 20138 Milano, Italy
| | - Ida Biunno
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy; IRCCS Multimedica, via Fantoli 16/15, 20138 Milano, Italy.
| |
Collapse
|
34
|
Morales-Lara D, De-la-Peña C, Murillo-Rodríguez E. Dad's Snoring May Have Left Molecular Scars in Your DNA: the Emerging Role of Epigenetics in Sleep Disorders. Mol Neurobiol 2017; 55:2713-2724. [PMID: 28155201 DOI: 10.1007/s12035-017-0409-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022]
Abstract
The sleep-wake cycle is a biological phenomena under the orchestration of neurophysiological, neurochemical, neuroanatomical, and genetical mechanisms. Moreover, homeostatic and circadian processes participate in the regulation of sleep across the light-dark period. Further complexity of the understanding of the genesis of sleep engages disturbances which have been characterized and classified in a variety of sleep-wake cycle disorders. The most prominent sleep alterations include insomnia as well as excessive daytime sleepiness. On the other side, several human diseases have been linked with direct changes in DNA, such as chromatin configuration, genomic imprinting, DNA methylation, histone modifications (acetylation, methylation, ubiquitylation or sumoylation, etc.), and activating RNA molecules that are transcribed from DNA but not translated into proteins. Epigenetic theories primarily emphasize the interaction between the environment and gene expression. According to these approaches, the environment to which mammals are exposed has a significant role in determining the epigenetic modifications occurring in chromosomes that ultimately would influence not only development but also the descendants' physiology and behavior. Thus, what makes epigenetics intriguing is that, unlike genetic variation, modifications in DNA are altered directly by the environment and, in some cases, these epigenetic changes may be inherited by future generations. Thus, it is likely that epigenetic phenomena might contribute to the homeostatic and/or circadian control of sleep and, possibly, have an undescribed link with sleep disorders. An exciting new horizon of research is arising between sleep and epigenetics since it represents the relevance of the study of how the genome learns from its experiences and modulates behavior, including sleep.
Collapse
Affiliation(s)
- Daniela Morales-Lara
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Carretera Mérida-Progreso Km. 15.5, A.P. 96 Cordemex, C.P. 97310, Mérida, Yucatán, Mexico.,Grupo de Investigación en Envejecimiento, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico.,Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C, Mérida, Yucatán, Mexico
| | - Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Carretera Mérida-Progreso Km. 15.5, A.P. 96 Cordemex, C.P. 97310, Mérida, Yucatán, Mexico. .,Grupo de Investigación en Envejecimiento, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico. .,Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico. .,Grupo de Investigación Desarrollos Tecnológicos para la Salud, División de Ingeniería y Ciencias Exactas, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico.
| |
Collapse
|
35
|
Bloch W. Stem Cell Activation in Adult Organisms. Int J Mol Sci 2016; 17:ijms17071005. [PMID: 27347939 PMCID: PMC4964381 DOI: 10.3390/ijms17071005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/17/2023] Open
Affiliation(s)
- Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf 6, Cologne 50933, Germany.
| |
Collapse
|
36
|
Hillje AL, Schwamborn JC. Utilization of stem cells to model Parkinson's disease – current state and future challenges. FUTURE NEUROLOGY 2016. [DOI: 10.2217/fnl.16.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Restricted access to patients and low availability of disease-affected tissue often limit possibilities of research on neurodegenerative diseases. In vitro culture systems to model neurodegenerative diseases have been in use for several years, but derivation, maintenance and differentiation of the appropriate cell types was often a challenge. The development of human induced pluripotent stem cells (hiPSCs) was a milestone in the field and rapid progress is happening since. In this review, we highlight the requirements for standardized hiPSC based in vitro disease modeling, with a specific focus on Parkinson's disease. We describe requirements that are already fulfilled and point out current limitations and challenges. These include the induction of aging, the creation of a cellular 3D environment and the generation of alternative neural progenitor cell types, which still need improvement.
Collapse
Affiliation(s)
- Anna-Lena Hillje
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, 6, avenue du Swing, 4367 Belvaux, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, 6, avenue du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|