1
|
He Y, Zhou L, Wang M, Zhong Z, Chen H, Lian C, Zhang H, Wang H, Cao L, Li C. Integrated transcriptomic and metabolomic approaches reveal molecular response and potential biomarkers of the deep-sea mussel Gigantidas platifrons to copper exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134612. [PMID: 38761766 DOI: 10.1016/j.jhazmat.2024.134612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Metal pollution caused by deep-sea mining activities has potential detrimental effects on deep-sea ecosystems. However, our knowledge of how deep-sea organisms respond to this pollution is limited, given the challenges of remoteness and technology. To address this, we conducted a toxicity experiment by using deep-sea mussel Gigantidas platifrons as model animals and exposing them to different copper (Cu) concentrations (50 and 500 μg/L) for 7 days. Transcriptomics and LC-MS-based metabolomics methods were employed to characterize the profiles of transcription and metabolism in deep-sea mussels exposed to Cu. Transcriptomic results suggested that Cu toxicity significantly affected the immune response, apoptosis, and signaling processes in G. platifrons. Metabolomic results demonstrated that Cu exposure disrupted its carbohydrate metabolism, anaerobic metabolism and amino acid metabolism. By integrating both sets of results, transcriptomic and metabolomic, we find that Cu exposure significantly disrupts the metabolic pathway of protein digestion and absorption in G. platifrons. Furthermore, several key genes (e.g., heat shock protein 70 and baculoviral IAP repeat-containing protein 2/3) and metabolites (e.g., alanine and succinate) were identified as potential molecular biomarkers for deep-sea mussel's responses to Cu toxicity. This study contributes novel insight for assessing the potential effects of deep-sea mining activities on deep-sea organisms.
Collapse
Affiliation(s)
- Yameng He
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Zhou
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Lian
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lei Cao
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
2
|
Yang MJ, Song H, Shi P, Liang J, Hu Z, Zhou C, Hu PP, Yu ZL, Zhang T. Integrated mRNA and miRNA transcriptomic analysis reveals the response of Rapana venosa to the metamorphic inducer (juvenile oysters). Comput Struct Biotechnol J 2022; 21:702-715. [PMID: 36659925 PMCID: PMC9826900 DOI: 10.1016/j.csbj.2022.12.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Metamorphosis, as a critical developmental event, controls the population dynamics of most marine invertebrates, especially some carnivorous gastropods that feed on bivalves, whose population dynamics not only affect the maintenance of the ecological balance but also impact the protection of bivalve resources; therefore, the metamorphosis of carnivorous gastropods deserve attention. Here, we investigated the mechanism underlying the response of the carnivorous gastropod Rapana venosa to its metamorphic inducer juvenile oysters through integrated analysis of miRNA and mRNA profiles. According to the results, we speculated that the AMPK signaling pathway may be the critical regulator in the response to juvenile oysters in R. venosa competent larvae. The NF-kB and JAK-STAT signaling pathways that regulated apoptosis were also activated by the metamorphic inducer, which may result in the degeneration of the velum. Additionally, the significant changes in the expression of the SARP-19 precursor gene and protein cibby homolog 1-like gene may indicate that these signaling pathways also regulate growth and development during metamorphosis. This study provides further evidence that juvenile oysters can induce metamorphosis of R. venosa at the transcriptional level, which expands our understanding of the metamorphosis mechanism in carnivorous gastropods.
Collapse
Affiliation(s)
- Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Jian Liang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Peng-Peng Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Zheng-Lin Yu
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China,Correspondence to: 7 Nanhai Road, Qingdao, Shandong 266071, China.
| |
Collapse
|
3
|
Yang MJ, Song H, Yu ZL, Hu Z, Zhou C, Wang XL, Zhang T. Changes in Symbiotic Microbiota and Immune Responses in Early Development Stages of Rapana venosa (Valenciennes, 1846) Provide Insights Into Immune System Development in Gastropods. Front Microbiol 2020; 11:1265. [PMID: 32612589 PMCID: PMC7308808 DOI: 10.3389/fmicb.2020.01265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/18/2020] [Indexed: 01/21/2023] Open
Abstract
The symbiotic microbiota can stimulate modulation of immune system, which also can promote immune system mature in critical developmental periods. In this study, we have investigated the symbiotic microbiota in Rapana venosa at five early development stages using Illumina high-throughput sequencing, and detected immune responses in larvae. Analysis of the symbiotic microbiota sequences identified that the most abundant phylum was Proteobacteria. Beta diversity analysis indicated that the structure of the symbiotic microbiota dramatically shifted in early development stages. The abundance of immune-related KEGG Orthologs (KOs) also increased in competent larval (J4, 30-day post-hatching) and postlarval after 3 days of metamorphosis (Y5, 33-day post-hatching) stages. Acid phosphatase activity decreased significantly in the Y5 stage, and alkaline phosphatase activity also at a lower level in Y5 stage, whereas lysozyme activities exhibited no remarkable change. Also, the activities of catalase and superoxide dismutase activities decreased dramatically during early development stages of R. venosa. Dramatic changes in the symbiotic microbiota and the immune response mainly occurred in the initially hatched veliger (C1), competent larval (J4) and postlarval (Y5) stages, during which the hosts might experience substantial environmental changes or changes in physiological structure and function. These findings expand our understanding of the stage-specific symbiotic microbiota in R. venosa and the close association between immune system and symbiotic microbiota in mollusks, however, the specific relationship may need more researches are needed to investigated in the future.
Collapse
Affiliation(s)
- Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zheng-Lin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Long Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
4
|
Klein AH, Ballard KR, Storey KB, Motti CA, Zhao M, Cummins SF. Multi-omics investigations within the Phylum Mollusca, Class Gastropoda: from ecological application to breakthrough phylogenomic studies. Brief Funct Genomics 2020; 18:377-394. [PMID: 31609407 DOI: 10.1093/bfgp/elz017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Gastropods are the largest and most diverse class of mollusc and include species that are well studied within the areas of taxonomy, aquaculture, biomineralization, ecology, microbiome and health. Gastropod research has been expanding since the mid-2000s, largely due to large-scale data integration from next-generation sequencing and mass spectrometry in which transcripts, proteins and metabolites can be readily explored systematically. Correspondingly, the huge data added a great deal of complexity for data organization, visualization and interpretation. Here, we reviewed the recent advances involving gastropod omics ('gastropodomics') research from hundreds of publications and online genomics databases. By summarizing the current publicly available data, we present an insight for the design of useful data integrating tools and strategies for comparative omics studies in the future. Additionally, we discuss the future of omics applications in aquaculture, natural pharmaceutical biodiscovery and pest management, as well as to monitor the impact of environmental stressors.
Collapse
Affiliation(s)
- Anne H Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kaylene R Ballard
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville Queensland 4810, Australia
| | - Min Zhao
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| |
Collapse
|
5
|
Song H, Yang M, Yu Z, Zhang T. Characterization of the whole transcriptome of whelk Rapana venosa by single-molecule mRNA sequencing. Mar Genomics 2019. [DOI: 10.1016/j.margen.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
An Integrated Transcriptome and Proteome Analysis Reveals Putative Regulators of Adventitious Root Formation in Taxodium 'Zhongshanshan'. Int J Mol Sci 2019; 20:ijms20051225. [PMID: 30862088 PMCID: PMC6429173 DOI: 10.3390/ijms20051225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Adventitious root (AR) formation from cuttings is the primary manner for the commercial vegetative propagation of trees. Cuttings is also the main method for the vegetative reproduction of Taxodium ‘Zhongshanshan’, while knowledge of the molecular mechanisms regulating the processes is limited. Here, we used mRNA sequencing and an isobaric tag for relative and absolute quantitation-based quantitative proteomic (iTRAQ) analysis to measure changes in gene and protein expression levels during AR formation in Taxodium ‘Zhongshanshan’. Three comparison groups were established to represent the three developmental stages in the AR formation process. At the transcript level, 4743 genes showed an expression difference in the comparison groups as detected by RNA sequencing. At the protein level, 4005 proteins differed in their relative abundance levels, as indicated by the quantitative proteomic analysis. A comparison of the transcriptome and proteome data revealed regulatory aspects of metabolism during AR formation and development. In summary, hormonal signal transduction is different at different developmental stages during AR formation. Other factors related to carbohydrate and energy metabolism and protein degradation and some transcription factor activity levels, were also correlated with AR formation. Studying the identified genes and proteins will provide further insights into the molecular mechanisms controlling AR formation.
Collapse
|
7
|
Zenda T, Liu S, Wang X, Jin H, Liu G, Duan H. Comparative Proteomic and Physiological Analyses of Two Divergent Maize Inbred Lines Provide More Insights into Drought-Stress Tolerance Mechanisms. Int J Mol Sci 2018; 19:E3225. [PMID: 30340410 PMCID: PMC6213998 DOI: 10.3390/ijms19103225] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/22/2023] Open
Abstract
Drought stress is the major abiotic factor threatening maize (Zea mays L.) yield globally. Therefore, revealing the molecular mechanisms fundamental to drought tolerance in maize becomes imperative. Herein, we conducted a comprehensive comparative analysis of two maize inbred lines contrasting in drought stress tolerance based on their physiological and proteomic responses at the seedling stage. Our observations showed that divergent stress tolerance mechanisms exist between the two inbred-lines at physiological and proteomic levels, with YE8112 being comparatively more tolerant than MO17 owing to its maintenance of higher relative leaf water and proline contents, greater increase in peroxidase (POD) activity, along with decreased level of lipid peroxidation under stressed conditions. Using an iTRAQ (isobaric tags for relative and absolute quantification)-based method, we identified a total of 721 differentially abundant proteins (DAPs). Amongst these, we fished out five essential sets of drought responsive DAPs, including 13 DAPs specific to YE8112, 107 specific DAPs shared between drought-sensitive and drought-tolerant lines after drought treatment (SD_TD), three DAPs of YE8112 also regulated in SD_TD, 84 DAPs unique to MO17, and five overlapping DAPs between the two inbred lines. The most significantly enriched DAPs in YE8112 were associated with the photosynthesis antenna proteins pathway, whilst those in MO17 were related to C5-branched dibasic acid metabolism and RNA transport pathways. The changes in protein abundance were consistent with the observed physiological characterizations of the two inbred lines. Further, quantitative real-time polymerase chain reaction (qRT-PCR) analysis results confirmed the iTRAQ sequencing data. The higher drought tolerance of YE8112 was attributed to: activation of photosynthesis proteins involved in balancing light capture and utilization; enhanced lipid-metabolism; development of abiotic and biotic cross-tolerance mechanisms; increased cellular detoxification capacity; activation of chaperones that stabilize other proteins against drought-induced denaturation; and reduced synthesis of redundant proteins to help save energy to battle drought stress. These findings provide further insights into the molecular signatures underpinning maize drought stress tolerance.
Collapse
Affiliation(s)
- Tinashe Zenda
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Songtao Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Xuan Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Hongyu Jin
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Guo Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Huijun Duan
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
8
|
Genome survey on invasive veined rapa whelk (Rapana venosa) and development of microsatellite loci on large scale. J Genet 2018. [DOI: 10.1007/s12041-018-0975-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Analyses of the molecular mechanisms associated with salinity adaption of Trachidermus fasciatus through combined iTRAQ-based proteomics and RNA sequencing-based transcriptomics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 136:40-53. [DOI: 10.1016/j.pbiomolbio.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 01/16/2023]
|
10
|
Sun X, Liu Z, Wu B, Zhou L, Wang Q, Wu W, Yang A. Differences between fast and slow muscles in scallops revealed through proteomics and transcriptomics. BMC Genomics 2018; 19:377. [PMID: 29783952 PMCID: PMC5963113 DOI: 10.1186/s12864-018-4770-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scallops possess striated and catch adductor muscles, which have different structure and contractile properties. The striated muscle contracts very quickly for swimming, whereas the smooth catch muscle can keep the shells closed for long periods with little expenditure of energy. In this study, we performed proteomic and transcriptomic analyses of differences between the striated (fast) and catch (slow) adductor muscles in Yesso scallop Patinopecten yessoensis. RESULTS Transcriptomic analysis reveals 1316 upregulated and 8239 downregulated genes in slow compared to fast adductor muscle. For the same comparison, iTRAQ-based proteomics reveals 474 differentially expressed proteins (DEPs), 198 up- and 276 downregulated. These DEPs mainly comprise muscle-specific proteins of the sarcoplasmic reticulum, extracellular matrix, and metabolic pathways. A group of conventional muscle proteins-myosin heavy chain, myosin regulatory light chain, myosin essential light chain, and troponin-are enriched in fast muscle. In contrast, paramyosin, twitchin, and catchin are preferentially expressed in slow muscle. The association analysis of proteomic and transcriptomic data provides the evidences of regulatory events at the transcriptional and posttranscriptional levels in fast and slow muscles. Among 1236 differentially expressed unigenes, 22.7% show a similar regulation of mRNA levels and protein abundances. In contrast, more unigenes (53.2%) exhibit striking differences between gene expression and protein abundances in the two muscles, which indicates the existence of fiber-type specific, posttranscriptional regulatory events in most of myofibrillar proteins, such as myosin heavy chain, titin, troponin, and twitchin. CONCLUSIONS This first, global view of protein and mRNA expression levels in scallop fast and slow muscles reveal that regulatory mechanisms at the transcriptional and posttranscriptional levels are essential in the maintenance of muscle structure and function. The existence of fiber-type specific, posttranscriptional regulatory mechanisms in myofibrillar proteins will greatly improve our understanding of the molecular basis of muscle contraction and its regulation in non-model invertebrates.
Collapse
Affiliation(s)
- Xiujun Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Zhihong Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Biao Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Liqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Qi Wang
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Wei Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Aiguo Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China. .,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
11
|
Luo M, Zhao Y, Wang Y, Shi Z, Zhang P, Zhang Y, Song W, Zhao J. Comparative Proteomics of Contrasting Maize Genotypes Provides Insights into Salt-Stress Tolerance Mechanisms. J Proteome Res 2017; 17:141-153. [DOI: 10.1021/acs.jproteome.7b00455] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meijie Luo
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| | - Yanxin Zhao
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| | - Yuandong Wang
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| | - Zi Shi
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| | - Panpan Zhang
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| | - Yunxia Zhang
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| | - Wei Song
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| | - Jiuran Zhao
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| |
Collapse
|
12
|
Understanding microRNA Regulation Involved in the Metamorphosis of the Veined Rapa Whelk ( Rapana venosa). G3-GENES GENOMES GENETICS 2017; 7:3999-4008. [PMID: 29079680 PMCID: PMC5714496 DOI: 10.1534/g3.117.300210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The veined rapa whelk (Rapana venosa) is widely consumed in China. Nevertheless, it preys on oceanic bivalves, thereby reducing this resource worldwide. Its larval metamorphosis comprises a transition from pelagic to benthic form, which involves considerable physiological and structural changes and has vital roles in its natural populations and commercial breeding. Thus, understanding the endogenous microRNAs (miRNAs) that drive metamorphosis is of great interest. This is the first study to use high-throughput sequencing to examine the alterations in miRNA expression that occur during metamorphosis in a marine gastropod. A total of 195 differentially expressed miRNAs were obtained. Sixty-five of these were expressed during the transition from precompetent to competent larvae. Thirty-three of these were upregulated and the others were downregulated. Another 123 miRNAs were expressed during the transition from competent to postlarvae. Ninety-six of these were upregulated and the remaining 27 were downregulated. The expression of miR-276-y, miR-100-x, miR-183-x, and miR-263-x showed a >100-fold change during development, while the miR-242-x and novel-m0052-3p expression levels changed over 3000-fold. Putative target gene coexpression, gene ontology, and pathway analyses suggest that these miRNAs play important parts in cell proliferation, migration, apoptosis, metabolic regulation, and energy absorption. Twenty miRNAs and their target genes involved in ingestion, digestion, cytoskeleton, cell adhesion, and apoptosis were identified. Nine of them were analyzed with real-time polymerase chain reaction (PCR), which showed an inverse correlation between the miRNAs and their relative expression levels. Our data elucidate the role of miRNAs in R. venosa metamorphic transition and serve as a solid basis for further investigations into regulatory mechanisms of gastropod metamorphosis.
Collapse
|
13
|
Xing L, Sun L, Liu S, Li X, Zhang L, Yang H. IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 23:17-26. [PMID: 28601631 DOI: 10.1016/j.cbd.2017.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022]
Abstract
Sea cucumbers are an important economic species and exhibit high yield value among aquaculture animals. Purple sea cucumbers are very rare and beautiful and have stable hereditary patterns. In this study, isobaric tags (IBT) were first used to reveal the molecular mechanism of pigmentation in the body wall of the purple sea cucumber. We analyzed the proteomes of purple sea cucumber in early pigmentation stage (Pa), mid pigmentation stage (Pb) and late pigmentation stage (Pc), resulting in the identification of 5580 proteins, including 1099 differentially expressed proteins in Pb: Pa and 339 differentially expressed proteins in Pc: Pb. GO and KEGG analyses revealed possible differentially expressed proteins, including"melanogenesis", "melanosome", "melanoma", "pigment-biosynthetic process", "Epidermis development", "Ras-signaling pathway", "Wnt-signaling pathway", "response to UV light", and "tyrosine metabolism", involved in pigment synthesis and regulation in purple sea cucumbers. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying pigmentation in sea cucumbers. Furthermore, these results may also provide the base for further identification of proteins involved in resistance mechanisms against melanoma, albinism, UV damage, and other diseases in sea cucumbers.
Collapse
Affiliation(s)
- Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaoni Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
14
|
Sun L, Xu D, Xu Q, Sun J, Xing L, Zhang L, Yang H. iTRAQ reveals proteomic changes during intestine regeneration in the sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:39-49. [PMID: 28189057 DOI: 10.1016/j.cbd.2017.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
Sea cucumbers have a striking capacity to regenerate most of their viscera after evisceration, which has drawn the interest of many researchers. In this study, the isobaric tag for relative and absolute quantitation (iTRAQ) was utilized to investigate protein abundance changes during intestine regeneration in sea cucumbers. A total of 4073 proteins were identified, and 2321 proteins exhibited significantly differential expressions, with 1100 upregulated and 1221 downregulated proteins. Our results suggest that intestine regeneration constitutes a complex life activity regulated by the cooperation of various biological processes, including cytoskeletal changes, extracellular matrix (ECM) remodeling and ECM-receptor interactions, protein synthesis, signal recognition and transduction, energy production and conversion, and substance transport and metabolism. Additionally, real-time PCR showed mRNA expression of differentially expressed genes correlated positively with their protein levels. Our results provided a basis for studying the regulatory mechanisms associated with sea cucumber regeneration.
Collapse
Affiliation(s)
- Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Dongxue Xu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Ecology and Environmental Science and Engineering, First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Jingchun Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lili Xing
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Libin Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Hongsheng Yang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|