1
|
Choudhury RR, Gupta H, Bhushan S, Singh A, Roy A, Saini N. Role of miR-128-3p and miR-195-5p as biomarkers of coronary artery disease in Indians: a pilot study. Sci Rep 2024; 14:11881. [PMID: 38789551 PMCID: PMC11126699 DOI: 10.1038/s41598-024-61077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Coronary artery disease (CAD) imposes a significant economic burden in developing countries like India. Timely diagnosis and treatment should be prioritized to mitigate the disease. Current diagnostic tools being invasive and less specific raise the need to develop less invasive and more reliable molecular biomarkers. MicroRNAs (miRNAs) are an emerging class of molecules that can serve as a potential source of non-invasive biomarkers for CAD. The objective of this study was to determine the potential of circulatory miRNAs as diagnostic biomarkers in CAD. In this study, we have reported two microRNAs, miR-128-3p and miR-195-5p in the serum of CAD patients in Indian Population. A total of 124 subjects were recruited which included 89 angiographically proven CAD patients and 35 control subjects. Our results show a significant decrease in the levels of miR-128-3p in CAD patients while there were no significant changes in the levels of miR-195-5p. Further bioinformatics analysis revealed the potential role of miR-128-3p in cholesterol homeostasis. Altered homeostasis due to cholesterol accumulation in macrophages is the driving force behind formation of foam cells which in turn accelerates the progression of CAD. Here, we have shown that miR-128-3p increases cholesterol levels in macrophages by decreasing cholesterol efflux in-vitro.
Collapse
Affiliation(s)
- Raj Rajeshwar Choudhury
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007, Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Harshi Gupta
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007, Delhi, India
| | - Sudha Bhushan
- Department of Cardiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007, Delhi, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Sekine O, Kanaami S, Masumoto K, Aihara Y, Morita-Umei Y, Tani H, Soma Y, Umei TC, Haga K, Moriwaki T, Kawai Y, Ohno M, Kishino Y, Kanazawa H, Fukuda K, Ieda M, Tohyama S. Seamless and non-destructive monitoring of extracellular microRNAs during cardiac differentiation from human pluripotent stem cells. Stem Cell Reports 2023; 18:1925-1939. [PMID: 37738969 PMCID: PMC10656301 DOI: 10.1016/j.stemcr.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023] Open
Abstract
Monitoring cardiac differentiation and maturation from human pluripotent stem cells (hPSCs) and detecting residual undifferentiated hPSCs are indispensable for the development of cardiac regenerative therapy. MicroRNA (miRNA) is secreted from cells into the extracellular space, and its role as a biomarker is attracting attention. Here, we performed an miRNA array analysis of supernatants during the process of cardiac differentiation and maturation from hPSCs. We demonstrated that the quantification of extracellular miR-489-3p and miR-1/133a-3p levels enabled the monitoring of mesoderm and cardiac differentiation, respectively, even in clinical-grade mass culture systems. Moreover, extracellular let-7c-5p levels showed the greatest increase with cardiac maturation during long-term culture. We also verified that residual undifferentiated hPSCs in hPSC-derived cardiomyocytes (hPSC-CMs) were detectable by measuring miR-302b-3p expression, with a detection sensitivity of 0.01%. Collectively, we demonstrate that our method of seamlessly monitoring specific miRNAs secreted into the supernatant is non-destructive and effective for the quality evaluation of hPSC-CMs.
Collapse
Affiliation(s)
- Otoya Sekine
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sayaka Kanaami
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Heartseed Inc, The Artcomplex Center of Tokyo, #302, 12-9, Daikyo-cho, Shinjuku-ku, Tokyo 160-0015, Japan
| | - Kanako Masumoto
- Sysmex Corporation, Central Research Laboratories, 4-4-4 Takatsukadai, Nishi-ku, Kobe 651-2271, Japan
| | - Yuki Aihara
- Sysmex Corporation, Central Research Laboratories, 4-4-4 Takatsukadai, Nishi-ku, Kobe 651-2271, Japan
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kawasaki, Kanagawa, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomohiko C Umei
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kotaro Haga
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taijun Moriwaki
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yujiro Kawai
- Department of Cardiovascular Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masatoshi Ohno
- Department of Cardiovascular Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Heartseed Inc, The Artcomplex Center of Tokyo, #302, 12-9, Daikyo-cho, Shinjuku-ku, Tokyo 160-0015, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
3
|
Raszeja-Wyszomirska J, Macech M, Kolanowska M, Krawczyk M, Nazarewski S, Wójcicka A, Małyszko J. Free-Circulating Nucleic Acids as Biomarkers in Patients After Solid Organ Transplantation. Ann Transplant 2023; 28:e939750. [PMID: 37580899 PMCID: PMC10439677 DOI: 10.12659/aot.939750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/17/2023] [Indexed: 08/16/2023] Open
Abstract
A number types of extracellular DNA (eg, cell-free, cfDNA) circulate in human blood, including mitochondrial, transcriptome, and regulatory DNA, usually at low concentrations. Larger amounts of cfDNA appear in any inflammatory condition, including organ damage due to a variety of reasons. The role of cfDNA in solid organ transplantation is discussed in this review as a valuable additional tool in the standard of care of transplant patients. Post-transplant monitoring requires the use of high-quality biomarkers for early detection of graft damage or rejection to be able to apply early therapeutic intervention. CfDNA complements the traditional monitoring strategies, being a risk stratification tool and an important prognostic marker. However, improving the sensitivity and specificity of cfDNA detection is necessary to facilitate personalized patient management, warranting further research in terms of measurement, test standardization, and storage, processing, and shipping. A diagnostic test (Allosure, CareDx, Inc., Brisbane, CA) for kidney, heart and lung transplant patients is now commercially available, and validation for other organs (eg, liver) is pending. To date, donor-derived cfDNA in combination with other biomarkers appears to be a promising tool in graft rejection as it is minimally invasive, time-sensitive, and cost-effective. However, improvement of sensitivity and specificity is required to facilitate personalized patient management. Whether it could be an alternate to graft biopsy remains unclear.
Collapse
Affiliation(s)
- Joanna Raszeja-Wyszomirska
- Department of Hepatology, Transplantology, and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Michał Macech
- Department of General, Vascular, and Transplant Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Krawczyk
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Nazarewski
- Department of General, Vascular, and Transplant Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Jolanta Małyszko
- Department of Nephrology, Dialysis, and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Caserta S, Gangemi S, Murdaca G, Allegra A. Gender Differences and miRNAs Expression in Cancer: Implications on Prognosis and Susceptibility. Int J Mol Sci 2023; 24:11544. [PMID: 37511303 PMCID: PMC10380791 DOI: 10.3390/ijms241411544] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs are small, noncoding molecules of about twenty-two nucleotides with crucial roles in both healthy and pathological cells. Their expression depends not only on genetic factors, but also on epigenetic mechanisms like genomic imprinting and inactivation of X chromosome in females that influence in a sex-dependent manner onset, progression, and response to therapy of different diseases like cancer. There is evidence of a correlation between miRNAs, sex, and cancer both in solid tumors and in hematological malignancies; as an example, in lymphomas, with a prevalence rate higher in men than women, miR-142 is "silenced" because of its hypermethylation by DNA methyltransferase-1 and it is blocked in its normal activity of regulating the migration of the cell. This condition corresponds in clinical practice with a more aggressive tumor. In addition, cancer treatment can have advantages from the evaluation of miRNAs expression; in fact, therapy with estrogens in hepatocellular carcinoma determines an upregulation of the oncosuppressors miR-26a, miR-92, and miR-122 and, consequently, apoptosis. The aim of this review is to present an exhaustive collection of scientific data about the possible role of sex differences on the expression of miRNAs and the mechanisms through which miRNAs influence cancerogenesis, autophagy, and apoptosis of cells from diverse types of tumors.
Collapse
Affiliation(s)
- Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
5
|
Shademan B, Karamad V, Nourazarian A, Masjedi S, Isazadeh A, Sogutlu F, Avcı CB. MicroRNAs as Targets for Cancer Diagnosis: Interests and Limitations. Adv Pharm Bull 2023; 13:435-445. [PMID: 37646065 PMCID: PMC10460809 DOI: 10.34172/apb.2023.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/02/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
MicroRNAs are small RNAs with ability to attach to the large number of RNA that regulate gene expression on post-transcriptional level via inhibition or degradation of specific mRNAs. MiRNAs in cells are the primary regulators of functions such as cell growth, differentiation, and apoptosis and considerably influence cell function. The expression levels of microRNAs change in human diseases, including cancer. These changes highlight their essential role in cancer pathogenesis. Ubiquitous irregular expression profiles of miRNAs have been detected in various human cancers using genome-wide identification techniques, which are emerging as novel diagnostic and prognostic cancer biomarkers of high specificity and sensitivity. The measurable miRNAs with enhanced stability in blood, tissues, and other body fluids provide a comprehensive source of miRNA-dependent biomarkers for human cancers. The leading role of miRNAs as potential biomarkers in human cancers is discussed in this article. In addition, the interests and difficulties of miRNAs as biomarkers have been explored.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Sepideh Masjedi
- Department of Cellular and Molecular Biology Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| |
Collapse
|
6
|
Circulating miR-122-5p, miR-92a-3p, and miR-18a-5p as Potential Biomarkers in Human Liver Transplantation Follow-Up. Int J Mol Sci 2023; 24:ijms24043457. [PMID: 36834868 PMCID: PMC9962619 DOI: 10.3390/ijms24043457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The requirement of blood-circulating sensitive biomarkers for monitoring liver transplant (LT) is currently a necessary step aiming at the reduction of standard invasive protocols, such as liver biopsy. In this respect, the main objective of this study is to assess circulating microRNA (c-miR) changes in recipients' blood before and after LT and to correlate their blood levels with gold standard biomarkers and with outcomes such as rejection or complications after graft. An miR profile was initially performed; then, the most deregulated miRs were validated by RT-qPCR in 14 recipients pre- and post-LT and compared to a control group of 24 nontransplanted healthy subjects. MiR-122-5p, miR-92a-3p, miR-18a-5p, and miR-30c-5p, identified in the validation phase, were also analyzed considering an additional 19 serum samples collected from LT recipients and focusing on different follow-up (FU) times. The results showed significant, FU-related changes in c-miRs. In particular, miR-122-5p, miR-92a-3p, and miR-18a-5p revealed the same trend after transplantation and an increase in their level was found in patients with complications, independently from FU times. Conversely, the variations in the standard haemato-biochemical parameters for liver function assessment were not significant in the same FU period, confirming the importance of c-miRs as potential noninvasive biomarkers for monitoring patients' outcomes.
Collapse
|
7
|
Reichart B, Cooper DKC, Längin M, Tönjes RR, Pierson RN, Wolf E. Cardiac xenotransplantation: from concept to clinic. Cardiovasc Res 2023; 118:3499-3516. [PMID: 36461918 PMCID: PMC9897693 DOI: 10.1093/cvr/cvac180] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
For many patients with terminal/advanced cardiac failure, heart transplantation is the most effective, durable treatment option, and offers the best prospects for a high quality of life. The number of potentially life-saving donated human organs is far fewer than the population who could benefit from a new heart, resulting in increasing numbers of patients awaiting replacement of their failing heart, high waitlist mortality, and frequent reliance on interim mechanical support for many of those deemed among the best candidates but who are deteriorating as they wait. Currently, mechanical assist devices supporting left ventricular or biventricular heart function are the only alternative to heart transplant that is in clinical use. Unfortunately, the complication rate with mechanical assistance remains high despite advances in device design and patient selection and management, and the quality of life of the patients even with good outcomes is only moderately improved. Cardiac xenotransplantation from genetically multi-modified (GM) organ-source pigs is an emerging new option as demonstrated by the consistent long-term success of heterotopic (non-life-supporting) abdominal and life-supporting orthotopic porcine heart transplantation in baboons, and by a recent 'compassionate use' transplant of the heart from a GM pig with 10 modifications into a terminally ill patient who survived for 2 months. In this review, we discuss pig heart xenotransplantation as a concept, including pathobiological aspects related to immune rejection, coagulation dysregulation, and detrimental overgrowth of the heart, as well as GM strategies in pigs to prevent or minimize these problems. Additional topics discussed include relevant results of heterotopic and orthotopic heart transplantation experiments in the pig-to-baboon model, microbiological and virologic safety concepts, and efficacy requirements for initiating formal clinical trials. An adequate regulatory and ethical framework as well as stringent criteria for the selection of patients will be critical for the safe clinical development of cardiac xenotransplantation, which we expect will be clinically tested during the next few years.
Collapse
Affiliation(s)
- Bruno Reichart
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Ralf R Tönjes
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen 63225, Germany
| | - Richard N Pierson
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Eckhard Wolf
- Gene Centre and Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich 81377, Germany
| |
Collapse
|
8
|
Arabi TZ, Sabbah BN, Lerman A, Zhu XY, Lerman LO. Xenotransplantation: Current Challenges and Emerging Solutions. Cell Transplant 2023; 32:9636897221148771. [PMID: 36644844 PMCID: PMC9846288 DOI: 10.1177/09636897221148771] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To address the ongoing shortage of organs available for replacement, xenotransplantation of hearts, corneas, skin, and kidneys has been attempted. However, a major obstacle facing xenotransplants is rejection due to a cycle of immune reactions to the graft. Both adaptive and innate immune systems contribute to this cycle, in which natural killer cells, macrophages, and T-cells play a significant role. While advancements in the field of genetic editing can circumvent some of these obstacles, biomarkers to identify and predict xenograft rejection remain to be standardized. Several T-cell markers, such as CD3, CD4, and CD8, are useful in both the diagnosis and prediction of xenograft rejection. Furthermore, an increase in the levels of various circulating DNA markers and microRNAs is also predictive of xenograft rejection. In this review, we summarize recent findings on the advancements in xenotransplantation, with a focus on pig-to-human, the role of immunity in xenograft rejection, and its biomarkers.
Collapse
Affiliation(s)
- Tarek Ziad Arabi
- Division of Nephrology and
Hypertension, Mayo Clinic, Rochester, MN, USA,College of Medicine, Alfaisal
University, Riyadh, Saudi Arabia
| | - Belal Nedal Sabbah
- College of Medicine, Alfaisal
University, Riyadh, Saudi Arabia,Department of Urology, Mayo Clinic,
Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiology, Mayo Clinic,
Rochester, MN, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and
Hypertension, Mayo Clinic, Rochester, MN, USA,Xiang-Yang Zhu, Division of Nephrology and
Hypertension, Mayo Clinic, 200 First Street SW., Rochester, MN 55905, USA.
| | - Lilach O. Lerman
- Division of Nephrology and
Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Chen M, Lei N, Tian W, Li Y, Chang L. Recent advances of non-coding RNAs in ovarian cancer prognosis and therapeutics. Ther Adv Med Oncol 2022; 14:17588359221118010. [PMID: 35983027 PMCID: PMC9379276 DOI: 10.1177/17588359221118010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/15/2022] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer (OC) is the third most common gynecological malignancy with the highest mortality worldwide. OC is usually diagnosed at an advanced stage, and the standard treatment is surgery combined with platinum or paclitaxel chemotherapy. However, chemoresistance inevitably appears coupled with the easy recurrence and poor prognosis. Thus, early diagnosis, predicting prognosis, and reducing chemoresistance are of great significance for controlling the progression and improving treatment effects of OC. Recently, much insight has been gained into the non-coding RNA (ncRNA) that is employed for RNAs but does not encode a protein, and many types of ncRNAs have been characterized including long-chain non-coding RNAs, microRNAs, and circular RNAs. Accumulating evidence indicates these ncRNAs play very active roles in OC progression and metastasis. In this review, we briefly discuss the ncRNAs as biomarkers for OC prognosis. We focus on the recent advances of ncRNAs as therapeutic targets in preventing OC metastasis, chemoresistance, immune escape, and metabolism. The novel strategies for ncRNAs-targeted therapy are also exploited for improving the survival of OC patients.
Collapse
Affiliation(s)
- Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wanjia Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Level 2, Research and Education Centre, 4-10 South Street, Kogarah, NSW 2217, Australia
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| |
Collapse
|
10
|
Lin SH, Wu KT, Wang CC, Huang KT, Chen KD, Hsu LW, Eng HL, Chiu KW. Liver Graft MicroRNAs Expression in Different Etiology of Acute Jaundice after Living Donor Liver Transplantation. BIOLOGY 2022; 11:biology11081228. [PMID: 36009855 PMCID: PMC9404977 DOI: 10.3390/biology11081228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023]
Abstract
Background: Acute jaundice remains a critical problem following liver transplantation. MicroRNAs (miRNAs) are involved in regulating gene expression related to various disease phenotypes and statuses. Aims: To differentiate acute jaundice etiology after living donor liver transplantation (LDLT), we examined the hepatic miRNA expression patterns in several liver graft pathologies. Methods: Eighty liver transplant recipients undergoing post-LDLT graft biopsy for the evaluation of acute jaundice were enrolled in this 1-year prospective study. Using a real-time quantitative reverse transcription-polymerase chain reaction profiling assay, we identified hepatic miRNA (miRNA-122, miRNA-301, miRNA-133a, and miRNA-21) signatures in various allografts pathologies. Results: Pathologic findings of the 80 recipients were as follows: acute cholangitis (AC), 37 (46%); acute rejection (AR), 20 (25%); recurrent hepatitis (RH), 12 (15%); non-specific pathological change, 6 (8%); and fatty change (FC), 5 (6%). None of these identified hepatic miRNAs expression pattern was significantly correlated with serum parameters, including neutrophil-lymphocyte ratio. In AC, hepatic miRNA-122, miRNA-301, miRNA-133a, and miRNA-21 expression was significantly downregulated (p < 0.05). MicroRNA-122 expression was elevated in cases of AR and RH (p < 0.05); miRNA-301 and miRNA-21 expression was higher in RH than in AC (p < 0.05); and miRNA-133a expression was higher in FC than in AR (p < 0.05). Conclusions: Our study suggests that specific hepatic miRNA expression patterns as a checklist may be useful for differential diagnosis of acute jaundice following liver transplantation.
Collapse
Affiliation(s)
- Shu-Hsien Lin
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Kun-Ta Wu
- Division of General Surgery, Department of Surgery, E-Da Hospital, Kaohsiung 83301, Taiwan
| | - Chih-Chi Wang
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kuang-Tzu Huang
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Kuang-Den Chen
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Li-Wen Hsu
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Hock-Liew Eng
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - King-Wah Chiu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8190); Fax: +886-7-733-6856
| |
Collapse
|
11
|
Chaban R, Cooper DKC, Pierson RN. Pig heart and lung xenotransplantation: Present status. J Heart Lung Transplant 2022; 41:1014-1022. [PMID: 35659792 PMCID: PMC10124776 DOI: 10.1016/j.healun.2022.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022] Open
Abstract
The recent pig heart transplant in a patient at the University of Maryland Medical Center has stimulated renewed interest in the xenotransplantation of organs from genetically engineered pigs. The barriers to the use of pigs as sources of organs have largely been overcome by 2 approaches - (1) the deletion of expression of the three known pig carbohydrate xenoantigens against which humans have preformed antibodies, and (2) the transgenic introduction of human 'protective' proteins, such as complement-regulatory proteins. These gene modifications, coupled with immunosuppressive therapy based on blockade of the CD40/CD154 costimulation pathway, have resulted in survival of baboons with life-supporting pig heart grafts for almost 9 months. The initial clinical success at the University of Maryland reinforces encouraging preclinical results. It suggests that pig hearts are likely to provide an effective bridge to an allotransplant, but their utility for destination therapy remains uncertain. Because of additional complex immunobiological problems, the same approach has been less successful in preclinical lung xenograft transplantation, where survival is still measured in days or weeks. The first formal clinical trials of pig heart transplantation may include patients who do not have access to an allotransplant, those with contraindications for mechanical circulatory support, those in need of retransplantation or with a high level of panel-reactive antibodies. Infants with complex congenital heart disease, should also be considered.
Collapse
Affiliation(s)
- Ryan Chaban
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Cardiovascular Surgery, University Hospital of Johannes Gutenberg University, Mainz, Germany.
| | - David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Sikka R, Bharti PK, Gupta H. microRNAs: An opportunity to overcome significant challenges in malaria detection and control. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100115. [PMID: 35801230 PMCID: PMC9253159 DOI: 10.1016/j.crphar.2022.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Organ damage and pathological disease states lead to the rapid release of microRNAs (miRNAs), a class of endogenous small non-coding RNAs, into the blood circulation. Because secreted miRNAs can be detected in biologic fluids such as plasma, they are currently being explored as promising non-invasive biomarkers of infectious and non-infectious diseases. Malaria remains a major global health challenge but still the potential of miRNAs has not been explored extensively in the context of malaria compared to other diseases. Here, we highlight important miRNAs found during different phases of the malaria life cycle in the anopheline vector and the human host. We have also put forward our opinion on how malaria parasite-stage-specific miRNAs can be incorporated into new diagnostic and prognostic tools to detect carrier mosquitoes and infected patients. In addition, we have emphasised the potential of miRNAs to be used as new therapeutics to treat severe malaria patients, an unresearched area of malaria control.
Collapse
|
13
|
Circulating microRNA miR-137 as a stable biomarker for methamphetamine abstinence. Psychopharmacology (Berl) 2022; 239:831-840. [PMID: 35138425 PMCID: PMC8891205 DOI: 10.1007/s00213-022-06074-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/24/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Stimulant use instigates abstinence syndrome in humans. miRNAs are a critical component for the pathophysiology of stimulant abstinence. Here we sought to identify a miRNA marker of methamphetamine abstinence in the circulating extracellular vesicles (cEVs). METHODS miR-137 in the cEVs was quantified by qPCR in thirty-seven patients under methamphetamine abstinence and thirty-five age-matched healthy controls recruited from 2014 to 2016 from the general adult population in a hospital setting, Seoul, South Korea. Diagnostic power was evaluated by area under curve in the receiver-operating characteristics curve and other multiple statistical parameters. RESULTS Patients under methamphetamine abstinence exhibited a significant reduction in cEV miR-137. Overall, cEV miR-137 had high potential as a blood-based marker of methamphetamine abstinence. cEV miR-137 retained the diagnostic power irrespective of the duration of methamphetamine abstinence or methamphetamine use. Interestingly, cEV miR-137 interacted with age: Control participants displayed an aging-dependent reduction of cEV miR-137, while methamphetamine-abstinent patients showed an aging-dependent increase in cEV miR-137. Accordingly, cEV miR-137 had variable diagnostic power depending on age, in which cEV miR-137 more effectively discriminated methamphetamine abstinence in the younger population. Duration of methamphetamine use or abstinence, cigarette smoking status, depressive disorder, or antidepressant treatment did not interact with the methamphetamine abstinence-induced reduction of cEV miR-137. CONCLUSION Our data collectively demonstrated that miR-137 in the circulating extracellular vesicles held high potential as a stable and accurate diagnostic marker of methamphetamine abstinence syndrome.
Collapse
|
14
|
Rao JS, Hosny N, Kumbha R, Naqvi RA, Singh A, Swanson Z, Levy H, Matson AW, Steinhoff M, Forneris N, Walters E, Hering BJ, Burlak C. HLA-G1 + Expression in GGTA1KO Pigs Suppresses Human and Monkey Anti-Pig T, B and NK Cell Responses. Front Immunol 2021; 12:730545. [PMID: 34566993 PMCID: PMC8459615 DOI: 10.3389/fimmu.2021.730545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
The human leukocyte antigen G1 (HLA-G1), a non-classical class I major histocompatibility complex (MHC-I) protein, is a potent immunomodulatory molecule at the maternal/fetal interface and other environments to regulate the cellular immune response. We created GGTA1-/HLAG1+ pigs to explore their use as organ and cell donors that may extend xenograft survival and function in both preclinical nonhuman primate (NHP) models and future clinical trials. In the present study, HLA-G1 was expressed from the porcine ROSA26 locus by homology directed repair (HDR) mediated knock-in (KI) with simultaneous deletion of α-1-3-galactotransferase gene (GGTA1; GTKO) using the clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas9) gene-editing system. GTKO/HLAG1+ pigs showing immune inhibitory functions were generated through somatic cell nuclear transfer (SCNT). The presence of HLA-G1 at the ROSA26 locus and the deletion of GGTA1 were confirmed by next generation sequencing (NGS) and Sanger's sequencing. Fibroblasts from piglets, biopsies from transplantable organs, and islets were positive for HLA-G1 expression by confocal microscopy, flow cytometry, or q-PCR. The expression of cell surface HLA-G1 molecule associated with endogenous β2-microglobulin (β2m) was confirmed by staining genetically engineered cells with fluorescently labeled recombinant ILT2 protein. Fibroblasts obtained from GTKO/HLAG1+ pigs were shown to modulate the immune response by lowering IFN-γ production by T cells and proliferation of CD4+ and CD8+ T cells, B cells and natural killer (NK) cells, as well as by augmenting phosphorylation of Src homology region 2 domain-containing phosphatase-2 (SHP-2), which plays a central role in immune suppression. Islets isolated from GTKO/HLA-G1+ genetically engineered pigs and transplanted into streptozotocin-diabetic nude mice restored normoglycemia, suggesting that the expression of HLA-G1 did not interfere with their ability to reverse diabetes. The findings presented here suggest that the HLA-G1+ transgene can be stably expressed from the ROSA26 locus of non-fetal maternal tissue at the cell surface. By providing an immunomodulatory signal, expression of HLA-G1+ may extend survival of porcine pancreatic islet and organ xenografts.
Collapse
Affiliation(s)
- Joseph Sushil Rao
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Nora Hosny
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
- Medical Biochemistry and Molecular Biology Department, Suez Canal University, Faculty of Medicine, Ismailia, Egypt
| | - Ramesh Kumbha
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Raza Ali Naqvi
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Amar Singh
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Zachary Swanson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Heather Levy
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Anders W. Matson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Magie Steinhoff
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Nicole Forneris
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Eric Walters
- Independent Consultant, Centralia, MO, United States
| | - Bernhard J. Hering
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
15
|
Roest HP, IJzermans JNM, van der Laan LJW. Evaluation of RNA isolation methods for microRNA quantification in a range of clinical biofluids. BMC Biotechnol 2021; 21:48. [PMID: 34362351 PMCID: PMC8344161 DOI: 10.1186/s12896-021-00706-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Extracellular microRNAs (miRNAs), released from cells into biofluids, have emerged as promising biomarkers for diagnostic and prognostic purposes. Several RNA isolation methods are available for the analysis of these cell-free miRNAs by RT-qPCR. Not all methods, however, are equally suitable for different biofluids. Here, we extracted total RNA from four very diverse biofluids: serum, urine, bile, and graft preservation fluid (perfusate). Four different protocols were used: a phenol-chloroform extraction and alcohol precipitation in combination with a precipitation carrier (QP) and three different column-based isolation methods, one with phenol-chloroform extraction (RN) and two without (NG and CU). For this range of clinical biofluid samples, we evaluated the potential of these different RNA isolation methods assessing recovery efficiency and the co-purification of RT-qPCR inhibiting compounds. RESULTS Differences were observed between each of the RNA isolation methods in the recovery of cel-miR-39, a synthetic miRNA spiked in during the workup procedure, and for endogenous miRNAs. Co-purification of heparin, a known RT-qPCR inhibitor, was assessed using heparinase I during cDNA synthesis. RT-qPCR detection of synthetic miRNAs cel-miR-39, spiked in during RNA workup, cel-miR-54, spiked in during cDNA synthesis, and endogenous miRNAs was strongly improved in the presence of heparinase I for some, but not all, isolation methods. Other, co-isolated RT-qPCR inhibitors were not identified, except for biliverdin, which co-isolated from some bile samples with one of the methods. In addition, we observed that serum and urine contain compounds that enhance the binding of heparin to certain solid-phase columns. CONCLUSIONS For reliable measurements of miRNA-based biomarkers in biofluids, optimization of RNA isolation procedures is recommended as methods can differ in miRNA detection and in co-purification of RT-qPCR inhibitory compounds. Heparinase I treatment confirmed that heparin appeared to be the major RT-qPCR inhibiting compound, but also biliverdin, co-isolated from bile, could interfere with detection.
Collapse
Affiliation(s)
- Henk P Roest
- Department of Surgery, Laboratory of Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus MC - University Medical Center, P.O. Box 2040, Room Na-1005, 3000, CA, Rotterdam, the Netherlands.
| | - Jan N M IJzermans
- Department of Surgery, Laboratory of Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus MC - University Medical Center, P.O. Box 2040, Room Na-1005, 3000, CA, Rotterdam, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Laboratory of Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus MC - University Medical Center, P.O. Box 2040, Room Na-1005, 3000, CA, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Tomasi R, Tariq M, Hübner M, Strauss G, Längin M, Zeuzem-Lampert C, Vandewiele S, Kreth S, Abicht JM. T-Cell Response in a Cardiac Xenotransplant Model. EXP CLIN TRANSPLANT 2021; 19:708-716. [PMID: 34085920 DOI: 10.6002/ect.2020.0359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Despite the advances in preclinical cardiac xenotransplantation, the immune reactions caused by species differences are not fully understood. Hyperacute rejection can now be avoided using genetically engineered donor organs, but cellmediated rejection by the adaptive immune response has not been addressed successfully. Here we investigated the initial human pan-T-cell reaction using a pig-human blood working heart model. MATERIALS AND METHODS Porcine wild-type hearts (n = 7) were perfused with human blood in a biventricular working heart system for 3 hours. As control, blood from the same human donors was circulated without a pig heart. Pan-T cells were selectively extracted from blood taken before and at the end of the perfusion cycle. The relative mRNA expression of selected target genes (real-time quantitative polymerase chain reaction) and the expression of microRNAs were determined. RESULTS After xenogeneic organ perfusion, there was a moderate upregulation of several CD4+ marker cytokines (interleukin 2, interleukin 4, interferon γ) compared with control. We found a distinct increase in the mRNA expression of granzyme B and perforin, key markers of cytotoxic T cells. No differences in the marker genes of regulatory T cells were evident. Levels of the anti-inflammatory microRNAs miR-16 and miR-93 were significantly higher in the xenoperfused group than in the control group. CONCLUSIONS This study demonstrated that contact of human blood with pig endothelium activates cytotoxic T cells within the first few hours, indicating acute rejection processes. This is accompanied by upregulation of anti-inflammatory microRNAs, which may represent compensatory anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Roland Tomasi
- From the Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany.,From the Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cardiac MicroRNA Expression Profile After Experimental Brain Death Is Associated With Myocardial Dysfunction and Can Be Modulated by Hypertonic Saline. Transplantation 2021; 106:289-298. [PMID: 33859149 DOI: 10.1097/tp.0000000000003779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Brain death (BD) is associated with systemic inflammatory compromise, which might affect the quality of the transplanted organs. This study investigated the expression profile of cardiac microRNAs (miRNAs) after BD, and their relationship with the observed decline in myocardial function and with the changes induced by hypertonic saline solution (HSS) treatment. METHODS Wistar rats were assigned to sham-operation (SHAM) or submitted to BD with and without the administration of HSS. Cardiac function was assessed for 6h with left ventricular (LV) pressure-volume analysis. We screened 641 rodent miRNAs to identify differentially expressed miRNAs (DEMs) in the heart and computational and functional analysis were performed to compare the DEMs and find their putative targets and their related enriched canonical pathways. RESULTS An enhanced expression in canonical pathways related to inflammation and myocardial apoptosis was observed in BD induced group, with two miRNAs, miR-30a-3p and miR-467f, correlating with the level of LV dysfunction observed after BD. Conversely, HSS treated after BD and SHAM groups showed similar enriched pathways related to the maintenance of heart homeostasis regulation, in agreement with the observation that both groups did not have significant changes in LV function. CONCLUSIONS These findings highlight the potential of miRNAs as biomarkers for assessing damage in BD donor hearts and to monitor the changes induced by therapeutic measures like HSS, opening a perspective to improve graft quality and to better understand the pathophysiology of BD. The possible relation of BD induced miRNA's on early and late cardiac allograft function must be investigated.Supplemental Visual Abstract; http://links.lww.com/TP/C210.
Collapse
|
18
|
Research Trends in the Efficacy of Stem Cell Therapy for Hepatic Diseases Based on MicroRNA Profiling. Int J Mol Sci 2020; 22:ijms22010239. [PMID: 33383629 PMCID: PMC7795580 DOI: 10.3390/ijms22010239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Liver diseases, despite the organ’s high regenerative capacity, are caused by several environmental factors and persistent injuries. Their optimal treatment is a liver transplantation. However, this option is limited by donor shortages and immune response issues. Therefore, many researchers have been interested in identifying the therapeutic potential in treating irreversible liver damage based on stem cells and developing suitable therapeutic agents. Mesenchymal stem cells (MSCs), which are representative multipotent stem cells, are known to be highly potential stem cell therapy compared to other stem cells in the clinical trial worldwide. MSCs have therapeutic potentials for several hepatic diseases such as anti-fibrosis, proliferation of hepatocytes injured, anti-inflammation, autophagic mechanism, and inactivation of hepatic stellate cells. There are much data regarding clinical treatments, however, the data for examining the efficacy of stem cell treatment and the correlation between the stem cell engraftment and the efficacy in liver diseases is limited due to the lack of monitoring system for treatment effectiveness. Therefore, this paper introduces the characteristics of microRNAs (miRNAs) and liver disease-specific miRNA profiles, and the possibility of a biomarker that miRNA can monitor stem cell treatment efficacy by comparing miRNAs changed in liver diseases following stem cell treatment. Additionally, we also discuss the miRNA profiling in liver diseases when treated with stem cell therapy and suggest the candidate miRNAs that can be used as a biomarker that can monitor treatment efficacy in liver diseases based on MSCs therapy.
Collapse
|
19
|
Chen Y, Zheng Y, Yu Y, Wang Y, Huang Q, Qian F, Sun L, Song Z, Chen Z, Feng J, An Y, Yang J, Su Z, Sun S, Dai F, Chen Q, Lu Q, Li P, Ling Y, Yang Z, Tang H, Shi L, Jin L, Holmes EC, Ding C, Zhu T, Zhang Y. Blood molecular markers associated with COVID-19 immunopathology and multi-organ damage. EMBO J 2020; 39:e105896. [PMID: 33140861 PMCID: PMC7737620 DOI: 10.15252/embj.2020105896] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is characterized by dysregulated immune responses, metabolic dysfunction and adverse effects on the function of multiple organs. To understand host responses to COVID-19 pathophysiology, we combined transcriptomics, proteomics, and metabolomics to identify molecular markers in peripheral blood and plasma samples of 66 COVID-19-infected patients experiencing a range of disease severities and 17 healthy controls. A large number of expressed genes, proteins, metabolites, and extracellular RNAs (exRNAs) exhibit strong associations with various clinical parameters. Multiple sets of tissue-specific proteins and exRNAs varied significantly in both mild and severe patients suggesting a potential impact on tissue function. Chronic activation of neutrophils, IFN-I signaling, and a high level of inflammatory cytokines were observed in patients with severe disease progression. In contrast, COVID-19-infected patients experiencing milder disease symptoms showed robust T-cell responses. Finally, we identified genes, proteins, and exRNAs as potential biomarkers that might assist in predicting the prognosis of SARS-CoV-2 infection. These data refine our understanding of the pathophysiology and clinical progress of COVID-19.
Collapse
Affiliation(s)
- Yan‐Mei Chen
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Yuanting Zheng
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Ying Yu
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Yunzhi Wang
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Qingxia Huang
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Feng Qian
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Lei Sun
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Zhi‐Gang Song
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Ziyin Chen
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Jinwen Feng
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Yanpeng An
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Jingcheng Yang
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Zhenqiang Su
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Shanyue Sun
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Fahui Dai
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Qinsheng Chen
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Qinwei Lu
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Pengcheng Li
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Yun Ling
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Zhong Yang
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Huiru Tang
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Leming Shi
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Li Jin
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and BiosecuritySchool of Life and Environmental Sciences and School of Medical SciencesThe University of SydneySydneyNSWAustralia
| | - Chen Ding
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Tong‐Yu Zhu
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| | - Yong‐Zhen Zhang
- Shanghai Public Health Clinical CenterState Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
| |
Collapse
|
20
|
Jeon BS, Lee SH, Hwang SR, Yi H, Bang JH, Tham NTT, Lee HK, Woo GH, Kang HG, Ku HO. Identification of urinary microRNA biomarkers for in vivo gentamicin-induced nephrotoxicity models. J Vet Sci 2020; 21:e81. [PMID: 33263228 PMCID: PMC7710462 DOI: 10.4142/jvs.2020.21.e81] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although previous in vivo studies explored urinary microRNA (miRNA), there is no agreement on nephrotoxicity-specific miRNA biomarkers. OBJECTIVES In this study, we assessed whether urinary miRNAs could be employed as biomarkers for nephrotoxicity. METHODS For this, literature-based candidate miRNAs were identified by reviewing the previous studies. Female Sprague-Dawley rats received subcutaneous injections of a single dose or repeated doses (3 consecutive days) of gentamicin (GEN; 137 or 412 mg/kg). The expression of miRNAs was analyzed by real-time reverse transcription-polymerase chain reaction in 16 h pooled urine from GEN-treated rats. RESULTS GEN-induced acute kidney injury was confirmed by the presence of tubular necrosis. We identified let-7g-5p, miR-21-3p, 26b-3p, 192-5p, and 378a-3p significantly upregulated in the urine of GEN-treated rats with the appearance of the necrosis in proximal tubules. Specifically, miR-26-3p, 192-5p, and 378a-3p with highly expressed levels in urine of rats with GEN-induced acute tubular injury were considered to have sensitivities comparable to clinical biomarkers, such as blood urea nitrogen, serum creatinine, and urinary kidney injury molecule protein. CONCLUSIONS These results indicated the potential involvement of urinary miRNAs in chemical-induced nephrotoxicity, suggesting that certain miRNAs could serve as biomarkers for acute nephrotoxicity.
Collapse
Affiliation(s)
- Byung Suk Jeon
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Soo Ho Lee
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - So Ryeon Hwang
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hee Yi
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Ji Hyun Bang
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Nga Thi Thu Tham
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hyun Kyoung Lee
- Animal Pathodiagnostic Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Gye Hyeong Woo
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea
| | - Hwan Goo Kang
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea.
| | - Hyun Ok Ku
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| |
Collapse
|
21
|
Chong ZX, Yeap SK, Ho WY. Roles of circulating microRNA(s) in human breast cancer. Arch Biochem Biophys 2020; 695:108583. [DOI: 10.1016/j.abb.2020.108583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
|
22
|
Kohut TJ, Barandiaran JF, Keating BJ. Genomics and Liver Transplantation: Genomic Biomarkers for the Diagnosis of Acute Cellular Rejection. Liver Transpl 2020; 26:1337-1350. [PMID: 32506790 DOI: 10.1002/lt.25812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/26/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Acute cellular rejection (ACR) is a common complication in liver transplantation recipients (LTRs), especially within the first 12 months, and it is associated with increased morbidity and mortality. Although abnormalities in standard liver biochemistries may raise the clinical suspicion for ACR, it lacks specificity, and invasive liver biopsies, which are associated with numerous risks, are required for definitive diagnoses. Biomarker discovery for minimally invasive tools for diagnosis and prognostication of ACR after liver transplantation (LT) has become a rapidly evolving field of research with a recent shift in focus to omics-based biomarker discovery. Although none are yet ready to replace the standard of care, there are several promising minimally invasive, blood-derived biomarkers that are under intensive research for the diagnosis of ACR in LTRs. These omics-based biomarkers, encompassing DNA, RNA, proteins, and metabolites, hold tremendous potential. Some are likely to become integrated into ACR diagnostic algorithms to assist clinical decision making with a high degree of accuracy that is cost-effective and reduces or even obviates the need for an invasive liver biopsy.
Collapse
Affiliation(s)
- Taisa J Kohut
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA.,The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jose F Barandiaran
- Department of General Surgery, Main Line Health System, Lankenau Medical Center, Wynnewood, PA
| | - Brendan J Keating
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Bonezi V, Genvigir FDV, Salgado PDC, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Cerda A, Doi SQ, Hirata MH, Hirata RDC. Differential expression of genes related to calcineurin and mTOR signaling and regulatory miRNAs in peripheral blood from kidney recipients under tacrolimus-based therapy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1051. [PMID: 33145270 PMCID: PMC7575939 DOI: 10.21037/atm-20-1757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Genetic and epigenetics factors have been implicated in drug response, graft function and rejection in solid organ transplantation. Differential expression of genes involved in calcineurin and mTOR signaling pathway and regulatory miRNAs was analyzed in the peripheral blood of kidney recipient cohort (n=36) under tacrolimus-based therapy. Methods PPP3CA, PPP3CB, MTOR, FKBP1A, FKBP1B and FKBP5 mRNA expression and polymorphisms in PPP3CA and MTOR were analyzed by qPCR. Expression of miRNAs targeting PPP3CA (miR-30a, miR-145), PPP3CB (miR-10b), MTOR (miR-99a, miR-100), and FKBP1A (miR-103a) was measured by qPCR array. Results PPP3CA and MTOR mRNA levels were reduced in the first three months of treatment compared to pre-transplant (P<0.05). PPP3CB, FKBP1A, FKBP1B, and FKBP5 expression was not changed. In the 3rd month of treatment, the expression of miR-99a, which targets MTOR, increased compared to pre-transplant (P<0.05). PPP3CA c.249G>A (GG genotype) and MTOR c.2997C>T (TT genotype) were associated with reduced expression of PPP3CA mRNA and MTOR, respectively. FKBP1B mRNA levels were higher in patients with acute rejection (P=0.026). Conclusions The expression of PPP3CA, MTOR and miR-99a in the peripheral blood of renal recipients is influenced by tacrolimus-based therapy and by PPP3CA and MTOR variants. These molecules can be potential biomarkers for pharmacotherapy monitoring.
Collapse
Affiliation(s)
- Vivian Bonezi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabiana Dalla Vecchia Genvigir
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Patrícia de Cássia Salgado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudia Rosso Felipe
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Sonia Quateli Doi
- School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
24
|
Di Stefano AB, Pappalardo M, Moschella F, Cordova A, Toia F. MicroRNAs in solid organ and vascularized composite allotransplantation: Potential biomarkers for diagnosis and therapeutic use. Transplant Rev (Orlando) 2020; 34:100566. [PMID: 32682704 DOI: 10.1016/j.trre.2020.100566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
Nowadays, solid organ transplantation (SOT) is an established treatment for patients with end-organ dysfunction, which dramatically improves the quality-of-life. Vascularized composite allotransplants (VCAs) including hand and face have been reported worldwide over the last 20 years. However, VCAs, differently to SOT, are life-enhancing instead of life-saving and are not routinely performed due to the risk of immune rejection and the adverse effects of immunosuppression. Over the past decade, although considerable improvements in short-term outcomes after allotransplantation have been registered, these results have not been translated into major progress in long-term allograft acceptance and patient survival. Recently active researches in the field of biomarker discovery have been conducted to develop individualized therapies for allograft recipients. MicroRNAs (miRNAs) are a small noncoding RNAs functioning as critical regulators of gene and protein expression by RNA interference. They have been connected in numerous biological processes and diseases. Due to their immunomodulatory functions, miRNAs have been amended as potential diagnostic and prognostic biomarker for the detection of rejection in allotransplantation. Due to their specific circulating expression profile, they could act as noninvasive predictive tools for rejection that may help clinicians in an early adjustment of the immunosuppression protocol during acute rejections episodes. Indeed, specific anti-sense oligonucleotides suppressing miRNAs expressed in rejection could reduce the rejection rate in allografts and decrease the use of immunosuppressants. We present a literature review of the immunomodulatory properties and characteristics of miRNAs. We will summarize the current knowledge on miRNAs as potential biomarkers for allograft rejection and possible application in allotransplantation monitoring. Finally, we will discuss the advances in preclinical miRNA-based therapies for immunosuppression.
Collapse
Affiliation(s)
- Anna Barbara Di Stefano
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Marco Pappalardo
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Francesco Moschella
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Adriana Cordova
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Unit, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy.
| | - Francesca Toia
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Unit, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy.
| |
Collapse
|
25
|
Sugiura Y, Yoneda T, Fujimori K, Maruyama T, Miyai H, Kobayashi T, Ekuni D, Tomofuji T, Morita M. Detection of Serum miRNAs Affecting Liver Apoptosis in a Periodontitis Rat Model. In Vivo 2020; 34:117-123. [PMID: 31882470 DOI: 10.21873/invivo.11752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM miRNA molecules have been attracting attention as genetic modifiers between organs. We examined the relationship between serum miRNA and targeted liver mRNA profiles in a periodontitis rat model, and the influence of periodontitis on the liver. MATERIALS AND METHODS Male Wistar rats (n=16, 8 weeks old) were randomly divided into two groups (8 rats each): control and periodontitis (ligature placement for 4 weeks). Serum miRNA and liver mRNA profiles were compared. RESULTS Periodontal destruction and hepatocyte apoptosis were induced in the periodontitis group. Microarray analysis indicated that 52 serum miRNAs and 33 liver mRNAs were expressed with a >1.5-fold change (FC) and a >2.0-FC (p<0.05), respectively, between the two groups. From the miRNA target genes, 12 genes equivalented to liver mRNAs with a >2.0-FC, among which, Hyou1, Chac1, and Bloc1s3 have apoptotic functions in our model. miRNAs upstream of these 3 mRNAs are miR-3591, miR-181a-2-3p and miR-6321. CONCLUSION miR-3591, miR-181a-2-3p and miR-6321 induced hepatocyte apoptosis in our periodontitis rat model.
Collapse
Affiliation(s)
- Yoshio Sugiura
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiki Yoneda
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kohei Fujimori
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Maruyama
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Hisataka Miyai
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Terumasa Kobayashi
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Ekuni
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takaaki Tomofuji
- Department of Community Oral Health, Asahi University School of Dentistry, Gifu, Japan
| | - Manabu Morita
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
26
|
Matton APM, Selten JW, Roest HP, de Jonge J, IJzermans JNM, de Meijer VE, Porte RJ, van der Laan LJW. Cell-free microRNAs as early predictors of graft viability during ex vivo normothermic machine perfusion of human donor livers. Clin Transplant 2020; 34:e13790. [PMID: 31984571 PMCID: PMC7154637 DOI: 10.1111/ctr.13790] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/20/2019] [Accepted: 01/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cell-free microRNAs (miRs) have emerged as early and sensitive biomarkers for tissue injury and function. This study aimed to investigate whether the release of hepatocyte-derived microRNAs (HDmiRs) and cholangiocyte-derived miRs (CDmiRs) correlates with hepato-cholangiocellular injury and function during oxygenated, normothermic machine perfusion (NMP) of human liver grafts. METHODS Donor livers (n = 12), declined for transplantation, were subjected to oxygenated NMP (6 hours) after a period of static cold storage (median 544 minutes (IQR 421-674)). Perfusate and bile samples were analyzed by qRT-PCR for HDmiR-122 and CDmiR-222. Spearman correlations were performed between miR levels and currently available indicators and classic markers. RESULTS Both HDmiR-122 and CDmiR-222 levels in perfusate at 30 minutes of NMP strongly correlated with hepatocyte injury (peak perfusate AST) and cholangiocyte injury (peak biliary LDH). In bile, only CDmiR-222 correlated with these injury markers. For hepato-cholangiocellular function, both miRs in perfusate correlated with total bilirubin, while HDmiR-122 (in perfusate) and CDmiR-222 (in bile) correlated with bicarbonate secretion. Both the relative ratio of HDmiR-122/CDmiR-222 and AST in perfusate at 30 minutes significantly correlated with cumulative bile production, but only the relative ratio was predictive of histopathological injury after 6 hours NMP. CONCLUSION Early levels of HDmiR-122 and CDmiR-222, in perfusate and/or bile, are predictive of excretory functions and hepato-cholangiocellular injury after 6 hours NMP. These miRs may represent new biomarkers for graft viability and function during machine perfusion.
Collapse
Affiliation(s)
- Alix P. M. Matton
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Surgical Research LaboratoryDepartment of SurgeryUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Jasmijn W. Selten
- Department of SurgeryErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| | - Henk P. Roest
- Department of SurgeryErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| | - Jeroen de Jonge
- Department of SurgeryErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| | - Jan N. M. IJzermans
- Department of SurgeryErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| | - Vincent E. de Meijer
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Luc J. W. van der Laan
- Department of SurgeryErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
27
|
Murdaca G, Tonacci A, Negrini S, Greco M, Borro M, Puppo F, Gangemi S. Effects of AntagomiRs on Different Lung Diseases in Human, Cellular, and Animal Models. Int J Mol Sci 2019; 20:ijms20163938. [PMID: 31412612 PMCID: PMC6719072 DOI: 10.3390/ijms20163938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/14/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION MiRNAs have been shown to play a crucial role among lung cancer, pulmonary fibrosis, tuberculosis (TBC) infection, and bronchial hypersensitivity, thus including chronic obstructive pulmonary disease (COPD) and asthma. The oncogenic effect of several miRNAs has been recently ruled out. In order to act on miRNAs turnover, antagomiRs have been developed. MATERIALS AND METHODS The systematic review was conducted under the PRISMA guidelines (registration number is: CRD42019134173). The PubMed database was searched between 1 January 2000 and 30 April 2019 under the following search strategy: (((antagomiR) OR (mirna antagonists) OR (mirna antagonist)) AND ((lung[MeSH Terms]) OR ("lung diseases"[MeSH Terms]))). We included original articles, published in English, whereas exclusion criteria included reviews, meta-analyses, single case reports, and studies published in a language other than English. RESULTS AND CONCLUSIONS A total of 68 articles matching the inclusion criteria were retrieved. Overall, the use of antagomiR was seen to be efficient in downregulating the specific miRNA they are conceived for. The usefulness of antagomiRs was demonstrated in humans, animal models, and cell lines. To our best knowledge, this is the first article to encompass evidence regarding miRNAs and their respective antagomiRs in the lung, in order to provide readers a comprehensive review upon major lung disorders.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Monica Greco
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matteo Borro
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Puppo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
28
|
MicroRNAs as Potential Biomarkers for Chemoresistance in Adenocarcinomas of the Esophagogastric Junction. JOURNAL OF ONCOLOGY 2019; 2019:4903152. [PMID: 31467538 PMCID: PMC6701342 DOI: 10.1155/2019/4903152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Concerning adenocarcinomas of the esophagogastric junction, neoadjuvant chemotherapy is regularly implemented, but patients' response varies greatly, with some cases showing no therapeutic effect, being deemed as chemoresistant. Small, noncoding RNAs (miRNAs) have evolved as key players in biological processes, including malignant diseases, often promoting tumor growth and expansion. In addition, specific miRNAs have been implicated in the development of chemoresistance through evasion of apoptosis, cell cycle alterations, and drug target modification. We performed a retrospective study of 33 patients receiving neoadjuvant chemotherapy by measuring their miRNA expression profiles. Histologic tumor regression was evaluated using resection specimens, while miRNA profiles were prepared using preoperative biopsies without prior therapy. A preselected panel of 96 miRNAs, known to be of importance in various malignancies, was used to test for significant differences between responsive (chemosensitive) and nonresponsive (chemoresistant) cases. The cohort consisted of 12 nonresponsive and 21 responsive cases with the following 4 miRNAs differentially expressed between both the groups: hsa-let-7f-5p, hsa-miRNA-221-3p, hsa-miRNA-31-5p, and hsa-miRNA-191-5p. The former 3 showed upregulation in chemoresistant cases, while the latter showed upregulation in chemosensitive cases. In addition, significant correlation between high expression of hsa-miRNA-194-5p and prolonged survival could be demonstrated (p value <0.0001). In conclusion, we identified a panel of 3 miRNAs predicting chemoresistance and a single miRNA contributing to chemosensitivity. These miRNAs might function as prognostic biomarkers and enable clinicians to better predict the effect of one or more reliably select patients benefitting from (neoadjuvant) chemotherapy.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Micro-RNAs (miRNAs) are highly conserved small RNA molecules that have selective gene-regulatory functions. This posttranscriptional regulation by miRNAs is critical for many immunological processes. Many developments in establishing the biological role of miRNAs in solid organ transplantation have been generated in the last decade. Discoveries of immune regulation by miRNAs, resulting in graft prolongation and transplant tolerance, are rapidly advancing and are the subject of this review. RECENT FINDINGS Many elegant experimental studies have revealed intriguing associations between transplant tolerance and specific miRNA profiles. These findings have provided insight into the miRNAs critical for sustaining immune suppression, and have revealed common miRNA pathways that should be further investigated and/or targeted therapeutically. Further reports have strategized and corroborated different methods of manipulating miRNA expression for prolonging allograft survival, yielding promising preclinical evidence of the efficacy of miRNA-based therapies. SUMMARY The review covers these recent developments in miRNA research that can revolutionize how we implement diagnostics and prognostics and how we can strategize transplantation therapies.
Collapse
|
30
|
Roat R, Hossain MM, Christopherson J, Free C, Guay C, Regazzi R, Guo Z. Circulating miRNA-150-5p is associated with immune-mediated early β-cell loss in a humanized mouse model. Xenotransplantation 2018; 26:e12474. [PMID: 30461074 DOI: 10.1111/xen.12474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/06/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aberrant microRNA (miRNA) expression levels are associated with various graft rejections. We used our humanized mouse model with transplanted human islets to identify miRNAs in islet grafts related to xenograft rejection and circulating miRNAs associated with xenograft rejection-mediated β-cell loss. METHODS Diabetic immunodeficient NOD.scid mice were transplanted with human islets and subsequently achieved stable normoglycemia. Lymphocytes from NOD mice were then adoptively transferred to the humanized mice to induce human β-cell destruction. Islet graft and plasma were collected immediately once blood glucose reached >200 mg/dL. miRNAs in the islet grafts and in the plasma with or without adoptive lymphocyte transfer (ALT) were measured using NanoString nCounter® miRNA Expression Assay and qPCR. RESULTS A set of immune-related miRNAs was significantly increased in human islet grafts of ALT-treated mice compared to control mice. Of these miRNAs, miR-150-5p was significantly increased in the circulation of ALT-treated mice at tissue collection and the increase was a result of immune activation rather than simply the presence of lymphocytes in circulation. Furthermore, miR-150-5p was significantly increased in human islet graft and circulation prior to the development of hyperglycemia in the ALT-treated mice. CONCLUSIONS Our data demonstrated that immune-related miRNAs are associated with human islet xenograft rejection in mice. miR-150-5p is increased in human islet graft and in the circulation during islet xenograft rejection and β-cell destruction prior to hyperglycemia and may be an early biomarker for islet xenograft rejection.
Collapse
Affiliation(s)
- Regan Roat
- Sanford Research, Sioux Falls, South Dakota
| | | | | | | | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Zhiguang Guo
- Sanford Research, Sioux Falls, South Dakota.,Departments of Pediatrics and Surgery, University of South Dakota, Sioux Falls, South Dakota
| |
Collapse
|
31
|
Hwang SR, Tham NTT, Lee SH, Bang JH, Yi H, Park YI, Lee HK, Kang HG, Kim YS, Woo GH, Ku HO. Comparison of microRNA expressions for the identification of chemical hazards in in vivo and in vitro hepatic injury models. J Appl Toxicol 2018; 39:333-342. [PMID: 30264499 DOI: 10.1002/jat.3722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
Biofluid-based biomarkers provide an efficient tool for hazard identification of chemicals. Here, we explored the potential of microRNAs (miRNAs) as biomarkers for hepatotoxicity of chemicals by linking in vitro to in vivo animal models. A search of the literature identified candidate circulating miRNA biomarkers of chemical-induced hepatotoxicity. The expression of candidate miRNAs (miR-122, miR-151a, miR-192, miR-193a, miR-194, miR-21, miR-29c), was determined by real-time reverse transcription-polymerase chain reaction in in vivo acute liver injury induced by acetaminophen, and then were further compared with those of in vitro cell assays. Candidate miRNAs, except miR-29c, were significantly or biologically upregulated by acetaminophen, at a dose that caused acute liver injury as confirmed by hepatocellular necrosis. Except miR-122 and miR-193a, other miRNAs elevated in in vivo models were confirmed by in vitro models using HepG2 cells, whereas they failed by in vitro models using human primary hepatocytes. These findings indicate that certain miRNAs may still have the potential of toxicological biomarkers in linking in vitro to in vivo hepatotoxicity.
Collapse
Affiliation(s)
- So-Ryeon Hwang
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, 177, Gimcheon, 39660, Republic of Korea
| | - Nga Thi Thu Tham
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, 177, Gimcheon, 39660, Republic of Korea
| | - Soo-Ho Lee
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, 177, Gimcheon, 39660, Republic of Korea
| | - Ji-Hyun Bang
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, 177, Gimcheon, 39660, Republic of Korea
| | - Hee Yi
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, 177, Gimcheon, 39660, Republic of Korea
| | - Young-Il Park
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, 177, Gimcheon, 39660, Republic of Korea
| | - Hyun-Kyoung Lee
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, 177, Gimcheon, 39660, Republic of Korea
| | - Hwan-Goo Kang
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, 177, Gimcheon, 39660, Republic of Korea
| | - Yong-Sang Kim
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, 177, Gimcheon, 39660, Republic of Korea
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon, 27136, Republic of Korea
| | - Hyun-Ok Ku
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, 177, Gimcheon, 39660, Republic of Korea
| |
Collapse
|
32
|
Huo Q, Zhou M, Cooper DKC, Dai Y, Xie N, Mou L. Circulating miRNA or circulating DNA-Potential biomarkers for organ transplant rejection. Xenotransplantation 2018. [DOI: 10.1111/xen.12444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qin Huo
- College of Life Science and Oceanography; Shenzhen University; Shenzhen Guangdong China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine; Shenzhen Second People's Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen Guangdong China
| | - Ming Zhou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine; Shenzhen Second People's Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen Guangdong China
| | - David K. C. Cooper
- Xenotransplantation Program; Department of Surgery; The University of Alabama at Birmingham; Birmingham Alabama
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing Jiangsu China
| | - Ni Xie
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine; Shenzhen Second People's Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen Guangdong China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine; Shenzhen Second People's Hospital; First Affiliated Hospital of Shenzhen University; Shenzhen Guangdong China
| |
Collapse
|
33
|
Kovács-Valasek A, Szalontai B, Sétáló G, Gábriel R. Sensitive fluorescent hybridisation protocol development for simultaneous detection of microRNA and cellular marker proteins (in the retina). Histochem Cell Biol 2018; 150:557-566. [PMID: 30088096 PMCID: PMC6182695 DOI: 10.1007/s00418-018-1705-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2018] [Indexed: 01/20/2023]
Abstract
Nowadays, increasing number of microRNAs are found to have crucial roles in various physiological processes through gene expression regulation via RNA silencing as a result of base pairing with complementary mRNA sequences. To reveal the spatial distribution of microRNA expression in tissues, in situ hybridisation is the only method developed to date. This work aims to provide a novel approach to obtain information on the possible involvement of microRNA-s in regulatory processes under experimental conditions by enhancing fluorescent detection of microRNA labelling. Developing Wistar rats were used as a model system to analyse retinal microRNA expression in the first 3 postnatal weeks. Using cryosections, the crucial elements of optimal labels were (1) the concentration and duration of proteinase K treatment, (2) hybridisation temperature of microRNA probes and (3) temperature of stringency washes. Further improvements made possible to combine our in situ hybridisation protocol with double-label immunofluorescence allowing for the simultaneous detection of microRNA-s with high sensitivity and a neuronal cell marker and/or a synaptic marker protein. Thus, the regulatory microRNA-s can be localised in an identified cell type along with its potential target protein. We believe that our protocol can be easily adapted for a variety of tissues of different origins, developmental stages and experimental conditions.
Collapse
Affiliation(s)
- Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, Pécs, 7624, Hungary
| | - Bálint Szalontai
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - György Sétáló
- Department of Medical Biology, University of Pécs, Pécs, Hungary
| | - Robert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, Pécs, 7624, Hungary.
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| |
Collapse
|
34
|
Kumar S, Mohapatra N, Borle DP, Choudhury A, Sarin S, Gupta E. Non invasive diagnosis of acute cellular rejection after liver transplantation - Current opinion. Transpl Immunol 2018; 47:1-9. [PMID: 29452168 DOI: 10.1016/j.trim.2018.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Senthil Kumar
- Dept of HPB Surgery and Liver Transplantation, Institute of Liver and Biliary Sciences, New Delhi 70, India.
| | - Nihar Mohapatra
- Dept of HPB Surgery and Liver Transplantation, Institute of Liver and Biliary Sciences, New Delhi 70, India
| | | | - Ashok Choudhury
- Dept of Transplantation Hepatology, Institute of Liver and Biliary Sciences, New Delhi 70, India
| | - Shashwat Sarin
- Dept of HPB Surgery and Liver Transplantation, Institute of Liver and Biliary Sciences, New Delhi 70, India
| | - Ekta Gupta
- Dept of Virology, Institute of Liver and Biliary Sciences, New Delhi 70, India
| |
Collapse
|
35
|
|
36
|
do Amaral AE, Cisilotto J, Creczynski-Pasa TB, de Lucca Schiavon L. Circulating miRNAs in nontumoral liver diseases. Pharmacol Res 2017; 128:274-287. [PMID: 29037479 DOI: 10.1016/j.phrs.2017.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/23/2022]
Abstract
In recent years, there has been increasing interest in finding new biomarkers for diagnosis and prognostication of liver diseases. MicroRNAs (miRNAs) are small noncoding RNA molecules involved in the regulation of gene expression and have been studied in relation to several conditions, including liver disease. Mature miRNAs can reach the bloodstream by passive release or by incorporation into lipoprotein complexes or microvesicles, and have stable and reproducible concentrations among individuals. In this review, we summarize studies involving circulating miRNAs sourced from the serum or plasma of patients with nontumoral liver diseases in attempt to bring insights in the use of miRNAs as biomarkers for diagnosis, as well as for prognosis of such diseases. In addition, we present pre-analytical aspects involving miRNA analysis and strategies for normalization of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) data related to the studies evaluated.
Collapse
Affiliation(s)
- Alex Evangelista do Amaral
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Júlia Cisilotto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Tânia Beatriz Creczynski-Pasa
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Leonardo de Lucca Schiavon
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Maria Flora Pausewang Street, 88036-800 Florianopolis, SC, Brazil.
| |
Collapse
|
37
|
The Potential of MicroRNAs as Novel Biomarkers for Transplant Rejection. J Immunol Res 2017; 2017:4072364. [PMID: 28191475 PMCID: PMC5278203 DOI: 10.1155/2017/4072364] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022] Open
Abstract
The control of gene expression by microRNAs (miRNAs, miR) influences many cellular functions, including cellular differentiation, cell proliferation, cell development, and functional regulation of the immune system. Recently, miRNAs have been detected in serum, plasma, and urine and circulating miR profiles have been associated with a variety of diseases. Rejection is one of the major causes of allograft failure and preventing and treating acute rejection are the central task for clinicians working with transplant patients. Invasive biopsies used in monitoring rejection are burdensome and risky to transplant patients. Novel and easily accessible biomarkers of acute rejection could make it possible to detect rejection earlier and make more fine-tuned calibration of immunosuppressive or new target treatment possible. In this review, we discuss whether circulating miRNA can serve as an early noninvasive diagnostic biomarker and an expression fingerprint of allograft rejection and transplant failure. Understanding the regulatory interplay of relevant miRNAs and the rejecting allograft will result in a better understanding of the molecular pathophysiology of alloimmune injury.
Collapse
|
38
|
Plasma miRNA Profiles in Pregnant Women Predict Infant Outcomes following Prenatal Alcohol Exposure. PLoS One 2016; 11:e0165081. [PMID: 27828986 PMCID: PMC5102408 DOI: 10.1371/journal.pone.0165081] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/05/2016] [Indexed: 12/04/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are difficult to diagnose since many heavily exposed infants, at risk for intellectual disability, do not exhibit craniofacial dysmorphology or growth deficits. Consequently, there is a need for biomarkers that predict disability. In both animal models and human studies, alcohol exposure during pregnancy resulted in significant alterations in circulating microRNAs (miRNAs) in maternal blood. In the current study, we asked if changes in plasma miRNAs in alcohol-exposed pregnant mothers, either alone or in conjunction with other clinical variables, could predict infant outcomes. Sixty-eight pregnant women at two perinatal care clinics in western Ukraine were recruited into the study. Detailed health and alcohol consumption histories, and 2nd and 3rd trimester blood samples were obtained. Birth cohort infants were assessed by a geneticist and classified as unexposed (UE), heavily prenatally exposed and affected (HEa) or heavily exposed but apparently unaffected (HEua). MiRNAs were assessed in plasma samples using qRT-PCR arrays. ANOVA models identified 11 miRNAs that were all significantly elevated in maternal plasma from the HEa group relative to HEua and UE groups. In a random forest analysis classification model, a combination of high variance miRNAs, smoking history and socioeconomic status classified membership in HEa and UE groups, with a misclassification rate of 13%. The RFA model also classified 17% of the HEua group as UE-like, whereas 83% were HEa-like, at least at one stage of pregnancy. Collectively our data indicate that maternal plasma miRNAs predict infant outcomes, and may be useful to classify difficult-to-diagnose FASD subpopulations.
Collapse
|