1
|
El Oirdi M. Plumbagin's Antiproliferative Mechanism in Human Cancer Cells: A Copper-Dependent Cytotoxic Approach. Chem Biol Drug Des 2024; 104:e14606. [PMID: 39147940 DOI: 10.1111/cbdd.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
Abstract
Cancer is a serious global health problem, causing the loss of millions of lives each year. Plumbagin, a compound derived from the medicinal plant Plumbago zeylanica, has shown promise in stopping the growth of tumor cells both in laboratory settings and in living organisms. Many plant-based compounds exert their effects through copper's ability to produce reactive oxygen species (ROS). This study aimed to understand how plumbagin, dependent on copper, induces cell death (apoptosis) in human cancer cells through various experiments. The results demonstrate that plumbagin hinders the growth of pancreatic cancer cells PNAC-1 and MIA PaCa-2 by utilizing the copper naturally present in the cells. Unlike metal chelators that remove iron and zinc (desferrioxamine mesylate and histidine), a specific copper chelator called neocuproine lessens the cell death caused by plumbagin. When ROS scavengers are used, plumbagin-induced apoptosis is inhibited, indicating that ROS plays a role in initiating cell death. The study also proves that plumbagin prevents copper from leaving cancer cells by suppressing the expression of specific genes (CTR1 and ATP7A). It is confirmed that plumbagin targets the nuclear copper, leading to signals that promote oxidative stress and, ultimately, cell death. These findings provide valuable insights into the potential of plumbagin as a substance to combat cancer, highlighting the importance of understanding how copper behaves within cancer cells.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
2
|
Gutierrez-Silerio GY, Garcia-Solis P, Yahia EM, Núñez-Ríos JD, Vázquez-Cuevas F, Rodriguez-Salinas PA, Mendoza-Zuñiga R, Kuri-García A. Cytotoxic and Antitumoral Effects of Methanolic Extracts of Avocado Fruit Mesocarp in Colorectal Cancer Cell Line HT29. J Med Food 2024; 27:211-221. [PMID: 38407926 DOI: 10.1089/jmf.2023.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Colorectal cancer is a widespread neoplasia with high ratios of chemoresistance. Phytochemicals in plant-based extracts could be useful to treat colorectal cancer, and/or reduce chemoresistance. Methanolic extract of avocado mesocarp (MEAM) has demonstrated antitumoral properties, depending on the fruit ripening stage (RS). The aim of this study was to analyze the effects of methanolic extracts of "Hass" avocado fruit at different RS on cytotoxicity, antioxidative, anti-inflammatory, anti-invasive, cell cycle, and epithelial-mesenchymal transition inhibition in colorectal adenocarcinoma cell line HT29. The MEAM showed an increasing concentration of total phenolic compounds as the RS progressed, which was correlated with antioxidant capacity measured by the Ferric Reducing Antioxidant Power assay but not with the 2.2-diphenyl-1-picrylhydrazyl assay. The specific phenolic compounds of MEAM were determined by high-performance liquid chromatography, and it was found that concentrations of epicatechin decreased while concentrations of chlorogenic acid increased as the RS progressed. The HT29 cell line was treated with MEAM for 48 h, and all MEAM had a cytotoxic effect, reported by MTT assay, nevertheless, the strongest effect was associated with the presence of chlorogenic acid. MEAM induced apoptosis and cell cycle arrest in phase G0/G1, reported by flow cytometry. Moreover, MEAM inhibited cell migration evidenced by the wound healing assay. On the other hand, MEAM significantly reduced expression of mRNA of tumor necrosis factor-alpha and cyclooxygenase 2. These effects comprise important inhibition of some hallmarks of cancer. This, in turn, may provide interesting guidelines for developing antitumoral intervention agents.
Collapse
Affiliation(s)
- Gloria Yareli Gutierrez-Silerio
- Endocrinology and Nutrition Laboratory, Center of Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, Queretaro, Mexico
| | - Pablo Garcia-Solis
- Endocrinology and Nutrition Laboratory, Center of Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, Queretaro, Mexico
| | - Elhadi M Yahia
- Phytochemicals and Nutrition Laboratory, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - José David Núñez-Ríos
- Cellular Physiology Laboratory, Department of Molecular and Cellular Neurobiology, Neurobiology Institute, National Autonomous Univeristy of Mexico, Queretaro, Mexico
| | - Francisco Vázquez-Cuevas
- Cellular Physiology Laboratory, Department of Molecular and Cellular Neurobiology, Neurobiology Institute, National Autonomous Univeristy of Mexico, Queretaro, Mexico
| | - Pablo Alan Rodriguez-Salinas
- Phytochemicals and Nutrition Laboratory, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Rolando Mendoza-Zuñiga
- Phytochemicals and Nutrition Laboratory, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Aaron Kuri-García
- Phytochemicals and Nutrition Laboratory, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| |
Collapse
|
3
|
García-Rodríguez MDC, Hernández-Cortés LM, Mendoza-Núñez VM, Arenas-Huertero F. Effects of green tea polyphenols against metal-induced genotoxic damage: underlying mechanistic pathways. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:371-386. [PMID: 37306405 DOI: 10.1080/10937404.2023.2224119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This review is based upon evidence from the published effects of green tea polyphenols (GTP) on genotoxic damage induced by metals with carcinogenic potential. First, the relationship between GTP and antioxidant defense system is provided. Subsequently, the processes involved in the oxidative stress generated by metals and their relationship to oxidative DNA damage is examined. The review demonstrated that GTP generally decrease oxidative DNA damage induced by exposure to metals such as arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), iron (Fe), and lead (Pb). The pathways involved in these effects are related to: (1) direct scavenging of free radicals (FR); (2) activation of mechanisms to repair oxidative DNA damage; (3) regulation of the endogenous antioxidant system; and (4) elimination of cells with genetic damage via apoptosis. The results obtained in the studies reviewed demonstrate potential for possible use of GTP to prevent and treat oxidative damage in populations exposed to metals. Further, GTP may be considered as adjuvants to treatments for metal-associated diseases related to oxidative stress and DNA damage.
Collapse
Affiliation(s)
- María Del Carmen García-Rodríguez
- Laboratorio de Antimutagénesis, Anticarcinogénesis Y Antiteratogénesis Ambiental, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Lourdes Montserrat Hernández-Cortés
- Laboratorio de Antimutagénesis, Anticarcinogénesis Y Antiteratogénesis Ambiental, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Víctor Manuel Mendoza-Núñez
- Unidad de Investigación En Gerontología, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación En Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
4
|
Wang Y, Qi JJ, Yin YJ, Jiang H, Zhang JB, Liang S, Yuan B. Ferulic Acid Enhances Oocyte Maturation and the Subsequent Development of Bovine Oocytes. Int J Mol Sci 2023; 24:14804. [PMID: 37834252 PMCID: PMC10573426 DOI: 10.3390/ijms241914804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Improving the quality of oocytes matured in vitro is integral to enhancing the efficacy of in vitro embryo production. Oxidative stress is one of the primary causes of quality decline in oocytes matured in vitro. In this study, ferulic acid (FA), a natural antioxidant found in plant cell walls, was investigated to evaluate its impact on bovine oocyte maturation and subsequent embryonic development. Bovine cumulus-oocyte complexes (COCs) were treated with different concentrations of FA (0, 2.5, 5, 10, 20 μM) during in vitro maturation (IVM). Compared to the control group, supplementation with 5 μM FA significantly enhanced the maturation rates of bovine oocytes and the expansion of the cumulus cells area, as well as the subsequent cleavage and blastocyst formation rates after in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). Furthermore, FA supplementation was observed to effectively decrease the levels of ROS in bovine oocytes and improve their mitochondrial function. Our experiments demonstrate that FA can maintain the levels of antioxidants (GSH, SOD, CAT) in oocytes, thereby alleviating the oxidative stress induced by H2O2. RT-qPCR results revealed that, after FA treatment, the relative mRNA expression levels of genes related to oocyte maturation (GDF-9 and BMP-15), cumulus cell expansion (HAS2, PTX3, CX37, and CX43), and embryo pluripotency (OCT4, SOX2, and CDX2) were significantly increased. In conclusion, these findings demonstrate that FA supplementation during bovine oocyte IVM can enhance oocyte quality and the developmental potential of subsequent embryos.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (J.-J.Q.); (Y.-J.Y.); (H.J.); (J.-B.Z.)
| | - Bao Yuan
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (J.-J.Q.); (Y.-J.Y.); (H.J.); (J.-B.Z.)
| |
Collapse
|
5
|
Aatif M. Current Understanding of Polyphenols to Enhance Bioavailability for Better Therapies. Biomedicines 2023; 11:2078. [PMID: 37509717 PMCID: PMC10377558 DOI: 10.3390/biomedicines11072078] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, plant polyphenols have become a popular focus for the development of novel functional foods. Polyphenols, a class of bioactive compounds, including flavonoids, phenolic acids, and lignans, are commonly found in plant-based diets with a variety of biological actions, including antioxidant, anti-inflammatory, and anticancer effects. Unfortunately, polyphenols are not widely used in nutraceuticals since many of the chemicals in polyphenols possess poor oral bioavailability. Thankfully, polyphenols can be encapsulated and transported using bio-based nanocarriers, thereby increasing their bioavailability. Polyphenols' limited water solubility and low bioavailability are limiting factors for their practical usage, but this issue can be resolved if suitable delivery vehicles are developed for encapsulating and delivering polyphenolic compounds. This paper provides an overview of the study of nanocarriers for the enhancement of polyphenol oral bioavailability, as well as a summary of the health advantages of polyphenols in the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
6
|
Saylor JL, Basile ON, Li H, Hunter LM, Weaver A, Shellenberger BM, Ann Tom L, Ma H, Seeram NP, Henry GE. Phenolic furanochromene hydrazone derivatives: Synthesis, antioxidant activity, ferroptosis inhibition, DNA cleavage and DNA molecular docking studies. Bioorg Med Chem 2022; 75:117088. [PMID: 36372027 DOI: 10.1016/j.bmc.2022.117088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
Twenty-four phenolic furanochromene hydrazone derivatives were designed and synthesized in order to evaluate structure-activity relationships in a series of antioxidant-related assays. The derivatives have varying substitution patterns on the phenol ring, with some compounds having one, two or three hydroxy groups, and others containing one hydroxy group in combination with methoxy, methyl, bromo, iodo and/or nitro groups. Antioxidant activity was determined using the DPPH free radical scavenging and CUPRAC assays. Compounds containing ortho-dihydroxy and para-dihydroxy patterns had the highest free radical scavenging activity, with IC50 values ranging from 5.0 to 28 μM. Similarly, derivatives with ortho-dihydroxy and para-dihydroxy patterns, together with a 4-hydroxy-3,5‑dimethoxy pattern, displayed strong copper (II) ion reducing capacity, using Trolox as a standard. Trolox equivalent antioxidant capacity (TEAC) coefficients for these derivatives ranged from 1.75 to 3.97. As further evidence of antioxidant potential, greater than half of the derivatives reversed erastin-induced ferroptosis in HaCaT cells. In addition, twenty-three of the derivatives were effective at cleaving supercoiled plasmid DNA in the presence of copper (II) ions at 1 mM, with the 3,4‑dihydroxy derivative showing cleavage to both the linear and open circular forms at 3.9 uM. The interaction of the phenolic furanochromene derivatives with DNA was confirmed by molecular docking studies, which revealed that all the derivatives bind favorably in the minor groove of DNA.
Collapse
Affiliation(s)
- Jessica L Saylor
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Olivia N Basile
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lindsey M Hunter
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Ashton Weaver
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Blake M Shellenberger
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Lou Ann Tom
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Geneive E Henry
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
7
|
Hu H, Xu Q, Mo Z, Hu X, He Q, Zhang Z, Xu Z. New anti-cancer explorations based on metal ions. J Nanobiotechnology 2022; 20:457. [PMID: 36274142 PMCID: PMC9590139 DOI: 10.1186/s12951-022-01661-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/03/2022] [Indexed: 12/07/2022] Open
Abstract
Due to the urgent demand for more anti-cancer methods, the new applications of metal ions in cancer have attracted increasing attention. Especially the three kinds of the new mode of cell death, including ferroptosis, calcicoptosis, and cuproptosis, are of great concern. Meanwhile, many metal ions have been found to induce cell death through different approaches, such as interfering with osmotic pressure, triggering biocatalysis, activating immune pathways, and generating the prooxidant effect. Therefore, varieties of new strategies based on the above approaches have been studied and applied for anti-cancer applications. Moreover, many contrast agents based on metal ions have gradually become the core components of the bioimaging technologies, such as MRI, CT, and fluorescence imaging, which exhibit guiding significance for cancer diagnosis. Besides, the new nano-theranostic platforms based on metal ions have experimentally shown efficient response to endogenous and exogenous stimuli, which realizes simultaneous cancer therapy and diagnosis through a more controlled nano-system. However, most metal-based agents have still been in the early stages, and controlled clinical trials are necessary to confirm or not the current expectations. This article will focus on these new explorations based on metal ions, hoping to provide some theoretical support for more anti-cancer ideas.
Collapse
Affiliation(s)
- Han Hu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Qi Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Zhimin Mo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, Hubei, China
| | - Xiaoxi Hu
- College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China
| | - Qianyuan He
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, Hubei, China.
| | - Zhanjie Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, Hubei, China.
| |
Collapse
|
8
|
Farhan M. Green Tea Catechins: Nature’s Way of Preventing and Treating Cancer. Int J Mol Sci 2022; 23:ijms231810713. [PMID: 36142616 PMCID: PMC9501439 DOI: 10.3390/ijms231810713] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Green tea’s (Camellia sinensis) anticancer and anti-inflammatory effects are well-known. Catechins are the most effective antioxidants among the physiologically active compounds found in Camellia sinesis. Recent research demonstrates that the number of hydroxyl groups and the presence of specific structural groups have a substantial impact on the antioxidant activity of catechins. Unfermented green tea is the finest source of these chemicals. Catechins have the ability to effectively neutralize reactive oxygen species. The catechin derivatives of green tea include epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and epigallocatechin gallate (EGCG). EGCG has the greatest anti-inflammatory and anticancer potential. Notably, catechins in green tea have been explored for their ability to prevent a variety of cancers. Literature evidence, based on epidemiological and laboratory studies, indicates that green tea catechins have certain properties that can serve as the basis for their consideration as lead molecules in the synthesis of novel anticancer drugs and for further exploration of their role as pharmacologically active natural adjuvants to standard chemotherapeutics. The various sections of the article will focus on how catechins affect the survival, proliferation, invasion, angiogenesis, and metastasis of tumors by modulating cellular pathways.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
9
|
Zeng Y, Zhang H, Zhu M, Pu Q, Li J, Hu X. β-Hydroxyisovaleryl-Shikonin Exerts an Antitumor Effect on Pancreatic Cancer Through the PI3K/AKT Signaling Pathway. Front Oncol 2022; 12:904258. [PMID: 35860565 PMCID: PMC9293047 DOI: 10.3389/fonc.2022.904258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/02/2022] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer (PC) is marked with a low survival rate and lack of recognized effective treatment strategy. We investigated the antitumor effect of β-hydroxyisovaleryl-shikonin (β-HIVS) on PC and the associated working mechanism. Cell toxicity was determined using Cell Counting Kit-8 (CCK-8) assay. Acridine Orange/Ethidium Bromide (AO/EB) double-fluorescent staining assay accompanied by flow cytometry was utilized to estimate cell apoptosis. Cell cycle, reactive oxygen species (ROS), and mitochondrial membrane potential were all evaluated using flow cytometry. Transwell and wound healing assays were performed to evaluate cell migration and invasion. Protein expression was analyzed by Western blots. A xenograft mouse model was employed to determine the antitumor effect of β-HIVS in vivo. PC cell viability gradually decreased with increasing β-HIVS while apoptosis was enhanced together with cell-cycle blockage in the G0–G1 phases. β-HIVS induced mitochondrial dysfunction, ROS production, and DNA damage and inhibited the invasive and migratory ability of PC cells. We further confirmed the suppression of EMT and PI3K/AKT pathways as underlying mechanisms. The mouse model treated with the increasing dose of β-HIVS displayed decreased tumor growth rate, along with increased apoptosis. Thus, β-HIVS exerts antitumor effects on PC through inducing apoptosis, ROS production, decreasing mitochondrial membrane potential, and suppressing signal pathways, such as PI3K/AKT. In summary, β-HIVS might be a promising strategy for PC treatment.
Collapse
|
10
|
Abstract
Tannic Acid (TA) is a naturally occurring antioxidant polyphenol that has gained popularity over the past decade in the field of biomedical research for its unique biochemical properties. Tannic acid, typically extracted from oak tree galls, has been used in many important historical applications. TA is a key component in vegetable tanning of leather, iron gall ink, red wines, and as a traditional medicine to treat a variety of maladies. The basis of TA utility is derived from its many hydroxyl groups and its affinity for forming hydrogen bonds with proteins and other biomolecules. Today, the study of TA has led to the development of many new pharmaceutical and biomedical applications. TA has been shown to reduce inflammation as an antioxidant, act as an antibiotic in common pathogenic bacterium, and induce apoptosis in several cancer types. TA has also displayed antiviral and antifungal activity. At certain concentrations, TA can be used to treat gastrointestinal disorders such as hemorrhoids and diarrhea, severe burns, and protect against neurodegenerative diseases. TA has also been utilized in biomaterials research as a natural crosslinking agent to improve mechanical properties of natural and synthetic hydrogels and polymers, while also imparting anti-inflammatory, antibacterial, and anticancer activity to the materials. TA has also been used to develop thin film coatings and nanoparticles for drug delivery. In all, TA is fascinating molecule with a wide variety of potential uses in pharmaceuticals, biomaterials applications, and drug delivery strategies.
Collapse
Affiliation(s)
- Andrew Baldwin
- RinggoldID:170373Department of Bioengineering, Clemson University, Clemson, SC USA
| | - Brian W Booth
- RinggoldID:170373Department of Bioengineering, Clemson University, Clemson, SC USA
| |
Collapse
|
11
|
Baldwin A, Hartl M, Tschaikowsky M, Balzer BN, Booth BW. Degradation and release of tannic acid from an injectable tissue regeneration bead matrix in vivo. J Biomed Mater Res B Appl Biomater 2021; 110:1165-1177. [PMID: 34904786 DOI: 10.1002/jbm.b.34990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/03/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022]
Abstract
The development of multifunctional biomaterials as both tissue regeneration and drug delivery devices is currently a major focus in biomedical research. Tannic Acid (TA), a naturally occurring plant polyphenol, displays unique medicinal abilities as an antioxidant, an antibiotic, and as an anticancer agent. TA has applications in biomaterials acting as a crosslinker in polymer hydrogels improving thermal stability and mechanical properties. We have developed injectable cell seeded collagen beads crosslinked with TA for breast reconstruction and anticancer activity following lumpectomy. This study determined the longevity of the bead implants by establishing a degradation time line and TA release profile in vivo. Beads crosslinked with 0.1% TA and 1% TA were compared to observe the differences in TA concentration on degradation and release. We found collagen/TA beads degrade at similar rates in vivo, yet are resistant to complete degradation after 16 weeks. TA is released over time in vivo through diffusion and cellular activity. Changes in mechanical properties in collagen/TA beads before implantation to after 8 weeks in vivo also indicate loss of TA over a longer period of time. Elastic moduli decreased uniformly in both 0.1% and 1% TA beads. This study establishes that collagen/TA materials can act as a drug delivery system, rapidly releasing TA within the first week following implantation. However, the beads retain TA long term allowing them to resist degradation and remain in situ acting as a cell scaffold and tissue filler. This confirms its potential use as an anticancer and minimally invasive breast reconstructive device following lumpectomy.
Collapse
Affiliation(s)
- Andrew Baldwin
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | | | - Mathaeus Tschaikowsky
- Institue of Physical Chemistry, University of Freiburg, Freiburg, Germany.,G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bizan N Balzer
- Institue of Physical Chemistry, University of Freiburg, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Freiburg, Germany.,Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Brian W Booth
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
12
|
Costa PSD, Ramos PS, Ferreira C, Silva JL, El-Bacha T, Fialho E. Pro-Oxidant Effect of Resveratrol on Human Breast Cancer MCF-7 Cells is Associated with CK2 Inhibition. Nutr Cancer 2021; 74:2142-2151. [PMID: 34519606 DOI: 10.1080/01635581.2021.1977834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Casein kinase 2 (CK2) plays a critical role in the proliferation and apoptosis of cancer cells. Resveratrol is a bioactive compound with anticancer and anti-inflammatory effects. This study investigated the pro-oxidant cytotoxic effects of resveratrol in association with the inhibition of CK2 activity on human breast carcinoma cells MCF-7. We showed that resveratrol and TBB, an inhibitor of CK2, decreased cell viability in a concentration dependent manner with an IC50 value of 238 µM and 106 µM after 24 h, of treatment, respectively. Resveratrol and TBB decreased CK2 activity by 1.6 and 1.4-fold, respectively, and both significantly decreased mitochondrial membrane potential. However, only resveratrol increased reactive oxygen species (ROS) levels by 1.7-fold as opposed to TBB, which did not affect ROS levels. Indeed, incubating MCF-7 cells with the antioxidant polyethylene glycol-catalase (PEG-CAT) preserved cell viability from the cytotoxic effects of resveratrol, but not from TBB toxicity. This effect seemed to be related to PEG-CAT ability to prevent CK2 inhibition induced by resveratrol incubation. In conclusion, this study demonstrated that the cytotoxic effect of resveratrol on MCF-7 cells might be associated with its pro-oxidant action, which inhibited CK2 activity, affecting cell viability and mitochondrial function.
Collapse
Affiliation(s)
| | | | - Christian Ferreira
- Laboratório de Alimentos Funcionais, INJC, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Jerson Lima Silva
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregório Weber, IBqM, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Tatiana El-Bacha
- Núcleo de estudos com Bioativos, Mitocôndria e Metabolismo da Placenta, INJC, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Eliane Fialho
- Laboratório de Alimentos Funcionais, INJC, UFRJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Wang S, Li Z, Ma Y, Liu Y, Lin CC, Li S, Zhan J, Ho CT. Immunomodulatory Effects of Green Tea Polyphenols. Molecules 2021; 26:molecules26123755. [PMID: 34203004 PMCID: PMC8234133 DOI: 10.3390/molecules26123755] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/03/2023] Open
Abstract
Green tea and its bioactive components, especially polyphenols, possess many health-promoting and disease-preventing benefits, especially anti-inflammatory, antioxidant, anticancer, and metabolic modulation effects with multi-target modes of action. However, the effect of tea polyphenols on immune function has not been well studied. Moreover, the underlying cellular and molecular mechanisms mediating immunoregulation are not well understood. This review summarizes the recent studies on the immune-potentiating effects and corresponding mechanisms of tea polyphenols, especially the main components of (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG). In addition, the benefits towards immune-related diseases, such as autoimmune diseases, cutaneous-related immune diseases, and obesity-related immune diseases, have been discussed.
Collapse
Affiliation(s)
- Shuzhen Wang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Zhiliang Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Yuting Ma
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Yan Liu
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Chi-Chen Lin
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan;
| | - Shiming Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (S.L.); (C.-T.H.)
| | - Jianfeng Zhan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (S.L.); (C.-T.H.)
| |
Collapse
|
14
|
Costa BP, Nassr MT, Diz FM, Fernandes KHA, Antunes GL, Grun LK, Barbé-Tuana FM, Nunes FB, Branchini G, de Oliveira JR. Methoxyeugenol regulates the p53/p21 pathway and suppresses human endometrial cancer cell proliferation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113645. [PMID: 33271245 DOI: 10.1016/j.jep.2020.113645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant-derived compounds are a reservoir of natural chemicals and can act as drug precursors or prototypes and pharmacological probes. Methoxyeugenol is a natural compound found in plant extracts, such as nutmeg (Myristica fragrans), and it presents anthelmintic, antimicrobial, anti-inflammatory activities. Recently, interest in the anticancer activity of plant extracts is increasing and the therapeutic activity of methoxyeugenol against cancer has not yet been explored. AIM OF THE STUDY The present study aimed to evaluate the cancer-suppressive role and the molecular signaling pathways of methoxyeugenol in human endometrial cancer (Ishikawa) cell line. MATERIALS AND METHODS Proliferation, viability, and cell toxicity were assessed by direct counting, MTT assay, and LDH enzyme release assay, respectively. Antiproliferative effect were evaluated by nuclear morphological changes along with the cellular mechanisms of apoptosis and senescence by flow cytometry. The underlying molecular and cellular mechanisms were investigated by RT-qPCR, reactive oxygen species (ROS) levels, mitochondrial dysfunction, and proliferative capacity. RESULTS AND CONCLUSIONS Methoxyeugenol treatment significantly inhibited the proliferation and viability of Ishikawa cells. Probably triggered by the higher ROS levels and mitochondrial dysfunction, the gene expression of p53 and p21 increased and the gene expression of CDK4/6 decreased in response to the methoxyeugenol treatment. The rise in nuclear size and acidic vesicular organelles corroborate with the initial senescence-inducing signals in Ishikawa cells treated with methoxyeugenol. The antiproliferative effect was not related to cytotoxicity and proved to effectively reduce the proliferative capacity of endometrial cancer cells even after treatment withdrawal. These results demonstrated that methoxyeugenol has a promising anticancer effect against endometrial cancer by rising ROS levels, triggering mitochondrial instability, and modulating cell signaling pathways leading to an inhibition of cell proliferation.
Collapse
Affiliation(s)
- Bruna Pasqualotto Costa
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Marcella Tornquist Nassr
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando Mendonça Diz
- Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Krist Helen Antunes Fernandes
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Géssica Luana Antunes
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Kich Grun
- Programa de Pós-graduação em Pediatria e Saúde da Criança, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Florencia María Barbé-Tuana
- Laboratório de Imunobiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Bordignon Nunes
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Biofísica Celular, Molecular e Computacional, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Gisele Branchini
- Laboratório de Biofísica Celular, Molecular e Computacional, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Apoptotic-Induced Effects of Acacia Catechu Willd. Extract in Human Colon Cancer Cells. Int J Mol Sci 2020; 21:ijms21062102. [PMID: 32204339 PMCID: PMC7139529 DOI: 10.3390/ijms21062102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
The research for innovative treatments against colon adenocarcinomas is still a great challenge. Acacia catechu Willd. heartwood extract (AC) has health-promoting qualities, especially at the gastrointestinal level. This study characterized AC for its catechins content and investigated the apoptosis-enhancing effect in human colorectal adenocarcinoma HT-29 cells, along with its ability to spare healthy tissue. MTT assay was used to describe the time course, concentration dependence and reversibility of AC-mediated cytotoxicity. Cell cycle analysis and AV-PI and DAPI-staining were performed to evaluate apoptosis, together with ROS formation, mitochondrial membrane potential (MMP) changes and caspase activities. Rat ileum and colon rings were tested for their viability and functionality to explore AC effects on healthy tissue. Quantitative analysis highlighted that AC was rich in (±)-catechin (31.5 ± 0.82 mg/g) and (−)-epicatechin (12.5 ± 0.42 mg/g). AC irreversibly decreased cell viability in a concentration-dependent, but not time-dependent fashion. Cytotoxicity was accompanied by increases in apoptotic cells and ROS, a reduction in MMP and increases in caspase-9 and 3 activities. AC did not affect rat ileum and colon rings’ viability and functionality, suggesting a safe profile toward healthy tissue. The present findings outline the potential of AC for colon cancer treatment.
Collapse
|
16
|
Bo LY, Li TJ, Zhao XH. Effect of Cu/Mn-Fortification on In Vitro Activities of the Peptic Hydrolysate of Bovine Lactoferrin against Human Gastric Cancer BGC-823 Cells. Molecules 2019; 24:E1195. [PMID: 30934696 PMCID: PMC6480624 DOI: 10.3390/molecules24071195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/22/2022] Open
Abstract
Bovine lactoferrin hydrolysate (BLH) was prepared with pepsin, fortified with Cu2+ (Mn2+) 0.64 and 1.28 (0.28 and 0.56) mg/g protein, and then assessed for their activity against human gastric cancer BGC-823 cells. BLH and the four fortified BLH products dose- and time-dependently had growth inhibition on the cells in both short- and long-time experiments. These samples at dose level of 25 mg/mL could stop cell-cycle progression at the G0/G1-phase, damage mitochondrial membrane, and induce cell apoptosis. In total, the fortified BLH products had higher activities in the cells than BLH alone. Moreover, higher Cu/Mn fortification level brought higher effects, and Mn was more effective than Cu to increase these effects. In the treated cells, the apoptosis-related proteins such as Bad, Bax, p53, cytochrome c, caspase-3, and caspase-9 were up-regulated, while Bcl-2 was down-regulated. Caspase-3 activation was also evidenced using a caspase-3 inhibitor, z-VAD-fmk. Thus, Cu- and especially Mn-fortification of BLH brought health benefits such as increased anti-cancer activity in the BGC-823 cells via activating the apoptosis-related proteins to induce cell apoptosis.
Collapse
Affiliation(s)
- Li-Ying Bo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Tie-Jing Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Xin-Huai Zhao
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Farhan M, Ullah MF, Faisal M, Farooqi AA, Sabitaliyevich UY, Biersack B, Ahmad A. Differential Methylation and Acetylation as the Epigenetic Basis of Resveratrol's Anticancer Activity. MEDICINES 2019; 6:medicines6010024. [PMID: 30781847 PMCID: PMC6473688 DOI: 10.3390/medicines6010024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/15/2023]
Abstract
Numerous studies support the potent anticancer activity of resveratrol and its regulation of key oncogenic signaling pathways. Additionally, the activation of sirtuin 1, a deacetylase, by resveratrol has been known for many years, making resveratrol perhaps one of the earliest nutraceuticals with associated epigenetic activity. Such epigenetic regulation by resveratrol, and the mechanism thereof, has attracted much attention in the past decade. Focusing on methylation and acetylation, the two classical epigenetic regulations, we showcase the potential of resveratrol as an effective anticancer agent by virtue of its ability to induce differential epigenetic changes. We discuss the de-repression of tumor suppressors such as BRCA-1, nuclear factor erythroid 2-related factor 2 (NRF2) and Ras Associated Domain family-1α (RASSF-1α) by methylation, PAX1 by acetylation and the phosphatase and tensin homologue (PTEN) by both methylation and acetylation, in addition to the epigenetic regulation of oncogenic NF-κB and STAT3 signaling by resveratrol. Further, we evaluate the literature supporting the potentiation of HDAC inhibitors and the inhibition of DNMTs by resveratrol in different human cancers. This discussion underlines a robust epigenetic activity of resveratrol that warrants further evaluation, particularly in clinical settings.
Collapse
Affiliation(s)
- Mohd Farhan
- College of Basic Sciences, King Faisal University, Hofuf 400-Al Ahsa-31982, Saudi Arabia.
| | - Mohammad Fahad Ullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia.
| | - Mohd Faisal
- Department of Psychiatry, University Hospital Limerick, Limerick V94 T9PX, Ireland.
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | | | - Bernhard Biersack
- Organic Chemistry Laboratory, Department of Chemistry, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany.
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| |
Collapse
|
18
|
Hormetic dose response to L-ascorbic acid as an anti-cancer drug in colorectal cancer cell lines according to SVCT-2 expression. Sci Rep 2018; 8:11372. [PMID: 30054560 PMCID: PMC6063950 DOI: 10.1038/s41598-018-29386-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/10/2018] [Indexed: 01/22/2023] Open
Abstract
L-Ascorbic acid (vitamin C, AA) exhibits anti-cancer effects with high-dose treatment through the generation of reactive oxygen species (ROS) and selective damage to cancer cells. The anti-cancer effects of L-ascorbic acid are determined by sodium-dependent vitamin C transporter 2 (SVCT-2), a transporter of L-ascorbic acid. In this study, we demonstrate that L-ascorbic acid treatment showed efficient anti-cancer activity in cell lines with high expression levels of SVCT-2 for a gradient concentration of L-ascorbic acid from 10 μM −2 mM. However, in low SVCT-2 expressing cell lines, high-dose L-ascorbic acid (>1 mM) showed anti-cancer effects but low-dose (<10 μM) treatment induced cell proliferation. Such conflicting results that depend on the concentration are called a hormetic dose response. A hormetic dose response to low-dose L-ascorbic acid was also observed in high SVCT-2 expressing cell lines in the presence of a SVCT family inhibitor. Insufficient uptake of L-ascorbic acid in low SVCT-2 expressing cancer cell lines cannot generate sufficient ROS to kill cancer cells, resulting in the hormetic response. Molecular analysis confirmed the increased expression of cancer proliferation markers in the hormetic dose response. These results suggest that L-ascorbic exhibits a biphasic effect in cancer cells depending on SVCT-2 expression.
Collapse
|
19
|
Santulli C, Brizi C, Durante M, Micucci M, Budriesi R, Chiarini A, Frosini M. Apoptotic-induced Effects of Castanea sativa Bark Extract in Human SH-SY5Y Neuroblastoma Cells. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Castanea sativa Mill. wood extract (ENC) has health-promoting qualities such as antibacterial, antiviral, antispasmodic, cardio- and neuroprotective-activities. Its potential towards cancer cells of the central nervous system, however, is still unexplored. This study investigates the apoptotic-enhancing effect of ENC in human neuroblastoma SH-SY5Y cell line. This extract irreversibly decreased cell viability with IC50 of 142.8±20.2, 109.3±16.6 and 82.5±8.6 μg/mL for 24h, 48 and 72h of treatment, respectively. This was accompanied by cell shrinkage and tendency to round-up. A concentration-dependent increase in sub G0/G1 cells as well as a rise in cells with nuclear fragmentation and chromatin condensation, both typical of apoptosis, was also observed. In conclusion, the present findings provide initial data on the potential of ENC for neuroblastoma treatment and offer the rationale for further studies aimed at elucidating the full mechanism(s) underlying its effects.
Collapse
Affiliation(s)
- Chiara Santulli
- Dipartimento di Scienze della Vita, Università di Siena, Siena, Italy
| | - Claudia Brizi
- Dipartimento di Scienze della Vita, Università di Siena, Siena, Italy
| | - Miriam Durante
- Dipartimento di Scienze della Vita, Università di Siena, Siena, Italy
| | - Matteo Micucci
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna, Bologna, Italy
| | - Roberta Budriesi
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna, Bologna, Italy
| | - Alberto Chiarini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna, Bologna, Italy
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università di Siena, Siena, Italy
| |
Collapse
|
20
|
Dietary Copper Reduces the Hepatotoxicity of (-)-Epigallocatechin-3-Gallate in Mice. Molecules 2017; 23:molecules23010038. [PMID: 29295524 PMCID: PMC5943924 DOI: 10.3390/molecules23010038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/16/2022] Open
Abstract
We developed Cu-deficient, -sufficient and -super nutrition mice models by feeding them with diet containing 1.68, 11.72 or 51.69 mg of Cu/kg for 28 days, respectively. Then, the mice were treated to (−)-epigallocatechin-3-gallate (EGCG, 750 mg/kg BW) by oral in order to assess the acute toxicity of the drug. Following EGCG treatment, the survival rates were 12.5%, 50% and 100% in the Cu-deficient, -sufficient and Cu-super nutrition groups of mice, respectively. Cu level and ceruloplasmin activity in serum were significantly increased with the increase of dietary Cu. However, the Cu supplementation did not produce any obvious impact on serum superoxide dismutase activity. Furthermore, ceruloplasmin, in vitro, significantly promotes EGCG oxidation accompanied with increasing oxidation products and decreasing levels of reactive oxygen species. These results, therefore, suggest that Cu can relieve EGCG hepatotoxicity, possibly by up-regulating ceruloplasmin activity, which can be used to promote EGCG applications.
Collapse
|