1
|
Lu X, Chen Z, Mi W, Zheng J, Liu Y. MARK1 suppress malignant progression of hepatocellular carcinoma and improves sorafenib resistance through negatively regulating POTEE. Open Med (Wars) 2024; 19:20241060. [PMID: 39534429 PMCID: PMC11554448 DOI: 10.1515/med-2024-1060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose This study aimed to investigate the role of microtubule-affinity regulatory protein kinase 1 (MARK1) in hepatocellular carcinoma (HCC) progression, its association with sorafenib sensitivity, and the interplay between MARK1 and POTE Ankyrin domain family member E(POTEE) in HCC cells. Methods Quantitative real-time polymerase chain reaction analysis was used to assess MARK1 and POTEE expression in 60 pairs of HCC tissues and cell lines. The correlation between MARK1 levels, clinicopathological features, and patient prognosis was analyzed. Sorafenib-resistant HCC cell models were developed, followed by MARK1 overexpression to evaluate its impact on cell functions. Luciferase reporter assays and rescue experiments were conducted to elucidate the MARK1-POTEE regulatory mechanism. Results MARK1 exhibited decreased mRNA expression in HCC tissues and cells, correlating with adverse clinicopathological features and poorer patient survival. Luciferase assays confirmed direct binding between MARK1 and POTEE. Sorafenib treatment increased MARK1 protein levels, reduced POTEE, and inhibited cell proliferation. Overexpressing MARK1 suppressed sorafenib-induced proliferation in resistant cells, while co-overexpression of MARK1 and POTEE reversed this effect. Conclusion MARK1 potentially restrains HCC progression and enhances sorafenib resistance by negatively modulating POTEE expression, highlighting its significance as a therapeutic target in HCC treatment.
Collapse
Affiliation(s)
- Xin Lu
- Department of Hepatobiliary Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhiyuan Chen
- Department of Hepatobiliary Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wenting Mi
- Gastroenterology Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianming Zheng
- Department of Hepatobiliary Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yubin Liu
- Department of Hepatobiliary Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Second Road, Yuexiu District, Guangzhou, China
| |
Collapse
|
2
|
Wang Y, Shang P, Xu C, Dong W, Zhang X, Xia Y, Sui C, Yang C. Novel genetic alterations in liver cancer distinguish distinct clinical outcomes and combination immunotherapy responses. Front Pharmacol 2024; 15:1416295. [PMID: 38948469 PMCID: PMC11211383 DOI: 10.3389/fphar.2024.1416295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction: Genomic profiling has revolutionized therapeutic interventions and the clinical management of liver cancer. However, pathogenetic mechanisms, molecular determinants of recurrence, and predictive biomarkers for first-line treatment (anti-PD-(L)1 plus bevacizumab) in liver cancer remain incompletely understood. Materials and methods: Targeted next-generation sequencing (tNGS) (a 603-cancer-gene panel) was applied for the genomic profiling of 232 hepatocellular carcinoma (HCC) and 22 intrahepatic cholangiocarcinoma (ICC) patients, among which 47 unresectable/metastatic HCC patients underwent anti-PD-1 plus bevacizumab therapy. Genomic alterations were estimated for their association with vascular invasion (VI), location of onset, recurrence, overall survival (OS), recurrence-free survival (RFS), and anti-PD-1 plus bevacizumab therapy response. Results: The genomic landscape exhibited that the most commonly altered genes in HCC were TP53, FAT3, PDE4DIP, KMT2C, FAT1, and MYO18A, while TP53, FAT1, FAT3, PDE4DIP, ROS1, and GALNT11 were frequently altered in ICC; notably, KRAS (18.18% vs. 1.29%) and BAP1 (13.64% vs. 1.29%) alterations were significantly more prevalent in ICC. Comparison analysis demonstrated the distinct clinicopathological/genomic characterizations between Chinese and Western HCC cohorts. Genomic profiling of HCC underlying VI showed that LDLR, MSH2, KDM5D, PDE3A, and FOXO1 were frequently altered in the VI group compared to patients without VIs. Compared to the right hepatic lobes of HCC patients, the left hepatic lobe of HCC patients had superior OS (median OS: 36.77 months vs. unreached, p < 0.05). By further comparison, Notch signaling pathway-related alterations were significantly prevalent among the right hepatic lobes of HCC patients. Of note, multivariate Cox regression analysis showed that altered RB1, NOTCH3, MGA, SYNE1, and ZFHX3, as independent prognostic factors, were significantly correlated with the OS of HCC patients. Furthermore, altered LATS1 was abundantly enriched in the HCC-recurrent group, and impressively, it was independent of clinicopathological features in predicting RFS (median RFS of altered type vs. wild-type: 5.57 months vs. 22.47 months, p < 0.01). Regarding those treated HCC patients, TMB value, altered PTPRZ1, and cell cycle-related alterations were identified to be positively associated with the objective response rate (ORR), but KMT2D alterations were negatively correlated with ORR. In addition, altered KMT2D and cell cycle signaling were significantly associated with reduced and increased time to progression-free survival (PFS), respectively. Conclusion: Comprehensive genomic profiling deciphered distinct molecular characterizations underlying VI, location of onset, recurrence, and survival time in liver cancer. The identification of novel genetic predictors of response to anti-PD-1 plus bevacizumab in HCC facilitated the development of an evidence-based approach to therapy.
Collapse
Affiliation(s)
- Yizhou Wang
- Department of Hepatic Surgery IV and Clinical Research Institute, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Peipei Shang
- Department of Medical Oncology, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chang Xu
- Department of General Surgery, Biliary Tract Disease Institute, Biliary Tract Disease Center, and Cancer Center of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaofeng Zhang
- Department of Hepatic Surgery IV and Clinical Research Institute, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yong Xia
- Department of Hepatic Surgery IV and Clinical Research Institute, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chengjun Sui
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng Yang
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Yang Y, Abdo AN, Kawara H, Selby CP, Sancar A. Preservation of circadian rhythm in hepatocellular cancer. J Biol Chem 2023; 299:105251. [PMID: 37714462 PMCID: PMC10582759 DOI: 10.1016/j.jbc.2023.105251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
Circadian rhythms are controlled at the cellular level by a molecular clock consisting of several genes/proteins engaged in a transcription-translation-degradation feedback loop. These core clock proteins regulate thousands of tissue-specific genes. Regarding circadian control in neoplastic tissues, reports to date have demonstrated anomalous circadian function in tumor models and cultured tumor cells. We have extended these studies by analyzing circadian rhythmicity genome-wide in a mouse model of liver cancer, in which mice treated with diethylnitrosamine at 15 days develop liver tumors by 6 months. We injected tumor-bearing and control tumor-free mice with cisplatin every 2 h over a 24-h cycle; 2 h after each injection mice were sacrificed and gene expression was measured by XR-Seq (excision repair sequencing) assay. Rhythmic expression of several core clock genes was observed in both healthy liver and tumor, with clock genes in tumor exhibiting typically robust amplitudes and a modest phase advance. Interestingly, although normal hepatic cells and hepatoma cancer cells expressed a comparable number of genes with circadian rhythmicity (clock-controlled genes), there was only about 10% overlap between the rhythmic genes in normal and cancerous cells. "Rhythmic in tumor only" genes exhibited peak expression times mainly in daytime hours, in contrast to the more common pre-dawn and pre-dusk expression times seen in healthy livers. Differential expression of genes in tumors and healthy livers across time may present an opportunity for more efficient anticancer drug treatment as a function of treatment time.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashraf N Abdo
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hiroaki Kawara
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
4
|
Wang Y, Deng B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev 2023; 42:629-652. [PMID: 36729264 DOI: 10.1007/s10555-023-10084-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy and one of the leading causes of cancer-related death. The biological process of HCC is complex, with multiple factors leading to the broken of the balance of inactivation and activation of tumor suppressor genes and oncogenes, the abnormal activation of molecular signaling pathways, the differentiation of HCC cells, and the regulation of angiogenesis. Due to the insidious onset of HCC, at the time of first diagnosis, less than 30% of HCC patients are candidates for radical treatment. Systematic antitumor therapy is the hope for the treatment of patients with middle-advanced HCC. Despite the emergence of new systemic therapies, survival rates for advanced HCC patients remain low. The complex pathogenesis of HCC has inspired researchers to explore a variety of biomolecular targeted therapeutics targeting specific targets. Correct understanding of the molecular mechanism of HCC occurrence is key to seeking effective targeted therapy. Research on biomarkers for HCC treatment is also advancing. Here, we explore the molecular mechanism that are associated with HCC development, summarize targeted therapies for HCC, and discuss potential biomarkers that may drive therapies.
Collapse
Affiliation(s)
- Yu Wang
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Baocheng Deng
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
5
|
Laface C, Ranieri G, Maselli FM, Ambrogio F, Foti C, Ammendola M, Laterza M, Cazzato G, Memeo R, Mastrandrea G, Lioce M, Fedele P. Immunotherapy and the Combination with Targeted Therapies for Advanced Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:654. [PMID: 36765612 PMCID: PMC9913568 DOI: 10.3390/cancers15030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
One of the most important abilities of a tumor is to establish a state of immunosuppression inside the tumor microenvironment. This is made possible through numerous mechanisms of tumor immune escape that have been identified in experimental studies during the last decades. In addition, the hepatic microenvironment is commonly oriented towards a state of immune tolerance because the liver receives blood from the hepatic arteries and portal veins containing a variety of endogenous antigens. Therefore, the hepatic microenvironment establishes an autoimmune tolerance, preventing an autoimmune reaction in the liver. On this basis, hepatic tumor cells may escape the immune system, avoiding being recognized and destroyed by immune cells. Moreover, since the etiology of Hepatocellular Carcinoma (HCC) is often related to cirrhosis, and hepatitis B or C, this tumor develops in the context of chronic inflammation. Thus, the HCC microenvironment is characterized by important immune cell infiltration. Given these data and the poor prognosis of advanced HCC, different immunotherapeutic strategies have been developed and evaluated for these patients. In this review, we describe all the clinical applications of immunotherapy for advanced HCC, from the drugs that have already been approved to the ongoing clinical trials.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | | | | | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Caterina Foti
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Michele Ammendola
- Department of Health Science, General Surgery, Medicine School of Germaneto, Magna Graecia University, 88100 Catanzaro, Italy
| | - Marigia Laterza
- Division of Cardiac Surgery, University of Bari, 70124 Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, “F. Miulli” General Regional Hospital, 70021 Acquaviva Delle Fonti, Italy
| | | | - Marco Lioce
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
6
|
Jeng KS, Chang CF, Sheen IS, Jeng CJ, Wang CH. Cellular and Molecular Biology of Cancer Stem Cells of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:1417. [PMID: 36674932 PMCID: PMC9861908 DOI: 10.3390/ijms24021417] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death globally. The cancer stem cells (CSCs) of HCC are responsible for tumor growth, invasion, metastasis, recurrence, chemoresistance, target therapy resistance and radioresistance. The reported main surface markers used to identify liver CSCs include epithelial cell adhesion/activating molecule (EpCAM), cluster differentiation 90 (CD90), CD44 and CD133. The main molecular signaling pathways include the Wnt/β-catenin, transforming growth factors-β (TGF-β), sonic hedgehog (SHH), PI3K/Akt/mTOR and Notch. Patients with EpCAM-positive alpha-fetoprotein (AFP)-positive HCC are usually young but have advanced tumor-node-metastasis (TNM) stages. CD90-positive HCCs are usually poorly differentiated with worse prognosis. Those with CD44-positive HCC cells develop early metastases. Those with CD133 expression have a higher recurrence rate and a shorter overall survival. The Wnt/β-catenin signaling pathway triggers angiogenesis, tumor infiltration and metastasis through the enhancement of angiogenic factors. All CD133+ liver CSCs, CD133+/EpCAM+ liver CSCs and CD44+ liver CSCs contribute to sorafenib resistance. SHH signaling could protect HCC cells against ionizing radiation in an autocrine manner. Reducing the CSC population of HCC is crucial for the improvement of the therapy of advanced HCC. However, targeting CSCs of HCC is still challenging.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - Chiung-Fang Chang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - I-Shyang Sheen
- Department of Hepato Gastroenterology, Linkou Medical Center, Chang-Gung University, Taoyuan City 33305, Taiwan
| | - Chi-Juei Jeng
- Postgraduate of Institute of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Wang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| |
Collapse
|
7
|
Chen S, Zhang Y, Ding X, Li W. Identification of lncRNA/circRNA-miRNA-mRNA ceRNA Network as Biomarkers for Hepatocellular Carcinoma. Front Genet 2022; 13:838869. [PMID: 35386284 PMCID: PMC8977626 DOI: 10.3389/fgene.2022.838869] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) accounts for the majority of liver cancer, with the incidence and mortality rates increasing every year. Despite the improvement of clinical management, substantial challenges remain due to its high recurrence rates and short survival period. This study aimed to identify potential diagnostic and prognostic biomarkers in HCC through bioinformatic analysis. Methods: Datasets from GEO and TCGA databases were used for the bioinformatic analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out by WebGestalt website and clusterProfiler package of R. The STRING database and Cytoscape software were used to establish the protein-protein interaction (PPI) network. The GEPIA website was used to perform expression analyses of the genes. The miRDB, miRWalk, and TargetScan were employed to predict miRNAs and the expression levels of the predicted miRNAs were explored via OncomiR database. LncRNAs were predicted in the StarBase and LncBase while circRNA prediction was performed by the circBank. ROC curve analysis and Kaplan-Meier (KM) survival analysis were performed to evaluate the diagnostic and prognostic value of the gene expression, respectively. Results: A total of 327 upregulated and 422 downregulated overlapping DEGs were identified between HCC tissues and noncancerous liver tissues. The PPI network was constructed with 89 nodes and 178 edges and eight hub genes were selected to predict upstream miRNAs and ceRNAs. A lncRNA/circRNA-miRNA-mRNA network was successfully constructed based on the ceRNA hypothesis, including five lncRNAs (DLGAP1-AS1, GAS5, LINC00665, TYMSOS, and ZFAS1), six circRNAs (hsa_circ_0003209, hsa_circ_0008128, hsa_circ_0020396, hsa_circ_0030051, hsa_circ_0034049, and hsa_circ_0082333), eight miRNAs (hsa-miR-150-5p, hsa-miR-19b-3p, hsa-miR-23b-3p, hsa-miR-26a-5p, hsa-miR-651-5p, hsa-miR-10a-5p, hsa-miR-214-5p and hsa-miR-486-5p), and five mRNAs (CDC6, GINS1, MCM4, MCM6, and MCM7). The ceRNA network can promote HCC progression via cell cycle, DNA replication, and other pathways. Clinical diagnostic and survival analyses demonstrated that the ZFAS1/hsa-miR-150-5p/GINS1 ceRNA regulatory axis had a high diagnostic and prognostic value. Conclusion: These results revealed that cell cycle and DNA replication pathway could be potential pathways to participate in HCC development. The ceRNA network is expected to provide potential biomarkers and therapeutic targets for HCC management, especially the ZFAS1/hsa-miR-150-5p/GINS1 regulatory axis.
Collapse
Affiliation(s)
- Shanshan Chen
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yongchao Zhang
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Ding
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Silvestris N, Argentiero A, Brunetti O, Sonnessa M, Colonna F, Delcuratolo S, Luchini C, Scarpa A, Lonardi S, Nappo F, Fassan M, Solimando AG, Fucci L, Saponaro C. PD-L1 and Notch as novel biomarkers in pancreatic sarcomatoid carcinoma: a pilot study. Expert Opin Ther Targets 2021; 25:1007-1016. [PMID: 34846251 DOI: 10.1080/14728222.2021.2011859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The improved immunological understanding revealed the tumor microenvironment as an appealing driver to restore the immune response against cancer cells resulting in a paradigm shift in the oncology field. However, the complexity of the tumor milieu suggests the role of several pathways linking in immunomodulation mechanisms. Pancreatic cancer represents a model of the intricate relationship between malignant cells and their surrounding neighborhood. RESEARCH DESIGN AND METHODS In this study, we analyzed, retrospectively, six cases of rare pancreatic sarcomatoid carcinoma (PSC) and evaluated the expression of PD-L1 and Notch, aiming to explore new attributes in immunophenotype. RESULTS PD-L1 CPS ≥ 1was common in PSCs (83%) with half samples expressing PD-L1 CPS ≥ 50. Notch1 and Notch3 demonstrated a high range of expression. A direct significant correlation between PD-L1 and Notch3 overexpression (r = 0.7; p = 0.036) has been observed. Immunofluorescence studies revealed a co-localization of Notch3 and PD-L1 when both proteins were over-expressed within cytoplasmic or membranous compartments of the same cells. CONCLUSIONS Our data identify a unique biological characterization of this rare pancreatic histotype. These findings provide a rationale for future studies evaluating the potential crosstalk between PD-L1/PD-1 axis and Notch pathways and prompting the development of novel therapeutics strategy.
Collapse
Affiliation(s)
- Nicola Silvestris
- Medical Oncology Unit - IRCCS Istituto Tumori "Giovanni Paolo Ii" of Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Argentiero
- Medical Oncology Unit - IRCCS Istituto Tumori "Giovanni Paolo Ii" of Bari, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit - IRCCS Istituto Tumori "Giovanni Paolo Ii" of Bari, Bari, Italy
| | - Margherita Sonnessa
- Functional Biomorphology Laboratory, Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo Ii" of Bari, Bari, Italy
| | - Fulvia Colonna
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo Ii" of Bari, Bari, Italy
| | - Sabina Delcuratolo
- Clinical Trial Office IRCCS Istituto Tumori "Giovanni Paolo Ii" of Bari, Bari, Italy
| | - Claudio Luchini
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Enets Center of Excellence of Verona, Verona, Italy
| | - Aldo Scarpa
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Enets Center of Excellence of Verona, Verona, Italy
- Arc-net Applied Research on Cancer Centre, University of Verona, Verona, Italy
| | - Sara Lonardi
- Early Phase Clinical Trial Unit, Department of Oncology, Veneto Institute of Oncology Iov-irccs, Padua, Italy
- Medical Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology Iov - Irccs, Padua, Italy
| | - Floriana Nappo
- Early Phase Clinical Trial Unit, Department of Oncology, Veneto Institute of Oncology Iov-irccs, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (Dimed), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
- Veneto Institute of Oncology Iov - Irccs, Padua, Italy
| | - Antonio Giovanni Solimando
- Medical Oncology Unit - IRCCS Istituto Tumori "Giovanni Paolo Ii" of Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Livia Fucci
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo Ii" of Bari, Bari, Italy
| | - Concetta Saponaro
- Functional Biomorphology Laboratory, Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo Ii" of Bari, Bari, Italy
| |
Collapse
|
9
|
Shi C, Jug R, Bean SM, Jeck WR, Guy CD. Primary hepatic neoplasms arising in cirrhotic livers can have a variable spectrum of neuroendocrine differentiation. Hum Pathol 2021; 116:63-72. [PMID: 34310982 DOI: 10.1016/j.humpath.2021.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
Primary hepatic neoplasms with neuroendocrine differentiation are extremely rare. Their clinicopathological features and molecular genetic basis are largely unknown. We identified four cases of primary hepatic neoplasms with neuroendocrine differentiation. Electronic medical records were reviewed for clinical history, imaging findings, laboratory results, and follow-up. Pathology slides, immunohistochemistry, and ancillary studies were reviewed. There were two females and two males with age ranging from 52 to 74 years. There was one amphicrine carcinoma with tumor cells simultaneously demonstrating both hepatocellular and neuroendocrine differentiation, one mixed hepatocellular-neuroendocrine carcinoma (NEC) with hepatocellular component intermingled with neuroendocrine component, one small cell NEC, and one well-differentiated neuroendocrine tumor. Next- generation sequencing of the mixed hepatocellular-NEC and small cell NEC showed molecular/genetic alterations commonly seen in hepatocellular carcinoma (HCC). All four cases arose in a background of cirrhosis. Primary hepatic neoplasms arising in cirrhotic livers can have a spectrum of neuroendocrine differentiation. Presence of a NEC component may be an indicator of aggressiveness. In addition, primary hepatic carcinomas with neuroendocrine differentiation likely share the same molecular pathways as HCC.
Collapse
Affiliation(s)
- Chanjuan Shi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Rachel Jug
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarah M Bean
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - William R Jeck
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cynthia D Guy
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Xiu M, Wang Y, Li B, Wang X, Xiao F, Chen S, Zhang L, Zhou B, Hua F. The Role of Notch3 Signaling in Cancer Stemness and Chemoresistance: Molecular Mechanisms and Targeting Strategies. Front Mol Biosci 2021; 8:694141. [PMID: 34195229 PMCID: PMC8237348 DOI: 10.3389/fmolb.2021.694141] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Aberrant Notch signaling profoundly affects cancer progression. Especially the Notch3 receptor was found to be dysregulated in cancer, where its expression is correlated with worse clinicopathological features and poor prognosis. The activation of Notch3 signaling is closely related to the activation of cancer stem cells (CSCs), a small subpopulation in cancer that is responsible for cancer progression. In addition, Notch3 signaling also contributes to tumor chemoresistance against several drugs, including doxorubicin, platinum, taxane, epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitors (TKIs) and gemcitabine, through complex mechanisms. In this review, we mainly focus on discussing the molecular mechanisms by which Notch3 modulates cancer stemness and chemoresistance, as well as other cancer behaviors including metastasis and angiogenesis. What’s more, we propose potential treatment strategies to block Notch3 signaling, such as non-coding RNAs, antibodies and antibody-drug conjugates, providing a comprehensive reference for research on precise targeted cancer therapy.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yongbo Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Baoli Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
11
|
Yan Q, Zheng W, Wang B, Ye B, Luo H, Yang X, Zhang P, Wang X. A prognostic model based on seven immune-related genes predicts the overall survival of patients with hepatocellular carcinoma. BioData Min 2021; 14:29. [PMID: 33962640 PMCID: PMC8106157 DOI: 10.1186/s13040-021-00261-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a disease with a high incidence and a poor prognosis. Growing amounts of evidence have shown that the immune system plays a critical role in the biological processes of HCC such as progression, recurrence, and metastasis, and some have discussed using it as a weapon against a variety of cancers. However, the impact of immune-related genes (IRGs) on the prognosis of HCC remains unclear. METHODS Based on The Cancer Gene Atlas (TCGA) and Immunology Database and Analysis Portal (ImmPort) datasets, we integrated the ribonucleic acid (RNA) sequencing profiles of 424 HCC patients with IRGs to calculate immune-related differentially expressed genes (DEGs). Survival analysis was used to establish a prognostic model of survival- and immune-related DEGs. Based on genomic and clinicopathological data, we constructed a nomogram to predict the prognosis of HCC patients. Gene set enrichment analysis further clarified the signalling pathways of the high-risk and low-risk groups constructed based on the IRGs in HCC. Next, we evaluated the correlation between the risk score and the infiltration of immune cells, and finally, we validated the prognostic performance of this model in the GSE14520 dataset. RESULTS A total of 100 immune-related DEGs were significantly associated with the clinical outcomes of patients with HCC. We performed univariate and multivariate least absolute shrinkage and selection operator (Lasso) regression analyses on these genes to construct a prognostic model of seven IRGs (Fatty Acid Binding Protein 6 (FABP6), Microtubule-Associated Protein Tau (MAPT), Baculoviral IAP Repeat Containing 5 (BIRC5), Plexin-A1 (PLXNA1), Secreted Phosphoprotein 1 (SPP1), Stanniocalcin 2 (STC2) and Chondroitin Sulfate Proteoglycan 5 (CSPG5)), which showed better prognostic performance than the tumour/node/metastasis (TNM) staging system. Moreover, we constructed a regulatory network related to transcription factors (TFs) that further unravelled the regulatory mechanisms of these genes. According to the median value of the risk score, the entire TCGA cohort was divided into high-risk and low-risk groups, and the low-risk group had a better overall survival (OS) rate. To predict the OS rate of HCC, we established a gene- and clinical factor-related nomogram. The receiver operating characteristic (ROC) curve, concordance index (C-index) and calibration curve showed that this model had moderate accuracy. The correlation analysis between the risk score and the infiltration of six common types of immune cells showed that the model could reflect the state of the immune microenvironment in HCC tumours. CONCLUSION Our IRG prognostic model was shown to have value in the monitoring, treatment, and prognostic assessment of HCC patients and could be used as a survival prediction tool in the near future.
Collapse
Affiliation(s)
- Qian Yan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjiang Zheng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Boqing Wang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baoqian Ye
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiyan Luo
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinqian Yang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiongwen Wang
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
12
|
Farzaneh Z, Vosough M, Agarwal T, Farzaneh M. Critical signaling pathways governing hepatocellular carcinoma behavior; small molecule-based approaches. Cancer Cell Int 2021; 21:208. [PMID: 33849569 PMCID: PMC8045321 DOI: 10.1186/s12935-021-01924-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of death due to cancer. Although there are different treatment options, these strategies are not efficient in terms of restricting the tumor cell's proliferation and metastasis. The liver tumor microenvironment contains the non-parenchymal cells with supportive or inhibitory effects on the cancerous phenotype of HCC. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of liver carcinoma cells. Recent studies have established new approaches for the prevention and treatment of HCC using small molecules. Small molecules are compounds with a low molecular weight that usually inhibit the specific targets in signal transduction pathways. These components can induce cell cycle arrest, apoptosis, block metastasis, and tumor growth. Devising strategies for simultaneously targeting HCC and the non-parenchymal population of the tumor could lead to more relevant research outcomes. These strategies may open new avenues for the treatment of HCC with minimal cytotoxic effects on healthy cells. This study provides the latest findings on critical signaling pathways governing HCC behavior and using small molecules in the control of HCC both in vitro and in vivo models.
Collapse
Affiliation(s)
- Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
13
|
Giovannini C, Fornari F, Piscaglia F, Gramantieri L. Notch Signaling Regulation in HCC: From Hepatitis Virus to Non-Coding RNAs. Cells 2021; 10:cells10030521. [PMID: 33804511 PMCID: PMC8000248 DOI: 10.3390/cells10030521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch family includes evolutionary conserved genes that encode for single-pass transmembrane receptors involved in stem cell maintenance, development and cell fate determination of many cell lineages. Upon activation by different ligands, and depending on the cell type, Notch signaling plays pleomorphic roles in hepatocellular carcinoma (HCC) affecting neoplastic growth, invasion capability and stem like properties. A specific knowledge of the deregulated expression of each Notch receptor and ligand, coupled with resultant phenotypic changes, is still lacking in HCC. Therefore, while interfering with Notch signaling might represent a promising therapeutic approach, the complexity of Notch/ligands interactions and the variable consequences of their modulations raises concerns when performed in undefined molecular background. The gamma-secretase inhibitors (GSIs), representing the most utilized approach for Notch inhibition in clinical trials, are characterized by important adverse effects due to the non-specific nature of GSIs themselves and to the lack of molecular criteria guiding patient selection. In this review, we briefly summarize the mechanisms involved in Notch pathway activation in HCC supporting the development of alternatives to the γ-secretase pan-inhibitor for HCC therapy.
Collapse
Affiliation(s)
- Catia Giovannini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-2144903; Fax: +39-051-2143902
| | - Francesca Fornari
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.G.)
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.G.)
| |
Collapse
|
14
|
Singh SN, Malik MZ, Singh RKB. Molecular crosstalk: Notch can manipulate Hes1 and miR-9 behavior. J Theor Biol 2020; 504:110404. [PMID: 32717196 DOI: 10.1016/j.jtbi.2020.110404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/05/2020] [Accepted: 07/08/2020] [Indexed: 01/18/2023]
Abstract
We propose a Hes1-Notch-miR-9 regulatory network and studied the regulating mechanism of miR-9 and Hes1 dynamics driven by Notch. Change in Notch concentration, which serves as a stress signal, can trigger the dynamics of Hes1 and miR-9 at five different states, namely, sTable (2), sustain (1) and mixed (2) states those may correspond to different cellular states. Further, this Notch stress signal introduce time reversal oscillation, which behaves as backward wave, after a certain threshold value of the stress signal and defends the system from moving to apoptosis. We also observe heterogeneous patterns of Hes1, miR-9 and other molecular species in various two dimensional parameter spaces and found that the variability in the patterns is triggered by Hill coefficient and Hes1 stress signal. The phase or bifurcation diagram in time period of oscillation (TN) driven by Notch signal provides all five states, predicts minimum threshold value TNc beyond which tendency to build up backward wave starts and TNc serves as bifurcation point of the system.
Collapse
Affiliation(s)
- Shakti Nath Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - R K Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
15
|
Xue X, Quan Y, Gong L, Gong X, Li Y. A review of the processed Polygonum multiflorum (Thunb.) for hepatoprotection: Clinical use, pharmacology and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113121. [PMID: 32693115 DOI: 10.1016/j.jep.2020.113121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum (Thunb.) (PMT) is a member of Polygonaceae. Traditional Chinese medicine considers that the processed PMT can tonify liver, nourish blood and blacken hair. In recent years, the processed PMT and its active ingredients have significant therapeutic effects on nonalcoholic fatty liver disease, alcoholic fatty liver disease, viral hepatitis, liver fibrosis and liver cancer. AIM OF THE STUDY The main purpose of this review is to provide a critical appraisal of the existing knowledge on the clinical application, hepatoprotective pharmacology and hepatotoxicity, it provides a comprehensive evaluation of the liver function of the processed PMT. MATERIALS AND METHODS A detailed literature search was conducted using various online search engines, such as Pubmed, Google Scholar, Mendeley, Web of Science and China National Knowledge Infrastructure (CNKI) database. The main active components of the processed PMT and the important factors in the occurrence and development of liver diseases are used as key words to carry out detailed literature retrieval. RESULTS In animal and cell models, the processed PMT and active components can treat various liver diseases, such as fatty liver induced by high-fat diet, liver injury and fibrosis induced by drugs, viral transfected hepatitis, hepatocellular carcinoma, etc. They can protect liver by regulating lipid metabolism related enzymes, resisting insulin resistance, decreasing the expression of inflammatory cytokines, inhibiting the activation of hepatic stellate cells, reducing generation of extracellular matrix, promoting cancer cell apoptosis and controlling the growth of tumor cells, etc. However, improperly using of the processed PMT can cause liver injury, which is associated with the standardization of processing, the constitution of the patients, the characteristics of the disease, and the administration of dosage and time. CONCLUSION The processed PMT can treat various liver diseases via reasonably using, and the active compounds (2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, emodin, physcion, etc.) are promising candidate drugs for developing new liver protective agents. However, some components have a "toxic-effective" bidirectional effect, which should be used cautiously.
Collapse
Affiliation(s)
- Xinyan Xue
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunyun Quan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xiaohong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
16
|
Lee HY, Hong IS. Targeting Liver Cancer Stem Cells: An Alternative Therapeutic Approach for Liver Cancer. Cancers (Basel) 2020; 12:cancers12102746. [PMID: 32987767 PMCID: PMC7598600 DOI: 10.3390/cancers12102746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
The first report of cancer stem cell (CSC) from Bruce et al. has demonstrated the relatively rare population of stem-like cells in acute myeloid leukemia (AML). The discovery of leukemic CSCs prompted further identification of CSCs in multiple types of solid tumor. Recently, extensive research has attempted to identity CSCs in multiple types of solid tumors in the brain, colon, head and neck, liver, and lung. Based on these studies, we hypothesize that the initiation and progression of most malignant tumors rely largely on the CSC population. Recent studies indicated that stem cell-related markers or signaling pathways, such as aldehyde dehydrogenase (ALDH), CD133, epithelial cell adhesion molecule (EpCAM), Wnt/β-catenin signaling, and Notch signaling, contribute to the initiation and progression of various liver cancer types. Importantly, CSCs are markedly resistant to conventional therapeutic approaches and current targeted therapeutics. Therefore, it is believed that selectively targeting specific markers and/or signaling pathways of hepatic CSCs is an effective therapeutic strategy for treating chemotherapy-resistant liver cancer. Here, we provide an overview of the current knowledge on the hepatic CSC hypothesis and discuss the specific surface markers and critical signaling pathways involved in the development and maintenance of hepatic CSC subpopulations.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367700, Korea;
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406840, Korea
- Correspondence: ; Tel.: +82-32-899-6315; Fax: +82-32-899-6350
| |
Collapse
|
17
|
Tian H, Zhu X, Lv Y, Jiao Y, Wang G. Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect. Cancer Manag Res 2020; 12:5957-5974. [PMID: 32765096 PMCID: PMC7381782 DOI: 10.2147/cmar.s258196] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a tumor that exhibits glucometabolic reprogramming, with a high incidence and poor prognosis. Usually, HCC is not discovered until an advanced stage. Sorafenib is almost the only drug that is effective at treating advanced HCC, and promising metabolism-related therapeutic targets of HCC are urgently needed. The “Warburg effect” illustrates that tumor cells tend to choose aerobic glycolysis over oxidative phosphorylation (OXPHOS), which is closely related to the features of the tumor microenvironment (TME). The HCC microenvironment consists of hypoxia, acidosis and immune suppression, and contributes to tumor glycolysis. In turn, the glycolysis of the tumor aggravates hypoxia, acidosis and immune suppression, and leads to tumor proliferation, angiogenesis, epithelial–mesenchymal transition (EMT), invasion and metastasis. In 2017, a mechanism underlying the effects of gluconeogenesis on inhibiting glycolysis and blockading HCC progression was proposed. Treating HCC by increasing gluconeogenesis has attracted increasing attention from scientists, but few articles have summarized it. In this review, we discuss the mechanisms associated with the TME, glycolysis and gluconeogenesis and the current treatments for HCC. We believe that a treatment combination of sorafenib with TME improvement and/or anti-Warburg therapies will set the trend of advanced HCC therapy in the future.
Collapse
Affiliation(s)
- Huining Tian
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| |
Collapse
|
18
|
Römermann D, Ansari N, Schultz-Moreira AR, Michael A, Marhenke S, Hardtke-Wolenski M, Longerich T, Manns MP, Wedemeyer H, Vogel A, Buitrago-Molina LE. Absence of Atg7 in the liver disturbed hepatic regeneration after liver injury. Liver Int 2020; 40:1225-1238. [PMID: 32141704 DOI: 10.1111/liv.14425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Autophagy is a critical process in cell survival and the maintenance of homeostasis. However, the implementation of therapeutic approaches based on autophagy mechanisms after liver damage is still challenging. METHODS We used a hepatospecific Atg7-deficient murine model to address this question. RESULTS We showed that the proliferation and regeneration capacity of Atg7-deficient hepatocytes was impaired. On the one hand, Atg7-deficient hepatocytes showed steady-state hyperproliferation. On the other hand, external triggers such as partial hepatectomy (PHx) or cell transplantation did not induce hepatocellular proliferation or liver repopulation. After PHx, hepatocyte proliferation was strongly decreased, accompanied by high mortality. This increase in mortality could be overcome by pharmacological mTOR inhibition. In accordance with hepatocyte hypoproliferation after damage, Atg7-deficient hepatocytes failed to repopulate the liver in a hepatic injury model. Atg7-deficient mice showed hepatic hypertrophy, transient cellular hypertrophy, and high transaminase levels followed by strong perisinusoidal/pericellular fibrosis with age. Their elevated modified hepatic activity index (mHAI) was almost exclusively due to apoptosis without any inflammation. These parameters were associated with variations in the triglyceride content and compromised lipid droplet formation after PHx. Mechanistically, we also observed a modulation of HGF, PAK4, NOTCH3 and YES1, which are proteins involved in cell cycle regulation. CONCLUSION We demonstrated the important role of autophagy in the regeneration capacity of hepatocytes. We showed the causative relationship between autophagy and triglycerides that is essential for promoting liver recovery. Finally, pharmacological mTOR inhibition overcame the impact of autophagy deficiency after liver damage and prevented mortality.
Collapse
Affiliation(s)
- Dorothee Römermann
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Nadiea Ansari
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Adriana Rita Schultz-Moreira
- Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Alina Michael
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Thomas Longerich
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Laura Elisa Buitrago-Molina
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Xu J, Cao D, Zhang D, Zhang Y, Yue Y. MicroRNA-1 facilitates hypoxia-induced injury by targeting NOTCH3. J Cell Biochem 2020; 121:4458-4469. [PMID: 32030815 DOI: 10.1002/jcb.29663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/10/2020] [Indexed: 12/26/2022]
Abstract
Cell proliferation, apoptosis, and autophagy have been reported to be related to myocardial ischemia injury. MicroRNAs have attracted wide attention on regulating cell proliferation, apoptosis, and autophagy. miR-1 expression has been reported to be dysregulated in cardiac tissue or cells with hypoxia, while the exact roles as well as underlying mechanism remain poorly understood. In this study, we investigated the potential roles of miR-1 in cell proliferation, apoptosis, and autophagy in hypoxia-treated cardiac injury and explored the underlying mechanism using H9c2 cells. Results showed that hypoxic stimulation inhibited cell proliferation and the expression of miR-1 but promoted cell apoptosis in H9c2 cells. Moreover, overexpression of miR-1 promoted cell apoptosis and inhibited cell proliferation and autophagy in H9c2 cells treated with hypoxia, while its knockdown played an opposite effect. In addition, bioinformatics, luciferase reporter, and RNA immunoprecipitation analyses indicated that NOTCH3 was a direct target of miR-1 and its upregulation reversed the effects of miR-1 on cell proliferation, apoptosis, and autophagy in hypoxia-treated H9c2 cells. Taken together, our data suggested that miR-1 promoted hypoxia-induced injury by targeting NOTCH3, indicating novel therapeutic targets for treatment of myocardial ischemia injury.
Collapse
Affiliation(s)
- Jinjin Xu
- Department of Cardiovascular Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Dandan Cao
- Intensive Care Unit, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Daping Zhang
- Department of Cardiovascular Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Yuan Zhang
- Department of Cardiovascular Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Yuxia Yue
- Department of Cardiovascular Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| |
Collapse
|
20
|
Pasquier J, Ghiabi P, Chouchane L, Razzouk K, Rafii S, Rafii A. Angiocrine endothelium: from physiology to cancer. J Transl Med 2020; 18:52. [PMID: 32014047 PMCID: PMC6998193 DOI: 10.1186/s12967-020-02244-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
The concept of cancer as a cell-autonomous disease has been challenged by the wealth of knowledge gathered in the past decades on the importance of tumor microenvironment (TM) in cancer progression and metastasis. The significance of endothelial cells (ECs) in this scenario was initially attributed to their role in vasculogenesis and angiogenesis that is critical for tumor initiation and growth. Nevertheless, the identification of endothelial-derived angiocrine factors illustrated an alternative non-angiogenic function of ECs contributing to both physiological and pathological tissue development. Gene expression profiling studies have demonstrated distinctive expression patterns in tumor-associated endothelial cells that imply a bilateral crosstalk between tumor and its endothelium. Recently, some of the molecular determinants of this reciprocal interaction have been identified which are considered as potential targets for developing novel anti-angiocrine therapeutic strategies.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France.
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar.
| | - Pegah Ghiabi
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kais Razzouk
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Arash Rafii
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
21
|
PTENα and PTENβ promote carcinogenesis through WDR5 and H3K4 trimethylation. Nat Cell Biol 2019; 21:1436-1448. [DOI: 10.1038/s41556-019-0409-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
|
22
|
Pan X, Wang C, Zhang T. Physcion Synergistically Enhances the Cytotoxicity of Sorafenib in Hepatocellular Carcinoma. Anat Rec (Hoboken) 2019; 302:2171-2177. [PMID: 31120198 DOI: 10.1002/ar.24179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/16/2018] [Accepted: 12/26/2018] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common human malignancy. Physcion is a naturally occurring anthraquinone derivative found in plant and marine sources. Our previous studies have indicated that physcion could suppress tumor growth and induce apoptosis in HCC. This study was aimed to investigate the effect of a combination of physcion and sorafenib on HCC. Our findings indicated that physcion could significantly augment the antiproliferative and proapoptotic activities of sorafenib in vitro and in vivo. Mechanistically, the synergistic effect correlates with physcion-induced suppression of Notch3/AKT signaling. This preclinical evidence highlights the potential application of physcion in the treatment of HCC. Anat Rec, 302:2171-2177, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Xiaoping Pan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, Tianjin, China.,The People's Hospital of Wuhai, Inner Mongolia, China
| | - Chen Wang
- The People's Hospital of Wuhai, Inner Mongolia, China
| | - Ti Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research for Cancer, Tianjin, China
| |
Collapse
|
23
|
Ahn J, Lee HJ, Oh SJ, Kim W, Mun SJ, Lee JH, Jung CR, Cho HS, Kim DS, Son MJ, Chung KS. Developing scalable cultivation systems of hepatic spheroids for drug metabolism via genomic and functional analyses. Biotechnol Bioeng 2019; 116:1496-1508. [PMID: 30737956 DOI: 10.1002/bit.26954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/18/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Spheroids, a widely used three-dimensional (3D) culture model, are standard in hepatocyte culture as they preserve long-term hepatocyte functionality and enhance survivability. In this study, we investigated the effects of three operation modes in 3D culture - static, orbital shaking, and under vertical bidirectional flow using spheroid forming units (SFUs) on hepatic differentiation and drug metabolism to propose the best for mass production of functionally enhanced spheroids. Spheroids in SFUs exhibited increased hepatic gene expression, albumin secretion, and cytochrome P450 3A4 (CYP3A4) activity during the differentiation period (12 days). SFUs advantages include facilitated mass production and a relatively earlier peak of CYP3A4 activity. However, CYP3A4 activity was not well maintained under dimethyl sulfoxide (DMSO)-free conditions (13-18 days), dramatically reducing drug metabolism capability. Continued shear stimulation without differentiation stimuli in assay conditions markedly attenuated CYP3A4 activity, which was less severe in static conditions. In this condition, SFU spheroids exhibited dedifferentiation characteristics, such as increased proliferation and Notch signaling genes. We found that the dedifferentiation could be overcome by using the serum-free medium formulation. Therefore, we suggest that SFUs represent the best option for the mass production of functionally improved spheroids and so the serum-free conditions should be maintained during drug metabolism analysis.
Collapse
Affiliation(s)
- Jiwon Ahn
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ho-Joon Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Soo Jin Oh
- New Drug Development Center, Asan Medical Center and Convergence Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Wantae Kim
- Biomedical Translational Research Center, KRIBB, Daejeon, Republic of Korea
| | - Seon Ju Mun
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jae-Hye Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Cho-Rock Jung
- Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.,Gene Therapy Unit, KRIBB, Daejeon, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.,Genome Research Center, KRIBB, Daejeon, Republic of Korea
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyung-Sook Chung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Biomedical Translational Research Center, KRIBB, Daejeon, Republic of Korea.,Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
24
|
Giovannini C, Salzano AM, Baglioni M, Vitale M, Scaloni A, Zambrano N, Giannone FA, Vasuri F, D'Errico A, Svegliati Baroni G, Bolondi L, Gramantieri L. Brivanib in combination with Notch3 silencing shows potent activity in tumour models. Br J Cancer 2019; 120:601-611. [PMID: 30765875 PMCID: PMC6461893 DOI: 10.1038/s41416-018-0375-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/03/2018] [Accepted: 12/14/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Sorafenib is the first targeted agent proven to improve survival of patients with advanced hepatocellular carcinoma (HCC) and it has been used in first line treatments with heterogeneous response across patients. Most of the promising agents evaluated in first-line or second-line phase III trials for HCC failed to improve patient survival. The absence of molecular characterisation, including the identification of pathways driving resistance might be responsible for these disappointing results. METHODS 2D DIGE and MS analyses were used to reveal proteomic signatures resulting from Notch3 inhibition in HepG2 cells, combined with brivanib treatment. The therapeutic potential of Notch3 inhibition combined with brivanib treatment was also demonstrated in a rat model of HCC and in cell lines derived from different human cancers. RESULTS Using a proteomic approach, we have shown that Notch3 is strongly involved in brivanib resistance through a p53-dependent regulation of enzymes of the tricarboxylic acid (TCA), both in vitro and in vivo. CONCLUSION We have demonstrated that regulation of the TCA cycle is a common mechanism in different human cancers, suggesting that Notch3 inhibitors combined with brivanib treatment may represent a strong formulation for the treatment of HCC as well as Notch3-driven cancers.
Collapse
Affiliation(s)
- Catia Giovannini
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, Bologna, Italy. .,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Anna Maria Salzano
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Napoli, Italy
| | - Michele Baglioni
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Monica Vitale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy.,CEINGE Biotecnologie Avanzate S.C.aR.L, Napoli, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Napoli, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy.,CEINGE Biotecnologie Avanzate S.C.aR.L, Napoli, Italy
| | | | - Francesco Vasuri
- Pathology Unit, St. Orsola-Malpighi University Hospital, 40138, Bologna, Italy
| | - Antonia D'Errico
- Pathology Unit, St. Orsola-Malpighi University Hospital, 40138, Bologna, Italy
| | | | - Luigi Bolondi
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Laura Gramantieri
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
25
|
Asai R, Tsuchiya H, Amisaki M, Makimoto K, Takenaga A, Sakabe T, Hoi S, Koyama S, Shiota G. CD44 standard isoform is involved in maintenance of cancer stem cells of a hepatocellular carcinoma cell line. Cancer Med 2019; 8:773-782. [PMID: 30636370 PMCID: PMC6382709 DOI: 10.1002/cam4.1968] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. Cancer stem cells (CSCs) have attracted attention as a novel therapeutic target for cancer because they play important roles in the development and aggravation of cancer. CD44 is expressed as a standard isoform (CD44s) and several variant isoforms. CD44v is a major isoform expressed on CSCs of a variety of tumors and has been extensively studied. However, HCC tissues dominantly express CD44s, whose function in CSCs remains unclear. In the present study, we investigated the roles of CD44s in CSCs of HCC. Knock‐out of the CD44 gene in HuH7 HCC cells on which only CD44s is expressed resulted in decreased spheroid formation and increased drug sensitivity. The expression of CSC marker genes, including CD133 and EpCAM, was significantly downregulated in the spheroids of CD44‐deficient cells compared with those in the spheroids of HuH7 cells. In addition, CD44 deficiency impaired antioxidant capacity, concomitant with downregulation of glutathione peroxidase 1 (GPX1) and thioredoxin. Because GPX1 uses the reduced form of glutathione (GSH) to regenerate oxidized cellular components, GSH levels were significantly increased in the CD44‐deficient cells. We also found that NOTCH3 and its target genes were downregulated in the spheroids of CD44‐deficient cells. NOTCH3 expression in HCC tissues was significantly increased compared with that in adjacent nontumor liver tissues and was correlated with CD44 expression. These results suggest that CD44s is involved in maintenance of CSCs in a HCC cell line, possibly through the NOTCH3 signaling pathway.
Collapse
Affiliation(s)
- Ryoma Asai
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Hiroyuki Tsuchiya
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Masataka Amisaki
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan.,Faculty of Medicine, Division of Surgical Oncology, Department of Surgery, Tottori University, Yonago, Japan
| | - Kazuki Makimoto
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Ai Takenaga
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Tomohiko Sakabe
- Faculty of Medicine, Division of Organ Pathology, Department of Pathology, Tottori University, Yonago, Japan
| | - Shotaro Hoi
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Shigemi Koyama
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
26
|
He Q, Du H, Li Y. Retracted Article: MiR-206 reduced the malignancy of hepatocellular carcinoma cells in vitro by inhibiting MET and CTNNB1 gene expressions. RSC Adv 2019; 9:1717-1725. [PMID: 35518051 PMCID: PMC9059747 DOI: 10.1039/c8ra09229j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/08/2019] [Indexed: 11/21/2022] Open
Abstract
The anti-cancer role of miR-206 in hepatocellular carcinoma (HCC) cells has been reported, but its mechanism of action remains poorly understood.
Collapse
Affiliation(s)
- Qiang He
- Department of Hepatobiliary Surgery
- Linyi People's Hospital
- Linyi
- China
| | - Haiyan Du
- Pediatric Intensive Care Unit
- Linyi People's Hospital
- Linyi
- China
| | - Yundong Li
- Department of Oncology
- Jining No. 1 People's Hospital
- Jining
- China
| |
Collapse
|
27
|
Su T, Yang X, Deng JH, Huang QJ, Huang SC, Zhang YM, Zheng HM, Wang Y, Lu LL, Liu ZQ. Evodiamine, a Novel NOTCH3 Methylation Stimulator, Significantly Suppresses Lung Carcinogenesis in Vitro and in Vivo. Front Pharmacol 2018; 9:434. [PMID: 29765324 PMCID: PMC5938359 DOI: 10.3389/fphar.2018.00434] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO's anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO's anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment.
Collapse
Affiliation(s)
- Tao Su
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xia Yang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-Hua Deng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiu-Ju Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Su-Chao Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Min Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Ming Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
28
|
Huang XY, Gan RH, Xie J, She L, Zhao Y, Ding LC, Su BH, Zheng DL, Lu YG. The oncogenic effects of HES1 on salivary adenoid cystic carcinoma cell growth and metastasis. BMC Cancer 2018; 18:436. [PMID: 29665790 PMCID: PMC5904989 DOI: 10.1186/s12885-018-4350-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/08/2018] [Indexed: 12/19/2022] Open
Abstract
Background Our previous study demonstrated a close relationship between NOTCH signaling pathway and salivary adenoid cystic carcinoma (SACC). HES1 is a well-known target gene of NOTCH signaling pathway. The purpose of the present study was to further explore the molecular mechanism of HES1 in SACC. Methods Comparative transcriptome analyses by RNA-Sequencing (RNA-Seq) were employed to reveal NOTCH1 downstream gene in SACC cells. Immunohistochemical staining was used to detect the expression of HES1 in clinical samples. After HES1-siRNA transfected into SACC LM cells, the cell proliferation and cell apoptosis were tested by suitable methods; animal model was established to detect the change of growth ability of tumor. Transwell and wound healing assays were used to evaluate cell metastasis and invasion. Results We found that HES1 was strongly linked to NOTCH signaling pathway in SACC cells. The immunohistochemical results implied the high expression of HES1 in cancerous tissues. The growth of SACC LM cells transfected with HES1-siRNAs was significantly suppressed in vitro and tumorigenicity in vivo by inducing cell apoptosis. After HES1 expression was silenced, the SACC LM cell metastasis and invasion ability was suppressed. Conclusions The results of this study demonstrate that HES1 is a specific downstream gene of NOTCH1 and that it contributes to SACC proliferation, apoptosis and metastasis. Our findings serve as evidence indicating that HES1 may be useful as a clinical target in the treatment of SACC. Electronic supplementary material The online version of this article (10.1186/s12885-018-4350-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Yu Huang
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China.,Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China
| | - Rui-Huan Gan
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China.,Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China
| | - Jian Xie
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China.,Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China
| | - Lin She
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China.,Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China
| | - Yong Zhao
- Department of Pathology, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China
| | - Lin-Can Ding
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China.,Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China
| | - Bo-Hua Su
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China.,Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China
| | - Da-Li Zheng
- Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China.
| | - You-Guang Lu
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China. .,Key laboratory of stomatology, School of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, China.
| |
Collapse
|
29
|
Novel 1,4-naphthoquinone derivatives induce apoptosis via ROS-mediated p38/MAPK, Akt and STAT3 signaling in human hepatoma Hep3B cells. Int J Biochem Cell Biol 2018; 96:9-19. [DOI: 10.1016/j.biocel.2018.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
|
30
|
Ni MM, Wang YR, Wu WW, Xia CC, Zhang YH, Xu J, Xu T, Li J. Novel Insights on Notch signaling pathways in liver fibrosis. Eur J Pharmacol 2018; 826:66-74. [PMID: 29501868 DOI: 10.1016/j.ejphar.2018.02.051] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is characterized by an increased and altered deposition of extracellular matrix (ECM) proteins that make up excessive tissue scarring and promote chronic liver injury. Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in the progression of liver fibrosis. However, the mechanisms involved in the development of liver fibrosis are only now beginning to be unveiled. The Notch pathway is a fundamental and highly conserved pathway able to control cell-fate, including cell proliferation, differentiation, apoptosis, regeneration and other cellular activities. Recently, the deregulation of Notch cascade has been found involved in many pathological processes, including liver fibrosis. These data give evidence for a role for Notch signaling in liver fibrosis. In addition,more and more date are available on the role of Notch pathways in the process. Therefore, this review focuses on the current knowledge about the Notch signaling pathway, which dramatically takes part in HSC activation and liver fibrosis, and look ahead on new perspectives of Notch signaling pathway research. Furthermore, we will summarize this new evidence on the different interactions in Notch signaling pathway-regulated liver fibrosis, and support the potentiality of putative biomarkers and unique therapeutic targets.
Collapse
Affiliation(s)
- Ming-Ming Ni
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing 210001,China
| | - Ya-Rui Wang
- TCM Research Institution, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001,China
| | - Wen-Wen Wu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing 210001,China
| | - Chong-Cai Xia
- TCM Research Institution, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001,China
| | - Yi-He Zhang
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing 210001,China
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing 210001,China.
| | - Tao Xu
- Institute for Liver Diseases of Anhui Medical University(AMU), Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Jun Li
- Institute for Liver Diseases of Anhui Medical University(AMU), Anhui Medical University, Hefei 230032, Anhui Province, China
| |
Collapse
|
31
|
Zhu W, Liang Q, Yang X, Yu Y, Shen X, Sun G. Combination of sorafenib and Valproic acid synergistically induces cell apoptosis and inhibits hepatocellular carcinoma growth via down-regulating Notch3 and pAkt. Am J Cancer Res 2017; 7:2503-2514. [PMID: 29312803 PMCID: PMC5752690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023] Open
Abstract
Sorafenib is currently the only approved first-line targeted drug against advanced hepatocellular carcinoma (HCC). However, unsatisfactory efficacy and resistance of sorafenib raises the urgent need to develop more effective therapeutic strategies for HCC. Here, we evaluated the effects of combination of histone deacetylase inhibitor Valproic acid (VPA) and sorafenib in HCC both in vitro and in vivo. Co-treatment of sorafenib and VPA synergistically inhibited HCC cell viability, induced cell apoptosis, along with the up-regulation of p21, Bax, cleaved caspase9, cleaved caspase3, cleaved PARP and down-regulation of Bcl-xL, suggesting this combination activated intrinsic apoptotic pathway. Our further experiment results showed that sorafenib plus VPA decreased tumor burden more effectively than sorafenib or VPA mono-therapy in nude mice subcutaneous xenograft model. Histological and serological analysis demonstrated well tolerance of this combination in vivo. On a molecular level, our results presented a possible crosstalk between Notch3 and Akt signaling. Sorafenib increased the expression of Notch3 in a dosage dependent manner, along with the phosphorylation of Akt in HCC cells. In comparison, this induction of Notch3 and pAkt could be decreased by VPA, implying that Notch3 and pAkt are of significance in the treatment of HCC, which may account for the synergism of sorafenib and VPA. In conclusion, the combination of sorafenib and VPA offers a potential targeting therapeutic regimen for HCC in the future.
Collapse
Affiliation(s)
- Wanhu Zhu
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan UniversityShanghai 200240, China
| | - Qing Liang
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan UniversityShanghai 200240, China
| | - Xu Yang
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan UniversityShanghai 200240, China
| | - Yan Yu
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan UniversityShanghai 200240, China
| | - Xiaoying Shen
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan UniversityShanghai 200240, China
| | - Guangchun Sun
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan UniversityShanghai 200240, China
| |
Collapse
|
32
|
Flores-Téllez TNJ, Villa-Treviño S, Piña-Vázquez C. Road to stemness in hepatocellular carcinoma. World J Gastroenterol 2017; 23:6750-6776. [PMID: 29085221 PMCID: PMC5645611 DOI: 10.3748/wjg.v23.i37.6750] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/27/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Carcinogenic process has been proposed to relay on the capacity to induce local tissue damage and proliferative repair. Liver has a great regeneration capacity and currently, most studies point towards the dominant role of hepatocytes in regeneration at all levels of liver damage. The most frequent liver cancer is hepatocellular carcinoma (HCC). Historical findings originally led to the idea that the cell of origin of HCC might be a progenitor cell. However, current linage tracing studies put the progenitor hypothesis of HCC origin into question. In agreement with their dominant role in liver regeneration, mature hepatocytes are emerging as the cell of origin of HCC, although, the specific hepatocyte subpopulation of origin is yet to be determined. The relationship between the cancer cell of origin (CCO) and cancer-propagating cells, known as hepatic cancer stem cell (HCSC) is unknown. It has been challenging to identify the definitive phenotypic marker of HCSC, probably due to the existence of different cancer stem cells (CSC) subpopulations with different functions within HCC. There is a dynamic interconversion among different CSCs, and between CSC and non-CSCs. Because of that, CSC-state is currently defined as a description of a highly adaptable and dynamic intrinsic property of tumor cells, instead of a static subpopulation of a tumor. Altered conditions could trigger the gain of stemness, some of them include: EMT-MET, epigenetics, microenvironment and selective stimulus such as chemotherapy. This CSC heterogeneity and dynamism makes them out reach from therapeutic protocols directed to a single target. A further avenue of research in this line will be to uncover mechanisms that trigger this interconversion of cell populations within tumors and target it.
Collapse
Affiliation(s)
- Teresita NJ Flores-Téllez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| |
Collapse
|
33
|
Fang M, Zheng WJ, Yao M, Dong ZZ, Yao DF. Novel specific markers for hepatocellular carcinoma: Perspective on clinical applications. Shijie Huaren Xiaohua Zazhi 2017; 25:865-873. [DOI: 10.11569/wcjd.v25.i10.865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Despite continuous global efforts aimed at HCC eradication and improvements in various treatment techniques, the prognosis of HCC remains very poor. How to monitor malignant transformation of hepatocytes or diagnose HCC at early stage is still a medical challenge. A growing understanding of the multiple pathogenic factors including hepatitis B virus or hepatitis C virus infection, lipid accumulation, aflatoxin B1 intake and so on suggests that hepatocarcinogenesis is a multistep process. A large number of oncogenes or tumor suppressor genes have been identified. Early screening of HCC patients has been reported to confer a survival benefit. Although serum alpha-fetoprotein (AFP) and hepatoma-specific AFP have been used as conventional tumor markers, they often show false-positive results and lack sufficient sensitivity and specificity. In order to provide optimal treatment for each patient with HCC, more precise and effective biomarkers are urgently needed in all phases of management from early detection to staging, treatment monitoring, and prognosis evaluation. Recently, numerous studies have shown the clinical utility of novel blood-based biomarkers, such as circulating tumor cells, key signal molecules or specific proteins, long non-coding RNAs, and microRNAs. In this article, we will review some novel HCC-related biomarkers and discuss their future perspective on clinical applications.
Collapse
|