1
|
Lu Y, Men X, Wu C, Wei X, Chen M, Wang J. Speciation of selenium-containing small molecules in urine and cell lysate by CE-ICPMS with in-capillary enrichment. Talanta 2025; 281:126929. [PMID: 39321561 DOI: 10.1016/j.talanta.2024.126929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
The quantitative speciation of selenium in biological systems is highly important for evaluating health status and elucidating transformations of Se species in physiological and pathological processes. Hyphenation of capillary electrophoresis with inductively coupled plasma mass spectrometry (CE-ICPMS) is promising for this purpose. However, the unfavorable or insufficient sensitivity for selenium analysis with CE-ICPMS seriously limits its practical applications in biological analysis, e.g., cell analysis. Therefore, it is crucial to improve the detection sensitivity for Se species. In this study, CE-ICPMS sensitivities for five selenium species (selenocystamine (SeA), methyl-2-acetamido-2-deoxy-1-seleno-β-d-galactopyranoside (SeSug 1), selenomethionine (SeMet), Se-Methylselenocysteine (MeSeCys) and selenocystine (SeCys)) were improved by in-capillary stacking via pH gradient between the zones of sample-leading buffer and the incorporation of isopropanol. The improvement on sensitivity of up to 9.9 folds was achieved in different biological samples, with LODs of 0.29-0.52 μg L-1. This approach was further applied for Se speciation in cell lysate, urine and culture medium. It showed that SeMet was more readily reduced in the medium and favorably accumulated by HepG2, HuH-7 and HCCLM3 cells with respect to SeSug 1 and MeSeCys. In cells, all the three Se species were largely transformed into other Se species. Furthermore, more than 70 % of SeMet reduced in medium was transformed into unknown Se species after 48-h interaction with cells.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xue Men
- Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming, 650504, China
| | - Chengxin Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xing Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Mingli Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
2
|
Du C, Wang P, Li Y, Cong X, Huang D, Chen S, Zhu S. Investigation of selenium and selenium species in Cardamine violifolia using in vitro digestion coupled with a Caco-2 cell monolayer model. Food Chem 2024; 444:138675. [PMID: 38335688 DOI: 10.1016/j.foodchem.2024.138675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Inadequate Se intake can enhance vulnerability to certain health risks, with supplementation lessening these risks. This study investigated the bioavailability of Se and Se species in five Se compounds and in Se-rich Cardamine violifolia using in vitro digestion coupled with a Caco-2 cell monolayer model, which enabled the study of Se transport and uptake. Translocation results showed that SeCys2 and MeSeCys had high translocation rates in C. violifolia leaves (CVLs). The uptake rate of organic Se increased with time, and MeSeCys exhibited a higher uptake rate than that for SeCys2 and SeMet. The translocation mechanisms of SeMet, Se(IV), and Se(VI) were passive transport, whereas those of SeCys2 and MeSeCys were active transport. The bioavailability of organic Se was higher than that of inorganic Se, with a total Se bioavailability in CVLs of 49.11 %. This study would provide a theoretical basis for the application of C. violifolia in the functional food.
Collapse
Affiliation(s)
- Chaodong Du
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peiyu Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yue Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, Hubei 445000, China; National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore
| | - Shangwei Chen
- Analysis and Testing Center, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Song Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Hou Y, Chen X, Zhang M, Yang S, Liao A, Pan L, Wang Z, Shen X, Yuan X, Huang J. Selenium-Chelating Peptide Derived from Wheat Gluten: In Vitro Functional Properties. Foods 2024; 13:1819. [PMID: 38928761 PMCID: PMC11203129 DOI: 10.3390/foods13121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The efficacy of selenium-chelating polypeptides derived from wheat protein hydrolysate (WPH-Se) includes enhancing antioxidant capacity, increasing bioavailability, promoting nutrient absorption, and improving overall health. This study aimed to enhance the bioavailability and functional benefits of exogenous selenium by chelating with wheat gluten protein peptides, thereby creating bioactive peptides with potentially higher antioxidant capabilities. In this study, WPH-Se was prepared with wheat peptide and selenium at a mass ratio of 2:1, under a reaction system at pH 8.0 and 80 °C. The in vitro antioxidant activity of WPH-Se was evaluated by determining the DPPH, OH, and ABTS radical scavenging rate and reducing capacity under different conditions, and the composition of free amino acids and bioavailability were also investigated at various digestion stages. The results showed that WPH-Se possessed significant antioxidant activities under different conditions, and DPPH, OH, and ABTS radical scavenging rates and reducing capacity remained high at different temperatures and pH values. During gastrointestinal digestion in vitro, both the individual digestate and the final digestate maintained high DPPH, OH, and ABTS radical scavenging rates and reducing capacity, indicating that WPH-Se was able to withstand gastrointestinal digestion and exert antioxidant effects. Post-digestion, there was a marked elevation in tryptophan, cysteine, and essential amino acids, along with the maintenance of high selenium content in the gastrointestinal tract. These findings indicate that WPH-Se, with its enhanced selenium and amino acid profile, serves as a promising ingredient for dietary selenium and antioxidant supplementation, potentially enhancing the nutritional value and functional benefits of wheat gluten peptides.
Collapse
Affiliation(s)
- Yinchen Hou
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Xinyang Chen
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Mingyi Zhang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Shengru Yang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Aimei Liao
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Long Pan
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Zhen Wang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Xiaolin Shen
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Xiaoqing Yuan
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| |
Collapse
|
4
|
Yu L, Li Y, Qu W, Zheng Y, Chen X, Fu S, Qu J, Tian J, Cheng S, Cong X, Fan B, Wang C. Systemic subchronic toxicity and comparison of four selenium nutritional supplements by 90-day oral exposure in Sprague-Dawley rats. Food Chem Toxicol 2023; 181:114059. [PMID: 37758048 DOI: 10.1016/j.fct.2023.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
To evaluate and compare the safety of four selenium supplements, namely Se-enriched peptides (SeP), yeast selenium (SeY), L-Se-methylselenocysteine (L-SeMc) and sodium selenite (Na2SeO3), the subchronic toxicity study was designed by 90-day gavage administration in Sprague-Dawley rats. The doses of SeP, SeY, L-SeMc and Na2SeO3 were 0.15, 0.30 and 0.60 mg/kg bw/day, with additional dose of 0.45 mg/kg L-SeMc (All dose calculated as Se). Symptoms like growling, hair loss and significant weight loss were found at 0.60 mg/kg of L-SeMc, but not in other groups. At the dose of 0.60 mg/kg, females in Na2SeO3, SeY and L-SeMc groups showed significant elevations in ALT and/or ALP. Pathologic manifestations such as bile duct hyperplasia and cholestasis were predominantly found in females at 0.6 mg/kg of L-SeMc and SeY groups, and in males at same dose of L-SeMc group showed marked testicular atrophy. 0.60 mg/kg of SeY and Na2SeO3, and 0.30, 0.45, 0.60 mg/kg of L-SeMc induced significant reductions in sperm motility rates, rapid movement and amount. In conclusion, the NOAEL of SeP, SeY, L-SeMc, Na2SeO3 was all 0.30 mg/kg for female, and 0.60, 0.30, 0.15 and 0.30 mg/kg for male respectively. Liver and reproductive organs are possible toxic target organs of hyper selenium.
Collapse
Affiliation(s)
- Lu Yu
- School of Public Health, Wuhan University, Wuhan, 430079, China; Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Yanmei Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Wen Qu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Yanhua Zheng
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Xuejiao Chen
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Shaohua Fu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Jingjing Qu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Jie Tian
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xin Cong
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Bolin Fan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China.
| | - Chunhong Wang
- School of Public Health, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
5
|
Song M, Wan Y, Si J, Yao Q, Man T, Mu Y, Huang Y, Zhu L, Zhu C, Deng S. Point-of-Care Diagnosis on Selenium Nutrition Based on Time-Resolved Fluorometric Glycoaffinity Chromatography. Anal Chem 2023; 95:14797-14804. [PMID: 37737115 DOI: 10.1021/acs.analchem.3c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Given the lack of timely evaluation of the well-received selenium fortification, a neat lateral-flow chromatographic solution was constructed here by using the recently identified urinary selenosugar (Sel) as a strongly indicative marker. As there are no ready-made receptors for this synthetic standard, phenylboronic acid (PBA) esterification and Dolichos biflorus agglutinin (DBA) affinity joined up to pinch and pin down the analyte into a sandwich-type glycol complex. Pilot lectin screening on homemade glycan microarrays verified such a new pairing between dual recognizers as PBA-Sel-DBA with a firm monosaccharide-binding constant. To quell the sample autofluorescence, europium nanoparticles with efficient long-life afterglow were employed as conjugating probes under 1 μs excitation. After systematic process optimizations, the prepared Sel-dipstick achieved swift and sensitive fluorometry over the physiological level of the target from 0.1 to 10 μM with a detection limit down to 0.06 μM. Further efforts were made to eliminate matrix effects from both temperature and pH via an approximate formula. Upon completion, the test strips managed to quantify the presence of Sel in not just imitated but real human urine, with comparable results to those in the references. As far as we know, this would be the first in-house prototype for user-friendly and facile diagnosis of Se nutrition with fair accuracy as well as selectivity. Future endeavors will be invested to model a more traceable Se-supplementary plan based on the rhythmic feedback of Sel excretion.
Collapse
Affiliation(s)
- Meiyan Song
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yao Mu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yaqi Huang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shengyuan Deng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
6
|
Takahashi K, Ochi A, Mihara H, Ogra Y. Comparison of Nutritional Availability of Biogenic Selenium Nanoparticles and Chemically Synthesized Selenium Nanoparticles. Biol Trace Elem Res 2023; 201:4861-4869. [PMID: 36648599 DOI: 10.1007/s12011-023-03567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Selenium (Se) is an essential micronutrient, and animals biosynthesize selenoproteins from various selenocompounds such as inorganic salts and organic selenocompounds as a Se source. In addition to the inorganic and organic forms of Se, it is also known that elemental Se is biologically synthesized at the nanoscale in nature. Biologically synthesized Se nanoparticles (Se-NPs), i.e., biogenic Se-NPs (Se-BgNPs), have not been fully investigated as a Se source compared with the other forms of Se. In this study, we evaluated the nutritional availability of Se-BgNPs biosynthesized in E. coli and revealed that Se-BgNPs were less assimilated into selenoproteins in rats as a Se source than inorganic Se salt or chemically synthesized Se-NPs. Se-BgNPs showed tolerance toward digestion and low absorbability in gut, which resulted in the low nutritional availability. Se-BgNPs seem to be coated with a biomaterial that functions to reduce their toxicity toward E. coli and at the same time lowers their availability to animals.
Collapse
Affiliation(s)
- Kazuaki Takahashi
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8675, Japan
- Graduate School of Horticulture, Chiba University, Inage, Chiba, 263-8522, Japan
| | - Anna Ochi
- Laboratory of Applied Molecular Microbiology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Hisaaki Mihara
- Laboratory of Applied Molecular Microbiology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8675, Japan.
| |
Collapse
|
7
|
Kałucka M, Roszczyk A, Klimaszewska M, Kaleta B, Drelich E, Błażewicz A, Górska-Jakubowska S, Malinowska E, Król M, Prus AM, Trześniowska K, Wołczyńska A, Dorożyński P, Zagożdżon R, Turło J. Optimization of Se- and Zn-Enriched Mycelium of Lentinula edodes (Berk.) Pegler as a Dietary Supplement with Immunostimulatory Activity. Nutrients 2023; 15:4015. [PMID: 37764798 PMCID: PMC10535943 DOI: 10.3390/nu15184015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Mycelial cultures of Lentinula edodes, an edible and medicinal mushroom, have been used in our previous research to obtain selenium-containing immunomodulatory preparations. Our current attempts to obtain a new preparation containing both selenium and zinc, two micronutrients necessary for the functioning of the immune system, extended our interest in the simultaneous accumulation of these elements by mycelia growing in media enriched with selenite and zinc(II) ions. Subsequently, we have studied the effects of new L. edodes mycelium water extracts with different concentrations of selenium and zinc on the activation of T cell fraction in human peripheral blood mononuclear cells (PBMCs). Flow cytometry analysis was used to measure the expression of activation markers on human CD4+ and CD8+ T cells stimulated by anti-CD3 and anti-CD3/CD28 antibodies (Abs). It was demonstrated that statistically significant changes were observed for PD-1 and CD25 antigens on CD8+ T cells. The selenium and zinc content in the examined preparations modified the immunomodulatory activity of mycelial polysaccharides; however, the mechanisms of action of various active ingredients in the mycelial extracts seem to be different.
Collapse
Affiliation(s)
- Małgorzata Kałucka
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.R.); (B.K.)
| | - Marzenna Klimaszewska
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.R.); (B.K.)
| | - Ewelina Drelich
- Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (E.D.)
| | - Anna Błażewicz
- Department of Pathobiochemistry and Interdisiciplinary Applications of Ion Chromatography, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Sandra Górska-Jakubowska
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Eliza Malinowska
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Marek Król
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | | | - Katarzyna Trześniowska
- Department of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (K.T.); (A.W.)
| | - Aleksandra Wołczyńska
- Department of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (K.T.); (A.W.)
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.R.); (B.K.)
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| |
Collapse
|
8
|
Wu J, Xia C, Liu C, Zhang Q, Xia C. The role of gut microbiota and drug interactions in the development of colorectal cancer. Front Pharmacol 2023; 14:1265136. [PMID: 37680706 PMCID: PMC10481531 DOI: 10.3389/fphar.2023.1265136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The human gut microbiota is a complex ecosystem regulating the host's environmental interaction. The same functional food or drug may have varying bioavailability and distinct effects on different individuals. Drugs such as antibiotics can alter the intestinal flora, thus affecting health. However, the relationship between intestinal flora and non-antibiotic drugs is bidirectional: it is not only affected by drugs; nevertheless, it can alter the drug structure through enzymes and change the bioavailability, biological activity, or toxicity of drugs to improve their efficacy and safety. This review summarizes the roles and mechanisms of antibiotics, antihypertensive drugs, nonsteroidal anti-inflammatory drugs, lipid-lowering drugs, hypoglycemic drugs, virus-associated therapies, metabolites, and dietary in modulating the colorectal cancer gut microbiota. It provides a reference for future antitumor therapy targeting intestinal microorganisms.
Collapse
Affiliation(s)
- Jinna Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Pharmacy, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Can Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Forde S, Vozza G, Brayden DJ, Byrne HJ, Frías JM, Ryan SM. Evaluation of Selenomethionine Entrapped in Nanoparticles for Oral Supplementation Using In Vitro, Ex Vivo and In Vivo Models. Molecules 2023; 28:molecules28072941. [PMID: 37049704 PMCID: PMC10095941 DOI: 10.3390/molecules28072941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Selenium methionine (SeMet) is an essential micronutrient required for normal body function and is associated with additional health benefits. However, oral administration of SeMet can be challenging due to its purported narrow therapeutic index, low oral bioavailability, and high susceptibility to oxidation. To address these issues, SeMet was entrapped in zein-coated nanoparticles made from chitosan using an ionic gelation formulation. The high stability of both the SeMet and selenomethionine nanoparticles (SeMet-NPs) was established using cultured human intestinal and liver epithelial cells, rat liver homogenates, and rat intestinal homogenates and lumen washes. Minimal cytotoxicity to Caco-2 and HepG2 cells was observed for SeMet and SeMet-NPs. Antioxidant properties of SeMet were revealed using a Reactive Oxygen Species (ROS) assay, based on the observation of a concentration-dependent reduction in the build-up of peroxides, hydroxides and hydroxyl radicals in Caco-2 cells exposed to SeMet (6.25–100 μM). The basal apparent permeability coefficient (Papp) of SeMet across isolated rat jejunal mucosae mounted in Ussing chambers was low, but the Papp was increased when presented in NP. SeMet had minimal effects on the electrogenic ion secretion of rat jejunal and colonic mucosae in Ussing chambers. Intra-jejunal injections of SeMet-NPs to rats yielded increased plasma levels of SeMet after 3 h for the SeMet-NPs compared to free SeMet. Overall, there is potential to further develop SeMet-NPs for oral supplementation due to the increased intestinal permeability, versus free SeMet, and the low potential for toxicity.
Collapse
Affiliation(s)
- Shane Forde
- UCD School of Veterinary Medicine, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Giulianna Vozza
- Environmental Science and Health Institute, Technological University Dublin, Grangegorman, D07 EWV4 Dublin, Ireland
- FOCAS Research Institute, Technological University Dublin, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland
| | - David J. Brayden
- UCD School of Veterinary Medicine, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland
| | - Jesus M. Frías
- Environmental Science and Health Institute, Technological University Dublin, Grangegorman, D07 EWV4 Dublin, Ireland
| | - Sinéad M. Ryan
- UCD School of Veterinary Medicine, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Correspondence: ; Tel.: +353-1-7166215
| |
Collapse
|
10
|
Antioxidant Strategies to Modulate NETosis and the Release of Neutrophil Extracellular Traps during Chronic Inflammation. Antioxidants (Basel) 2023; 12:antiox12020478. [PMID: 36830036 PMCID: PMC9952818 DOI: 10.3390/antiox12020478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Extracellular traps are released by neutrophils and other immune cells as part of the innate immune response to combat pathogens. Neutrophil extracellular traps (NETs) consist of a mesh of DNA and histone proteins decorated with various anti-microbial granule proteins, such as elastase and myeloperoxidase (MPO). In addition to their role in innate immunity, NETs are also strongly linked with numerous pathological conditions, including atherosclerosis, sepsis and COVID-19. This has led to significant interest in developing strategies to inhibit NET release. In this study, we have examined the efficacy of different antioxidant approaches to selectively modulate the inflammatory release of NETs. PLB-985 neutrophil-like cells were shown to release NETs on exposure to phorbol myristate acetate (PMA), hypochlorous acid or nigericin, a bacterial peptide derived from Streptomyces hygroscopicus. Studies with the probe R19-S indicated that treatment of the PLB-985 cells with PMA, but not nigericin, resulted in the production of HOCl. Therefore, studies were extended to examine the efficacy of a range of antioxidant compounds that modulate HOCl production by MPO to prevent NETosis. It was shown that thiocyanate, selenocyanate and various nitroxides could prevent NETosis in PLB-985 neutrophils exposed to PMA and HOCl, but not nigericin. These results were confirmed in analogous experiments with freshly isolated primary human neutrophils. Taken together, these data provide new information regarding the utility of supplementation with MPO inhibitors and/or HOCl scavengers to prevent NET release, which could be important to more specifically target pathological NETosis in vivo.
Collapse
|
11
|
Huang Q, Wang S, Yang X, Han X, Liu Y, Khan NA, Tan Z. Effects of organic and inorganic selenium on selenium bioavailability, growth performance, antioxidant status and meat quality of a local beef cattle in China. Front Vet Sci 2023; 10:1171751. [PMID: 37180071 PMCID: PMC10172650 DOI: 10.3389/fvets.2023.1171751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Selenium (Se) is an essential nutrient with multiple health benefits to humans and animals. Cattle generally require dietary Se supplementation to meet their daily requirements. The two main forms of dietary Se in cattle are organic Se and inorganic Se. Data comparing the health and productivity effects of organic Se and inorganic Se on cattle are still insufficient, and it is necessary to conduct more research to evaluate the bioavailability, nutritional value, deposition, and body functions of Se sources in different breeds and physiological stages of cattle raised in areas with different Se levels. The objectives of this study were to determine the effects of organic and inorganic sources of Se on plasma biochemical indices, Se bioavailability, deposition in body tissues and organs, growth performance, antioxidant capacity and meat quality of beef cattle raised in Se-deficient areas. Fifteen Chinese Xiangzhong Black beef cattle with an average weight of 254.5 ± 8.85 kg were assigned to three dietary groups. The three groups were fed the same basal ration and supplemented with either an inorganic [sodium selenite (SS)] or organic [selenomethionine (SM) or Se-enriched yeast (SY)] source of Se (0.1 mg/kg dry matter) for 60 days. At the end of the experiment, three cattle from each group were randomly selected and slaughtered, and samples were collected from tissues and organs for analysis. The results revealed that growth performance, slaughter performance, Se content of tissues and organs, meat quality characteristics including chemical composition, pH45min, pH24h, drip loss, and cooking losses did not differ (p > 0.05) due to supplementation of the different organic and inorganic sources of Se. SM and SY were more effective in increasing (p < 0.05) immunoglobulin M (IgM) concentrations in the blood and reducing (p < 0.05) malondialdehyde (MDA) content in the longissimus dorsi than SS. In conclusion, organic Se is more effective than inorganic Se in improving the immune and antioxidant capacity of Chinese Xiangzhong Black beef cattle.
Collapse
Affiliation(s)
- Qi Huang
- CAS Key Laboratory for Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Shuiping Wang
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, China
- *Correspondence: Shuiping Wang, ; Xuefeng Han,
| | - Xin Yang
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xuefeng Han
- CAS Key Laboratory for Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- *Correspondence: Shuiping Wang, ; Xuefeng Han,
| | - Yong Liu
- CAS Key Laboratory for Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Nazir Ahmad Khan
- CAS Key Laboratory for Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
12
|
An analysis of the content changes in free and combinative forms of organic selenium in radish sprouts cultivated with solutions of selenoamino acids. Food Res Int 2022; 158:111558. [DOI: 10.1016/j.foodres.2022.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
|
13
|
Zenitani M, Nose S, Oue T. Clinical Usefulness of Blenderized Food for Selenium Deficiency in Pediatric Patients with Severe Motor and Intellectual Disabilities. ANNALS OF NUTRITION & METABOLISM 2022; 78:345-351. [PMID: 35700713 DOI: 10.1159/000525450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION This study aimed to assess the preventive or therapeutic effects of blenderized food (BF) on selenium deficiency in pediatric patients with severe motor and intellectual disabilities (SMID). METHODS The medical records of all 40 consecutive pediatric patients with SMID who underwent nutritional assessment were retrospectively reviewed and compared between two groups: the enteral formula (EF) group and the BF group fed with BF providing more than 10% of total caloric intake. Next, for the selenium-deficient patients who were newly started on blenderized tube feeds after the first nutritional assessment, improvement of selenium deficiency and change of dietary contents were assessed. RESULTS The BF group patients had a significantly lower prevalence of selenium deficiency and higher serum selenium levels than the EF group patients. In all 7 selenium-deficient patients who started blenderized tube feeds after the first nutritional assessment, serum selenium levels were significantly increased at the second nutritional assessment, even though total selenium intake, selenium intake by EF, and total caloric intake did not differ significantly, and, in fact, caloric intake was significantly decreased by EF. CONCLUSION Combined feeding of BFs can be useful for prevention and therapy of selenium deficiency in pediatric SMID patients.
Collapse
Affiliation(s)
- Masahiro Zenitani
- Department of Pediatric Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Satoko Nose
- Department of Pediatric Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takaharu Oue
- Department of Pediatric Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
14
|
Ramírez-Acosta S, Uhlírová R, Navarro F, Gómez-Ariza JL, García-Barrera T. Antagonistic Interaction of Selenium and Cadmium in Human Hepatic Cells Through Selenoproteins. Front Chem 2022; 10:891933. [PMID: 35692693 PMCID: PMC9174642 DOI: 10.3389/fchem.2022.891933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cadmium (Cd) is a highly toxic heavy metal for humans and animals, which is associated with acute hepatotoxicity. Selenium (Se) confers protection against Cd-induced toxicity in cells, diminishing the levels of ROS and increasing the activity of antioxidant selenoproteins such as glutathione peroxidase (GPx). The aim of this study was to evaluate the antagonistic effect of selenomethionine (SeMet) against Cd toxicity in HepG2 cells, through the modulation of selenoproteins. To this end, the cells were cultured in the presence of 100 µM SeMet and 5 μM, 15 µM, and 25 µM CdCl2 and a combination of both species for 24 h. At the end of the experiment, cell viability was determined by MTT assay. The total metal content of Cd and Se was analyzed by triple-quadrupole inductively coupled plasma–mass spectrometry (ICP-QqQ-MS). To quantify the concentration of three selenoproteins [GPx, selenoprotein P (SELENOP), and selenoalbumin (SeAlb)] and selenometabolites, an analytical methodology based on column switching and a species-unspecific isotopic dilution approach using two-dimensional size exclusion and affinity chromatography coupled to ICP-QqQ-MS was applied. The co-exposure of SeMet and Cd in HepG2 cells enhanced the cell viability and diminished the Cd accumulation in cells. Se supplementation increased the levels of selenometabolites, GPx, SELENOP, and SeAlb; however, the presence of Cd resulted in a significant diminution of selenometabolites and SELENOP. These results suggested that SeMet may affect the accumulation of Cd in cells, as well as the suppression of selenoprotein synthesis induced by Cd.
Collapse
Affiliation(s)
- S. Ramírez-Acosta
- Department of Chemistry, Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Huelva, Spain
| | - R. Uhlírová
- Faculty of Chemistry, Brno University of Technology, Brno, Czech
| | - F. Navarro
- Research Center for Natural Resources, Health and the Environment (RENSMA), Integrated Sciences, Cell Biology, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Huelva, Spain
- *Correspondence: F. Navarro, ; T. García-Barrera,
| | - J. L. Gómez-Ariza
- Department of Chemistry, Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Huelva, Spain
| | - T. García-Barrera
- Department of Chemistry, Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Huelva, Spain
- *Correspondence: F. Navarro, ; T. García-Barrera,
| |
Collapse
|
15
|
Selenium Attenuates TBHP-Induced Apoptosis of Nucleus Pulposus Cells by Suppressing Mitochondrial Fission through Activating Nuclear Factor Erythroid 2-Related Factor 2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7531788. [PMID: 35450408 PMCID: PMC9017574 DOI: 10.1155/2022/7531788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Intervertebral disc (IVD) degeneration (IDD), the leading cause of low back pain (LBP), remains intractable due to a lack of effective therapeutic strategies. Several lines of studies have documented that nucleus pulposus cell (NPC) death induced by excessive oxidative stress is a crucial contributor to IDD. However, the concrete role and regulation mechanisms have not been fully clarified. Selenium (Se), a vital prosthetic group of antioxidant enzymes, is indispensable for maintaining redox homeostasis and promoting cell survival. However, no light was shed on the role of Se on IDD progression, especially regulation on mitochondrial dynamics and homeostasis. To fill this research gap, the current study focuses on the effects of Se, including sodium selenite (SS) and selenomethionine (Se-Met), on IDD progression and the underlying mechanisms. In vitro, we found that both SS and Se-Met alleviated tert-butyl hydroperoxide- (TBHP-) induced oxidative stress, protected mitochondrial function, and inhibited apoptosis of NPCs. Further experiments indicated that Se suppressed TBHP-induced mitochondrial fission and rescued the imbalance of mitochondrial dynamics. Promoting mitochondrial fission by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) partially counteracted the cytoprotective effects of Se. Moreover, blocking nuclear factor erythroid 2-related factor 2 (Nrf2) with ML385 proved that the effect of Se on regulating mitochondrial dynamics was attributed to the activation of the Nrf2 pathway. In the puncture-induced rat IDD model, a supplement of Se-Met ameliorated degenerative manifestations. Taken together, our results demonstrated that Se suppressed TBHP-induced oxidative stress and mitochondrial fission by activating the Nrf2 pathway, thereby inhibiting the apoptosis of NPCs and ameliorating IDD. Regulation of mitochondrial dynamics by Se may have a potential application value in attenuating the pathological process of IDD.
Collapse
|
16
|
Zou X, Shen K, Wang C, Wang J. Molecular recognition and quantitative analysis of free and combinative selenium speciation in selenium-enriched millets using HPLC-ESI-MS/MS. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Mal’tseva VN, Goltyaev MV, Novoselov SV, Varlamova EG. Effects of Sodium Selenite and Dithiothreitol on Expression of Endoplasmic Reticulum Selenoproteins and Apoptosis Markers in MSF7 Breast Adenocarcinoma Cells. Mol Biol 2022. [DOI: 10.1134/s0026893322010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Pharmaceutical and Safety Profile Evaluation of Novel Selenocompounds with Noteworthy Anticancer Activity. Pharmaceutics 2022; 14:pharmaceutics14020367. [PMID: 35214099 PMCID: PMC8875489 DOI: 10.3390/pharmaceutics14020367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Prior studies have reported the potent and selective cytotoxic, pro-apoptotic, and chemopreventive activities of a cyclic selenoanhydride and of a series of selenoesters. Some of these selenium derivatives demonstrated multidrug resistance (MDR)-reversing activity in different resistant cancer cell lines. Thus, the aim of this study was to evaluate the pharmaceutical and safety profiles of these selected selenocompounds using alternative methods in silico and in vitro. One of the main tasks of this work was to determine both the physicochemical properties and metabolic stability of these selenoesters. The obtained results proved that these tested selenocompounds could become potential candidates for novel and safe anticancer drugs with good ADMET parameters. The most favorable selenocompounds turned out to be the phthalic selenoanhydride (EDA-A6), two ketone-containing selenoesters with a 4-chlorophenyl moiety (EDA-71 and EDA-73), and a symmetrical selenodiester with a pyridine ring and two selenium atoms (EDA-119).
Collapse
|
19
|
Borah P, Chetan, Sharma V, Malakar A, Bhinder SS, Kansal SK, Devi P. A Facile Method for Detection and Speciation of Inorganic Selenium with Ion Chromatography. Chromatographia 2022. [DOI: 10.1007/s10337-021-04120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Takahashi K, Ruiz Encinar J, Costa-Fernández JM, Ogra Y. Distributions of mercury and selenium in rats ingesting mercury selenide nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112867. [PMID: 34624529 DOI: 10.1016/j.ecoenv.2021.112867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is one of the most toxic environmental pollutants, and is biocondensed via the food chain. Selenium (Se) is an essential element that possesses an antagonistic property towards Hg in vivo. The antagonistic property is explained by the assumption that Hg and Se directly interact to form HgSe nanoparticles (HgSe NPs) in organs. It is presumed that the toxic effects of HgSe NPs are lower than that of ionic Hg; however, no precise evaluation has been conducted so far. In the present study, we evaluated the distribution of HgSe NPs ingested in Se-deficient rats. The recovery of serum selenoproteins from a deficient level was not observed in rats orally administered HgSe NPs. In addition, the excretion of Hg and Se via urine was not observed. Interestingly, the biosynthesis of selenoproteins and urinary selenometabolites would have required the production of selenide through the degradation of HgSe NPs. Therefore, it seems that selenide and Hg are not released from HgSe NPs in vivo. The administration of HgSe NPs did not increase Hg and Se concentrations in organs, and almost all HgSe NPs were recovered in feces, indicating no or low bioaccessibility of HgSe NPs even in Se-deficient rats. These results suggest that HgSe NPs are biologically inert and do not become a secondary environmental pollutant of Hg.
Collapse
Affiliation(s)
- Kazuaki Takahashi
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Clavería 8, Oviedo, Spain
| | - José M Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Clavería 8, Oviedo, Spain
| | - Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan.
| |
Collapse
|
21
|
Castel T, Theron M, Pichavant‐Rafini K, Guernec A, Joublin‐Delavat A, Gueguen B, Leon K. Can selenium-enriched spirulina supplementation ameliorate sepsis outcomes in selenium-deficient animals? Physiol Rep 2021; 9:e14933. [PMID: 34288548 PMCID: PMC8290477 DOI: 10.14814/phy2.14933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
In intensive care units, sepsis is the first cause of death. In this pathology, inflammation and oxidative status play a crucial role in patient outcomes. Interestingly, 92% of septic patients exhibit low selenium plasma concentrations (a component of antioxidant enzymes). Moreover, Spirulina platensis, a blue-green algae, demonstrated anti-inflammatory effects. In this context, the main purpose of our study was to analyze the effect of a selenium-enriched spirulina after a selenium deficiency on sepsis outcome in rats. Sixty-four rats were fed 12 weeks with a selenium-deficient food. After 8 weeks, rats were supplemented (via drinking water) for 4 weeks with sodium selenite (Se), spirulina (Spi), or selenium-enriched spirulina (SeSp). Sepsis was then induced by cecal ligature and puncture, and survival duration was observed. The plasma selenium concentration was measured by ICPMS. Expression of GPx1 and GPx3 mRNA was measured by RT-PCR. Blood parameters (lactates and HCO3- concentrations, pH, PO2 , and PCO2 ) were analyzed at 0, 1, and 2 h as well as inflammatory cytokines (IL-6, TNF-α, IL-10). Sodium selenite and SeSP supplementations restored plasma selenium concentration prior to sepsis. The survival duration of SeSP septic rats was significantly lower than that of selenium-supplemented ones. Gpx1 mRNA was increased after a selenium-enriched spirulina supplementation while Gpx3 mRNA levels remained unchanged. Furthermore, sodium selenite prevented sepsis-induced acidosis. Our results show that on a basis of a Se deficiency, selenium-enriched spirulina supplementations significantly worsen sepsis outcome when compared to Se supplementation. Furthermore, Se supplementation but not selenium-enriched spirulina supplementation decreased inflammation and restored acid-base equilibrium after a sepsis induction.
Collapse
Affiliation(s)
- Thomas Castel
- Université de BrestEA 4324 ORPHYUFR Sciences et TechniquesBrestFrance
| | - Michaël Theron
- Université de BrestEA 4324 ORPHYUFR Sciences et TechniquesBrestFrance
| | | | - Anthony Guernec
- Université de BrestEA 4324 ORPHYUFR Sciences et TechniquesBrestFrance
| | | | - Bleuenn Gueguen
- CNRSUniv BrestUMS 3113PlouzanéFrance
- UMR 6538Laboratoire Géosciences OcéanCNRSUniv BrestPlouzanéFrance
| | - Karelle Leon
- Université de BrestEA 4324 ORPHYUFR Sciences et TechniquesBrestFrance
| |
Collapse
|
22
|
Varlamova EG, Turovsky EA. THE MAIN CYTOTOXIC EFFECTS OF METHYLSELENINIC ACID ON VARIOUS CANCER CELLS. Int J Mol Sci 2021; 22:6614. [PMID: 34205571 PMCID: PMC8234898 DOI: 10.3390/ijms22126614] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Studies of recent decades have repeatedly demonstrated the cytotoxic effect of selenium-containing compounds on cancer cells of various origins. Particular attention in these studies is paid to methylseleninic acid, a widespread selenium-containing compound of organic nature, for several reasons: it has a selective cytotoxic effect on cancer cells, it is cytotoxic in small doses, it is able to generate methylselenol, excluding the action of the enzyme β-lyase. All these qualities make methylseleninic acid an attractive substrate for the production of anticancer drugs on its basis with a well-pronounced selective effect. However, the studies available to date indicate that there is no strictly specific molecular mechanism of its cytotoxic effect in relation to different cancer cell lines and cancer models. This review contains generalized information on the dose- and time-dependent regulation of the toxic effect of methylseleninic acid on the proliferative properties of a number of cancer cell lines. In addition, special attention in this review is paid to the influence of this selenium-containing compound on the regulation of endoplasmic reticulum stress and on the expression of seven selenoproteins, which are localized in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya St. 3, Pushchino 142290, Moscow Region, Russia;
| | | |
Collapse
|
23
|
Ferreira RLU, Sena-Evangelista KCM, de Azevedo EP, Pinheiro FI, Cobucci RN, Pedrosa LFC. Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship With Diseases. Front Nutr 2021; 8:685317. [PMID: 34150830 PMCID: PMC8211732 DOI: 10.3389/fnut.2021.685317] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
This review covers current knowledge of selenium in the dietary intake, its bioavailability, metabolism, functions, biomarkers, supplementation and toxicity, as well as its relationship with diseases and gut microbiota specifically on the symbiotic relationship between gut microflora and selenium status. Selenium is essential for the maintenance of the immune system, conversion of thyroid hormones, protection against the harmful action of heavy metals and xenobiotics as well as for the reduction of the risk of chronic diseases. Selenium is able to balance the microbial flora avoiding health damage associated with dysbiosis. Experimental studies have shown that inorganic and organic selenocompounds are metabolized to selenomethionine and incorporated by bacteria from the gut microflora, therefore highlighting their role in improving the bioavailability of selenocompounds. Dietary selenium can affect the gut microbial colonization, which in turn influences the host's selenium status and expression of selenoproteoma. Selenium deficiency may result in a phenotype of gut microbiota that is more susceptible to cancer, thyroid dysfunctions, inflammatory bowel disease, and cardiovascular disorders. Although the host and gut microbiota benefit each other from their symbiotic relationship, they may become competitors if the supply of micronutrients is limited. Intestinal bacteria can remove selenium from the host resulting in two to three times lower levels of host's selenoproteins under selenium-limiting conditions. There are still gaps in whether these consequences are unfavorable to humans and animals or whether the daily intake of selenium is also adapted to meet the needs of the bacteria.
Collapse
Affiliation(s)
| | - Karine Cavalcanti Maurício Sena-Evangelista
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eduardo Pereira de Azevedo
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Francisco Irochima Pinheiro
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil.,Medical School, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Ricardo Ney Cobucci
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil.,Medical School, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Lucia Fatima Campos Pedrosa
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
24
|
Abstract
Selenium (Se) shows biologically ambivalent characteristics in animals. It is an essential element but becomes severely toxic when the amount ingested exceeds the adequate intake level. Animals must be able to metabolize the various selenocompounds in meat, fish and vegetables to utilize Se for selenoprotein synthesis. It is known that the biological, nutritional, and toxicological effects of Se are strongly dependent on its chemical form. First, we evaluated the nutritional availability of nine naturally occurring Se compounds, or the so-called bioselenocompounds, in vivo. Second, we evaluated that gut microflora might contributes to the Se nutritional availability. Se is mainly excreted into urine. However, a substantial amount of Se was secreted into bile although Se was hardly detected in feces. Third, we evaluated the biological significance of biliary secretion of Se in terms of mineral nutrition. Finally, we discussed the entire Se metabolism in gut contributing to Se homeostasis in animal.
Collapse
Affiliation(s)
- Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | |
Collapse
|
25
|
Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083717] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenosugars are a group of sugar derivatives of great structural diversity (e.g., molar masses, selenium oxidation state, and selenium binding), obtained as a result of biosynthesis, chemical modification of natural compounds, or chemical synthesis. Seleno-monosaccharides and disaccharides are known to be non-toxic products of the natural metabolism of selenium compounds in mammals. In the case of the selenium-containing polysaccharides of natural origin, their formation is also postulated as a form of detoxification of excess selenium in microorganisms, mushroom, and plants. The valency of selenium in selenium-containing polysaccharides can be: 0 (encapsulated nano-selenium), IV (selenites of polysaccharides), or II (selenoglycosides or selenium built into the sugar ring to replace oxygen). The great interest in Se-polysaccharides results from the expected synergy between selenium and polysaccharides. Several plant- and mushroom-derived polysaccharides are potent macromolecules with antitumor, immunomodulatory, antioxidant, and other biological properties. Selenium, a trace element of fundamental importance to human health, has been shown to possess several analogous functions. The mechanism by which selenium exerts anticancer and immunomodulatory activity differs from that of polysaccharide fractions, but a similar pharmacological effect suggests a possible synergy of these two agents. Various functions of Se-polysaccharides have been explored, including antitumor, immune-enhancement, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, and neuroprotective activities. Due to being non-toxic or much less toxic than inorganic selenium compounds, Se-polysaccharides are potential dietary supplements that could be used, e.g., in chemoprevention.
Collapse
|
26
|
Sunde RA. Gene Set Enrichment Analysis of Selenium-Deficient and High-Selenium Rat Liver Transcript Expression and Comparison With Turkey Liver Expression. J Nutr 2021; 151:772-784. [PMID: 33245116 DOI: 10.1093/jn/nxaa333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Better biomarkers of selenium (Se) status and a better understanding of toxic Se biochemistry are needed to set safe dietary upper limits. In previous studies, differential expression (DE) of individual liver transcripts in rats and turkeys failed to identify a single transcript that was consistently and significantly (q < 0.05) altered by high Se. OBJECTIVES To evaluate the effect of Se status on rat liver transcript expression data at the level of gene sets, and to compare transcript expression in rats with that in turkeys to identify common regulated transcripts. METHODS Gene set enrichment analysis (GSEA) was conducted on liver from weanling rats fed an Se-deficient basal diet (0.005 μg Se/g) supplemented with 0, 0.24 (Se-adequate), 2, or 5 μg Se/g diet as selenite for 28 d. In addition, transcript expression was compared with liver expression in turkeys fed 0, 0.4, 2, or 5 μg Se/g diet as selenite. RESULTS Se deficiency significantly downregulated the rat selenoprotein gene set but also upregulated gene sets for a variety of pathways, processes, and disease states. GSEA of 2 compared with 0.24 μg Se/g found no significantly up- or downregulated gene sets, showing that 2 μg Se/g is not particularly toxic to the rat. GSEA analysis of 5 compared with 0.24 μg Se/g transcripts, however, found 27 significantly upregulated gene sets for a wide variety of conditions. Cross-species GSEA comparison of transcript expression, however, identified no common gene sets significantly and consistently regulated by high Se in rats and turkeys. In addition, comparison of individual marginally significant (unadjusted P < 0.05) DE transcripts between rats and turkeys also failed to find common transcripts. CONCLUSIONS The dramatic increase in significant liver transcript DE and GSEA gene sets in rats fed 5 compared with 2 μg Se/g clearly appears to be a biomarker for Se toxicity, albeit not Se-specific. These analyses, however, failed to identify specific transcripts or pathways, biological states, or processes that were directly linked with high Se status, strongly indicating that adaptation to high Se lies outside transcriptional regulation.
Collapse
Affiliation(s)
- Roger A Sunde
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
27
|
Krausova G, Kana A, Vecka M, Hyrslova I, Stankova B, Kantorova V, Mrvikova I, Huttl M, Malinska H. In Vivo Bioavailability of Selenium in Selenium-Enriched Streptococcus thermophilus and Enterococcus faecium in CD IGS Rats. Antioxidants (Basel) 2021; 10:antiox10030463. [PMID: 33809515 PMCID: PMC7999548 DOI: 10.3390/antiox10030463] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 01/07/2023] Open
Abstract
The selenium (Se) enrichment of yeasts and lactic acid bacteria (LAB) has recently emerged as a novel concept; the individual health effects of these beneficial microorganisms are combined by supplying the essential micronutrient Se in a more bioavailable and less toxic form. This study investigated the bioavailability of Se in the strains Enterococcus faecium CCDM 922A (EF) and Streptococcus thermophilus CCDM 144 (ST) and their respective Se-enriched forms, SeEF and SeST, in a CD (SD-Sprague Dawley) IGS rat model. Se-enriched LAB administration resulted in higher Se concentrations in the liver and kidneys of rats, where selenocystine was the prevalent Se species. The administration of both Se-enriched strains improved the antioxidant status of the animals. The effect of the diet was more pronounced in the heart tissue, where a lower glutathione reductase content was observed, irrespective of the Se fortification in LAB. Interestingly, rats fed diets with EF and SeEF had higher glutathione reductase activity. Reduced concentrations of serum malondialdehyde were noted following Se supplementation. Diets containing Se-enriched strains showed no macroscopic effects on the liver, kidneys, heart, and brain and had no apparent influence on the basic parameters of the lipid metabolism. Both the strains tested herein showed potential for further applications as promising sources of organically bound Se and Se nanoparticles.
Collapse
Affiliation(s)
- Gabriela Krausova
- Department of Microbiology and Technology, Dairy Research Institute, Ltd., Ke Dvoru 12a, 160 00 Prague, Czech Republic; (I.H.); (I.M.)
- Correspondence: ; Tel.: +420-773-088-810
| | - Antonin Kana
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic; (A.K.); (V.K.)
| | - Marek Vecka
- 4th Department of Medicine Department of Gastroenterology and Hepatology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 2, 128 00 Prague, Czech Republic; (M.V.); (B.S.)
| | - Ivana Hyrslova
- Department of Microbiology and Technology, Dairy Research Institute, Ltd., Ke Dvoru 12a, 160 00 Prague, Czech Republic; (I.H.); (I.M.)
| | - Barbora Stankova
- 4th Department of Medicine Department of Gastroenterology and Hepatology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 2, 128 00 Prague, Czech Republic; (M.V.); (B.S.)
| | - Vera Kantorova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic; (A.K.); (V.K.)
| | - Iva Mrvikova
- Department of Microbiology and Technology, Dairy Research Institute, Ltd., Ke Dvoru 12a, 160 00 Prague, Czech Republic; (I.H.); (I.M.)
| | - Martina Huttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (M.H.); (H.M.)
| | - Hana Malinska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (M.H.); (H.M.)
| |
Collapse
|
28
|
Alcolea V, Moreno E, Etxebeste-Mitxeltorena M, Navarro-Blasco I, González-Peñas E, Jiménez-Ruiz A, Irache JM, Sanmartín C, Espuelas S. 3,5-Dimethyl-4-isoxazoyl selenocyanate as promising agent for the treatment of Leishmania infantum-infected mice. Acta Trop 2021; 215:105801. [PMID: 33352169 DOI: 10.1016/j.actatropica.2020.105801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/01/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022]
Abstract
Compounds 1 and 2 (selenocyanate and diselenide derivatives, respectively) were evaluated for their potential use in vivo against visceral leishmaniasis (VL). Both entities showed low cytoxicity in vitro in Vero and Caco-2 cell lines. However, the compounds were not suitable for their oral administration, since they exhibited poor values of intestinal permeability in vitro. Microsomal stability assays did not show any metabolite for compound 1 after 120 min, whereas 2 was highly metabolized by the enzyme CYP450. Thus, the in vivo efficacy of compound 1 was assessed in a murine model of L. infantum VL. The daily i.v. administration of 1 mg/kg of compound 1 during 5 consecutive days reduced parasite load in liver, spleen and bone marrow (99.2%, 91.7% and 61.4%, respectively) compared to non-treated mice. To the best of our knowledge, this is the first time that a selenium compound has been tested in vivo against VL. Thus, this work evidences the possible usefulness of selenocyanate derivatives for the treatment of this disease.
Collapse
Affiliation(s)
- Verónica Alcolea
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Esther Moreno
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Mikel Etxebeste-Mitxeltorena
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Iñigo Navarro-Blasco
- Department of Chemistry, School of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Elena González-Peñas
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | | | - Juan Manuel Irache
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Carmen Sanmartín
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain.
| | - Socorro Espuelas
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
29
|
Singh BG, Kunwar A. Redox reactions of organoselenium compounds: Implication in their biological activity. Free Radic Res 2021; 55:641-654. [PMID: 33555213 DOI: 10.1080/10715762.2021.1882678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antioxidant activity of organoselenium compounds belonging to different classes i.e. functionalized aliphatic, aromatic and cyclic selenoethers, are compared on the basis of their ability to scavenge reactive oxygen species like hydroxyl and peroxyl radicals and to exhibit glutathione peroxidase (GPx) like catalytic activity. The comparative analysis has revealed that the antioxidant activity of the organoselenium compounds show direct correlation with the energy of the highest occupied molecular orbital (HOMO) and neighboring group participation that stabilizes the reaction intermediate. Finally, structural features responsible for improving the rate of reaction of organoselenium compounds with free radical/molecular oxidants have been discussed on the basis of the compounds screened at our institute.
Collapse
Affiliation(s)
- Beena G Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
30
|
Drobyshev E, Raschke S, Glabonjat RA, Bornhorst J, Ebert F, Kuehnelt D, Schwerdtle T. Capabilities of selenoneine to cross the in vitro blood-brain barrier model. Metallomics 2021; 13:mfaa007. [PMID: 33570138 DOI: 10.1093/mtomcs/mfaa007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/05/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022]
Abstract
The naturally occurring selenoneine (SeN), the selenium analogue of the sulfur-containing antioxidant ergothioneine, can be found in high abundance in several marine fish species. However, data on biological properties of SeN and its relevance for human health are still scarce. This study aims to investigate the transfer and presystemic metabolism of SeN in a well-established in vitro model of the blood-brain barrier (BBB). Therefore, SeN and the reference Se species selenite and Se-methylselenocysteine (MeSeCys) were applied to primary porcine brain capillary endothelial cells (PBCECs). Se content of culture media and cell lysates was measured via ICP-MS/MS. Speciation analysis was conducted by HPLC-ICP-MS. Barrier integrity was shown to be unaffected during transfer experiments. SeN demonstrated the lowest transfer rates and permeability coefficient (6.7 × 10-7 cm s-1) in comparison to selenite and MeSeCys. No side-directed accumulation was observed after both-sided application of SeN. However, concentration-dependent transfer of SeN indicated possible presence of transporters on both sides of the barrier. Speciation analysis demonstrated no methylation of SeN by the PBCECs. Several derivatives of SeN detected in the media of the BBB model were also found in cell-free media containing SeN and hence not considered to be true metabolites of the PBCECs. In concluding, SeN is likely to have a slow transfer rate to the brain and not being metabolized by the brain endothelial cells. Since this study demonstrates that SeN may reach the brain tissue, further studies are needed to investigate possible health-promoting effects of SeN in humans.
Collapse
Affiliation(s)
- Evgenii Drobyshev
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Stefanie Raschke
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Ronald A Glabonjat
- Institute of Chemistry, NAWI Graz, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Julia Bornhorst
- TraceAge-DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- TraceAge-DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Doris Kuehnelt
- Institute of Chemistry, NAWI Graz, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- TraceAge-DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
31
|
Fukumoto Y, Yamada H, Matsuhashi K, Okada W, Tanaka YK, Suzuki N, Ogra Y. Production of a Urinary Selenium Metabolite, Trimethylselenonium, by Thiopurine S-Methyltransferase and Indolethylamine N-Methyltransferase. Chem Res Toxicol 2020; 33:2467-2474. [DOI: 10.1021/acs.chemrestox.0c00254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yasunori Fukumoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Hirotaka Yamada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Kemmu Matsuhashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Wakaba Okada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Yu-ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Noriyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| |
Collapse
|
32
|
Alcolea V, Pérez-Silanes S. Selenium as an interesting option for the treatment of Chagas disease: A review. Eur J Med Chem 2020; 206:112673. [PMID: 32810750 DOI: 10.1016/j.ejmech.2020.112673] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022]
Abstract
Chagas disease is one of the most prevalent tropical neglected diseases and causes high mortality and morbidity in endemic countries. Current treatments for this disease, nifurtimox and benznidazole, are ineffective in the chronic phase of the disease and produce severe adverse effects. Therefore, novel therapies are urgently required. The trace element selenium has an important role in human health, due to its antioxidant, antiinflammatory and pro-immune properties. Actually, its deficiency has been related to several diseases and supplementation with this element has been proven to be beneficial for multiple pathologies. Furthermore, the usefulness of organic-selenium compounds has been studied in many disorders, showing promising results. The aim of this review is to analyse the available literature regarding the role of selenium in Chagas disease in order to determine whether its use could be beneficial for the management of this pathology.
Collapse
Affiliation(s)
- Verónica Alcolea
- Universidad de Navarra, ISTUN Instituto de Salud Tropical, Irunlarrea 1, 31008, Pamplona, Spain; School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Universidad de Navarra, Campus Universitario, 31008, Pamplona, Spain
| | - Silvia Pérez-Silanes
- Universidad de Navarra, ISTUN Instituto de Salud Tropical, Irunlarrea 1, 31008, Pamplona, Spain; School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Universidad de Navarra, Campus Universitario, 31008, Pamplona, Spain.
| |
Collapse
|
33
|
Zhang SQ, Shen S, Zhang Y. Comparison of Bioavailability, Pharmacokinetics, and Biotransformation of Selenium-Enriched Yeast and Sodium Selenite in Rats Using Plasma Selenium and Selenomethionine. Biol Trace Elem Res 2020; 196:512-516. [PMID: 31707637 DOI: 10.1007/s12011-019-01935-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/14/2019] [Indexed: 11/26/2022]
Abstract
For the first time, bioavailability, pharmacokinetics, and biotransformation of selenium-enriched yeast (SeY) and sodium selenite (Na2SeO3) in rats were systemically compared by analyzing free selenomethionine (SeMet), total SeMet, and selenium (Se). After SeY and Na2SeO3 were orally administered to rats at a dose of 100 μg Se/kg, plasma free SeMet, total SeMet, and Se at various time points were determined by ultra-performance liquid chromatography-tandem mass spectrometry. Based on Se and total SeMet, the relative bioavailability values of SeY compared with Na2SeO3 were 144% and 272%, respectively. For the rats treated with SeY, 0.73-2.68% of total Se was biotransformed to free SeMet, 14.3-20.4% to SeMet-proteins and albumin-bound SeMet, and 75.9-82.3% to selenoproteins in plasma. SeY had higher bioavailability than Na2SeO3 based on Se and total SeMet levels. Plasma SeMet was the optimal biomarker of SeY status in vivo.
Collapse
Affiliation(s)
- Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China.
| | - Shi Shen
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Yan Zhang
- The Hubei Provincial Key Laboratory of Yeast Function, 168 Huaxi Road, Yichang, 443003, China
| |
Collapse
|
34
|
Selenoneine Ameliorates Hepatocellular Injury and Hepatic Steatosis in a Mouse Model of NAFLD. Nutrients 2020; 12:nu12061898. [PMID: 32604760 PMCID: PMC7353312 DOI: 10.3390/nu12061898] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Selenoneine is a novel organic selenium compound markedly found in the blood, muscles, and other tissues of fish. This study aimed to determine whether selenoneine attenuates hepatocellular injury and hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). Mice lacking farnesoid X receptor (FXR) were used as a model for fatty liver disease, because they exhibited hepatomegaly, hepatic steatosis, and hepatic inflammation. Fxr-null mice were fed a 0.3 mg Se/kg selenoneine-containing diet for four months. Significant decreases in the levels of hepatomegaly, hepatic damage-associated diagnostic markers, hepatic triglycerides, and total bile acids were found in Fxr-null mice fed with a selenoneine-rich diet. Hepatic and blood clot total selenium concentrations were 1.7 and 1.9 times higher in the selenoneine group than in the control group. A marked accumulation of selenoneine was found in the liver and blood clot of the selenoneine group. The expression levels of oxidative stress-related genes (heme oxygenase 1 (Hmox1), glutathione S-transferase alpha 1 (Gsta1), and Gsta2), fatty acid synthetic genes (stearoyl CoA desaturase 1(Scd1) and acetyl-CoA carboxylase 1 (Acc1)), and selenoprotein (glutathione peroxidase 1 (Gpx1) and selenoprotein P (Selenop)) were significantly decreased in the selenoneine group. These results suggest that selenoneine attenuates hepatic steatosis and hepatocellular injury in an NAFLD mouse model.
Collapse
|
35
|
Takahashi K, Suzuki N, Ogra Y. Effect of gut microflora on nutritional availability of selenium. Food Chem 2020; 319:126537. [PMID: 32193059 DOI: 10.1016/j.foodchem.2020.126537] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 11/27/2019] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
Since selenium (Se) is an essential mineral, animals must be able to metabolize the various selenocompounds in meat, fish and vegetables. It is unclear how animals, including humans, utilize selenocompound efficiently, but we hypothesized that gut microflora might contribute to these processes. In this study, we revealed that Se-methylselenocysteine and selenocyanate were metabolized to selenomethionine (SeMet) by intestinal microflora, suggesting selenocompounds might be metabolized to SeMet, which can be used by the host organism. The major urinary selenosugar, 1β-methylseleno-N-acetyl-d-galactosamine, was utilized less in microflora-suppressed than healthy rats, suggesting that this sugar can be transformed to a nutritionally available form by gut microflora in animals with a healthy microbiota. We concluded that, in rats at least, gut microflora has a role in the metabolism of Se in the host animal, and this finding might be worth investigating in humans.
Collapse
Affiliation(s)
- Kazuaki Takahashi
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan.
| |
Collapse
|
36
|
Campo-Sabariz J, Moral-Anter D, Brufau MT, Briens M, Pinloche E, Ferrer R, Martín-Venegas R. 2-Hydroxy-(4-methylseleno)butanoic Acid Is Used by Intestinal Caco-2 Cells as a Source of Selenium and Protects against Oxidative Stress. J Nutr 2019; 149:2191-2198. [PMID: 31504719 DOI: 10.1093/jn/nxz190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/13/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Selenium (Se) participates in different functions in humans and other animals through its incorporation into selenoproteins as selenocysteine. Inadequate dietary Se is considered a risk factor for several chronic diseases associated with oxidative stress. OBJECTIVE The role of 2-hydroxy-(4-methylseleno)butanoic acid (HMSeBA), an organic form of Se used in animal nutrition, in supporting selenoprotein synthesis and protecting against oxidative stress was investigated in an in vitro model of intestinal Caco-2 cells. METHODS Glutathione peroxidase (GPX) and thioredoxin reductase (TXNRD) activities, selenoprotein P1 protein (SELENOP) and gene (SELENOP) expression, and GPX1 and GPX2 gene expression were studied in Se-deprived (FBS removal) and further HMSeBA-supplemented (0.1-625 μM, 72 h) cultures. The effect of HMSeBA supplementation (12.5 and 625 μM, 24 h) on oxidative stress induced by H2O2 (1 mM) was evaluated by the production of reactive oxygen species (ROS), 4-hydroxy-2-nonenal (4-HNE) adducts, and protein carbonyl residues compared with a sodium selenite control (SS, 5 μM). RESULTS Se deprivation induced a reduction (P < 0.05) in GPX activity (62%), GPX1 expression, and both SELENOP (33%) and SELENOP expression. In contrast, an increase (P < 0.05) in GPX2 expression and no effect in TXNRD activity (P = 0.09) were observed. HMSeBA supplementation increased (P < 0.05) GPX activity (12.5-625 μM, 1.68-1.82-fold) and SELENOP protein expression (250 and 625 μM, 1.87- and 2.04-fold). Moreover, HMSeBA supplementation increased (P < 0.05) GPX1 (12.5 and 625 μM), GPX2 (625 μM), and SELENOP (12.5 and 625 μM) expression. HMSeBA (625 μM) was capable of decreasing (P < 0.05) ROS (32%), 4-HNE adduct (49%), and protein carbonyl residue (75%) production after H2O2 treatment. CONCLUSION Caco-2 cells can use HMSeBA as an Se source for selenoprotein synthesis, resulting in protection against oxidative stress.
Collapse
Affiliation(s)
- Joan Campo-Sabariz
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - David Moral-Anter
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - M Teresa Brufau
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | | | | | - Ruth Ferrer
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - Raquel Martín-Venegas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Murphy JM, Gaertner AA, Williams T, McMillen CD, Powell BA, Brumaghim JL. Stability constant determination of sulfur and selenium amino acids with Cu(II) and Fe(II). J Inorg Biochem 2019; 195:20-30. [DOI: 10.1016/j.jinorgbio.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
|
38
|
Rohn I, Marschall TA, Kroepfl N, Jensen KB, Aschner M, Tuck S, Kuehnelt D, Schwerdtle T, Bornhorst J. Selenium species-dependent toxicity, bioavailability and metabolic transformations in Caenorhabditis elegans. Metallomics 2019; 10:818-827. [PMID: 29770420 DOI: 10.1039/c8mt00066b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The essential micronutrient selenium (Se) is required for various systemic functions, but its beneficial range is narrow and overexposure may result in adverse health effects. Additionally, the chemical form of the ingested selenium contributes crucially to its health effects. While small Se species play a major role in Se metabolism, their toxicological effects, bioavailability and metabolic transformations following elevated uptake are poorly understood. Utilizing the tractable invertebrate Caenorhabditis elegans allowed for an alternative approach to study species-specific characteristics of organic and inorganic Se forms in vivo, revealing remarkable species-dependent differences in the toxicity and bioavailability of selenite, selenomethionine (SeMet) and Se-methylselenocysteine (MeSeCys). An inverse relationship was found between toxicity and bioavailability of the Se species, with the organic species displaying a higher bioavailability than the inorganic form, yet being less toxic. Quantitative Se speciation analysis with HPLC/mass spectrometry revealed a partial metabolism of SeMet and MeSeCys. In SeMet exposed worms, identified metabolites were Se-adenosylselenomethionine (AdoSeMet) and Se-adenosylselenohomocysteine (AdoSeHcy), while worms exposed to MeSeCys produced Se-methylselenoglutathione (MeSeGSH) and γ-glutamyl-MeSeCys (γ-Glu-MeSeCys). Moreover, the possible role of the sole selenoprotein in the nematode, thioredoxin reductase-1 (TrxR-1), was studied comparing wildtype and trxr-1 deletion mutants. Although a lower basal Se level was detected in trxr-1 mutants, Se toxicity and bioavailability following acute exposure was indistinguishable from wildtype worms. Altogether, the current study demonstrates the suitability of C. elegans as a model for Se species dependent toxicity and metabolism, while further research is needed to elucidate TrxR-1 function in the nematode.
Collapse
Affiliation(s)
- Isabelle Rohn
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Montone CM, Antonelli M, Capriotti AL, Cavaliere C, Barbera G, Piovesana S, Laganà A. Investigation of free and conjugated seleno‐amino acids in wheat bran by hydrophilic interaction liquid chromatography with tandem mass spectrometry. J Sep Sci 2019; 42:1938-1947. [DOI: 10.1002/jssc.201900047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | - Giorgia Barbera
- Dipartimento di ChimicaSapienza Università di Roma Rome Italy
| | - Susy Piovesana
- Dipartimento di ChimicaSapienza Università di Roma Rome Italy
| | - Aldo Laganà
- Dipartimento di ChimicaSapienza Università di Roma Rome Italy
| |
Collapse
|
40
|
Rohn I, Kroepfl N, Bornhorst J, Kuehnelt D, Schwerdtle T. Side‐Directed Transfer and Presystemic Metabolism of Selenoneine in a Human Intestinal Barrier Model. Mol Nutr Food Res 2019; 63:e1900080. [DOI: 10.1002/mnfr.201900080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/11/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Isabelle Rohn
- Institute of Nutritional ScienceUniversity of Potsdam 14558 Nuthetal Germany
| | - Nina Kroepfl
- Institute of Chemistry, Analytical ChemistryNAWI GrazUniversity of Graz 8010 Graz Austria
| | - Julia Bornhorst
- Institute of Nutritional ScienceUniversity of Potsdam 14558 Nuthetal Germany
- TraceAge – DFG Research Unit FOR 2558Berlin‐Potsdam‐Jena Germany
- Faculty of Mathematics and Natural SciencesUniversity of Wuppertal 42119 Wuppertal Germany
| | - Doris Kuehnelt
- Institute of Chemistry, Analytical ChemistryNAWI GrazUniversity of Graz 8010 Graz Austria
| | - Tanja Schwerdtle
- Institute of Nutritional ScienceUniversity of Potsdam 14558 Nuthetal Germany
- TraceAge – DFG Research Unit FOR 2558Berlin‐Potsdam‐Jena Germany
| |
Collapse
|
41
|
Vozza G, Khalid M, Byrne HJ, Ryan SM, Frias JM. Nutraceutical formulation, characterisation, and in-vitro evaluation of methylselenocysteine and selenocystine using food derived chitosan:zein nanoparticles. Food Res Int 2019; 120:295-304. [PMID: 31000242 DOI: 10.1016/j.foodres.2019.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 11/18/2022]
Abstract
Selenoamino acids (SeAAs) have been shown to possess antioxidant and anticancer properties. However, their bioaccessibility is low and they may be toxic above the recommended nutritional intake level, thus improved targeted oral delivery methods are desirable. In this work, the SeAAs, Methylselenocysteine (MSC) and selenocystine (SeCys2) were encapsulated into nanoparticles (NPs) using the mucoadhesive polymer chitosan (Cs), via ionotropic gelation with tripolyphosphate (TPP) and the NPs produced were then coated with zein (a maize derived prolamine rich protein). NPs with optimized physicochemical properties for oral delivery were obtained at a 6: 1 ratio of Cs:TPP, with a 1:0.75 mass ratio of Cs:zein coating (diameter ~260 nm, polydispersivity index ~0.2, zeta potential >30 mV). Scanning Electron Microscopy (SEM) analysis showed that spheroidal, well distributed particles were obtained. Encapsulation Efficiencies of 80.7% and 78.9% were achieved, respectively, for MSC and SeCys2 loaded NPs. Cytotoxicity studies of MSC loaded NPs showed no decrease in cellular viability in either Caco-2 (intestine) or HepG2 (liver) cells after 4 and 72 h exposures. For SeCys2 loaded NPs, although no cytotoxicity was observed in Caco-2 cells after 4 h, a significant reduction in cytotoxicity was observed, compared to pure SeCys2, across all test concentrations in HepG2 after 72 h exposure. Accelerated thermal stability testing of both loaded NPs indicated good stability under normal storage conditions. Lastly, after 6 h exposure to simulated gastrointestinal tract environments, the sustained release profile of the formulation showed that 62 ± 8% and 69 ± 4% of MSC and SeCys2, had been released from the NPs respectively.
Collapse
Affiliation(s)
- Giuliana Vozza
- School of Food Science and Environmental Health, Technological University Dublin, Marlborough Street, Dublin 1, Ireland; FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| | - Minna Khalid
- School of Food Science and Environmental Health, Technological University Dublin, Marlborough Street, Dublin 1, Ireland; FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| | - Sinéad M Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 7, Ireland
| | - Jesus M Frias
- Environmental Science and Health Institute, Technological University Dublin, Grangegorman, Dublin 7, Ireland.
| |
Collapse
|
42
|
Hu Z, Shiokawa A, Suzuki N, Xiong H, Ogra Y. Evaluation of chemical species and bioaccessibility of selenium in dietary supplements. Eur Food Res Technol 2019; 245:225-232. [DOI: 10.1007/s00217-018-3155-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
|
43
|
Colle D, Santos DB, de Souza V, Lopes MW, Leal RB, de Souza Brocardo P, Farina M. Sodium selenite protects from 3-nitropropionic acid-induced oxidative stress in cultured primary cortical neurons. Mol Biol Rep 2018; 46:751-762. [PMID: 30511305 DOI: 10.1007/s11033-018-4531-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022]
Abstract
Selenium (Se) is an essential trace element for humans; its intake is needed to allow the proper synthesis of 25 different selenoproteins that are necessary to the normal functioning of several organs, including the brain. Accordingly, decreased Se levels have been associated with neurological disorders. In the present study, we investigated the potential beneficial effects of Se, as sodium selenite, against 3-nitropropionic acid (3-NP)-induced oxidative stress in primary cultures of mouse cortical neurons. 3-NP treatment caused a significant decrease in cellular viability, which was accompanied by decreases in mitochondrial complex II activity and reduced glutathione (GSH) content, as well as increases in reactive oxygen species (ROS) generation and oxidized glutathione (GSSG) levels. Sodium selenite pretreatment (6 days) attenuated 3-NP-induced decrease in cell viability. In addition, sodium selenite pretreatment significantly protected against 3-NP-induced increase in ROS generation and decrease in GSH/GSSG ratio. Of note, sodium selenite pretreatment did not change 3-NP-induced decrease of mitochondrial complex II activity, suggesting that Se modulates secondary events resultant from 3-NP-induced mitochondrial dyshomeostasis. In addition, sodium selenite pretreatment significantly increased glutathione peroxidase (GPx) activity. Our data provide insights into the mechanism of protection by sodium selenite, which is related, at least in part, to GPx induction.
Collapse
Affiliation(s)
- Dirleise Colle
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Bloco C, Campus, Universitário Trindade, Florianópolis, Santa Catarina, CEP 88040-900, Brazil. .,Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, CEP 88040-900, Brazil.
| | - Danúbia Bonfanti Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Bloco C, Campus, Universitário Trindade, Florianópolis, Santa Catarina, CEP 88040-900, Brazil
| | - Viviane de Souza
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Bloco C, Campus, Universitário Trindade, Florianópolis, Santa Catarina, CEP 88040-900, Brazil
| | - Mark William Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Bloco C, Campus, Universitário Trindade, Florianópolis, Santa Catarina, CEP 88040-900, Brazil
| | - Rodrigo Bainy Leal
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Bloco C, Campus, Universitário Trindade, Florianópolis, Santa Catarina, CEP 88040-900, Brazil
| | - Patricia de Souza Brocardo
- Departamento de Ciências Morfológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Bloco C, Campus, Universitário Trindade, Florianópolis, Santa Catarina, CEP 88040-900, Brazil.
| |
Collapse
|
44
|
Inorganic Salts and Antimicrobial Photodynamic Therapy: Mechanistic Conundrums? Molecules 2018; 23:molecules23123190. [PMID: 30514001 PMCID: PMC6321187 DOI: 10.3390/molecules23123190] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 11/25/2022] Open
Abstract
We have recently discovered that the photodynamic action of many different photosensitizers (PSs) can be dramatically potentiated by addition of a solution containing a range of different inorganic salts. Most of these studies have centered around antimicrobial photodynamic inactivation that kills Gram-negative and Gram-positive bacteria in suspension. Addition of non-toxic water-soluble salts during illumination can kill up to six additional logs of bacterial cells (one million-fold improvement). The PSs investigated range from those that undergo mainly Type I photochemical mechanisms (electron transfer to produce superoxide, hydrogen peroxide, and hydroxyl radicals), such as phenothiazinium dyes, fullerenes, and titanium dioxide, to those that are mainly Type II (energy transfer to produce singlet oxygen), such as porphyrins, and Rose Bengal. At one extreme of the salts is sodium azide, that quenches singlet oxygen but can produce azide radicals (presumed to be highly reactive) via electron transfer from photoexcited phenothiazinium dyes. Potassium iodide is oxidized to molecular iodine by both Type I and Type II PSs, but may also form reactive iodine species. Potassium bromide is oxidized to hypobromite, but only by titanium dioxide photocatalysis (Type I). Potassium thiocyanate appears to require a mixture of Type I and Type II photochemistry to first produce sulfite, that can then form the sulfur trioxide radical anion. Potassium selenocyanate can react with either Type I or Type II (or indeed with other oxidizing agents) to produce the semi-stable selenocyanogen (SCN)2. Finally, sodium nitrite may react with either Type I or Type II PSs to produce peroxynitrate (again, semi-stable) that can kill bacteria and nitrate tyrosine. Many of these salts (except azide) are non-toxic, and may be clinically applicable.
Collapse
|
45
|
Hu Z, Cheng Y, Suzuki N, Guo X, Xiong H, Ogra Y. Speciation of Selenium in Brown Rice Fertilized with Selenite and Effects of Selenium Fertilization on Rice Proteins. Int J Mol Sci 2018; 19:3494. [PMID: 30404212 PMCID: PMC6274819 DOI: 10.3390/ijms19113494] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 11/25/2022] Open
Abstract
Foliar Selenium (Se) fertilizer has been widely used to accumulate Se in rice to a level that meets the adequate intake level. The Se content in brown rice (Oryza sativa L.) was increased in a dose-dependent manner by the foliar application of sodium selenite as a fertilizer at concentrations of 25, 50, 75, and 100 g Se/ha. Selenite was mainly transformed to organic Se, that is, selenomethionine in rice. Beyond the metabolic capacity of Se in rice, inorganic Se also appeared. In addition, four extractable protein fractions in brown rice were analyzed for Se concentration. The Se concentrations in the glutelin and albumin fractions saturated with increasing Se concentration in the fertilizer compared with those in the globulin and prolamin fractions. The structural analyses by fluorescence spectroscopy, Fourier transform infrared spectrometry, and differential scanning calorimetry suggest that the secondary structure and thermostability of glutelin were altered by the Se treatments. These alterations could be due to the replacements of cysteine and methionine to selenocysteine and selenomethionine, respectively. These findings indicate that foliar fertilization of Se was effective in not only transforming inorganic Se to low-molecular-weight selenometabolites such as selenoamino acids, but also incorporating Se into general rice proteins, such as albumin, globulin glutelin, and prolamin, as selenocysteine and selenomethionine in place of cysteine and methionine, respectively.
Collapse
Affiliation(s)
- Zhenying Hu
- State Key Laboratory of Food Science and Technology, NanChang University, Nanchang 330047, China.
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan.
| | - Yixin Cheng
- Jiangxi Institute for Drug Control, Jiangxi Province Engineering Research Center of Drug and Medical Device Quality, Nanchang 330029, China.
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan.
| | - Xiaoping Guo
- Jiangxi Research Center for Auxiliary Food Engineering and Technology, Ganzhou 341100, China.
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, NanChang University, Nanchang 330047, China.
- Jiangxi Research Center for Auxiliary Food Engineering and Technology, Ganzhou 341100, China.
| | - Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan.
| |
Collapse
|
46
|
Application of Box-Behnken experimental design for the formulation and optimisation of selenomethionine-loaded chitosan nanoparticles coated with zein for oral delivery. Int J Pharm 2018; 551:257-269. [DOI: 10.1016/j.ijpharm.2018.08.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023]
|
47
|
Takahashi K, Suzuki N, Ogra Y. Effect of administration route and dose on metabolism of nine bioselenocompounds. J Trace Elem Med Biol 2018; 49:113-118. [PMID: 29895359 DOI: 10.1016/j.jtemb.2018.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/30/2018] [Accepted: 05/07/2018] [Indexed: 11/20/2022]
Abstract
The nutritional availability of selenium (Se) is highly dependent on its chemical form because chemical form affects absorption, distribution, metabolism, and excretion. We evaluated the effects of administration route and dose on the bioavailability of nine Se compounds found in biota, the so-called bioselenocompounds, such as selenite, selenate, selenocyanate (SeCN), Se-methylselenocysteine (MeSeCys), selenomethionine (SeMet), selenohomolanthionine (SeHLan), selenocystine (SeCys2), 1β-methylseleno-N-acetyl-d-galactosamine (SeSug1), and trimethylselenonium ion (TMSe). We determined the bioavailability of bioselenocompounds recovered as urinary selenometabolites and serum selenoproteins from urine and serum of Se-deficient rats after the administration of bioselenocompounds by speciation analysis. Urinary Se was more easily recovered than serum selenoproteins, suggesting that the speciation of urinary Se is a better tool to indicate Se status in the body. The intravenous administration of bioselenocompounds showed different Se bioavailability from the oral administration. Intestinal microflora might be involved in the bioavailability of some bioselenocompounds, such as SeCN, MeSeCys, and SeSug1.
Collapse
Affiliation(s)
- Kazuaki Takahashi
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba, 260-8675, Japan
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba, 260-8675, Japan
| | - Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba, 260-8675, Japan.
| |
Collapse
|
48
|
Kobayashi H, Suzuki N, Ogra Y. Mutagenicity comparison of nine bioselenocompounds in three Salmonella typhimurium strains. Toxicol Rep 2018; 5:220-223. [PMID: 29854592 PMCID: PMC5978006 DOI: 10.1016/j.toxrep.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
Selenium (Se) is an essential element in animals but becomes severely toxic when the amount ingested exceeds the adequate intake level. It is known that the toxicological effects of Se are highly dependent on its chemical form. In this study, we evaluated the mutagenicity of nine naturally occurring Se compounds or the so-called bioselenocompounds, including selenite, selenate, selenocyanate, selenomethionine, selenocystine, Se-methylselenocysteine, selenohomolanthionine, N-acetylgalactosamine-type selenosugar, and trimethylselenonium ion, by using the Ames test. Salmonella typhimurium TA98, TA100, and TA1535 were used for the mutagenicity evaluation in the presence or absence of S9 mix, a metabolic activator. Only selenate showed weak mutagenicity even in the absence of S9 mix. None of the bioselenocompounds except selenate exhibited mutagenicity in all the strains tested in the presence or absence of S9 mix. Selenomethionine and selenocystine reduced the number of colonies in all the strains although no other selenoamino acids exerted the same effect. These results indicate that selenate directly or indirectly injures genome. Among the bioselenocompounds tested, selenomethionine and selenocystine show antibacterial activity, but the mechanism is unclear.
Collapse
Affiliation(s)
- Hironori Kobayashi
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan
| |
Collapse
|
49
|
Tobe R, Mihara H. Delivery of selenium to selenophosphate synthetase for selenoprotein biosynthesis. Biochim Biophys Acta Gen Subj 2018; 1862:2433-2440. [PMID: 29859962 DOI: 10.1016/j.bbagen.2018.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Selenophosphate, the key selenium donor for the synthesis of selenoprotein and selenium-modified tRNA, is produced by selenophosphate synthetase (SPS) from ATP, selenide, and H2O. Although free selenide can be used as the in vitro selenium substrate for selenophosphate synthesis, the precise physiological system that donates in vivo selenium substrate to SPS has not yet been characterized completely. SCOPE OF REVIEW In this review, we discuss selenium metabolism with respect to the delivery of selenium to SPS in selenoprotein biosynthesis. MAJOR CONCLUSIONS Glutathione, selenocysteine lyase, cysteine desulfurase, and selenium-binding proteins are the candidates of selenium delivery system to SPS. The thioredoxin system is also implicated in the selenium delivery to SPS in Escherichia coli. GENERAL SIGNIFICANCE Selenium delivered via a protein-bound selenopersulfide intermediate emerges as a central element not only in achieving specific selenoprotein biosynthesis but also in preventing the occurrence of toxic free selenide in the cell. This article is part of a Special Issue entitled "Selenium research in biochemistry and biophysics - 200 year anniversary".
Collapse
Affiliation(s)
- Ryuta Tobe
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hisaaki Mihara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
50
|
Chhabra G, Singh CK, Ndiaye MA, Fedorowicz S, Molot A, Ahmad N. Prostate cancer chemoprevention by natural agents: Clinical evidence and potential implications. Cancer Lett 2018; 422:9-18. [PMID: 29471004 DOI: 10.1016/j.canlet.2018.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) is the most common non-skin cancer and the second leading cause of cancer-related deaths in American men. Due to its long latency period, PCa is considered as an ideal cancer type for chemopreventive interventions. Chemopreventive agents include various natural or synthetic agents that prevent or delay cancer development, progression and/or recurrence. Pre-clinical studies suggest that many natural products and dietary agents have chemopreventive properties. However, a limited number of these agents have been tested in clinical trials, with varying success. In this review, we have discussed the available clinical studies regarding the efficacy of natural chemopreventive agents against PCa, including tea polyphenols, selenium, soy proteins, vitamins and resveratrol. We have also provided a discussion on the clinical challenges and opportunities for the potential use of chemopreventive agents against PCa. Based on available literature, it appears that the variable outcomes of the chemopreventive clinical studies necessitate a need for additional studies with more rigorous designs and methodical interpretations in order to measure the potential of the natural agents against PCa.
Collapse
Affiliation(s)
- Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | | | - Arielle Molot
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Medical Center, Madison, WI, USA.
| |
Collapse
|