1
|
Dallinger R. Metals and metallothionein evolution in snails: a contribution to the concept of metal-specific functionality from an animal model group. Biometals 2024; 37:671-696. [PMID: 38416244 PMCID: PMC11101346 DOI: 10.1007/s10534-024-00584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
This is a critical review of what we know so far about the evolution of metallothioneins (MTs) in Gastropoda (snails, whelks, limpets and slugs), an important class of molluscs with over 90,000 known species. Particular attention will be paid to the evolution of snail MTs in relation to the role of some metallic trace elements (cadmium, zinc and copper) and their interaction with MTs, also compared to MTs from other animal phyla. The article also highlights the important distinction, yet close relationship, between the structural and metal-selective binding properties of gastropod MTs and their physiological functionality in the living organism. It appears that in the course of the evolution of Gastropoda, the trace metal cadmium (Cd) must have played an essential role in the development of Cd-selective MT variants. It is shown how the structures and Cd-selective binding properties in the basal gastropod clades have evolved by testing and optimizing different combinations of ancestral and novel MT domains, and how some of these domains have become established in modern and recent gastropod clades. In this context, the question of how adaptation to new habitats and lifestyles has affected the original MT traits in different gastropod lineages will also be addressed. The 3D structures and their metal binding preferences will be highlighted exemplarily in MTs of modern littorinid and helicid snails. Finally, the importance of the different metal requirements and pathways in snail tissues and cells for the shaping and functionality of the respective MT isoforms will be shown.
Collapse
|
2
|
Cortés-Miranda J, Rojas-Hernández N, Muñoz G, Copaja S, Quezada-Romegialli C, Veliz D, Vega-Retter C. Biomarker selection depends on gene function and organ: the case of the cytochrome P450 family genes in freshwater fish exposed to chronic pollution. PeerJ 2024; 12:e16925. [PMID: 38371375 PMCID: PMC10874176 DOI: 10.7717/peerj.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Pollution and its effects have been of major concern in recent decades. Many strategies and markers have been developed to assess their effects on biota. Cytochrome P450 (CYP) genes have received significant attention in this context because of their relationship with detoxification and activation of exogenous compounds. While their expression has been identified as a pollution exposure biomarker, in most cases, it has been tested only after acute exposures and for CYP genes associated with exogenous compounds. To elucidate CYP gene expression patterns under chronic pollution exposure, we have used the silverside Basilichthys microlepidotus as a model, which inhabits the Maipo River Basin, a freshwater system with different pollution levels. We performed next-generation RNA sequencing of liver and gill tissues from polluted and non-polluted populations. We found most CYP genes were not dysregulated by pollution, and the seven genes that were present and differentially expressed in liver and gill were mainly downregulated. Three CYP genes associated with exogenous compounds showed differential expression in the gill, while four CYP genes associated with endogenous compounds showed differential expression in the liver. The findings presented here highlight the importance of CYP genes, his family, tissues and his interaction in the context of pollution biomarkers use.
Collapse
Affiliation(s)
- Jorge Cortés-Miranda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Noemí Rojas-Hernández
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Gigliola Muñoz
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Region Metropolitana, Chile
| | - Sylvia Copaja
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Region Metropolitana, Chile
| | - Claudio Quezada-Romegialli
- Laboratorio de Genómica y ADN ambiental, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica, Arica y Parinacota, Chile
| | - David Veliz
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Región Metropolitana, Chile
- Centro de Ecología y Manejo Sustentable de Islas Oceánicas., Coquimbo, Coquimbo, Chile
| | - Caren Vega-Retter
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Región Metropolitana, Chile
| |
Collapse
|
3
|
Yamakawa S, Yamazaki A, Morino Y, Wada H. Early expression onset of tissue-specific effector genes during the specification process in sea urchin embryos. EvoDevo 2023; 14:7. [PMID: 37101206 PMCID: PMC10131483 DOI: 10.1186/s13227-023-00210-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/01/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND In the course of animal developmental processes, various tissues are differentiated through complex interactions within the gene regulatory network. As a general concept, differentiation has been considered to be the endpoint of specification processes. Previous works followed this view and provided a genetic control scheme of differentiation in sea urchin embryos: early specification genes generate distinct regulatory territories in an embryo to express a small set of differentiation driver genes; these genes eventually stimulate the expression of tissue-specific effector genes, which provide biological identity to differentiated cells, in each region. However, some tissue-specific effector genes begin to be expressed in parallel with the expression onset of early specification genes, raising questions about the simplistic regulatory scheme of tissue-specific effector gene expression and the current concept of differentiation itself. RESULTS Here, we examined the dynamics of effector gene expression patterns during sea urchin embryogenesis. Our transcriptome-based analysis indicated that many tissue-specific effector genes begin to be expressed and accumulated along with the advancing specification GRN in the distinct cell lineages of embryos. Moreover, we found that the expression of some of the tissue-specific effector genes commences before cell lineage segregation occurs. CONCLUSIONS Based on this finding, we propose that the expression onset of tissue-specific effector genes is controlled more dynamically than suggested in the previously proposed simplistic regulation scheme. Thus, we suggest that differentiation should be conceptualized as a seamless process of accumulation of effector expression along with the advancing specification GRN. This pattern of effector gene expression may have interesting implications for the evolution of novel cell types.
Collapse
Affiliation(s)
- Shumpei Yamakawa
- Institute of Zoology and Evolutionary Research, Friedrich-Shiller University Jena, Erbertstraße 1, 07747, Jena, Germany.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Atsuko Yamazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
4
|
Paganos P, Ullmann CV, Gaglio D, Bonanomi M, Salmistraro N, Arnone MI, Jimenez-Guri E. Plastic leachate-induced toxicity during sea urchin embryonic development: Insights into the molecular pathways affected by PVC. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160901. [PMID: 36526210 DOI: 10.1016/j.scitotenv.2022.160901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Microplastics are now polluting all seas and, while studies have found numerous negative interactions between plastic pollution and marine animals, the effects on embryonic development are poorly understood. A potentially important source of developmental ecotoxicity comes from chemicals leached from plastic particles to the marine environment. Here we investigate the effects of leachates from new and beach-collected pellets on the embryonic and larval development of the sea urchin Strongylocentrotus purpuratus and demonstrate that exposure of developing embryos to these leachates elicits severe, consistent and treatment-specific developmental abnormalities including radialisation of the embryo and malformation of the skeleton, neural and immune cells. Using a multi-omics approach we define the developmental pathways disturbed upon exposure to PVC leachates and provide a mechanistic view that pinpoints cellular redox stress and energy production as drivers of phenotypic abnormalities following exposure to PVC leachates. Analysis of leachates identified high concentrations of zinc that are the likely cause of these observed defects. Our findings point to clear and specific detrimental effects of marine plastic pollution on the development of echinoderms, demonstrating that chemicals leached from plastic particles into sea water can produce strong developmental abnormalities via specific pathways, and therefore have the potential to impact on a wide range of organisms.
Collapse
Affiliation(s)
- Periklis Paganos
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy.
| | - Clemens Vinzenz Ullmann
- Department for Earth and Environmental Sciences, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Penryn, UK.
| | - Daniela Gaglio
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Milan, Italy; ISBE, IT/Centre of Systems Biology-Elixir Infrastructure and NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Marcella Bonanomi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; ISBE, IT/Centre of Systems Biology-Elixir Infrastructure and NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Noemi Salmistraro
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Milan, Italy; ISBE, IT/Centre of Systems Biology-Elixir Infrastructure and NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy.
| | - Eva Jimenez-Guri
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy; Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK.
| |
Collapse
|
5
|
Savoca D, Pace A, Arizza V, Arculeo M, Melfi R. Controlled uptake of PFOA in adult specimens of Paracentrotus lividus and evaluation of gene expression in their gonads and embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26094-26106. [PMID: 36350439 PMCID: PMC9995410 DOI: 10.1007/s11356-022-23940-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Perfluorooctanoic acid (PFOA) has been largely used in the manufacturing industry but a few years ago it turned out to be a dangerous pollutant which is now of concern for terrestrial and aquatic environments. Here, we investigated the bioaccumulation of PFOA in the sea urchin Paracentrotus lividus after exposure to different concentrations of the pollutant for 28 days. We observed rapid uptake of PFOA in the coelomic fluid collected weekly during the exposure period and high bioaccumulation in gonads at the end of the experiment. Interestingly, animals were also able to fast depurate when relocated to a clean environment. In addition, to assess the effect of PFOA on sea urchins' physiological pathways, we analysed the expression profile of some marker genes both in the gonads and in the embryos obtained from parents exposed to PFOA. Our results suggest that PFOA is a persistent, bioaccumulative compound that adversely affects the health of the exposed organisms and their offspring by causing significant changes in the expression of some key target genes and the occurrence of developmental anomalies in the embryos.
Collapse
Affiliation(s)
- Dario Savoca
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy.
| | - Andrea Pace
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy
| | - Marco Arculeo
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy
| | - Raffaella Melfi
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy
| |
Collapse
|
6
|
Di Natale MV, Carroccio SC, Dattilo S, Cocca M, Nicosia A, Torri M, Bennici CD, Musco M, Masullo T, Russo S, Mazzola A, Cuttitta A. Polymer aging affects the bioavailability of microplastics-associated contaminants in sea urchin embryos. CHEMOSPHERE 2022; 309:136720. [PMID: 36206916 DOI: 10.1016/j.chemosphere.2022.136720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) in the marine environment undergo complex weathering factors that can affect their ability to interact with different coexisting environmental contaminants (termed here co-contaminants). In this study, the influence of artificially aging using UV on the sorption of a complex mixture of co-contaminants onto MPs was investigated in order to provide meaningful hypotheses on their individual and combined toxicities on sea urchin embryos. A mixture of artificially aged MPs (PS particles and PA microfibers) combined with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), or Cd or Cu, both alone and in a mix, were used to expose embryos of Paracentrotus lividus. The effects of polymer aging on co-contaminants bioavailability were assessed by measuring changes in the transcriptional profile of genes involved in oxidative-stress response and skeletogenic and endo-mesodermal specification. Changes in the sorption ability of MPs to co-contaminants in the aqueous phase highlighted that aging did not affect the sorption of BDE-47 and Cd on MPs, although a certain influence on Cu sorption was found. Despite no morphological effects in embryos at the gastrula stage after MPs/contaminants combinatorial exposure emerged, the greatest influence of the aging process was mainly found for combined exposures which included BDE-47. Finally, the exposure to multiple contaminants generated transcriptional profiles poorly related to those activated by single contaminant, at times suggesting a mixture-dependent different aging influence. These results open new scenarios on the controversial role of vector of co-contaminants for MPs, especially when complex and different types of mixtures were considered.
Collapse
Affiliation(s)
- Marilena Vita Di Natale
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy; University of Palermo, Department of Earth and Marine Sciences (DiSTEM), Via Archirafi 22, 90123, Palermo (PA), Italy.
| | | | | | - Mariacristina Cocca
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy.
| | - Aldo Nicosia
- National Research Council of Italy, Institute for Biomedical Research and Innovation (IRIB-CNR), Via Ugo La Malfa, 153, 90146, Palermo, Italy.
| | - Marco Torri
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy.
| | - Carmelo Daniele Bennici
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy.
| | - Marianna Musco
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy; LUMSA University - Via Filippo Parlatore n. 65, Palermo, Italy.
| | - Tiziana Masullo
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy.
| | - Stefania Russo
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy; University of Palermo, Department of Earth and Marine Sciences (DiSTEM), Via Archirafi 22, 90123, Palermo (PA), Italy.
| | - Antonio Mazzola
- University of Palermo, Department of Earth and Marine Sciences (DiSTEM), Via Archirafi 22, 90123, Palermo (PA), Italy.
| | - Angela Cuttitta
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy; LUMSA University - Via Filippo Parlatore n. 65, Palermo, Italy.
| |
Collapse
|
7
|
Structural Characterization and In Vitro Antioxidant Activity of Metallothionein from Oratosquilla oratoria. Molecules 2022; 27:molecules27072320. [PMID: 35408719 PMCID: PMC9000697 DOI: 10.3390/molecules27072320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
We report here the purification of a novel metal-binding protein from Oratosquilla oratoria (O. oratoria MT-1) by gel and ion-exchange chromatography. SDS-PAGE and MALDI-TOF analyses demonstrated that isolated O. oratoria MT-1 was of high purity with a molecular weight of 12.4 kDa. The fluorescence response to SBD-F derivatives revealed that O. oratoria MT-1 contained a large number of sulfhydryl groups, which is a general property of metallothioneins. Zn and Cu metal stoichiometries for O. oratoria MT-1 were 3.97:1 and 0.55:1, respectively. The proportion of cysteine (Cys) residues in the amino acid composition was 32.69%, and aromatic amino acids were absent. The peptide sequence coverage with Macrobrachium rosenbergii calmodulin (accession AOA3S8FSK5) was 60%. Infrared spectroscopy of O. oratoria MT-1 revealed two obvious peaks at absorption frequencies for the amide I band and the amide II band. CD spectra revealed that the secondary structure was mainly composed of random coil (57.6%) and β-sheet (39.9%). An evaluation of in vitro antioxidant activity revealed that isolated O. oratoria MT-1 has strong reducing activities, exhibiting scavenging rates for DPPH and OH of 77.8% and 75.8%, respectively (IC50 values 0.57 mg/mL and 1.1 mg/mL). O. oratoria MT-1 may be used as a functional additive in cosmetics, health foods, and medical products, as well as a reference material for quantitative analysis of metallothionein in such products.
Collapse
|
8
|
Blewett TA, Leonard EM, Glover CN, McClelland GB, Wood CM, McGeer JC, Santore RC, Smith DS. The effect of marine dissolved organic carbon on nickel accumulation in early life-stages of the sea urchin, Strongylocentrotus purpuratus. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109150. [PMID: 34352398 DOI: 10.1016/j.cbpc.2021.109150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Dissolved organic carbon (DOC) is known to ameliorate the toxicity of the trace metal nickel (Ni) to aquatic animals. In theory, this effect is mediated by the capacity of DOC to bind Ni, rendering it less bioavailable, with the resulting reduction in accumulation limiting toxicological effects. However, there is a lack of experimental data examining Ni accumulation in marine settings with natural sources of DOC. In the current study, radiolabelled Ni was used to examine the time- and concentration-dependence of Ni accumulation, using naturally sourced DOC, on developing larvae of the sea urchin Strongylocentrotus purpuratus. Contrary to prediction, the two tested natural DOC samples (collected from the eastern United States, DOC 2 (Seaview park, Rhode Island (SVP)) and DOC 7 (Aubudon Coastal Center, Connecticut)) which had previously been shown to protect against Ni toxicity, did not limit accumulation. The control (artificial seawater with no added DOC), and the DOC 2 sample could mostly be described as having saturable Ni uptake, whereas Ni uptake in the presence of DOC 7 was mostly linear. These data provide evidence that DOC modifies the bioavailability of Ni, through either indirect effects (e.g. membrane permeability) or by the absorption of DOC-Ni complexes. There was some evidence for regulation of Ni accumulation in later-stage embryos (96-h) where the bioconcentration factor for Ni declined with increasing Ni exposure concentration. These data have implications for predictive modelling approaches that rely on known relationships between Ni speciation, bioavailability and bioreactivity, by suggesting that these relationships may not hold for natural marine DOC samples in the developing sea urchin model system.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Chemistry, Wilfrid Laurier University, Waterloo, ON, Canada; Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada; Department of Biological Sciences, University of Alberta, AB, Canada; Department of Biology, McMaster University, Hamilton, ON, Canada.
| | - Erin M Leonard
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Chris N Glover
- Department of Biological Sciences, University of Alberta, AB, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, AB, Canada
| | | | - Chris M Wood
- Department of Biology, McMaster University, Hamilton, ON, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - James C McGeer
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | - D Scott Smith
- Department of Chemistry, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
9
|
Cheng M, Yuan H, Wang R, Zou J, Liang T, Yang F, Li S. Genome-Wide Identification and Analysis of the Metallothionein Genes in Oryza Genus. Int J Mol Sci 2021; 22:ijms22179651. [PMID: 34502554 PMCID: PMC8431808 DOI: 10.3390/ijms22179651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/22/2022] Open
Abstract
Metallothionein (MT) proteins are low molecular mass, cysteine-rich, and metal-binding proteins that play an important role in maintaining metal homeostasis and stress response. However, the evolutionary relationships and functional differentiation of MT in the Oryza genus remain unclear. Here we identified 53 MT genes from six Oryza genera, including O. sativa ssp. japonica, O. rufipogon, O. sativa ssp. indica, O. nivara, O. glumaepatula, and O. barthii. The MT genes were clustered into four groups based on phylogenetic analysis. MT genes are unevenly distributed on chromosomes; almost half of the MT genes were clustered on chromosome 12, which may result from a fragment duplication containing the MT genes on chromosome 12. Five pairs of segmental duplication events and ten pairs of tandem duplication events were found in the rice MT family. The Ka/Ks values of the fifteen duplicated MT genes indicated that the duplicated MT genes were under a strong negative selection during evolution. Next, combining the promoter activity assay with gene expression analysis revealed different expression patterns of MT genes. In addition, the expression of OsMT genes was induced under different stresses, including NaCl, CdCl2, ABA, and MeJ treatments. Additionally, we found that OsMT genes were mainly located in chloroplasts. These results imply that OsMT genes play different roles in response to these stresses. All results provide important insights into the evolution of the MT gene family in the Oryza genus, and will be helpful to further study the function of MT genes.
Collapse
|
10
|
Masullo T, Biondo G, Natale MD, Tagliavia M, Bennici CD, Musco M, Ragusa MA, Costa S, Cuttitta A, Nicosia A. Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development. BIOLOGY 2021; 10:biology10020103. [PMID: 33535713 PMCID: PMC7912929 DOI: 10.3390/biology10020103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
It is widely accepted that phenotypic traits can be modulated at the epigenetic level so that some conditions can affect the progeny of exposed individuals. To assess if the exposure of adult animals could result in effects on the offspring, the Mediterranean sea urchin and its well-characterized gene regulatory networks (GRNs) was chosen as a model. Adult animals were exposed to known concentrations of zinc and cadmium (both individually and in combination) for 10 days, and the resulting embryos were followed during the development. The oxidative stress occurring in parental gonads, embryo phenotypes and mortality, and the expression level of a set of selected genes, including members of the skeletogenic and endodermal GRNs, were evaluated. Increased oxidative stress at F0, high rates of developmental aberration with impaired gastrulation, in association to deregulation of genes involved in skeletogenesis (dri, hex, sm50, p16, p19, msp130), endodermal specification (foxa, hox11/13b, wnt8) and epigenetic regulation (kat2A, hdac1, ehmt2, phf8 and UBE2a) occurred either at 24 or 48 hpf. Results strongly indicate that exposure to environmental pollutants can affect not only directly challenged animals but also their progeny (at least F1), influencing optimal timing of genetic programme of embryo development, resulting in an overall impairment of developmental success.
Collapse
Affiliation(s)
- Tiziana Masullo
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Girolama Biondo
- Institute for Anthropic Impacts and Sustainability in Marine Environment-National Research Council (IAS-CNR), Detached Unit of Capo Granitola, Via del mare 3, 91021 Campobello di Mazara, Italy;
| | - Marilena Di Natale
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
- Department of Earth and Marine Science (DiSTeM), University of Palermo, Via Archirafi 20, 90123 Palermo, Italy
| | - Marcello Tagliavia
- Institute for Biomedical Research and Innovation-National Research Council-(IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Carmelo Daniele Bennici
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Marianna Musco
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; (M.A.R.); (S.C.)
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; (M.A.R.); (S.C.)
| | - Angela Cuttitta
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
- Correspondence: (A.C.); (A.N.)
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council-(IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
- Correspondence: (A.C.); (A.N.)
| |
Collapse
|
11
|
Luo M, Finet C, Cong H, Wei HY, Chung H. The evolution of insect metallothioneins. Proc Biol Sci 2020; 287:20202189. [PMID: 33109013 DOI: 10.1098/rspb.2020.2189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metallothioneins (MTs) are a family of cysteine-rich metal-binding proteins that are important in the chelating and detoxification of toxic heavy metals. Until now, the short length and the low sequence complexity of MTs have hindered the inference of robust phylogenies, hampering the study of their evolution. To address this longstanding question, we applied an iterative BLAST search pipeline that allowed us to build a unique dataset of more than 300 MT sequences in insects. By combining phylogenetics and synteny analysis, we reconstructed the evolutionary history of MTs in insects. We show that the MT content in insects has been shaped by lineage-specific tandem duplications from a single ancestral MT. Strikingly, we also uncovered a sixth MT, MtnF, in the model organism Drosophila melanogaster. MtnF evolves faster than other MTs and is characterized by a non-canonical length and higher cysteine content. Our methodological framework not only paves the way for future studies on heavy metal detoxification but can also allow us to identify other previously unidentified genes and other low complexity genomic features.
Collapse
Affiliation(s)
- Mei Luo
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.,College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Cédric Finet
- Yale-NUS College, 16 College Avenue West, Singapore 138527, Republic of Singapore
| | - Haosu Cong
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Hong-Yi Wei
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Henry Chung
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Scalisi EM, Salvaggio A, Antoci F, Messina A, Pecoraro R, Cantarella M, Gorrasi G, Impellizzeri G, Brundo MV. Toxicity assessment of two-dimensional nanomaterials molybdenum disulfide in Gallus gallus domesticus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110772. [PMID: 32464444 DOI: 10.1016/j.ecoenv.2020.110772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Recently two-dimensional nanomaterials, such as graphene and molybdenum disulfide (MoS2), have received much attention as adsorbent materials for the effective removal of organic contaminants. MoS2 is attracting attention, not only for its chemical-physical properties, but also for its wide availability in nature as a constituent of molybdenite. The aim of this investigation was to assess the effects of different MoS2 concentrations (5 × 10-1, 5 × 10-2 and 5 × 10-3 mg/ml) on the embryonated eggs of Gallus gallus domesticus, according to Beck method. We evaluated the toxic effect of the MoS2 powder purchased at Sigma-Aldrich indicated as "received" and MoS2 powder treated via mechanical milling indicated as "ball mille". Subsequently, the embryos were sacrificed at different times of embryonic development (11th, 15th and 19th day after incubation) in order to evaluate their embryotoxic and teratogenic effects. The alterations of the embryonic development were studied by morphological and immunohistochemical analysis of the tissues. The results obtained have shown the toxicity of both powders of MoS2 with a high percentage of deaths and growth delays. Moreover, the immunohistochemical analysis performed on several tissue sections showed a strong positivity to the anti-metallothionein1 antibody only for the erythrocytes.
Collapse
Affiliation(s)
- Elena Maria Scalisi
- Department of Biological, Geological and Environmental Science, University of Catania, Catania, Italy
| | - Antonio Salvaggio
- Experimental Zooprophylactic Institute of Sicily "A. Mirri", Palermo, Italy
| | - Francesco Antoci
- Experimental Zooprophylactic Institute of Sicily "A. Mirri", Palermo, Italy
| | | | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Science, University of Catania, Catania, Italy
| | | | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Salerno, Italy
| | | | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Science, University of Catania, Catania, Italy.
| |
Collapse
|
13
|
Milito A, Murano C, Castellano I, Romano G, Palumbo A. Antioxidant and immune response of the sea urchin Paracentrotus lividus to different re-suspension patterns of highly polluted marine sediments. MARINE ENVIRONMENTAL RESEARCH 2020; 160:104978. [PMID: 32291250 DOI: 10.1016/j.marenvres.2020.104978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Marine pollution due to disused industrial activities is a major threat to ecosystems and human health, for example through the effects of re-suspension of toxic substances that are present in contaminated sediments. Here, we examined the effects of different re-suspension patterns of polluted sediments from the site of national interest Bagnoli-Coroglio, on the immune system of the sea urchin Paracentrotus lividus. An indoor experiment was set up exposing sea urchins for 34 days to such sediments and evaluating the effects of two patterns of water turbulence, mimicking natural storms at sea. One group of animals experienced an "aggregated" pattern of turbulence, consisting in two events, each lasting 2 days, separated by only 3 calm days, while a second group experienced two events of turbulence separated by 17 calm days (spaced pattern). At different times from the beginning of the experiment, coelomic fluid was collected from the animals and immune cells were examined for cell count and morphology, oxidative stress variables, and expression of genes involved in metal detoxification, stress response and inflammation. Our results highlighted that the aggregated pattern of turbulence was more noxious for sea urchins. Indeed, their immune system was altered, over the exposure time, as indicated by the increase of red amoebocytes number. Moreover, despite of an increase of the antioxidant power, animals from this group displayed a very significant ROS over-production at the end of the experiment. Conversely, animals in the spaced condition activated a different immune response, mainly having phagocytes as actors, and were able to partially recover from the received stress at the end of the experiment. No changes in the expression of genes related to antioxidant and anti-inflammatory responses were observed in both groups. By contrast, a down-regulation of various metallothioneins (4, 6, 7 and 8) in the group subjected to aggregated pattern was observed, while metallothionein 8 was up-regulated in the animals from the group exposed to the spaced pattern of turbulence. This work provides the first evidence of how sea urchins can respond to different re-suspension patterns of polluted sediments by modulating their immune system functions. The present data are relevant in relation to the possible environmental restoration of the study site, whose priorities include the assessment of the effects of marine pollution on local organisms, among which P. lividus represents a key benthic species.
Collapse
Affiliation(s)
- Alfonsina Milito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Carola Murano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Giovanna Romano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
14
|
Wong DL, Yuan AT, Korkola NC, Stillman MJ. Interplay between Carbonic Anhydrases and Metallothioneins: Structural Control of Metalation. Int J Mol Sci 2020; 21:E5697. [PMID: 32784815 PMCID: PMC7460868 DOI: 10.3390/ijms21165697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Carbonic anhydrases (CAs) and metallothioneins (MTs) are both families of zinc metalloproteins central to life, however, they coordinate and interact with their Zn2+ ion cofactors in completely different ways. CAs and MTs are highly sensitive to the cellular environment and play key roles in maintaining cellular homeostasis. In addition, CAs and MTs have multiple isoforms with differentiated regulation. This review discusses current literature regarding these two families of metalloproteins in carcinogenesis, with a dialogue on the association of these two ubiquitous proteins in vitro in the context of metalation. Metalation of CA by Zn-MT and Cd-MT is described. Evidence for protein-protein interactions is introduced from changes in metalation profiles of MT from electrospray ionization mass spectrometry and the metalation rate from stopped-flow kinetics. The implications on cellular control of pH and metal donation is also discussed in the context of diseased states.
Collapse
Affiliation(s)
| | | | | | - Martin J. Stillman
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON N6A5B7, Canada; (D.L.W.); (A.T.Y.); (N.C.K.)
| |
Collapse
|
15
|
Zúñiga A, Laporte D, González A, Gómez M, Sáez CA, Moenne A. Isolation and Characterization of Copper- and Zinc- Binding Metallothioneins from the Marine Alga Ulva compressa (Chlorophyta). Int J Mol Sci 2019; 21:E153. [PMID: 31881655 PMCID: PMC6981760 DOI: 10.3390/ijms21010153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023] Open
Abstract
In this work, transcripts encoding three metallothioneins from Ulva compressa (UcMTs) were amplified: The 5'and 3' UTRs by RACE-PCR, and the open reading frames (ORFs) by PCR. Transcripts encoding UcMT1.1 (Crassostrea-like), UcMT2 (Mytilus-like), and UcMT3 (Dreissena-like) showed a 5'UTR of 61, 71, and 65 nucleotides and a 3'UTR of 418, 235, and 193 nucleotides, respectively. UcMT1.1 ORF encodes a protein of 81 amino acids (MW 8.2 KDa) with 25 cysteines (29.4%), arranged as three motifs CC and nine motifs CXC; UcMT2 ORF encode a protein of 90 amino acids (9.05 kDa) with 27 cysteines (30%), arranged as three motifs CC, nine motifs CXC, and one motif CXXC; UcMT3 encode a protein of 139 amino acids (13.4 kDa) with 34 cysteines (24%), arranged as seven motifs CC and seven motifs CXC. UcMT1 and UcMT2 were more similar among each other, showing 60% similarity in amino acids; UcMT3 showed only 31% similarity with UcMT1 and UcMT2. In addition, UcMTs displayed structural similarity with MTs of marine invertebrates MTs and the terrestrial invertebrate Caenorhabtidis elegans MTs, but not with MTs from red or brown macroalgae. The ORFs fused with GST were expressed in bacteria allowing copper accumulation, mainly in MT1 and MT2, and zinc, in the case of the three MTs. Thus, the three MTs allowed copper and zinc accumulation in vivo. UcMTs may play a role in copper and zinc accumulation in U. compressa.
Collapse
Affiliation(s)
- Antonio Zúñiga
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
- HUB AMBIENTAL UPLA, Vicerrectoría de Investigación, Postgrado e Innovación, University of Playa Ancha, Avenida Carvallo 270, Valparaíso 2340000, Chile;
| | - Daniel Laporte
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
| | - Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
| | - Melissa Gómez
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
| | - Claudio A. Sáez
- HUB AMBIENTAL UPLA, Vicerrectoría de Investigación, Postgrado e Innovación, University of Playa Ancha, Avenida Carvallo 270, Valparaíso 2340000, Chile;
- Laboratory of Aquatic Environmental Research, Center of Advances Studies, University of Playa Ancha, Traslaviña 450, Viña del Mar 2520000, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
| |
Collapse
|
16
|
Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production. Microorganisms 2019; 7:microorganisms7100387. [PMID: 31554228 PMCID: PMC6843219 DOI: 10.3390/microorganisms7100387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023] Open
Abstract
Proteolytic enzymes are of great interest for biotechnological purposes, and their large-scale production, as well as the discovery of strains producing new molecules, is a relevant issue. Collagenases are employed for biomedical and pharmaceutical purposes. The high specificity of collagenase-based preparations toward the substrate strongly relies on the enzyme purity. However, the overall activity may depend on the cooperation with other proteases, the presence of which may be essential for the overall enzymatic activity, but potentially harmful for cells and tissues. Vibrios produce some of the most promising bacterial proteases (including collagenases), and their exo-proteome includes several enzymes with different substrate specificities, the production and relative abundances of which strongly depend on growth conditions. We evaluated the effects of different media compositions on the proteolytic exo-proteome of Vibrio alginolyticus and its closely relative Vibrio parahaemolyticus, in order to improve the overall proteases production, as well as the yield of the desired enzymes subset. Substantial biological responses were achieved with all media, which allowed defining culture conditions for targeted improvement of selected enzyme classes, besides giving insights in possible regulatory mechanisms. In particular, we focused our efforts on collagenases production, because of the growing biotechnological interest due to their pharmaceutical/biomedical applications.
Collapse
|
17
|
Chiarelli R, Martino C, Roccheri MC. Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress Chaperones 2019; 24:675-687. [PMID: 31165437 PMCID: PMC6629738 DOI: 10.1007/s12192-019-01010-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022] Open
Abstract
In recent years, researches about the defense strategies induced by cadmium stress have greatly increased, invading several fields of scientific research. Mechanisms of cadmium-induced toxicity continue to be of interest for researchers given its ubiquitous nature and environmental distribution, where it often plays the role of pollutant for numerous organisms. The presence in the environment of this heavy metal has been constantly increasing because of its large employment in several industrial and agricultural activities. Cadmium does not have any biological role and, since it cannot be degraded by living organisms, it is irreversibly accumulated into cells, interacting with cellular components and molecular targets. Cadmium is one of the most studied heavy metal inductors of stress and a potent modulator of several processes such as apoptosis, autophagy, reactive oxygen species, protein kinase and phosphatase, mitochondrial function, metallothioneins, and heat-shock proteins. Sea urchins (adults, gametes, embryos, and larvae) offer an optimal opportunity to investigate the possible adaptive response of cells exposed to cadmium, since these cells are known to accumulate contaminants. In this review, we will examine several responses to stress induced by cadmium in different sea urchin species, with a focus on Paracentrotus lividus embryos. The sea urchin embryo represents a suitable system, as it is not subjected to legislation on animal welfare and can be easily used for toxicological studies and as a bioindicator of environmental pollution. Recently, it has been included into the guidelines for the use and interpretation of assays to monitor autophagy.
Collapse
Affiliation(s)
- Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
18
|
A Survey on Tubulin and Arginine Methyltransferase Families Sheds Light on P. lividus Embryo as Model System for Antiproliferative Drug Development. Int J Mol Sci 2019; 20:ijms20092136. [PMID: 31052191 PMCID: PMC6539552 DOI: 10.3390/ijms20092136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/27/2019] [Indexed: 01/18/2023] Open
Abstract
Tubulins and microtubules (MTs) represent targets for taxane-based chemotherapy. To date, several lines of evidence suggest that effectiveness of compounds binding tubulin often relies on different post-translational modifications on tubulins. Among them, methylation was recently associated to drug resistance mechanisms impairing taxanes binding. The sea urchin is recognized as a research model in several fields including fertilization, embryo development and toxicology. To date, some α- and β-tubulin genes have been identified in P. lividus, while no data are available in echinoderms for arginine methyl transferases (PRMT). To evaluate the exploiting of the sea urchin embryo in the field of antiproliferative drug development, we carried out a survey of the expressed α- and β-tubulin gene sets, together with a comprehensive analysis of the PRMT gene family and of the methylable arginine residues in P. lividus tubulins. Because of their specificities, the sea urchin embryo may represent an interesting tool for dissecting mechanisms of tubulin targeting drug action. Therefore, results herein reported provide evidences supporting the P. lividus embryo as animal system for testing antiproliferative drugs.
Collapse
|
19
|
Di Natale M, Bennici C, Biondo G, Masullo T, Monastero C, Tagliavia M, Torri M, Costa S, Ragusa MA, Cuttitta A, Nicosia A. Aberrant gene expression profiles in Mediterranean sea urchin reproductive tissues after metal exposures. CHEMOSPHERE 2019; 216:48-58. [PMID: 30359916 DOI: 10.1016/j.chemosphere.2018.10.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Marine organisms are simultaneously exposed to numerous pollutants, among which metals probably represent the most abundant in marine environments. In order to evaluate the effects of metal exposure at molecular level in reproductive tissues, we profiled the sea urchin transcriptional response after non-lethal exposures using pathway-focused mRNA expression analyses. Herein, we show that exposures to relatively high concentrations of both essential and toxic metals hugely affected the gonadic expression of several genes involved in stress-response, detoxification, transcriptional and post-transcriptional regulation, without significant changes in gonadosomatic indices. Even though treatments did not result in reproductive tissues visible alterations, metal exposures negatively affected the main mechanisms of stress-response, detoxification and survival of adult P. lividus. Additionally, transcriptional changes observed in P. lividus gonads may cause altered gametogenesis and maintenance of heritable aberrant epigenetic effects. This study leads to the conclusion that exposures to metals, as usually occurs in polluted coastal areas, may affect sea urchin gametogenesis, thus supporting the hypothesis that parental exposure to environmental stressors affects the phenotype of the offspring.
Collapse
Affiliation(s)
- Marilena Di Natale
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Carmelo Bennici
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Girolama Biondo
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Tiziana Masullo
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Calogera Monastero
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Marcello Tagliavia
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Marco Torri
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Angela Cuttitta
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Aldo Nicosia
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| |
Collapse
|
20
|
Nicosia A, Bennici C, Biondo G, Costa S, Di Natale M, Masullo T, Monastero C, Ragusa MA, Tagliavia M, Cuttitta A. Characterization of Translationally Controlled Tumour Protein from the Sea Anemone Anemonia viridis and Transcriptome Wide Identification of Cnidarian Homologues. Genes (Basel) 2018; 9:genes9010030. [PMID: 29324689 PMCID: PMC5793182 DOI: 10.3390/genes9010030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 02/06/2023] Open
Abstract
Gene family encoding translationally controlled tumour protein (TCTP) is defined as highly conserved among organisms; however, there is limited knowledge of non-bilateria. In this study, the first TCTP homologue from anthozoan was characterised in the Mediterranean Sea anemone, Anemonia viridis. The release of the genome sequence of Acropora digitifera, Exaiptasia pallida, Nematostella vectensis and Hydra vulgaris enabled a comprehensive study of the molecular evolution of TCTP family among cnidarians. A comparison among TCTP members from Cnidaria and Bilateria showed conserved intron exon organization, evolutionary conserved TCTP signatures and 3D protein structure. The pattern of mRNA expression profile was also defined in A. viridis. These analyses revealed a constitutive mRNA expression especially in tissues with active proliferation. Additionally, the transcriptional profile of A. viridis TCTP (AvTCTP) after challenges with different abiotic/biotic stresses showed induction by extreme temperatures, heavy metals exposure and immune stimulation. These results suggest the involvement of AvTCTP in the sea anemone defensome taking part in environmental stress and immune responses.
Collapse
Affiliation(s)
- Aldo Nicosia
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Carmelo Bennici
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Girolama Biondo
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Sicily, Italy.
| | - Marilena Di Natale
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Tiziana Masullo
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Calogera Monastero
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Sicily, Italy.
| | - Marcello Tagliavia
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Angela Cuttitta
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| |
Collapse
|
21
|
Metallothioneins: Emerging Modulators in Immunity and Infection. Int J Mol Sci 2017; 18:ijms18102197. [PMID: 29065550 PMCID: PMC5666878 DOI: 10.3390/ijms18102197] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Metallothioneins (MTs) are a family of metal-binding proteins virtually expressed in all organisms including prokaryotes, lower eukaryotes, invertebrates and mammals. These proteins regulate homeostasis of zinc (Zn) and copper (Cu), mitigate heavy metal poisoning, and alleviate superoxide stress. In recent years, MTs have emerged as an important, yet largely underappreciated, component of the immune system. Innate and adaptive immune cells regulate MTs in response to stress stimuli, cytokine signals and microbial challenge. Modulation of MTs in these cells in turn regulates metal ion release, transport and distribution, cellular redox status, enzyme function and cell signaling. While it is well established that the host strictly regulates availability of metal ions during microbial pathogenesis, we are only recently beginning to unravel the interplay between metal-regulatory pathways and immunological defenses. In this perspective, investigation of mechanisms that leverage the potential of MTs to orchestrate inflammatory responses and antimicrobial defenses has gained momentum. The purpose of this review, therefore, is to illumine the role of MTs in immune regulation. We discuss the mechanisms of MT induction and signaling in immune cells and explore the therapeutic potential of the MT-Zn axis in bolstering immune defenses against pathogens.
Collapse
|