1
|
Peter AS, Hoffmann DS, Klier J, Lange CM, Moeller J, Most V, Wüst CK, Beining M, Gülesen S, Junker H, Brumme B, Schiffner T, Meiler J, Schoeder CT. Strategies of rational and structure-driven vaccine design for Arenaviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105626. [PMID: 38908736 DOI: 10.1016/j.meegid.2024.105626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The COVID-19 outbreak has highlighted the importance of pandemic preparedness for the prevention of future health crises. One virus family with high pandemic potential are Arenaviruses, which have been detected almost worldwide, particularly in Africa and the Americas. These viruses are highly understudied and many questions regarding their structure, replication and tropism remain unanswered, making the design of an efficacious and molecularly-defined vaccine challenging. We propose that structure-driven computational vaccine design will contribute to overcome these challenges. Computational methods for stabilization of viral glycoproteins or epitope focusing have made progress during the last decades and particularly during the COVID-19 pandemic, and have proven useful for rational vaccine design and the establishment of novel diagnostic tools. In this review, we summarize gaps in our understanding of Arenavirus molecular biology, highlight challenges in vaccine design and discuss how structure-driven and computationally informed strategies will aid in overcoming these obstacles.
Collapse
Affiliation(s)
- Antonia Sophia Peter
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Dieter S Hoffmann
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Johannes Klier
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Christina M Lange
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Johanna Moeller
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany
| | - Victoria Most
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Christina K Wüst
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Molecular Medicine Studies, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Max Beining
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; SECAI, School of Embedded Composite Artificial Intelligence, Dresden/Leipzig, Germany
| | - Sevilay Gülesen
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Hannes Junker
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Birke Brumme
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Torben Schiffner
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; The Scripps Research Institute, Department for Immunology and Microbiology, La Jolla, CA, United States
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany; Department of Chemistry, Vanderbilt University, Nashville, TN, United States; Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Clara T Schoeder
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany.
| |
Collapse
|
2
|
Alatrash R, Herrera BB. The Adaptive Immune Response against Bunyavirales. Viruses 2024; 16:483. [PMID: 38543848 PMCID: PMC10974645 DOI: 10.3390/v16030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to develop safe and effective vaccines, a process requiring better understanding of the adaptive immune responses involved during infection. This review highlights the most recent findings regarding T cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and characterize mechanistic correlates of protection against Bunyavirales infections or disease will help inform the development of effective vaccines.
Collapse
Affiliation(s)
- Reem Alatrash
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
3
|
Bezerra EHS, Melo-Hanchuk TD, Marques RE. Structural and molecular biology of Sabiá virus. Exp Biol Med (Maywood) 2023; 248:1624-1634. [PMID: 37937408 PMCID: PMC10723027 DOI: 10.1177/15353702231199071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Brazilian mammarenavirus, or Sabiá virus (SABV), is a New World (NW) arenavirus associated with fulminant hemorrhagic disease in humans and the sole biosafety level 4 microorganism ever isolated in Brazil. Since the isolation of SABV in the 1990s, studies on viral biology have been scarce, with no available countermeasures against SABV infection or disease. Here we provide a comprehensive review of SABV biology, including key aspects of SABV replication, and comparisons with related Old World and NW arenaviruses. SABV is most likely a rodent-borne virus, transmitted to humans, through exposure to urine and feces in peri-urban areas. Using protein structure prediction methods and alignments, we analyzed shared and unique features of SABV proteins (GPC, NP, Z, and L) that could be explored in search of therapeutic strategies, including repurposing intended application against arenaviruses. Highly conserved catalytic activities present in L protein could be targeted for broad-acting antiviral activity among arenaviruses, while protein-protein interactions, such as those between L and the matrix protein Z, have evolved in NW arenaviruses and should be specific to SABV. The nucleoprotein (NP) also shares targetable interaction interfaces with L and Z and exhibits exonuclease activity in the C-terminal domain, which may be involved in multiple aspects of SABV replication. Envelope glycoproteins GP1 and GP2 have been explored in the development of promising cross-reactive neutralizing antibodies and vaccines, some of which could be repurposed for SABV. GP1 remains a challenging target in SABV as evolutive pressures render it the most variable viral protein in terms of both sequence and structure, while antiviral strategies targeting the Z protein remain to be validated. In conclusion, the prediction and analysis of protein structures should revolutionize research on viruses such as SABV by facilitating the rational design of countermeasures while reducing dependence on sophisticated laboratory infrastructure for experimental validation.
Collapse
Affiliation(s)
| | | | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo 13083-100, Brazil
| |
Collapse
|
4
|
Hattori T, Saito T, Miyamoto H, Kajihara M, Igarashi M, Takada A. Single Nucleotide Variants of the Human TIM-1 IgV Domain with Reduced Ability to Promote Viral Entry into Cells. Viruses 2022; 14:v14102124. [PMID: 36298679 PMCID: PMC9611583 DOI: 10.3390/v14102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Human T-cell immunoglobulin mucin 1 (hTIM-1) is known to promote cellular entry of enveloped viruses. Previous studies suggested that the polymorphisms of hTIM-1 affected its function. Here, we analyzed single nucleotide variants (SNVs) of hTIM-1 to determine their ability to promote cellular entry of viruses using pseudotyped vesicular stomatitis Indiana virus (VSIV). We obtained hTIM-1 sequences from a public database (Ensembl genome browser) and identified 35 missense SNVs in 3 loops of the hTIM-1 immunoglobulin variable (IgV) domain, which had been reported to interact with the Ebola virus glycoprotein (GP) and phosphatidylserine (PS) in the viral envelope. HEK293T cells transiently expressing wildtype hTIM-1 or its SNV mutants were infected with VSIVs pseudotyped with filovirus or arenavirus GPs, and their infectivities were compared. Eleven of the thirty-five SNV substitutions reduced the efficiency of hTIM-1-mediated entry of pseudotyped VSIVs. These SNV substitutions were found not only around the PS-binding pocket but also in other regions of the molecule. Taken together, our findings suggest that some SNVs of the hTIM-1 IgV domain have impaired ability to interact with PS and/or viral GPs in the viral envelope, which may affect the hTIM-1 function to promote viral entry into cells.
Collapse
Affiliation(s)
- Takanari Hattori
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Takeshi Saito
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Hiroko Miyamoto
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- One Health Research Center, Hokkaido University, Sapporo 001-0020, Japan
- Correspondence: ; Tel.: +81-11-706-9502; Fax: +81-11-706-7310
| |
Collapse
|
5
|
Khan T, Muzaffar A, Shoaib RM, Khan A, Waheed Y, Wei DQ. Towards specie-specific ensemble vaccine candidates against mammarenaviruses using optimized structural vaccinology pipeline and molecular modelling approaches. Microb Pathog 2022; 172:105793. [PMID: 36165863 DOI: 10.1016/j.micpath.2022.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
Mammarena viruses are emerging pathogenic agents and cause hemorrhagic fevers in humans. These viruses accomplish host immune system evasion to replicate and spread in the host. There are only few available therapeutic options developed for Mammarena Virus (also called MMV). Currently, only a single candidate vaccine called Candid#1 is available against Junin virus. Similarly, the effective treatment Ribavirin is used only in Lassa fever treatments. Herein, immune-informatics pipeline has been used to annotate whole proteome of the seven human infecting Mammarena strains. The extensive immune based analysis reveals specie specific epitopes with a crucial role in immune response induction. This was achieved by construction of immunogenic epitopes (CTL "Cytotoxic T-Lymphocytes", HTL "Helper T-Lymphocytes", and B cell "B-Lymphocytes") based vaccine designs against seven different Mammarena virus species. Furthermore, validation of the vaccine constructs through exploring physiochemical properties was performed to confirm experimental feasibility. Additionally, in-silico cloning and receptor based immune simulation was performed to ensure induction of primary and secondary immune response. This was confirmed through expression of immune factors such as IL, cytokines, and antibodies. The current study provides with novel vaccine designs which needs further demonstrations through potential processing against MMVs. Future studies may be directed towards advanced evaluations to determine the efficacy and safety of the designed vaccines through further experimental procedures.
Collapse
Affiliation(s)
- Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | | | | | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, PR China.
| | - Yasir Waheed
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, PR China; Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
6
|
Brisse M, Huang Q, Rahman M, Di D, Liang Y, Ly H. RIG-I and MDA5 Protect Mice From Pichinde Virus Infection by Controlling Viral Replication and Regulating Immune Responses to the Infection. Front Immunol 2021; 12:801811. [PMID: 34925387 PMCID: PMC8677829 DOI: 10.3389/fimmu.2021.801811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022] Open
Abstract
RIG-I and MDA5 are major cytoplasmic innate-immune sensor proteins that recognize aberrant double-stranded RNAs generated during virus infection to activate type 1 interferon (IFN-I) and IFN-stimulated gene (ISG) expressions to control virus infection. The roles of RIG-I and MDA5 in controlling replication of Pichinde virus (PICV), a mammarenavirus, in mice have not been examined. Here, we showed that MDA5 single knockout (SKO) and RIG-I/MDA5 double knockout (DKO) mice are highly susceptible to PICV infection as evidenced by their significant reduction in body weights during the course of the infection, validating the important roles of these innate-immune sensor proteins in controlling PICV infection. Compared to the wildtype mice, SKO and DKO mice infected with PICV had significantly higher virus titers and lower IFN-I expressions early in the infection but appeared to exhibit a late and heightened level of adaptive immune responses to clear the infection. When a recombinant rPICV mutant virus (rPICV-NPmut) that lacks the ability to suppress IFN-I was used to infect mice, as expected, there were heightened levels of IFN-I and ISG expressions in the wild-type mice, whereas infected SKO and DKO mice showed delayed mouse growth kinetics and relatively low, delayed, and transient levels of innate and adaptive immune responses to this viral infection. Taken together, our data suggest that PICV infection triggers activation of immune sensors that include but might not be necessarily limited to RIG-I and MDA5 to stimulate effective innate and adaptive immune responses to control virus infection in mice.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology and Biophysics Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
| | - Mizanur Rahman
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
| | - Da Di
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
| | - Hinh Ly
- Biochemistry, Molecular Biology and Biophysics Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
| |
Collapse
|
7
|
Sarute N, Ross SR. The board is set, the pieces are moving: Modulation of New World arenavirus entry by host proteins. PLoS Pathog 2021; 17:e1009605. [PMID: 34111222 PMCID: PMC8191888 DOI: 10.1371/journal.ppat.1009605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nicolás Sarute
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
8
|
Fernandes J, Miranda RL, de Lemos ERS, Guterres A. MicroRNAs and Mammarenaviruses: Modulating Cellular Metabolism. Cells 2020; 9:E2525. [PMID: 33238430 PMCID: PMC7709035 DOI: 10.3390/cells9112525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Mammarenaviruses are a diverse genus of emerging viruses that include several causative agents of severe viral hemorrhagic fevers with high mortality in humans. Although these viruses share many similarities, important differences with regard to pathogenicity, type of immune response, and molecular mechanisms during virus infection are different between and within New World and Old World viral infections. Viruses rely exclusively on the host cellular machinery to translate their genome, and therefore to replicate and propagate. miRNAs are the crucial factor in diverse biological processes such as antiviral defense, oncogenesis, and cell development. The viral infection can exert a profound impact on the cellular miRNA expression profile, and numerous RNA viruses have been reported to interact directly with cellular miRNAs and/or to use these miRNAs to augment their replication potential. Our present study indicates that mammarenavirus infection induces metabolic reprogramming of host cells, probably manipulating cellular microRNAs. A number of metabolic pathways, including valine, leucine, and isoleucine biosynthesis, d-Glutamine and d-glutamate metabolism, thiamine metabolism, and pools of several amino acids were impacted by the predicted miRNAs that would no longer regulate these pathways. A deeper understanding of mechanisms by which mammarenaviruses handle these signaling pathways is critical for understanding the virus/host interactions and potential diagnostic and therapeutic targets, through the inhibition of specific pathologic metabolic pathways.
Collapse
Affiliation(s)
- Jorlan Fernandes
- Hantaviruses and Rickettsiosis Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Renan Lyra Miranda
- Neurochemistry Interactions Laboratory, Universidade Federal Fluminense, Niterói 24020-150, Brazil;
| | - Elba Regina Sampaio de Lemos
- Hantaviruses and Rickettsiosis Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Alexandro Guterres
- Hantaviruses and Rickettsiosis Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| |
Collapse
|
9
|
Klitting R, Mehta SB, Oguzie JU, Oluniyi PE, Pauthner MG, Siddle KJ, Andersen KG, Happi CT, Sabeti PC. Lassa Virus Genetics. Curr Top Microbiol Immunol 2020. [PMID: 32418034 DOI: 10.1007/82_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In a pattern repeated across a range of ecological niches, arenaviruses have evolved a compact four-gene genome to orchestrate a complex life cycle in a narrow range of susceptible hosts. A number of mammalian arenaviruses cross-infect humans, often causing a life-threatening viral hemorrhagic fever. Among this group of geographically bound zoonoses, Lassa virus has evolved a unique niche that leads to significant and sustained human morbidity and mortality. As a biosafety level 4 pathogen, direct study of the pathogenesis of Lassa virus is limited by the sparse availability, high operating costs, and technical restrictions of the high-level biocontainment laboratories required for safe experimentation. In this chapter, we introduce the relationship between genome structure and the life cycle of Lassa virus and outline reverse genetic approaches used to probe and describe functional elements of the Lassa virus genome. We then review the tools used to obtain viral genomic sequences used for phylogeny and molecular diagnostics, before shifting to a population perspective to assess the contributions of phylogenetic analysis in understanding the evolution and ecology of Lassa virus in West Africa. We finally consider the future outlook and clinical applications for genetic study of Lassa virus.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | - Samar B Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Judith U Oguzie
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Paul E Oluniyi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Matthias G Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | | | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA.
| | - Christian T Happi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
10
|
Mateer EJ, Maruyama J, Card GE, Paessler S, Huang C. Lassa Virus, but Not Highly Pathogenic New World Arenaviruses, Restricts Immunostimulatory Double-Stranded RNA Accumulation during Infection. J Virol 2020; 94:e02006-19. [PMID: 32051278 PMCID: PMC7163147 DOI: 10.1128/jvi.02006-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/09/2020] [Indexed: 12/14/2022] Open
Abstract
The arenaviruses Lassa virus (LASV), Junín virus (JUNV), and Machupo virus (MACV) can cause severe and fatal diseases in humans. Although these pathogens are closely related, the host immune responses to these virus infections differ remarkably, with direct implications for viral pathogenesis. LASV infection is immunosuppressive, with a very low-level interferon response. In contrast, JUNV and MACV infections stimulate a robust interferon (IFN) response in a retinoic acid-inducible gene I (RIG-I)-dependent manner and readily activate protein kinase R (PKR), a known host double-stranded RNA (dsRNA) sensor. In response to infection with RNA viruses, host nonself RNA sensors recognize virus-derived dsRNA as danger signals and initiate innate immune responses. Arenavirus nucleoproteins (NPs) contain a highly conserved exoribonuclease (ExoN) motif, through which LASV NP has been shown to degrade virus-derived immunostimulatory dsRNA in biochemical assays. In this study, we for the first time present evidence that LASV restricts dsRNA accumulation during infection. Although JUNV and MACV NPs also have the ExoN motif, dsRNA readily accumulated in infected cells and often colocalized with dsRNA sensors. Moreover, LASV coinfection diminished the accumulation of dsRNA and the IFN response in JUNV-infected cells. The disruption of LASV NP ExoN with a mutation led to dsRNA accumulation and impaired LASV replication in minigenome systems. Importantly, both LASV NP and RNA polymerase L protein were required to diminish the accumulation of dsRNA and the IFN response in JUNV infection. For the first time, we discovered a collaboration between LASV NP ExoN and L protein in limiting dsRNA accumulation. Our new findings provide mechanistic insights into the differential host innate immune responses to highly pathogenic arenavirus infections.IMPORTANCE Arenavirus NPs contain a highly conserved DEDDh ExoN motif, through which LASV NP degrades virus-derived, immunostimulatory dsRNA in biochemical assays to eliminate the danger signal and inhibit the innate immune response. Nevertheless, the function of NP ExoN in arenavirus infection remains to be defined. In this study, we discovered that LASV potently restricts dsRNA accumulation during infection and minigenome replication. In contrast, although the NPs of JUNV and MACV also harbor the ExoN motif, dsRNA readily formed during JUNV and MACV infections, accompanied by IFN and PKR responses. Interestingly, LASV NP alone was not sufficient to limit dsRNA accumulation. Instead, both LASV NP and L protein were required to restrict immunostimulatory dsRNA accumulation. Our findings provide novel and important insights into the mechanism for the distinct innate immune response to these highly pathogenic arenaviruses and open new directions for future studies.
Collapse
Affiliation(s)
- Elizabeth J Mateer
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Junki Maruyama
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Galen E Card
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Slobodan Paessler
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cheng Huang
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
11
|
Gravinatti ML, Barbosa CM, Soares RM, Gregori F. Synanthropic rodents as virus reservoirs and transmitters. Rev Soc Bras Med Trop 2020; 53:e20190486. [PMID: 32049206 PMCID: PMC7083353 DOI: 10.1590/0037-8682-0486-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022] Open
Abstract
This review focuses on reports of hepatitis E virus, hantavirus, rotavirus,
coronavirus, and arenavirus in synanthropic rodents (Rattus
rattus, Rattus norvegicus, and Mus
musculus) within urban environments. Despite their potential impact
on human health, relatively few studies have addressed the monitoring of these
viruses in rodents. Comprehensive control and preventive activities should
include actions such as the elimination or reduction of rat and mouse
populations, sanitary education, reduction of shelters for the animals, and
restriction of the access of rodents to residences, water, and food
supplies.
Collapse
Affiliation(s)
- Mara Lucia Gravinatti
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Rodrigo Martins Soares
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio Gregori
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
13
|
Perdomo-Celis F, Salvato MS, Medina-Moreno S, Zapata JC. T-Cell Response to Viral Hemorrhagic Fevers. Vaccines (Basel) 2019; 7:E11. [PMID: 30678246 PMCID: PMC6466054 DOI: 10.3390/vaccines7010011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 12/22/2022] Open
Abstract
Viral hemorrhagic fevers (VHF) are a group of clinically similar diseases that can be caused by enveloped RNA viruses primarily from the families Arenaviridae, Filoviridae, Hantaviridae, and Flaviviridae. Clinically, this group of diseases has in common fever, fatigue, dizziness, muscle aches, and other associated symptoms that can progress to vascular leakage, bleeding and multi-organ failure. Most of these viruses are zoonotic causing asymptomatic infections in the primary host, but in human beings, the infection can be lethal. Clinical and experimental evidence suggest that the T-cell response is needed for protection against VHF, but can also cause damage to the host, and play an important role in disease pathogenesis. Here, we present a review of the T-cell immune responses to VHF and insights into the possible ways to improve counter-measures for these viral agents.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia.
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Maria S Salvato
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Sandra Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Juan C Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Lau SKP. Molecular Research on Emerging Viruses: Evolution, Diagnostics, Pathogenesis, and Therapeutics. Int J Mol Sci 2018; 19:ijms19020398. [PMID: 29385690 PMCID: PMC5855620 DOI: 10.3390/ijms19020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/17/2018] [Accepted: 01/26/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|