1
|
Kuzmich AS, Filshtein AP, Likhatskaya GN, Gorpenchenko TY, Chikalovets IV, Mizgina TO, Hua KF, von Amsberg G, Dyshlovoy SA, Chernikov OV. Lectins CGL and MTL, representatives of mytilectin family, exhibit different antiproliferative activity in Burkitt's lymphoma cells. IUBMB Life 2024; 76:1279-1294. [PMID: 39166889 DOI: 10.1002/iub.2909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Lectins are carbohydrate-binding proteins, whose biological effects are exerted via binding to glycoconjugates expressed on the surface of cells. Exposure to lectins can lead not only to a change in the structure and properties of cells but also to their death. Here, we studied the biological activity of lectins from the mussels Crenomytilus graynus (CGL) and Mytilus trossulus (MTL) and showed that these proteins can affect the proliferation of human lymphoma cells. Both lectins suppressed the formation of colonies as well as cell cycle progression. The mechanism of action of these lectins was not mediated by reactive oxygen species but included damaging of mitochondria, inhibition of key cell cycle points, and activation of MAPK signaling pathway in tumor cells. Computer modeling suggested that various effects of CGL and MTL on lymphoma cells may be due to the difference in the energy of binding of these lectins to carbohydrate ligands on the cell surface. Thus, molecular recognition of residues of terminal carbohydrates on the surface of tumor cells is a key factor in the manifestation of the biological action of lectins.
Collapse
Affiliation(s)
- Alexandra S Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Alina P Filshtein
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Galina N Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Tatiana Y Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Irina V Chikalovets
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Tatyana O Mizgina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sergey A Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oleg V Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
2
|
Bertok T, Jane E, Hires M, Tkac J. N-Acetylated Monosaccharides and Derived Glycan Structures Occurring in N- and O-Glycans During Prostate Cancer Development. Cancers (Basel) 2024; 16:3786. [PMID: 39594740 PMCID: PMC11592093 DOI: 10.3390/cancers16223786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Post-translational modifications of proteins play an important role in their stability, solubility and in vivo function. Also, for several reasons, such as the Golgi fragmentation during cancerogenesis, glycosylation as the most common modification is especially promising in offering high cancer specificity which, in combination with tissue-specific biomarkers available in the case of prostate diseases (PSA, PSMA, PAP), may lead to the development of novel oncodiagnostic approaches. In this review, we present the importance of subterminal glycan structures based on the N-acetylated monosaccharides GlcNAc and GalNAc in N- and also O-glycans, structures of which they are a component (LacNAc, LacdiNAc, branched structures). We also discuss the importance and clinical performance of these structures in cases of prostate cancer diagnostics using lectin-based affinity methods, which could be implemented in clinical laboratory practice in the future.
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
- Glycanostics, Kudlakova 7, 841 08 Bratislava, Slovakia
| |
Collapse
|
3
|
Idries AH, Naser EH, Dafalla MB, Elmubarak SA, Abdelrahim YE, Abdalrhman EA, Alwali SM, Ahmed BM, Yousef BA, Ebrahim RM, Abdellatif AO, Awadallah AK, Osman MEM, Konozy EH. Biological activity and characterization of leaf and seed lectins from Terminalia brownii: Insights into their analgesic and antiulcer properties. Heliyon 2024; 10:e39351. [PMID: 39498066 PMCID: PMC11532835 DOI: 10.1016/j.heliyon.2024.e39351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024] Open
Abstract
Terminalia brownii Fresen, an African medicinal plant, is known for its analgesic, antiulcer, and antimicrobial properties, with its leaves, bark, and fruits deeply ingrained in indigenous healing practices. Two lectins, TerBLL (from leaves) and TerBSL (from seeds) of Terminalia brownii Fresen, were purified using salting-out and affinity chromatography on a fetuin-agarose column. The purified lectins were then assessed for protein yield, hemagglutination activity, and physicochemical properties. Both TerBLL and TerBSL have subunits with molecular weights of 57.3 and 65.7 kDa, respectively. TerBLL remains stable at 60-80 °C and is activated by Mn+2, while TerBSL is activated by Zn+2. These lectins maintain consistent activity under acidic conditions, with TerBLL demonstrating heightened activity at extreme alkaline pH. TerBLL retained 50 % of its activity in 2-8M urea, in contrast to the 13 % of TerBSL. Investigation of the properties of TerBLL revealed that it had antinociceptive effects, reducing abdominal pain and prolonging latency time in the hotplate assay, potentially through μ-opioid receptor blockade akin to that of morphine. TerBLL exhibits antiulcer activity at doses of 0.25 and 1 mg/kg, reducing ulcer formation by up to 33 %, comparable to that of pantoprazole (80 mg/kg). The physiochemical attributes of TerBLL, in addition to its pain-relieving and gastroprotective effects, underscore its therapeutic promise, which is consistent with its traditional use.
Collapse
Affiliation(s)
- Ahmed H. Idries
- Biotechnology Department, Africa City of Technology, Khartoum, Sudan
| | - Eva H. Naser
- Biotechnology Department, Africa City of Technology, Khartoum, Sudan
| | - Maha B. Dafalla
- Biotechnology Department, Africa City of Technology, Khartoum, Sudan
| | | | | | | | | | - Bashir M. Ahmed
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Khartoum, Sudan
| | | | - Reem M.A. Ebrahim
- Biotechnology Department, Africa City of Technology, Khartoum, Sudan
| | | | | | | | - Emadeldin H.E. Konozy
- Biotechnology Department, Africa City of Technology, Khartoum, Sudan
- Biomedical and Clinical Research Centre (BCRC), College of Health and Allied Sciences (CoHAS), University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
4
|
Verhassel A, Kimani M, Gidwani K, Sandholm J, Gawlitza K, Rurack K, Härkönen P. Detection of Tn-antigen in breast and prostate cancer models by VVL-labeled red dye-doped nanoparticles. Nanomedicine (Lond) 2024; 19:2463-2478. [PMID: 39382009 PMCID: PMC11520574 DOI: 10.1080/17435889.2024.2405454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Aim: Fluorescence detection of breast and prostate cancer cells expressing Tn-antigen, a tumor marker, with Vicia villosa lectin (VVL)-labeled nanoparticles.Materials & methods: Breast and prostate cancer cells engineered to express high levels of Tn-antigen and non-engineered controls were incubated with VVL-labeled or unlabeled red dye-doped silica-coated polystyrene nanoparticles. The binding to cells was studied with flow cytometry, confocal microscopy, and electron microscopy.Results: Flow cytometry showed that the binding of VVL-labeled nanoparticles was significantly higher to Tn-antigen-expressing cancer cells than controls. Confocal microscopy demonstrated that particles bound to the cell surface. According to the correlative light and electron microscopy the particles bound mostly as aggregates.Conclusion: VVL-labeled nanoparticles could provide a new tool for the detection of Tn-antigen-expressing breast and prostate cancer cells.
Collapse
Affiliation(s)
- Alejandra Verhassel
- Institute of Biomedicine, University of Turku, Turku, 20520, Finland
- Western Cancer Centre FICAN West, Turku, 20521, Finland
| | - Martha Kimani
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin,12489, Germany
| | - Kamlesh Gidwani
- Western Cancer Centre FICAN West, Turku, 20521, Finland
- Department of Biochemistry, University of Turku, Turku, 20520, Finland
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Kornelia Gawlitza
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin,12489, Germany
| | - Knut Rurack
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin,12489, Germany
| | - Pirkko Härkönen
- Institute of Biomedicine, University of Turku, Turku, 20520, Finland
- Western Cancer Centre FICAN West, Turku, 20521, Finland
| |
Collapse
|
5
|
Phuyathip W, Putthisen S, Panawan O, Ma-In P, Teeravirote K, Sintusen P, Udomkitkosol S, Detarya M, Luang S, Mahalapbutr P, Sato T, Kuno A, Chuangchaiya S, Silsirivanit A. Role of Wisteria floribunda agglutinin binding glycans in carcinogenesis and metastasis of cholangiocarcinoma. Histochem Cell Biol 2024:10.1007/s00418-024-02270-4. [PMID: 38393396 DOI: 10.1007/s00418-024-02270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Aberrant glycosylation is an important factor in facilitating tumor progression and therapeutic resistance. In this study, using Wisteria floribunda agglutinin (WFA), we examined the expression of WFA-binding glycans (WFAG) in cholangiocarcinoma (CCA). The results showed that WFAG was highly detected in precancerous and cancerous lesions of human CCA tissues, although it was rarely detected in normal bile ducts. The positive signal of WFAG in the cancerous lesion accounted for 96.2% (50/52) of the cases. Overexpression of WFAG was significantly associated with lymph node and distant metastasis (P < 0.05). The study using the CCA hamster model showed that WFAG is elevated in preneoplastic and neoplastic bile ducts as early as 1 month after being infected with liver fluke and exposed to N-nitrosodimethylamine. Functional analysis was performed to reveal the role of WFAG in CCA. The CCA cell lines KKU-213A and KKU-213B were treated with WFA, followed by migration assay. Our data suggested that WFAG facilitates the migration of CCA cells via the activation of the Akt and ERK signaling pathways. In conclusion, we have demonstrated the association of WFAG with carcinogenesis and metastasis of CCA, suggesting its potential as a target for the treatment of the disease.
Collapse
Affiliation(s)
- Winunya Phuyathip
- Department of Community Health, Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Siyaporn Putthisen
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Orasa Panawan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prasertsri Ma-In
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Karuntarat Teeravirote
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Phisit Sintusen
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirintra Udomkitkosol
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Marutpong Detarya
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukanya Luang
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Takashi Sato
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8565, Japan
| | - Atsushi Kuno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8565, Japan
| | - Sriwipa Chuangchaiya
- Department of Community Health, Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand.
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
6
|
Yoon J, Lee J, Hong SP, Park HJ, Kim J, Lee J, Lee C, Oh SG. Fabrication of biodegradable cellulose acetate nanofibers containing Rose Bengal dye by electrospinning technique and their antiviral efficacy under visible light irradiation. CHEMOSPHERE 2024; 349:140897. [PMID: 38070613 DOI: 10.1016/j.chemosphere.2023.140897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/23/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Biodegradable cellulose acetate (CA) nanofibers containing Rose Bengal (RB) dye were fabricated by electrospinning technique. RB dye, an anionic photosensitizer, has been used in photodynamic therapy due to its excellent biocompatibility and ability to absorb light to generate reactive oxygen species (ROS), but has a decisive disadvantage of water solubility on infection prevention. Firstly, water-insoluble RB dye was synthesized through complexation with cationic ionic liquid (IL) for antiviral agents. The synthesized water-insoluble RB dyes were embedded into biodegradable CA nanofibers by electrospinning. The electrospun nanofibers passed both antiviral test for φx174 virus under visible light irradiation and biodegradability-test using enzymes. The fabricated RB nanofibers absorbed light and generated ROS to inactivate the virus. As a result, the log reduction (-Log10(N/N0)) of φx174 titer under visible light reached a detection limit of 5.00 within 30 min. Also, the fabricated nanofibers were degraded up to 34 wt % in 9 weeks by lipase and cellulase enzymes compared with non-biodegradable nanofibers.
Collapse
Affiliation(s)
- Jinsoo Yoon
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Juri Lee
- School of Chemical Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Pil Hong
- Samsung Research, Samsung Electronics Co., Ltd., Seoul, 06756, Republic of Korea
| | - Hee-Jin Park
- Samsung Research, Samsung Electronics Co., Ltd., Seoul, 06756, Republic of Korea
| | - Joohyun Kim
- School of Chemical Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaeseon Lee
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Changha Lee
- School of Chemical Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong-Geun Oh
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
7
|
Petrova L, Gergov N, Stoup M, Zapryanova S, Van Damme EJM, Lebègue N, Liberelle M, Zasheva D, Bogoeva V. Jacalin-Curcumin Complex Sensitizes the Breast Cancer MDA-MB-231 Cell Line. Int J Mol Sci 2023; 24:17399. [PMID: 38139227 PMCID: PMC10743388 DOI: 10.3390/ijms242417399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Protein-drug interactions are crucial for understanding drug delivery and cell functions. Jacalin is a suitable molecule for such targeting, as it specifically recognizes the tumor-associated Thomsen-Friedenreich (TF) antigen that is expressed on the glycosylated proteins in cancer cells. The present paper describes the interaction of curcumin and jacalin, a possible carrier molecule for the delivery of antitumor drugs due to its ability to recognize tumor cells. Our results have shown that both steady-state fluorescence and fluorescent labelling of jacalin are two reliable methods to determine jacalin-curcumin interactions. The affinity of jacalin for curcumin is consistently within the micromolar range (using fluorescence and microscale thermophoresis) showing high-affinity binding of the complex. In vitro experiments on triple-negative breast cancer MDA-MB-231 cells indicated inhibition of cell growth after treating with the jacalin-curcumin complex for 48 h. The cell survival fraction was significantly reduced to 50% after combined treatment. In this paper, we report for the first time about the jacalin-curcumin interaction. We quantified this unique biomolecular interaction and gathered additional information on the binding event. We observed that the jacalin-curcumin complex inhibits the proliferation of the triple-negative breast cancer MDA-MB-231 cells.
Collapse
Affiliation(s)
- Lidiya Petrova
- Department of Biology, Medical University—Pleven, “St. Kliment Ohridski” Str. 1, 5800 Pleven, Bulgaria;
| | - Nikolay Gergov
- Institute of Molecular Biology “Rumen Tzanev”, Bulgarian Academy of Sciences, “Acad. George Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Marie Stoup
- School of Pharmacy, University Lille, Inserm, CHU Lille, UMR-S 1172–LiNC–Lille Neuroscience and Cognition, F-59000 Lille, France; (M.S.); (N.L.); (M.L.)
| | - Silvina Zapryanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tsarigradsko Shosse, 73, 1113 Sofia, Bulgaria; (S.Z.); (D.Z.)
| | - Els J. M. Van Damme
- Department Biotechnology, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium;
| | - Nicolas Lebègue
- School of Pharmacy, University Lille, Inserm, CHU Lille, UMR-S 1172–LiNC–Lille Neuroscience and Cognition, F-59000 Lille, France; (M.S.); (N.L.); (M.L.)
| | - Maxime Liberelle
- School of Pharmacy, University Lille, Inserm, CHU Lille, UMR-S 1172–LiNC–Lille Neuroscience and Cognition, F-59000 Lille, France; (M.S.); (N.L.); (M.L.)
| | - Diana Zasheva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tsarigradsko Shosse, 73, 1113 Sofia, Bulgaria; (S.Z.); (D.Z.)
| | - Vanya Bogoeva
- Institute of Molecular Biology “Rumen Tzanev”, Bulgarian Academy of Sciences, “Acad. George Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria;
| |
Collapse
|
8
|
Wang L, Chelakkot VS, Newhook N, Tucker S, Hirasawa K. Inflammatory cell death induced by 5-aminolevulinic acid-photodynamic therapy initiates anticancer immunity. Front Oncol 2023; 13:1156763. [PMID: 37854679 PMCID: PMC10581343 DOI: 10.3389/fonc.2023.1156763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
Background Inflammatory cell death is a form of programmed cell death (PCD) that induces inflammatory mediators during the process. The production of inflammatory mediators during cell death is beneficial in standard cancer therapies as it can break the immune silence in cancers and induce anticancer immunity. Photodynamic therapy (PDT) is a cancer therapy with photosensitizer molecules and light sources to destroy cancer cells, which is currently used for treating different types of cancers in clinical settings. In this study, we investigated if PDT using 5-aminolevulinic (5-ALA-PDT) causes inflammatory cell death and, subsequently, increases the immunogenicity of cancer cells. Methods Mouse breast cancer (4T1) and human colon cancer (DLD-1) cells were treated with 5-ALA for 4 hours and then irradiated with a light source. PCD induction was measured by western blot analysis and FACS. Morphological changes were determined by transmission electron microscopy (TEM). BALB/c mice were injected with cell-free media, supernatant of freeze/thaw cells or supernatant of PDT cells intramuscular every week for 4 weeks and then challenged with 4T1 cells at the right hind flank of BALB/c. Tumor growth was monitored for 12 days. Results We found that 5-ALA-PDT induces inflammatory cell death, but not apoptosis, in 4T1 cells and DLD-1 cells in vitro. Moreover, when mice were pretreated with 5-ALA-PDT culture supernatant, the growth of 4T1 tumors was significantly suppressed compared to those pretreated with freeze and thaw (F/T) 4T1 culture supernatant. Conclusion These results indicate that 5-ALA-PDT induces inflammatory cell death which promotes anticancer immunity in vivo.
Collapse
Affiliation(s)
- Lingyan Wang
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Vipin Shankar Chelakkot
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Nick Newhook
- Medical Laboratories, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Stephanie Tucker
- Medical Laboratories, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Kensuke Hirasawa
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
9
|
Yang Y, Chen M, Wu M, Hong S, Gao B, Liu Y, Yu C, Young TS, Chapla DG, Yang JY, Cappiello JR, Li JP, Sharpless KB, Moremen KW, Wu P. Chemoenzymatic Tagging of Tn/TF/STF Antigens in Living Systems. Isr J Chem 2023; 63:e202300081. [PMID: 38737670 PMCID: PMC11081099 DOI: 10.1002/ijch.202300081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 05/14/2024]
Abstract
Truncated mucin-type O-glycans, such as Tn-associated antigens, are aberrantly expressed biomarkers of cancer, but remain challenging to target. Reactive antibodies to these antigens either lack high-affinity or are prone to antigen escape. Here, we have developed a robust chemoenzymatic strategy for the global labeling of Tn-associated antigens, i.e. Tn (GalNAcα-O-Ser/Thr), Thomsen-Friedenreich (Galβ1-3GalNAcα-O-Ser/Thr, TF) and STF (Neu5Acα2-3Galβ1-3GalNAcα-O-Ser/Thr, STF) antigens, in human whole blood with high efficiency and selectivity. This method relies on the use of the O-glycan sialyltransferase ST6GalNAc1 to transfer a sialic acid-functionalized adaptor to the GalNAc residue of these antigens. By tagging, the adaptor functionalized antigens can be easily targeted by customized strategies such as, but not limited to, chimeric antigen receptor T-Cells (CAR-T). We expect this tagging system to find broad applications in cancer diagnostics and targeting in combination with established strategies.
Collapse
Affiliation(s)
- Yi Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mingkuan Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mengyao Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Senlian Hong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Gao
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yonghui Liu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chenhua Yu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Travis S. Young
- Department of Biology, California Institute for Biomedical Research (Calibr), The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Jeong-Yeh Yang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - John R. Cappiello
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jie P. Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Kvist M, Välimaa L, Harel A, Malmi S, Tuomisto A. Glycans as Potential Diagnostic Markers of Traumatic Brain Injury in Children. Diagnostics (Basel) 2023; 13:2181. [PMID: 37443575 DOI: 10.3390/diagnostics13132181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Diagnosing mild traumatic brain injury (TBI) in the acute setting is challenging due to the nonspecific and often transient or delayed symptoms. Further, the criteria for acute head imaging are frequently not fulfilled, which may lead to a missed diagnosis. A rapid test to diagnose TBI using body fluids would be highly useful. Urine and saliva samples were collected from 28 pediatric patients (mean [SD] age, eight years two months [four years three months]) with acute, clinically diagnosed mild TBI and 30 healthy volunteers at Satasairaala Hospital, Pori, Finland, over 11 months. The mean (SD) time from trauma to first sampling was 3 h 56 min (1 h 14 min). Samples were analyzed to determine the number of lectin-binding glycan molecules, indicating nerve tissue damage. The relative levels of several lectin-bound glycans were measured by fluorescence. Compared with healthy controls, the TBI group showed significant increases (p < 0.05, Wilcoxon rank-sum two-sided test) in nine glycans in the saliva, one glycan in the urine, and a significant decrease in seven glycans in the urine. These findings of potentially diagnostic glycans in body fluids after TBI warrant further research and may enable the development of a rapid body fluid-based point-of-care test to identify pediatric patients with TBI after a head injury.
Collapse
Affiliation(s)
| | | | | | - Sari Malmi
- Department of Pediatric Surgery, Satasairaala Hospital, 28500 Pori, Finland
| | - Aleksi Tuomisto
- Department of Pediatric Surgery, Satasairaala Hospital, 28500 Pori, Finland
| |
Collapse
|
11
|
Gariboldi MB, Marras E, Ferrario N, Vivona V, Prini P, Vignati F, Perletti G. Anti-Cancer Potential of Edible/Medicinal Mushrooms in Breast Cancer. Int J Mol Sci 2023; 24:10120. [PMID: 37373268 DOI: 10.3390/ijms241210120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Edible/medicinal mushrooms have been traditionally used in Asian countries either in the cuisine or as dietary supplements and nutraceuticals. In recent decades, they have aroused increasing attention in Europe as well, due to their health and nutritional benefits. In particular, among the different pharmacological activities reported (antibacterial, anti-inflammatory, antioxidative, antiviral, immunomodulating, antidiabetic, etc.), edible/medicinal mushrooms have been shown to exert in vitro and in vivo anticancer effects on several kinds of tumors, including breast cancer. In this article, we reviewed mushrooms showing antineoplastic activity again breast cancer cells, especially focusing on the possible bioactive compounds involved and their mechanisms of action. In particular, the following mushrooms have been considered: Agaricus bisporus, Antrodia cinnamomea, Cordyceps sinensis, Cordyceps militaris, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, Lentinula edodes, and Pleurotus ostreatus. We also report insights into the relationship between dietary consumption of edible mushrooms and breast cancer risk, and the results of clinical studies and meta-analyses focusing on the effects of fungal extracts on breast cancer patients.
Collapse
Affiliation(s)
- Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Nicole Ferrario
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Veronica Vivona
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Pamela Prini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Francesca Vignati
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Gianpaolo Perletti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| |
Collapse
|
12
|
Yue S, Wang X, Ge W, Li J, Yang C, Zhou Z, Zhang P, Yang X, Xiao W, Yang S. Deciphering Protein O-GalNAcylation: Method Development and Disease Implication. ACS OMEGA 2023; 8:19223-19236. [PMID: 37305274 PMCID: PMC10249083 DOI: 10.1021/acsomega.3c01653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023]
Abstract
Mucin-type O-glycosylation is an important protein post-translational modification that is abundantly expressed on cell surface proteins. Protein O-glycosylation plays a variety of roles in cellular biological functions including protein structure and signal transduction to the immune response. Cell surface mucins are highly O-glycosylated and are the main substance of the mucosal barrier that protects the gastrointestinal or respiratory tract from infection by pathogens or microorganisms. Dysregulation of mucin O-glycosylation may impair mucosal protection against pathogens that can invade cells to trigger infection or immune evasion. Truncated O-glycosylation, also known as Tn antigen or O-GalNAcylation, is highly upregulated in diseases such cancer, autoimmune disorders, neurodegenerative diseases, and IgA nephropathy. Characterization of O-GalNAcylation helps decipher the role of Tn antigen in physiopathology and therapy. However, the analysis of O-glycosylation, specifically the Tn antigen, remains challenging due to the lack of reliable enrichment and identification assays compared to N-glycosylation. Here, we summarize recent advances in analytical methods for O-GalNAcylation enrichment and identification and highlight the biological role of the Tn antigen in various diseases and the clinical implications of identifying aberrant O-GalNAcylation.
Collapse
Affiliation(s)
- Shuang Yue
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis,
College of Pharmaceutical Sciences, Soochow
University, Suzhou, Jiangsu 215123, China
- Department
of Endocrinology, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xiaotong Wang
- Department
of Hepatology and Gastroenterology, The
Affiliated Infectious Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Department
of Endocrinology, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Wei Ge
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis,
College of Pharmaceutical Sciences, Soochow
University, Suzhou, Jiangsu 215123, China
| | - Jiajia Li
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis,
College of Pharmaceutical Sciences, Soochow
University, Suzhou, Jiangsu 215123, China
| | - Chuanlai Yang
- Scientific
Research Department, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zeyang Zhou
- Department
of General Surgery, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Peng Zhang
- Department
of Orthopedics, The Second Affiliated Hospital
of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xiaodong Yang
- Department
of General Surgery, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Wenjin Xiao
- Department
of Endocrinology, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shuang Yang
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis,
College of Pharmaceutical Sciences, Soochow
University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
13
|
Gadi MR, Chen C, Bao S, Wang S, Guo Y, Han J, Xiao W, Li L. Convergent chemoenzymatic synthesis of O-GalNAc rare cores 5, 7, 8 and their sialylated forms. Chem Sci 2023; 14:1837-1843. [PMID: 36819867 PMCID: PMC9931048 DOI: 10.1039/d2sc06925c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
All O-GalNAc glycans are derived from 8 cores with 2 or 3 monosaccharides linked via α- or β-glycosidic bonds. While chemical and chemoenzymatic syntheses of β-linked cores 1-4 and 6 and derived glycans have been well developed, the preparation of α-linked rare cores 5, 7, and 8 is challenging due to the presence of this 1,2-cis linkage. Meanwhile, the biosynthesis and functional roles of these structures are poorly understood. Herein, we synthesize 3 α-linked rare cores with exclusive α-configuration from a versatile precursor through multifaceted chemical modulations. Efficient regioselective α2-6sialylion of the rare cores was then achieved by Photobacterium damselae α2-6sialyltransferase-catalyzed reactions. These structures, together with β-linked cores 1-4 and 6, and their sialylated forms, were fabricated into a comprehensive O-GalNAc core microarray to profile the binding of clinically important GalNAc-specific lectins. It is found that only Tn, (sialyl-)core 5, and core 7 are the binders of WFL, VVL, and SBA, while DBA only recognized (sialyl-)core 5, and Jacalin is the only lectin that binds core 8. In addition, activity assays of human α-N-acetylgalactosaminide α2-6sialyltransferases (ST6GalNAcTs) towards the cores suggested that ST6GalNAc1 may be involved in the biosynthesis of previously identified sialyl-core 5 and sialyl-core 8 glycans. In conclusion, we provide efficient routes to access α-linked O-GalNAc rare cores and derived structures, which are valuable tools for functional glycomics studies of mucin O-glycans.
Collapse
Affiliation(s)
- Madhusudhan Reddy Gadi
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Congcong Chen
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs Jinan 250101 China
| | - Shumin Bao
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Shuaishuai Wang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Yuxi Guo
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Jinghua Han
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Weidong Xiao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN 46202 USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| |
Collapse
|
14
|
Lim MJ, Yagnik G, Henkel C, Frost SF, Bien T, Rothschild KJ. MALDI HiPLEX-IHC: multiomic and multimodal imaging of targeted intact proteins in tissues. Front Chem 2023; 11:1182404. [PMID: 37201132 PMCID: PMC10187789 DOI: 10.3389/fchem.2023.1182404] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is one of the most widely used methods for imaging the spatial distribution of unlabeled small molecules such as metabolites, lipids and drugs in tissues. Recent progress has enabled many improvements including the ability to achieve single cell spatial resolution, 3D-tissue image reconstruction, and the precise identification of different isomeric and isobaric molecules. However, MALDI-MSI of high molecular weight intact proteins in biospecimens has thus far been difficult to achieve. Conventional methods normally require in situ proteolysis and peptide mass fingerprinting, have low spatial resolution, and typically detect only the most highly abundant proteins in an untargeted manner. In addition, MSI-based multiomic and multimodal workflows are needed which can image both small molecules and intact proteins from the same tissue. Such a capability can provide a more comprehensive understanding of the vast complexity of biological systems at the organ, tissue, and cellular levels of both normal and pathological function. A recently introduced top-down spatial imaging approach known as MALDI HiPLEX-IHC (MALDI-IHC for short) provides a basis for achieving this high-information content imaging of tissues and even individual cells. Based on novel photocleavable mass-tags conjugated to antibody probes, high-plex, multimodal and multiomic MALDI-based workflows have been developed to image both small molecules and intact proteins on the same tissue sample. Dual-labeled antibody probes enable multimodal mass spectrometry and fluorescent imaging of targeted intact proteins. A similar approach using the same photocleavable mass-tags can be applied to lectin and other probes. We detail here several examples of MALDI-IHC workflows designed to enable high-plex, multiomic and multimodal imaging of tissues at a spatial resolution as low as 5 µm. This approach is compared to other existing high-plex methods such as imaging mass cytometry, MIBI-TOF, GeoMx and CODEX. Finally, future applications of MALDI-IHC are discussed.
Collapse
Affiliation(s)
- Mark J. Lim
- AmberGen, Inc., Billerica, MA, United States
- *Correspondence: Mark J. Lim, ; Kenneth J. Rothschild,
| | | | | | | | - Tanja Bien
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Kenneth J. Rothschild
- AmberGen, Inc., Billerica, MA, United States
- Department of Physics and Photonics Center, Boston University, Boston, MA, United States
- *Correspondence: Mark J. Lim, ; Kenneth J. Rothschild,
| |
Collapse
|
15
|
Jiang S, Wang T, Behren S, Westerlind U, Gawlitza K, Persson JL, Rurack K. Sialyl-Tn Antigen-Imprinted Dual Fluorescent Core-Shell Nanoparticles for Ratiometric Sialyl-Tn Antigen Detection and Dual-Color Labeling of Cancer Cells. ACS APPLIED NANO MATERIALS 2022; 5:17592-17605. [PMID: 36583127 PMCID: PMC9791662 DOI: 10.1021/acsanm.2c03252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Sialyl-Tn (STn or sialyl-Thomsen-nouveau) is a carbohydrate antigen expressed by more than 80% of human carcinomas. We here report a strategy for ratiometric STn detection and dual-color cancer cell labeling, particularly, by molecularly imprinted polymers (MIPs). Imprinting was based on spectroscopic studies of a urea-containing green-fluorescent monomer 1 and STn-Thr-Na (sodium salt of Neu5Acα2-6GalNAcα-O-Thr). A few-nanometer-thin green-fluorescent polymer shell, in which STn-Thr-Na was imprinted with 1, other comonomers, and a cross-linker, was synthesized from the surface of red-emissive carbon nanodot (R-CND)-doped silica nanoparticles, resulting in dual fluorescent STn-MIPs. Dual-color labeling of cancer cells was achieved since both red and green emissions were detected in two separate channels of the microscope and an improved accuracy was obtained in comparison with single-signal MIPs. The flow cytometric cell analysis showed that the binding of STn-MIPs was significantly higher (p < 0.001) than that of non-imprinted polymer (NIP) control particles within the same cell line, allowing to distinguish populations. Based on the modularity of the luminescent core-fluorescent MIP shell architecture, the concept can be transferred in a straightforward manner to other target analytes.
Collapse
Affiliation(s)
- Shan Jiang
- Chemical
and Optical Sensing Division (1.9), Bundesanstalt
für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße
11, D-12489Berlin, Germany
| | - Tianyan Wang
- Department
of Molecular Biology, Umeå University, S-901 87Umeå, Sweden
| | - Sandra Behren
- Department
of Chemistry, Umeå University, S-901 87Umeå, Sweden
| | | | - Kornelia Gawlitza
- Chemical
and Optical Sensing Division (1.9), Bundesanstalt
für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße
11, D-12489Berlin, Germany
| | - Jenny L. Persson
- Department
of Molecular Biology, Umeå University, S-901 87Umeå, Sweden
- Division
of Experimental Cancer Research, Department of Translational Medicine,
Clinical Research Centre, Lund University, S-214 28Malmö, Sweden
| | - Knut Rurack
- Chemical
and Optical Sensing Division (1.9), Bundesanstalt
für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße
11, D-12489Berlin, Germany
| |
Collapse
|
16
|
Effect of Dexamethasone on the Expression of the α2,3 and α2,6 Sialic Acids in Epithelial Cell Lines. Pathogens 2022; 11:pathogens11121518. [PMID: 36558852 PMCID: PMC9788320 DOI: 10.3390/pathogens11121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
N-acetylneuraminic acid linked to galactose by α2,6 and α2,3 linkages (Siaα2,6 and Siaα2,3) is expressed on glycoconjugates of animal tissues, where it performs multiple biological functions. In addition, these types of sialic acid residues are the main targets for the binding and entry of influenza viruses. Here we used fluorochrome-conjugated Sambuccus nigra, Maackia amurensis, and peanut lectins for the simultaneous detection of Siaα2,3 and Siaα2,6 and galactosyl residues by two-color flow cytometry on A549 cells, a human pneumocyte cell line used for in vitro studies of the infection by influenza viruses, as well as on Vero and MDCK cell lines. The dexamethasone (DEX) glucocorticoid (GC), a widely used anti-inflammatory compound, completely abrogated the expression of Siaα2,3 in A549 cells and decreased its expression in Vero and MDCK cells; in contrast, the expression of Siaα2,6 was increased in the three cell lines. These observations indicate that DEX can be used for the study of the mechanism of sialylation of cell membrane molecules. Importantly, DEX may change the tropism of avian and human/pig influenza viruses and other infectious agents to animal and human epithelial cells.
Collapse
|
17
|
Akram SM, Al-Saffar AZ, Hadi NA, Akram SM. Utilization of novel lectin-conjugated Au nanoparticles as Thomsen-Friedenreich onco-antigen target for in vitro cytotoxicity and apoptosis induction in leukemic cell line. Life Sci 2022; 311:121163. [DOI: 10.1016/j.lfs.2022.121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
|
18
|
M Silva S, Langley DP, Cossins LR, Samudra AN, Quigley AF, Kapsa RMI, Tothill RW, Greene GW, Moulton SE. Rapid Point-of-Care Electrochemical Sensor for the Detection of Cancer Tn Antigen Carbohydrate in Whole Unprocessed Blood. ACS Sens 2022; 7:3379-3388. [PMID: 36374944 DOI: 10.1021/acssensors.2c01460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Improving outcomes for cancer patients during treatment and monitoring for cancer recurrence requires personalized care which can only be achieved through regular surveillance for biomarkers. Unfortunately, routine detection for blood-based biomarkers is cost-prohibitive using currently specialized laboratories. Using a rapid self-assembly sensing interface amenable to methods of mass production, we demonstrate the ability to detect and quantify a small carbohydrate-based cancer biomarker, Tn antigen (αGalNAc-Ser/Thr) in a small volume of blood, using a test format strip reminiscent of a blood glucose test. The detection of Tn antigen at picomolar levels is achieved through a new transduction mechanism based on the impact of Tn antigen interactions on the molecular dynamic motion of a lectin cross-linked lubricin antifouling brush. In tests performed on retrospective blood plasma samples from patients presenting three different tumor types, differentiation between healthy and diseased patients was achieved, highlighting the clinical potential for cancer monitoring.
Collapse
Affiliation(s)
- Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn3122, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn3122, Victoria, Australia
| | | | | | | | - Anita F Quigley
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne3001, Victoria, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne3065, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia
| | - Robert M I Kapsa
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne3001, Victoria, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne3065, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia
| | - Richard W Tothill
- Peter MacCallum Cancer Centre, Department of Clinical Pathology, University of Melbourne, Melbourne3010, Victoria, Australia
| | - George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Waurn Ponds3216, Victoria, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn3122, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn3122, Victoria, Australia
| |
Collapse
|
19
|
Huldani H, Rashid AI, Turaev KN, Opulencia MJC, Abdelbasset WK, Bokov DO, Mustafa YF, Al-Gazally ME, Hammid AT, Kadhim MM, Ahmadi SH. Concanavalin A as a promising lectin-based anti-cancer agent: the molecular mechanisms and therapeutic potential. Cell Commun Signal 2022; 20:167. [PMID: 36289525 PMCID: PMC9597983 DOI: 10.1186/s12964-022-00972-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Concanavalin A (ConA), the most studied plant lectin, has been known as a potent anti-neoplastic agent for a long time. Since initial reports on its capacity to kill cancer cells, much attention has been devoted to unveiling the lectin's exact molecular mechanism. It has been revealed that ConA can bind to several receptors on cancerous and normal cells and modulate the related signaling cascades. The most studied host receptor for ConA is MT1-MMP, responsible for most of the lectin's modulations, ranging from activating immune cells to killing tumor cells. In this study, in addition to studying the effect of ConA on signaling and immune cell function, we will focus on the most up-to-date advancements that unraveled the molecular mechanisms by which ConA can induce autophagy and apoptosis in various cancer cell types, where it has been found that P73 and JAK/STAT3 are the leading players. Moreover, we further discuss the main signaling molecules causing liver injury as the most significant side effect of the lectin injection. Altogether, these findings may shed light on the complex signaling pathways controlling the diverse responses created via ConA treatment, thereby modulating these complex networks to create more potent lectin-based cancer therapy. Video Abstract
Collapse
Affiliation(s)
- Huldani Huldani
- grid.443126.60000 0001 2193 0299Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan Indonesia
| | - Ahmed Ibraheem Rashid
- grid.427646.50000 0004 0417 7786Department of Pharmacology, Collage of Medicine, University of Babylon, Hilla, Iraq
| | - Khikmatulla Negmatovich Turaev
- grid.444694.f0000 0004 0403 0119Department of Clinical Pharmacology, Samarkand State Medical Institute, Samarkand, Uzbekistan ,grid.513581.b0000 0004 6356 9173Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, Uzbekistan 100047
| | | | - Walid Kamal Abdelbasset
- grid.449553.a0000 0004 0441 5588Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia ,grid.7776.10000 0004 0639 9286Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Dmitry Olegovich Bokov
- grid.448878.f0000 0001 2288 8774Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991 Russian Federation ,grid.466474.3Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky Pr, Moscow, 109240 Russian Federation
| | - Yasser Fakri Mustafa
- grid.411848.00000 0000 8794 8152Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | | | - Ali Thaeer Hammid
- grid.513683.a0000 0004 8495 7394Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Mustafa M. Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001 Iraq ,grid.444971.b0000 0004 6023 831XCollege of Technical Engineering, The Islamic University, Najaf, Iraq ,Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Seyed Hossein Ahmadi
- grid.411705.60000 0001 0166 0922Research Center for Cell and Molecular Sciences, School of Medicine, Tehran University of Medical Sciences, PO Box 1417613151, Tehran, Iran
| |
Collapse
|
20
|
Mondal UK, Barchi JJ. Isolipoic acid-linked gold nanoparticles bearing the thomsen friedenreich tumor-associated carbohydrate antigen: Stability and in vitro studies. Front Chem 2022; 10:1002146. [PMID: 36300019 PMCID: PMC9588967 DOI: 10.3389/fchem.2022.1002146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
We have previously prepared gold nanoparticles (AuNPs) bearing the Thomsen-Friedenreich antigen disaccharide (TFag), a pan-carcinoma, Tumor-Associated Carbohydrate Antigen (TACA), as tools for various assays and biological applications. Conjugation to AuNPs typically involves the use of thiols due to the affinity of sulfur for the gold surface of the nanoparticle. While a use of a single thiol-containing ligand bound to the gold surface is standard practice, several studies have shown that ligands bearing multiple thiols can enhance the strength of the conjugation in a nearly linear fashion. (R)-(+)-α-Lipoic acid (LA), a naturally occurring disulfide-containing organic acid that is used as a cofactor in many enzymatic reactions, has been used as a linker to conjugate various molecules to AuNPs through its branched di-thiol system to enhance nanoparticle stability. We sought to use a similar system to increase nanoparticle stability that was devoid of the chiral center in (R)-(+)-α-lipoic acid. Isolipoic acid, an isomer of LA, where the exocyclic pentanoic acid chain is shifted by one carbon on the dithiolane ring to produce an achiral acid, was thought to act similarly as LA without the risk of any contaminating (L)-(−) isomer. We synthesized AuNPs with ligands of both serine and threonine glycoamino acids bearing the TFag linked to isolipoic acid and examined their stability under various conditions. In addition, these particles were shown to bind to Galectin-3 and inhibit the interaction of Galectin-3 with a protein displaying copies of the TFag. These agents should prove useful in the design of potential antimetastatic therapeutics that would benefit from achiral linkers that are geometrically linear and achiral.
Collapse
|
21
|
Raglow Z, McKenna MK, Bonifant CL, Wang W, Pasca di Magliano M, Stadlmann J, Penninger JM, Cummings RD, Brenner MK, Markovitz DM. Targeting glycans for CAR therapy: The advent of sweet CARs. Mol Ther 2022; 30:2881-2890. [PMID: 35821636 PMCID: PMC9481985 DOI: 10.1016/j.ymthe.2022.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has created a paradigm shift in the treatment of hematologic malignancies but has not been as effective toward solid tumors. For such tumors, the primary obstacles facing CAR T cells are scarcity of tumor-specific antigens and the hostile and complex tumor microenvironment. Glycosylation, the process by which sugars are post-translationally added to proteins or lipids, is profoundly dysregulated in cancer. Abnormally glycosylated glycoproteins expressed on cancer cells offer unique targets for CAR T therapy as they are specific to tumor cells. Tumor stromal cells also express abnormal glycoproteins and thus also have the potential to be targeted by glycan-binding CAR T cells. This review will discuss the state of CAR T cells in the therapy of solid tumors, the cancer glycoproteome and its potential for use as a therapeutic target, and the landscape and future of glycan-binding CAR T cell therapy.
Collapse
Affiliation(s)
- Zoe Raglow
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary Kathryn McKenna
- Center for Cell and Gene Therapy, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Challice L Bonifant
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Surgery, Department of Cell and Developmental Biology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Johannes Stadlmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Josef M Penninger
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Department of Medicine, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX 77030, USA.
| | - David M Markovitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Programs in Cancer Biology, Cellular and Molecular Biology, and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Dorca-Arévalo J, Gómez de Aranda I, Blasi J. New Mutants of Epsilon Toxin from Clostridium perfringens with an Altered Receptor-Binding Site and Cell-Type Specificity. Toxins (Basel) 2022; 14:toxins14040288. [PMID: 35448898 PMCID: PMC9031233 DOI: 10.3390/toxins14040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Epsilon toxin (Etx) from Clostridium perfringens is the third most potent toxin after the botulinum and tetanus toxins. Etx is the main agent of enterotoxemia in ruminants and is produced by Clostridium perfringens toxinotypes B and D, causing great economic losses. Etx selectively binds to target cells, oligomerizes and inserts into the plasma membrane, and forms pores. A series of mutants have been previously generated to understand the cellular and molecular mechanisms of the toxin and to obtain valid molecular tools for effective vaccination protocols. Here, two new non-toxic Etx mutants were generated by selective deletions in the binding (Etx-ΔS188-F196) or insertion (Etx-ΔV108-F135) domains of the toxin. As expected, our results showed that Etx-ΔS188-F196 did not exhibit the usual Etx binding pattern but surprisingly recognized specifically an O-glycoprotein present in the proximal tubules of the kidneys in a wide range of animals, including ruminants. Although diminished, Etx-ΔV108-F135 maintained the capacity for binding and even oligomerization, indicating that the mutation particularly affected the pore-forming ability of the toxin.
Collapse
Affiliation(s)
- Jonatan Dorca-Arévalo
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, 08907 Barcelona, Spain; (I.G.d.A.); (J.B.)
- Biomedical Research Institute of Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Correspondence:
| | - Inmaculada Gómez de Aranda
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, 08907 Barcelona, Spain; (I.G.d.A.); (J.B.)
| | - Juan Blasi
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, 08907 Barcelona, Spain; (I.G.d.A.); (J.B.)
- Biomedical Research Institute of Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
23
|
Barre A, Van Damme EJM, Klonjkowski B, Simplicien M, Sudor J, Benoist H, Rougé P. Legume Lectins with Different Specificities as Potential Glycan Probes for Pathogenic Enveloped Viruses. Cells 2022; 11:cells11030339. [PMID: 35159151 PMCID: PMC8834014 DOI: 10.3390/cells11030339] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pathogenic enveloped viruses are covered with a glycan shield that provides a dual function: the glycan structures contribute to virus protection as well as host cell recognition. The three classical types of N-glycans, in particular complex glycans, high-mannose glycans, and hybrid glycans, together with some O-glycans, participate in the glycan shield of the Ebola virus, influenza virus, human cytomegalovirus, herpes virus, human immunodeficiency virus, Lassa virus, and MERS-CoV, SARS-CoV, and SARS-CoV-2, which are responsible for respiratory syndromes. The glycans are linked to glycoproteins that occur as metastable prefusion glycoproteins on the surface of infectious virions such as gp120 of HIV, hemagglutinin of influenza, or spike proteins of beta-coronaviruses. Plant lectins with different carbohydrate-binding specificities and, especially, mannose-specific lectins from the Vicieae tribe, such as pea lectin and lentil lectin, can be used as glycan probes for targeting the glycan shield because of their specific interaction with the α1,6-fucosylated core Man3GlcNAc2, which predominantly occurs in complex and hybrid glycans. Other plant lectins with Neu5Ac specificity or GalNAc/T/Tn specificity can also serve as potential glycan probes for the often sialylated complex glycans and truncated O-glycans, respectively, which are abundantly distributed in the glycan shield of enveloped viruses. The biomedical and therapeutical potential of plant lectins as antiviral drugs is discussed.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Els J. M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Bernard Klonjkowski
- UMR Virologie, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, F-94700 Maisons-Alfort, France;
| | - Mathias Simplicien
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Jan Sudor
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Hervé Benoist
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
- Correspondence: ; Tel.: +33-069-552-0851
| |
Collapse
|
24
|
Bulteau F, Thépaut M, Henry M, Hurbin A, Vanwonterghem L, Vivès C, Le Roy A, Ebel C, Renaudet O, Fieschi F, Coll JL. Targeting Tn-Antigen-Positive Human Tumors with a Recombinant Human Macrophage Galactose C-Type Lectin. Mol Pharm 2022; 19:235-245. [PMID: 34927439 DOI: 10.1021/acs.molpharmaceut.1c00744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alterations in glycosylation cause the emergence of tumor-associated carbohydrate antigens (TACAs) during tumorigenesis. Truncation of O-glycans reveals the Thomsen nouveau (Tn) antigen, an N-acetylgalactosamine (GalNAc) frequently attached to serine or threonine amino acids, that is accessible on the surface of cancer cells but not on healthy cells. Interestingly, GalNac can be recognized by macrophage galactose lectin (MGL), a type C lectin receptor expressed in immune cells. In this study, recombinant MGL fragments were tested in vitro for their cancer cell-targeting efficiency by flow cytometry and confocal microscopy and in vivo after administration of fluorescent MGL to tumor-bearing mice. Our results demonstrate the ability of MGL to target Tn-positive human tumors without inducing toxicity. This outcome makes MGL, a fragment of a normal human protein, the first vector candidate for in vivo diagnosis and imaging of human tumors and, possibly, for therapeutic applications.
Collapse
Affiliation(s)
- François Bulteau
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France.,Univ. Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, 38000 Grenoble, France.,Univ. Grenoble Alpes, CNRS, Département de Chimie Moléculaire, UMR 5250, 38000 Grenoble, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Maxime Henry
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Amandine Hurbin
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Laetitia Vanwonterghem
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Corinne Vivès
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Aline Le Roy
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Christine Ebel
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, Département de Chimie Moléculaire, UMR 5250, 38000 Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Jean-Luc Coll
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, 38000 Grenoble, France
| |
Collapse
|
25
|
Van Damme EJM. 35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine. Glycoconj J 2022; 39:83-97. [PMID: 34427812 PMCID: PMC8383723 DOI: 10.1007/s10719-021-10015-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/30/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Plants contain an extended group of lectins differing from each other in their molecular structures, biochemical properties and carbohydrate-binding specificities. The heterogeneous group of plant lectins can be classified in several families based on the primary structure of the lectin domain. All proteins composed of one or more lectin domains, or having a domain architecture including one or more lectin domains in combination with other protein domains can be defined as lectins. Plant lectins reside in different cell compartments, and depending on their location will encounter a large variety carbohydrate structures, allowing them to be involved in multiple biological functions. Over the years lectins have been studied intensively for their carbohydrate-binding properties and biological activities, which also resulted in diverse applications. The present overview on plant lectins especially focuses on the structural and functional characteristics of plant lectins and their applications for crop improvement, glycobiology and biomedical research.
Collapse
Affiliation(s)
- Els J. M. Van Damme
- Laboratory of Glycobiology and Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
26
|
Iwan V, Grotemeyer J. Elucidating the Fragmentation Mechanism of Protonated Lewis A Trisaccharide using MS n CID. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2021; 27:256-265. [PMID: 34951325 DOI: 10.1177/14690667211069033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lewis blood group antigens are a prominent example of isomeric oligosaccharides with biological activity. Understanding the fragmentation mechanism in the gas phase is essential for their identification and assignment by mass spectrometric methods such as ESI-MS. In this work, the [M + H]+ species of Lewis A trisaccharide and Lewis A trisaccharide methyl glycoside were studied by ESI-MS with FT-ICR as mass analyzer with respect to their fragmentation mechanism. The comparison between the underivatized and the methylated species has shown that the reducing end plays a key role in this mechanism. The results of this study question the existence of Z-type fragment ions after activation of the protonated species. The main product of the fragmentation are Y-type fragment ions and a combination of Y-type fragmentation and the loss of water at the reducing end instead of Z-type fragmentation. C-type fragment ions could not be detected. MS3 measurements also reveal that each fragment ion only occurs with the participation of a mobile proton and the possibility of glycosidic bond cleavage after fragmentation has already occurred at the reducing end as B2 fragment ion.
Collapse
Affiliation(s)
- Volker Iwan
- Institute of Physical Chemistry, 9179Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jürgen Grotemeyer
- Institute of Physical Chemistry, 9179Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
27
|
Hegde P, B R S, Ballal S, Swamy BM, Inamdar SR. Rhizoctonia bataticola lectin induces apoptosis and inhibits metastasis in ovarian cancer cells by interacting with CA 125 antigen differentially expressed on ovarian cells. Glycoconj J 2021; 38:669-688. [PMID: 34748163 DOI: 10.1007/s10719-021-10027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
A N-glycan specific lectin from Rhizoctonia bataticola [RBL] was shown to induce growth inhibitory and apoptotic effect in human ovarian, colon and leukemic cells but mitogenic effect on normal PBMCs as reported earlier, revealing its clinical potential. RBL has unique specificity for high mannose tri and tetra antennary N-glycans, expressed in ovarian cancer and also recognizes glycans which are part of CA 125 antigen, a well known ovarian cancer marker. Hence, in the present study diagnostic and therapeutic potential of RBL was investigated using human ovarian epithelial cancer SKOV3 and OVCAR3 cells known for differentially expressing CA 125. RBL binds differentially to human ovarian normal, cyst and cancer tissues. Flow cytometry, western blot analysis of membrane proteins showed the competitive binding of RBL and CA 125 antibody for the same binding sites on SKOV3 and OVCAR3 cells. RBL has strong binding to both SKOV3 and OVCAR3 cells with MFI of 173 and 155 respectively. RBL shows dose and time dependent growth inhibitory effect with IC50 of 2.5 and 8 μg/mL respectively for SKOV3 and OVCAR3 cells. RBL induces reproductive cell death, morphological changes, nuclear degradation and increased release of ROS in SKOV3 and OVCAR3 cells leading to cell death. This is also supported by increase in hypodiploid population, altered MMP leading to apoptosis possibly involving intrinsic pathway. Adhesion, wound healing, invasion and migration assays demonstrated anti-metastasis effect of RBL apart from its growth inhibitory effect. These results show the promising potential of RBL both as a diagnostic and therapeutic agent.
Collapse
Affiliation(s)
- Prajna Hegde
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Sindhura B R
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Suhas Ballal
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Bale M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India.
| |
Collapse
|
28
|
Xu D, Zhao Z, Li Y, Shang C, Liu L, Yan J, Zheng Y, Wen Z, Gu T. Inhibition of O-glycosylation aggravates GalN/LPS-induced liver injury through activation of ER stress. Immunopharmacol Immunotoxicol 2021; 43:741-748. [PMID: 34549685 DOI: 10.1080/08923973.2021.1979035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE O-glycosylation is the most common post-translational modification of proteins, which is involved in many pathophysiological processes including inflammation. Acute liver injury is characterized by an excessive, uncontrolled inflammatory response, but the effects of aberrant O-glycosylation on acute liver injury are yet to explore. Here we aimed to investigate the role of defective O-glycosylation in D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced acute liver damage in mice. MATERIAL AND METHODS Experimental mice were administrated with an O-glycosylation inhibitor (benzyl-a-GalNac, 5 mg/kg) at 24 h before administration of GalN/LPS. At 12 h after GalN/LPS administration, mice were sacrificed to collect blood and liver samples for further analysis. RESULTS We found that benzyl-a-GalNac treatment-induced abundant expression of Tn antigen, which is an immature O-glycan representing abnormal O-glycosylation. Benzyl-a-GalNac pretreatment exacerbated considerably GalN/LPS-induced liver damage in mice, evidenced by significantly reduced survival rates, more severe histological alterations, and notable elevation of multiple inflammatory cytokines and chemokines. Mechanistically, benzyl-a-GalNac could trigger endoplasmic reticulum (ER) stress in the liver of mice, demonstrated by the elevated expression of glucose-regulated protein 78 (GRP78) and C/EBP-homologous protein (CHOP), both of which are hallmarks for ER stress. Inhibition of ER stress by 4-phenylbutyric acid (4-PBA) markedly abrogated benzyl-a-GalNac-mediated enhanced hepatotoxicity and systemic inflammation in GalN/LPS-treated mice. CONCLUSIONS This study demonstrated that inhibition of O-glycosylation caused by benzyl-a-GalNac aggravated GalN/LPS-induced liver damage and systemic inflammation, which may be due to activation of ER stress.
Collapse
Affiliation(s)
- Dongkui Xu
- VIP Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenguo Zhao
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixian Li
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chao Shang
- VIP Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijie Liu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Jiaxu Yan
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Ying Zheng
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Gu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
29
|
The T/Tn-Specific Helix pomatia Lectin Induces Cell Death in Lymphoma Cells Negative for T/Tn Antigens. Cancers (Basel) 2021; 13:cancers13174356. [PMID: 34503166 PMCID: PMC8431231 DOI: 10.3390/cancers13174356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Changes in glycosylation, such as incomplete synthesis and higher density of O-glycans on the cell surface, are frequently observed in cancer cells. Several types of truncated O-glycan structures, e.g., T/Tn antigens, are suspected to disrupt molecular interactions between tumor microenvironment and immune cells, for instance, facilitating cancer immune-escape. Therefore, numerous exogenous lectins targeting aberrant O-glycans are interesting tools for cancer diagnosis, prognosis, and therapy. However, the ability of exolectins to detect subtle alterations in the glycome of tumor cells and to interfere in tumor/healthy cell interactions remains largely unknown. The present article reports for the first time that the Helix pomatia (HPA) lectin, a well-known T/Tn-specific lectin, currently used as a tool in cancer diagnostics, kills Tn-positive leukemia cells and Tn-negative lymphoma cells but does not affect healthy lymphocytes. Thus, HPA could be used to discriminate between tumor and healthy cells, and detect subtle alterations in the glycosylation profile. Abstract Morniga G is a T/Tn-specific lectin, inducing cell death in Tn-positive leukemias but not in healthy lymphocytes. Helix pomatia lectin (HPA) is another T/Tn-specific lectin, currently used as tool for cancer diagnostics. The HPA-mediated tumor cell death was evaluated on human leukemia and mouse lymphoma cells, and compared to the effect of Morniga G. Both lectins induced an equivalent percentage of cell death in Tn-positive Jurkat human leukemia. In contrast, EL4 mouse lymphoma resisted Morniga G-mediated cytotoxicity but were killed by HPA at concentrations of 2.5 μg/mL (0.032 nM) and higher. In both malignant cells, HPA-mediated cell death showed features compatible with apoptosis (annexin-externalization, caspase-activation, mitochondrial membrane depolarization, and ROS production). Cytometry analysis indicated that EL4 cells are T/Tn-negative. Because previous results showed a high amount of N-acetylgalactosamine (GalNAc, sugar present in Tn antigen) on EL4 cell surface, this GalNAc could be involved in the formation of truncated O-glycans other than the T/Tn residues. When compared to Morniga G, bioinformatic analysis suggested that HPA benefits from an extended carbohydrate-binding site, better adapted than Morniga G to the accommodation of more complex branched and truncated O-glycans (such as core 2). Finally, HPA killed EL4 cells but not healthy lymphocytes in a mixture of lymphoma cells + lymphocytes, suggesting that HPA selectively triggers tumor cell death.
Collapse
|
30
|
Oliveira C, Freitas AI, Campos N, Saraiva L, Domingues L. Cytotoxicity of Frutalin on Distinct Cancer Cells Is Independent of Its Glycosylation. Molecules 2021; 26:molecules26164712. [PMID: 34443300 PMCID: PMC8401544 DOI: 10.3390/molecules26164712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/25/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022] Open
Abstract
Frutalin is a plant lectin with beneficial immunobiological action, although the access to its active form is still restricted. Moreover, there is a knowledge gap on isoform activity and glycosylation impact on its bioactivity, and recombinant production protocols were seen as ineffective. Here, a simpler and faster production and purification protocol was developed, attaining a yield of purified frutalin 3.3-fold higher than that obtained previously. Hemagglutination assays confirmed that this frutalin isoform could not agglutinate rabbit erythrocytes, while maintaining the native tetrameric structure, as indicated by DLS analysis, and strong interaction with methyl-alpha-galactose, in fluorescence spectroscopy studies. The cytotoxicity of the recombinant frutalin isoform was shown in a broad panel of human cancer cells: colon (HCT116), melanoma (A375), triple-negative breast cancer (MDA-MB-231), and ovarian (IGROV-1). Treatment with 8.5–11.8 μM TrxFTL reduced proliferation of all cancer cells to half in 48 h. This anti-proliferative effect encompasses the p53 pathway since it was significantly reduced in p53-null colon cancer cells (HCT116 p53−/−; GI50 of 25.0 ± 3.0 μM), when compared to the isogenic p53-positive cells (HCT116 p53+/+; GI50 of 8.7 ± 1.8 μM; p < 0.002). This recombinantly produced frutalin isoform has relevant cytotoxic effect and its biological activity is not dependent on glycosylation. The developed E. coli production and purification protocol generates high yield of non-glycosylated frutalin isoform with potent cytotoxic activity, enabling the development of novel anticancer p53-targeting therapies.
Collapse
Affiliation(s)
- Carla Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Ana Isabel Freitas
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Nair Campos
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (N.C.); (L.S.)
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (N.C.); (L.S.)
| | - Lucília Domingues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- Correspondence: ; Tel.: +351-253-604-405
| |
Collapse
|
31
|
Morticelli L, Magdei M, Tschalaki N, Petersen B, Haverich A, Hilfiker A. Generation of glycans depleted decellularized porcine pericardium, using digestive enzymatic supplements and enzymatic mixtures for food industry. Xenotransplantation 2021; 28:e12705. [PMID: 34227157 DOI: 10.1111/xen.12705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/27/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Xenogeneic pericardium has been used largely for various applications in cardiovascular surgery. Nevertheless, xenogeneic pericardial patches fail mainly due to their antigenic components. The xenoantigens identified as playing a major role in recipient immune response are the Galα1-3Gal (α-Gal) epitope, the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc), and the porcine SDa antigen, associated with both proteins and lipids. The reduction in glycans from porcine pericardium might hinder or reduce the immunogenicity of xenogeneic scaffolds. METHODS Decellularized porcine pericardia were further treated at different time points and dilutions with digestive enzymatic supplements and enzymatic mixtures applied for food industry, for the removal of potentially immunogenic carbohydrates. Carbohydrates removal was investigated using up to 8 different lectin stains for the identification of N- and O-glycosylations, as well as glycolipids. Histoarchitectural changes in the ECM were assessed using Elastica van Gieson stain, whereas changes in mechanical properties were investigated via uniaxial tensile test and burst pressure test. RESULTS Tissues after enzymatic treatments showed a dramatic decrease in lectin stainings in comparison to tissues which were only decellularized. Histological assessment revealed cell-nuclei removal after decellularization. Some of the enzymatic treatments induced elastic lamellae disruption. Tissue strength decreased after enzymatic treatment; however, treated tissues showed values of burst pressure higher than physiological transvalvular pressures. CONCLUSIONS The application of these enzymatic treatments for tissue deglycosylation is totally novel, low cost, and appears to be very efficient for glycan removal. The immunogenic potential of treated tissues will be further investigated in subsequent studies, in vitro and in vivo.
Collapse
Affiliation(s)
- Lucrezia Morticelli
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mikhail Magdei
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Negin Tschalaki
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Björn Petersen
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Wang S, Chen C, Gadi MR, Saikam V, Liu D, Zhu H, Bollag R, Liu K, Chen X, Wang F, Wang PG, Ling P, Guan W, Li L. Chemoenzymatic modular assembly of O-GalNAc glycans for functional glycomics. Nat Commun 2021; 12:3573. [PMID: 34117223 PMCID: PMC8196059 DOI: 10.1038/s41467-021-23428-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/29/2021] [Indexed: 01/16/2023] Open
Abstract
O-GalNAc glycans (or mucin O-glycans) play pivotal roles in diverse biological and pathological processes, including tumor growth and progression. Structurally defined O-GalNAc glycans are essential for functional studies but synthetic challenges and their inherent structural diversity and complexity have limited access to these compounds. Herein, we report an efficient and robust chemoenzymatic modular assembly (CEMA) strategy to construct structurally diverse O-GalNAc glycans. The key to this strategy is the convergent assembly of O-GalNAc cores 1-4 and 6 from three chemical building blocks, followed by enzymatic diversification of the cores by 13 well-tailored enzyme modules. A total of 83 O-GalNAc glycans presenting various natural glycan epitopes are obtained and used to generate a unique synthetic mucin O-glycan microarray. Binding specificities of glycan-binding proteins (GBPs) including plant lectins and selected anti-glycan antibodies towards these O-GalNAc glycans are revealed by this microarray, promoting their applicability in functional O-glycomics. Serum samples from colorectal cancer patients and healthy controls are assayed using the array reveal higher bindings towards less common cores 3, 4, and 6 than abundant cores 1 and 2, providing insights into O-GalNAc glycan structure-activity relationships.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Congcong Chen
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology, Shandong University, Qingdao, 266237, Shandong, China
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan, 250101, Shandong, China
| | | | - Varma Saikam
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - He Zhu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Roni Bollag
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Science, Shandong University, Jinan, 250012, Shandong, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology, Shandong University, Qingdao, 266237, Shandong, China.
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan, 250101, Shandong, China.
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Science, Shandong University, Jinan, 250012, Shandong, China.
| | - Wanyi Guan
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
33
|
Bloise N, Okkeh M, Restivo E, Della Pina C, Visai L. Targeting the "Sweet Side" of Tumor with Glycan-Binding Molecules Conjugated-Nanoparticles: Implications in Cancer Therapy and Diagnosis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:289. [PMID: 33499388 PMCID: PMC7911724 DOI: 10.3390/nano11020289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Nanotechnology is in the spotlight of therapeutic innovation, with numerous advantages for tumor visualization and eradication. The end goal of the therapeutic use of nanoparticles, however, remains distant due to the limitations of nanoparticles to target cancer tissue. The functionalization of nanosystem surfaces with biological ligands is a major strategy for directing the actions of nanomaterials specifically to tumor cells. Cancer formation and metastasis are accompanied by profound alterations in protein glycosylation. Hence, the detection and targeting of aberrant glycans are of great value in cancer diagnosis and therapy. In this review, we provide a brief update on recent progress targeting aberrant glycosylation by functionalizing nanoparticles with glycan-binding molecules (with a special focus on lectins and anti-glycan antibodies) to improve the efficacy of nanoparticles in cancer targeting, diagnosis, and therapy and outline the challenges and limitations in implementing this approach. We envision that the combination of nanotechnological strategies and cancer-associated glycan targeting could remodel the field of cancer diagnosis and therapy, including immunotherapy.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli, 3/B-27100 Pavia, Italy; (M.O.); (E.R.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, 28-27100 Pavia, Italy
| | - Mohammad Okkeh
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli, 3/B-27100 Pavia, Italy; (M.O.); (E.R.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, 28-27100 Pavia, Italy
| | - Elisa Restivo
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli, 3/B-27100 Pavia, Italy; (M.O.); (E.R.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, 28-27100 Pavia, Italy
| | - Cristina Della Pina
- Dipartimento di Chimica, Università Degli Studi di Milano e CNR-ISTM, Via C. Golgi, 19, 20133 Milan, Italy;
| | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli, 3/B-27100 Pavia, Italy; (M.O.); (E.R.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, 28-27100 Pavia, Italy
| |
Collapse
|
34
|
Tracking of Glycans Structure and Metallomics Profiles in BRAF Mutated Melanoma Cells Treated with Vemurafenib. Int J Mol Sci 2021; 22:ijms22010439. [PMID: 33406789 PMCID: PMC7794875 DOI: 10.3390/ijms22010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Nearly half of patients with advanced and metastatic melanomas harbor a BRAF mutation. Vemurafenib (VEM), a BRAF inhibitor, is used to treat such patients, however, responses to VEM are very short-lived due to intrinsic, adaptive and/or acquired resistance. In this context, we present the action of the B-Raf serine-threonine protein kinase inhibitor (vemurafenib) on the glycans structure and metallomics profiles in melanoma cells without (MeWo) and with (G-361) BRAF mutations. The studies were performed using α1-acid glycoprotein (AGP), a well-known acute-phase protein, and concanavalin A (Con A), which served as the model receptor. The detection of changes in the structure of glycans can be successfully carried out based on the frequency shifts and the charge transfer resistance after interaction of AGP with Con A in different VEM treatments using QCM-D and EIS measurements. These changes were also proved based on the cell ultrastructure examined by TEM and SEM. The LA-ICP-MS studies provided details on the metallomics profile in melanoma cells treated with and without VEM. The studies evidence that vemurafenib modifies the glycans structures and metallomics profile in melanoma cells harboring BRAF mutation that can be further implied in the resistance phenomenon. Therefore, our data opens a new avenue for further studies in the short-term addressing novel targets that hopefully can be used to improve the therapeutic regiment in advanced melanoma patients. The innovating potential of this study is fully credible and has a real impact on the global patient society suffering from advanced and metastatic melanomas.
Collapse
|
35
|
Srinivas BK, Shivamadhu MC, Jayarama S. Musa acuminata lectin exerts anti-cancer effects on HeLa and EAC cells via activation of caspase and inhibitions of Akt, Erk, and Jnk pathway expression and suppresses the neoangiogenesis in in-vivo models. Int J Biol Macromol 2021; 166:1173-1187. [PMID: 33159939 DOI: 10.1016/j.ijbiomac.2020.10.272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 02/05/2023]
Abstract
In the present study aimed to purify the lectin from the sap of Musa acuminata pseudostem and elucidate the apoptotic and angiogenic molecular mechanism in both in-vitro and in-vivo model. Mannose specific lectin was purified by using mannose affinity column chromatography and analyzed by RP-HPLC, SDS-PAGE, and PAS staining method. Furthermore, the protein was identified by MALDI-MS/MS. MAL effectively agglutinates trypsinized RBCs and showed effective cytotoxicity against various human cancer cell lines. MAL mitigates the cell proliferation, colony formation, cell migration, arrest the cell cycle in the G2/M phase, and induce apoptosis by altering the expression of apoptotic proteins/mRNA level (Bax and Bcl-2) via caspase 8/9, 3 dependent pathway in both in-vitro and in-vivo. Supporting this, in-vivo EAC tumor mice models prove the efficacy of MAL by inducing cell death and inhibiting the neovessel formation by targeting the MVD, inhibition of VEGF secretion, suppressing the expression of MMPs, HIF-1α, Flt-1, Akt, Jnk, and Erk1/2. More importantly, the MAL treatment leads to effective inhibition of tumor growth and an increase in the survivability of EAC mice. Our study summarizes that the MAL having a significant anticancer potential expressively degenerates the tumor development by inducing apoptosis and suppressing neoangiogenesis.
Collapse
Affiliation(s)
| | - Madhu Chakkere Shivamadhu
- Department of Biochemistry, Yuvaraja's College, University of Mysore, Mysuru, Karnataka 570005, India
| | - Shankar Jayarama
- Post-Graduation Department of Biotechnology, Teresian College, Siddhartha Nagara, Mysore, Karnataka 570011, India; Post-Graduation Department of Studies and Research in Food Technology, Davanagere University, Tholahunase, Davanagere, Karnataka 577002, India.
| |
Collapse
|
36
|
Wolin IAV, Heinrich IA, Nascimento APM, Welter PG, Sosa LDV, De Paul AL, Zanotto-Filho A, Nedel CB, Lima LD, Osterne VJS, Pinto-Junior VR, Nascimento KS, Cavada BS, Leal RB. ConBr lectin modulates MAPKs and Akt pathways and triggers autophagic glioma cell death by a mechanism dependent upon caspase-8 activation. Biochimie 2020; 180:186-204. [PMID: 33171216 DOI: 10.1016/j.biochi.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023]
Abstract
Glioblastoma multiforme is the most aggressive type of glioma, with limited treatment and poor prognosis. Despite some advances over the last decade, validation of novel and selective antiglioma agents remains a challenge in clinical pharmacology. Prior studies have shown that leguminous lectins may exert various biological effects, including antitumor properties. Accordingly, this study aimed to evaluate the mechanisms underlying the antiglioma activity of ConBr, a lectin extracted from the Canavalia brasiliensis seeds. ConBr at lower concentrations inhibited C6 glioma cell migration while higher levels promoted cell death dependent upon carbohydrate recognition domain (CRD) structure. ConBr increased p38MAPK and JNK and decreased ERK1/2 and Akt phosphorylation. Moreover, ConBr inhibited mTORC1 phosphorylation associated with accumulation of autophagic markers, such as acidic vacuoles and LC3 cleavage. Inhibition of early steps of autophagy with 3-methyl-adenine (3-MA) partially protected whereas the later autophagy inhibitor Chloroquine (CQ) had no protective effect upon ConBr cytotoxicity. ConBr also augmented caspase-3 activation without affecting mitochondrial function. Noteworthy, the caspase-8 inhibitor IETF-fmk attenuated ConBr induced autophagy and C6 glioma cell death. Finally, ConBr did not show cytotoxicity against primary astrocytes, suggesting a selective antiglioma activity. In summary, our results indicate that ConBr requires functional CRD lectin domain to exert antiglioma activity, and its cytotoxicity is associated with MAPKs and Akt pathways modulation and autophagy- and caspase-8- dependent cell death.
Collapse
Affiliation(s)
- Ingrid A V Wolin
- Departamento de Bioquímica e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Isabella A Heinrich
- Departamento de Bioquímica e Programa de Pós-graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Ana Paula M Nascimento
- Departamento de Bioquímica e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Priscilla G Welter
- Departamento de Bioquímica e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Liliana Del V Sosa
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Ciudad Universitaria, 5000, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina
| | - Ana Lucia De Paul
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Ciudad Universitaria, 5000, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina
| | - Alfeu Zanotto-Filho
- Departamento de Farmacologia e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Cláudia Beatriz Nedel
- Departamento de Biologia Celular, Embriologia e Genética, Laboratório de Biologia Celular de Gliomas, Programa de Pós-graduação Em Biologia Celular e Do Desenvolvimento, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Lara Dias Lima
- Departamento de Bioquímica e Biologia Molecular, BioMolLab, Universidade Federal Do Ceará, CEP, 60020-181, Fortaleza, Ceará, Brazil
| | - Vinicius Jose Silva Osterne
- Departamento de Bioquímica e Biologia Molecular, BioMolLab, Universidade Federal Do Ceará, CEP, 60020-181, Fortaleza, Ceará, Brazil
| | | | - Kyria S Nascimento
- Departamento de Bioquímica e Biologia Molecular, BioMolLab, Universidade Federal Do Ceará, CEP, 60020-181, Fortaleza, Ceará, Brazil
| | - Benildo S Cavada
- Departamento de Bioquímica e Biologia Molecular, BioMolLab, Universidade Federal Do Ceará, CEP, 60020-181, Fortaleza, Ceará, Brazil
| | - Rodrigo B Leal
- Departamento de Bioquímica e Programa de Pós-graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil; Departamento de Bioquímica e Programa de Pós-graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
37
|
Tsaneva M, Van Damme EJM. 130 years of Plant Lectin Research. Glycoconj J 2020; 37:533-551. [PMID: 32860551 PMCID: PMC7455784 DOI: 10.1007/s10719-020-09942-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Lectins are proteins with diverse molecular structures that share the ability to recognize and bind specifically and reversibly to carbohydrate structures without changing the carbohydrate moiety. The history of lectins started with the discovery of ricin about 130 years ago but since then our understanding of lectins has dramatically changed. Over the years the research focus was shifted from 'the characterization of carbohydrate-binding proteins' to 'understanding the biological function of lectins'. Nowadays plant lectins attract a lot of attention especially because of their potential for crop improvement and biomedical research, as well as their application as tools in glycobiology. The present review aims to give an overview of plant lectins and their applications, and how the field evolved in the last decades.
Collapse
Affiliation(s)
- Mariya Tsaneva
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
38
|
Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown. Nat Commun 2020; 11:4017. [PMID: 32782292 PMCID: PMC7419316 DOI: 10.1038/s41467-020-17847-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022] Open
Abstract
The thick mucus layer of the gut provides a barrier to infiltration of the underlying epithelia by both the normal microbiota and enteric pathogens. Some members of the microbiota utilise mucin glycoproteins as a nutrient source, but a detailed understanding of the mechanisms used to breakdown these complex macromolecules is lacking. Here we describe the discovery and characterisation of endo-acting enzymes from prominent mucin-degrading bacteria that target the polyLacNAc structures within oligosaccharide side chains of both animal and human mucins. These O-glycanases are part of the large and diverse glycoside hydrolase 16 (GH16) family and are often lipoproteins, indicating that they are surface located and thus likely involved in the initial step in mucin breakdown. These data provide a significant advance in our knowledge of the mechanism of mucin breakdown by the normal microbiota. Furthermore, we also demonstrate the potential use of these enzymes as tools to explore changes in O-glycan structure in a number of intestinal disease states. Epithelial cells that line the gut secrete complex glycoproteins that form a mucus layer to protect the gut wall from enteric pathogens. Here, the authors provide a comprehensive characterisation of endo-acting glycoside hydrolases expressed by mucin-degrading members of the microbiome that are able to cleave the O-glycan chains of a range of different animal and human mucins.
Collapse
|
39
|
Zocchi MR, Tosetti F, Benelli R, Poggi A. Cancer Nanomedicine Special Issue Review Anticancer Drug Delivery with Nanoparticles: Extracellular Vesicles or Synthetic Nanobeads as Therapeutic Tools for Conventional Treatment or Immunotherapy. Cancers (Basel) 2020; 12:cancers12071886. [PMID: 32668783 PMCID: PMC7409190 DOI: 10.3390/cancers12071886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Both natural and synthetic nanoparticles have been proposed as drug carriers in cancer treatment, since they can increase drug accumulation in target tissues, optimizing the therapeutic effect. As an example, extracellular vesicles (EV), including exosomes (Exo), can become drug vehicles through endogenous or exogenous loading, amplifying the anticancer effects at the tumor site. In turn, synthetic nanoparticles (NP) can carry therapeutic molecules inside their core, improving solubility and stability, preventing degradation, and controlling their release. In this review, we summarize the recent advances in nanotechnology applied for theranostic use, distinguishing between passive and active targeting of these vehicles. In addition, examples of these models are reported: EV as transporters of conventional anticancer drugs; Exo or NP as carriers of small molecules that induce an anti-tumor immune response. Finally, we focus on two types of nanoparticles used to stimulate an anticancer immune response: Exo carried with A Disintegrin And Metalloprotease-10 inhibitors and NP loaded with aminobisphosphonates. The former would reduce the release of decoy ligands that impair tumor cell recognition, while the latter would activate the peculiar anti-tumor response exerted by γδ T cells, creating a bridge between innate and adaptive immunity.
Collapse
Affiliation(s)
- Maria Raffaella Zocchi
- Division of Immunology Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
- Correspondence:
| |
Collapse
|
40
|
Chen C, Wang S, Gadi MR, Zhu H, Liu F, Liu CC, Li L, Wang F, Ling P, Cao H. Enzymatic modular synthesis and microarray assay of poly-N-acetyllactosamine derivatives. Chem Commun (Camb) 2020; 56:7549-7552. [PMID: 32579622 DOI: 10.1039/d0cc03268a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A facile enzymatic modular assembly strategy for the preparative-scale synthesis of poly-N-acetyllactosamine (poly-LacNAc) glycans with varied lengths and designed sialylation and/or fucosylation patterns is described. These glycans were printed as a microarray to investigate their interactions with a panel of glycan binding proteins (GBPs). Binding affinities revealed that the avidity of GBPs could be largely affected by the length and the patterns of sialylation and fucosylation.
Collapse
Affiliation(s)
- Congcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020; 12:pharmaceutics12060510. [PMID: 32503171 PMCID: PMC7356945 DOI: 10.3390/pharmaceutics12060510] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Within recent decades, the development of nanotechnology has made a significant contribution to the progress of various fields of study, including the domains of medical and pharmaceutical sciences. A substantially transformed arena within the context of the latter is the development and production of various injectable parenteral formulations. Indeed, recent decades have witnessed a rapid growth of the marketed and pipeline nanotechnology-based injectable products, which is a testimony to the remarkability of the aforementioned contribution. Adjunct to the ability of nanomaterials to deliver the incorporated payloads to many different targets of interest, nanotechnology has substantially assisted to the development of many further facets of the art. Such contributions include the enhancement of the drug solubility, development of long-acting locally and systemically injectable formulations, tuning the onset of the drug’s release through the endowment of sensitivity to various internal or external stimuli, as well as adjuvancy and immune activation, which is a desirable component for injectable vaccines and immunotherapeutic formulations. The current work seeks to provide a comprehensive review of all the abovementioned contributions, along with the most recent advances made within each domain. Furthermore, recent developments within the domains of passive and active targeting will be briefly debated.
Collapse
Affiliation(s)
- Maryam A. Shetab Boushehri
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- Correspondence: ; Tel.: +49-228-736428; Fax: +49-228-735268
| | - Dirk Dietrich
- Department of Neurosurgery, University Clinic of Bonn, 53105 Bonn, Germany;
| | - Alf Lamprecht
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- PEPITE EA4267, Institute of Pharmacy, University Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
42
|
Pietrzyk-Brzezinska AJ, Bujacz A. H-type lectins - Structural characteristics and their applications in diagnostics, analytics and drug delivery. Int J Biol Macromol 2020; 152:735-747. [PMID: 32119947 DOI: 10.1016/j.ijbiomac.2020.02.320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Lectins are ubiquitous carbohydrate-binding proteins that interact with sugar moieties in a highly specific manner. H-type lectins represent a new group of lectins that were identified in invertebrates. These lectins share structural homology and bind mainly to N-acetylgalactosamine (GalNAc). Recent structural studies on the H-type lectins provided a detailed description of the GalNAc-lectin interaction that is already exploited in a number of biomedical applications. Two members of the H-type lectin family, Helix pomatia agglutinin (HPA) and Helix aspersa agglutinin (HAA), have already been extensively used in many diagnostic tests due their ability to specifically recognize GalNAc. This ability is especially important because aberrant glycosylation patterns of proteins expressed by cancer cells contain GalNAc. In addition, H-type lectins were utilized in diagnostics of other non-cancer diseases and represent great potential as components of drug delivery systems. Here, we present an overview of the H-type lectins and their applications in diagnostics, analytics and drug delivery.
Collapse
Affiliation(s)
- Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland.
| | - Anna Bujacz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland
| |
Collapse
|
43
|
Cervantes-Jiménez R, Sánchez-Segura L, Estrada-Martínez LE, Topete-Camacho A, Mendiola-Olaya E, Rosas-Escareño AN, Saldaña-Gutiérrez C, Figueroa-Cabañas ME, Dena-Beltrán JL, Kuri-García A, Blanco-Labra A, García-Gasca T. Quantum Dot Labelling of Tepary Bean ( Phaseolus acutifolius) Lectins by Microfluidics. Molecules 2020; 25:E1041. [PMID: 32110921 PMCID: PMC7179211 DOI: 10.3390/molecules25051041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022] Open
Abstract
Lectins are bioactive proteins with the ability to recognize cell membrane carbohydrates in a specific way. Diverse plant lectins have shown diagnostic and therapeutic potential against cancer, and their cytotoxicity against transformed cells is mediated through the induction of apoptosis. Previous works have determined the cytotoxic activity of a Tepary bean (Phaseolus acutifolius) lectin fraction (TBLF) and its anti-tumorigenic effect on colon cancer. In this work, lectins from the TBLF were additionally purified by ionic-exchange chromatography. Two peaks with agglutination activity were obtained: one of them was named TBL-IE2 and showed a single protein band in two-dimensional electrophoresis; this one was thus selected for coupling to quantum dot (QD) nanoparticles by microfluidics (TBL-IE2-QD). The microfluidic method led to low sample usage, and resulted in homogeneous complexes, whose visualization was achieved using multiphoton and transmission electron microscopy. The average particle size (380 nm) and the average zeta potential (-18.51 mV) were determined. The cytotoxicity of the TBL-IE2 and TBL-IE2-QD was assayed on HT-29 colon cancer cells, showing no differences between them (p ≤ 0.05), where the LC50 values were 1.0 × 10-3 and 1.7 × 10-3 mg/mL, respectively. The microfluidic technique allowed control of the coupling between the QD and the protein, substantially improving the labelling process, providing a rapid and efficient method that enabled the traceability of lectins. Future studies will focus on the potential use of the QD-labelled lectin to recognize tumor tissues.
Collapse
Affiliation(s)
- Ricardo Cervantes-Jiménez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato CP 36821, Mexico;
| | - Laura Elena Estrada-Martínez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Antonio Topete-Camacho
- Departamento de Fisiología, Centro de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara CP 44340, Mexico; (A.T.-C.); (A.N.R.-E.)
| | - Elizabeth Mendiola-Olaya
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato CP 36821, Mexico;
| | - Abraham Noé Rosas-Escareño
- Departamento de Fisiología, Centro de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara CP 44340, Mexico; (A.T.-C.); (A.N.R.-E.)
| | - Carlos Saldaña-Gutiérrez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Mónica Eugenia Figueroa-Cabañas
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - José Luis Dena-Beltrán
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Aarón Kuri-García
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Alejandro Blanco-Labra
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato CP 36821, Mexico;
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| |
Collapse
|
44
|
Hwang HJ, Han JW, Jeon H, Cho K, Kim JH, Lee DS, Han JW. Characterization of a Novel Mannose-Binding Lectin with Antiviral Activities from Red Alga, Grateloupia chiangii. Biomolecules 2020; 10:E333. [PMID: 32092955 PMCID: PMC7072537 DOI: 10.3390/biom10020333] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Lectins have the ability to bind specific carbohydrates and they have potential applications as medical and pharmacological agents. The unique structure and usefulness of red algal lectin have been reported, but these lectins are limited to a few marine algal groups. In this study, a novel mannose-binding lectin from Grateloupia chiangii (G. chiangii lectin, GCL) was purified using antiviral screens and affinity chromatography. We characterized the molecular weight, agglutination activity, hemagglutination activity, and heat stability of GCL. To determine the carbohydrate specificity, a glycan microarray was performed. GCL showed strong binding affinity for Maltohexaose-β-Sp1 and Maltoheptaose-β-Sp1 with weak affinity for other monosaccharides and preferred binding to high-mannan structures. The N-terminal sequence and peptide sequence of GCL were determined using an Edman degradation method and LC-MS/MS, and the cDNA and peptide sequences were deduced. GCL was shown to consist of 231 amino acids (24.9 kDa) and the N-terminus methionine was eliminated after translation. GCL possessed a tandem repeat structure of six domains, similar to the other red algal lectins. The mannose binding properties and tandem repeat structure of GCL may confer it the potential to act as an antiviral agent for protection against viral infection.
Collapse
Affiliation(s)
- Hyun-Ju Hwang
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| | - Jin-Wook Han
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| | - Hancheol Jeon
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| | - Kichul Cho
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| | - Ju-hee Kim
- Department of Ecology and Conservation, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea;
| | - Dae-Sung Lee
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea;
| | - Jong Won Han
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| |
Collapse
|
45
|
Yamamoto T, Sato K, Wakahara S, Mitamura K, Taga A. A method for detecting tumor cells derived from colorectal cancer by targeting cell surface glycosylation with affinity capillary electrophoresis. J Pharm Biomed Anal 2020; 182:113138. [PMID: 32035334 DOI: 10.1016/j.jpba.2020.113138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/09/2022]
Abstract
Circulating tumor cells (CTCs) are involved in metastasis; thus, one of the most important approaches for identifying metastatic cancer is to detect CTCs in blood. In the present study, we examined whether directly analyzing cells with capillary electrophoresis (CE) could distinguish cancer cells from normal cells, based on differences in cell surface glycosylation. We compared human colorectal cancer (CRC) cell lines to a normal colon epithelium cell line. Our results demonstrated that direct CE analysis could successfully distinguish between CRC and normal cells with high reproducibility, based on migration times. We found that the weighted-average migration time was significantly shorter for CRC cells than for normal cells. Next, we observed changes in the electrophoretic behaviors of CRC cells by adding five different types of lectins. When Aleuria aurantia lectin was added, migration delays were observed in CRC cells, but not in normal colon cells. Therefore, by focusing on shifts in migration time after adding specific lectins, we could distinguish cancer cells from normal cells. These findings suggested that this diagnostic method of directly analyzing cells with CE after adding specific lectin(s) could be useful for detecting the difference in the sugar moieties on a surface of normal and cancer cells.
Collapse
Affiliation(s)
- Tetsushi Yamamoto
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Kanta Sato
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Shinpei Wakahara
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Kuniko Mitamura
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Atsushi Taga
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Osaka, Japan; Antiaging Center, Kindai University, Osaka, Japan.
| |
Collapse
|
46
|
Cavada BS, Osterne VJS, Pinto-Junior VR, Souza LAG, Lossio CF, Silva MTL, Correia-Neto C, Oliveira MV, Correia JLA, Neco AHB, Domingos JLC, Ferreira WP, Farias GA, Nascimento KS. Molecular dynamics and binding energy analysis of Vatairea guianensis lectin: a new tool for cancer studies. J Mol Model 2020; 26:22. [PMID: 31912427 DOI: 10.1007/s00894-019-4281-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022]
Abstract
The Tn antigen is an epitope containing N-acetyl-D-galactosamine present in the extracellular matrix of some carcinoma cells in humans, and it is often used as a biomarker. Lectins are proteins capable of binding to carbohydrates and can be used as a molecular tool to recognize antigens and to differentiate cancer cells from normal cells. In this context, the present work aimed to characterize the interaction of Vatairea guianensis seed lectin with N-acetyl-D-galactosamine and the Tn antigen by molecular dynamics and molecular mechanics/Poisson-Boltzmann solvent-accessible surface area analysis. This study revealed new interacting residues not previously identified in static analysis of the three-dimensional structures of Vatairea lectins, as well as the configuration taken by the carbohydrate recognition domain, as it interacts with each ligand. During the molecular dynamics simulations, Vatairea guianensis lectin was able to bind stably to Tn antigen, which, as seen previously for other lectins, enables its use in cancer research, diagnosis, and therapy. This work further demonstrates the efficiency of bioinformatics in lectinology.
Collapse
Affiliation(s)
- Benildo Sousa Cavada
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Mister Hull Avenue s/n. Campus do Pici, Bloco 907, Fortaleza, CE, 60455-970, Brazil.
| | - Vinicius Jose Silva Osterne
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Mister Hull Avenue s/n. Campus do Pici, Bloco 907, Fortaleza, CE, 60455-970, Brazil
| | | | | | - Claudia Figueiredo Lossio
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Mister Hull Avenue s/n. Campus do Pici, Bloco 907, Fortaleza, CE, 60455-970, Brazil
| | | | - Corneville Correia-Neto
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Mister Hull Avenue s/n. Campus do Pici, Bloco 907, Fortaleza, CE, 60455-970, Brazil
| | - Messias Vital Oliveira
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Mister Hull Avenue s/n. Campus do Pici, Bloco 907, Fortaleza, CE, 60455-970, Brazil
| | - Jorge Luis Almeida Correia
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Mister Hull Avenue s/n. Campus do Pici, Bloco 907, Fortaleza, CE, 60455-970, Brazil
| | - Antonio Hadson Bastos Neco
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Mister Hull Avenue s/n. Campus do Pici, Bloco 907, Fortaleza, CE, 60455-970, Brazil
| | | | | | - Gil Aquino Farias
- Departmento de Fisica, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Kyria Santiago Nascimento
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Mister Hull Avenue s/n. Campus do Pici, Bloco 907, Fortaleza, CE, 60455-970, Brazil.
| |
Collapse
|
47
|
Sclerotium rolfsii lectin induces opposite effects on normal PBMCs and leukemic Molt-4 cells by recognising TF antigen and its variants as receptors. Glycoconj J 2020; 37:251-261. [PMID: 31900725 DOI: 10.1007/s10719-019-09905-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/13/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023]
Abstract
Sclerotium rolfsii lectin (SRL) exerts apoptotic effect against various cancer cells and an antitumor activity on mice with colon and breast cancer xenografts. The current study aimed to explore its exquisite carbohydrate specificity on human peripheral blood mononuclear cells (PBMCs) and leukemic T-cells. SRL, showed strong binding (>98%) to resting/activated PBMCs, leukemic Molt-4 and Jurkat cell lines. The glycans mediated binding to these cells was effectively blocked by mucin and fetuin, exhibiting 97% and 94% inhibition respectively. SRL showed mitogenic stimulation of PBMCs at 10 μg/ml as determined by thymidine incorporation assay. In contrast, lectin induced a dose dependent growth inhibition of Molt-4 cells with 58% inhibition at 25 μg/ml. Many common membrane receptors in activated PBMCs, Molt 4 and Jurkat cells were identified by lectin blotting. However, membrane receptors that are recognized by SRL in normal resting PBMCs were totally different and are high molecular weight glycoproteins. Treatment of membrane receptors with glycosidases prior to lectin probing, revealed that fucosylated Thomsen-Friedenreich(TF) antigen glycans are increasingly expressed on transformed Molt-4 leukemic cells compared to other cells. The findings highlight the opposite effects of SRL on transformed and normal hematopoietic cells by recognizing different glycan-receptors. SRL has promising potential for diagnostics and therapeutic applications in leukaemia.
Collapse
|
48
|
Bala Subramaniyan S, Senthilnathan R, Arunachalam J, Anbazhagan V. Revealing the Significance of the Glycan Binding Property of Butea monosperma Seed Lectin for Enhancing the Antibiofilm Activity of Silver Nanoparticles against Uropathogenic Escherichia coli. Bioconjug Chem 2019; 31:139-148. [DOI: 10.1021/acs.bioconjchem.9b00821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Siva Bala Subramaniyan
- School of Chemical & Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA) Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Rajendran Senthilnathan
- School of Chemical & Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA) Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Jothi Arunachalam
- School of Chemical & Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA) Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Veerappan Anbazhagan
- School of Chemical & Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA) Deemed University, Thanjavur, Tamil Nadu 613401, India
| |
Collapse
|
49
|
Ferreira HJ, de Almeida EM, da Silva WMB, Teixeira EH, do Nascimento Neto LG. Molecular Mechanisms Involved in the Antitumor Activity of Isolated Lectins from Marine Organisms: A Systematic Review. Curr Drug Targets 2019; 21:616-625. [PMID: 31763966 DOI: 10.2174/1389450120666191122113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/27/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Tumor cells may present several molecular alterations that favor their malignancy, among which there is the expression of tumor-related antigens, such as truncated T-glycans, Thomsen-nouvelle, sialyl-Lewis X and sialyl Tn, which may help in the diagnosis and treatment using specific target molecules. Lectins are ubiquitous proteins capable of interacting with specific carbohydrates. Lectins isolated from marine organisms have important characteristics such as low immunogenicity and can bind to complex glycans compared to plant lectins. OBJECTIVE This work evaluated, through a systematic review, the molecular mechanisms of antitumor activity of lectins isolated from marine organisms. METHODOLOGY The Pubmed, Lilacs, Science Direct, Wiley and Scopus databases were reviewed using the descriptors: marine lectin and cancer. Articles in English, published between January 2008 and December 2018, which proposed the molecular mechanisms of anticancer activity of lectins from marine organisms were eligible for the study. RESULTS 17 articles were eligible. The lectins showed promising performance against cancer cells, presenting specific cytotoxicity for some types of malignant cells. The articles presented several lectins specific to different carbohydrates, modulating: pro and anti-apoptotic proteins, transcription factor E2F-1, via mitogen-activated protein kinase. In addition, exogenous lectin expression in cancer cells has been shown to be a promising way to treat cancer. CONCLUSION This review showed the various studies that described the molecular mechanisms caused by marine lectins with antineoplastic potential. This knowledge is relevant for the development and use of the next generations of lectins isolated from marine organisms, supporting their potential in cancer treatment.
Collapse
Affiliation(s)
- Hugo Jefferson Ferreira
- Biomedicine College, Christus University Center, Fortaleza - CE, Brazil.,Integrated Laboratory of Biomolecules (LIBS), Federal University of Ceara, Department of Pathology and Forensic Medicine, 60430-160, Fortaleza, CE, Brazil
| | - Evandro Moreira de Almeida
- Biomedicine College, Christus University Center, Fortaleza - CE, Brazil.,Integrated Laboratory of Biomolecules (LIBS), Federal University of Ceara, Department of Pathology and Forensic Medicine, 60430-160, Fortaleza, CE, Brazil
| | | | - Edson Holanda Teixeira
- Integrated Laboratory of Biomolecules (LIBS), Federal University of Ceara, Department of Pathology and Forensic Medicine, 60430-160, Fortaleza, CE, Brazil
| | - Luiz Gonzaga do Nascimento Neto
- Integrated Laboratory of Biomolecules (LIBS), Federal University of Ceara, Department of Pathology and Forensic Medicine, 60430-160, Fortaleza, CE, Brazil.,Federal Institute of Education, Science and Technology of Ceará, Limoeiro do Norte Campus, 62930-000, Limoeiro do Norte, Ceara, Brazil
| |
Collapse
|
50
|
Morales-Cruz M, Delgado Y, Castillo B, Figueroa CM, Molina AM, Torres A, Milián M, Griebenow K. Smart Targeting To Improve Cancer Therapeutics. Drug Des Devel Ther 2019; 13:3753-3772. [PMID: 31802849 PMCID: PMC6826196 DOI: 10.2147/dddt.s219489] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second largest cause of death worldwide with the number of new cancer cases predicted to grow significantly in the next decades. Biotechnology and medicine can and should work hand-in-hand to improve cancer diagnosis and treatment efficacy. However, success has been frequently limited, in particular when treating late-stage solid tumors. There still is the need to develop smart and synergistic therapeutic approaches to achieve the synthesis of strong and effective drugs and delivery systems. Much interest has been paid to the development of smart drug delivery systems (drug-loaded particles) that utilize passive targeting, active targeting, and/or stimulus responsiveness strategies. This review will summarize some main ideas about the effect of each strategy and how the combination of some or all of them has shown to be effective. After a brief introduction of current cancer therapies and their limitations, we describe the biological barriers that nanoparticles need to overcome, followed by presenting different types of drug delivery systems to improve drug accumulation in tumors. Then, we describe cancer cell membrane targets that increase cellular drug uptake through active targeting mechanisms. Stimulus-responsive targeting is also discussed by looking at the intra- and extracellular conditions for specific drug release. We include a significant amount of information summarized in tables and figures on nanoparticle-based therapeutics, PEGylated drugs, different ligands for the design of active-targeted systems, and targeting of different organs. We also discuss some still prevailing fundamental limitations of these approaches, eg, by occlusion of targeting ligands.
Collapse
Affiliation(s)
- Moraima Morales-Cruz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Yamixa Delgado
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Betzaida Castillo
- Department of Chemistry, University of Puerto Rico, Humacao Campus, Humacao, PR, USA
| | - Cindy M Figueroa
- Department of Math and Sciences, Polytechnic University of Puerto Rico, San Juan, PR, USA
| | - Anna M Molina
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Anamaris Torres
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Melissa Milián
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| |
Collapse
|